

DEPARTMENT OF VETERANS AFFAIRS

Wm. S. Middleton Memorial V.A. Hospital

Renovate Food Production on 2C / Project Number 607-16-131

PROJECT MANUAL 100% CONSTRUCTION DOCUMENT

05 May 2017

SIGNATURE 5,12.17

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 15	List of Drawing Sheets	07-15
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	11-15
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	02-15
01 33 23	Shop Drawings, Product Data, and Samples	07-15
01 35 26	Safety Requirements	10-14
01 42 19	Reference Standards	05-16
01 45 29	Testing Laboratory Services	06-15
01 57 19	Temporary Environmental Controls	01-11
01 58 16	Temporary Interior Signage	07-15
01 74 19	Construction Waste Management	09-13
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	02-15
02 82 11	Traditional Asbestos Abatement	09-16
02 82 11.01	Asbestos Pre-Renovation Inspection Report - For	07-16
00 00 12 12	Reference Only	00.16
02 82 13.13 02 82 13.19	Glovebag Asbestos Abatement	09-16
02 82 13.19	Asbestos Floor Tile and Mastic Abatement	09-16
	DIVISION 03 - CONCRETE	
03 30 00	Cast-in-Place Concrete	12-15
	DIVISION 04 - MASONRY	
04 01 00	Maintenance of Masonry	02-16
04 05 13	Masonry Mortaring	02-16
04 05 16	Masonry Grouting	02-16
04 20 00	Unit Masonry	02-16
	DIVISION 05 - METALS	
05 12 00	Structural Steel Framing	02-16
05 50 00	Metal Fabrications	07-14
05 51 00	Metal Stairs	10-15
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	10-15

06 20 00	Finish Carpentry	06-13
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
	DIVIDION 07 - INEXPAN AND MOIDIUME PROTECTION	
07 21 13	Thermal Insulation	02-16
07 84 00	Firestopping	02-16
07 92 00	Joint Sealants	10-15
07 95 13	Expansion Joint Cover Assemblies	02-16
0. 20 10		02 20
	DIVISION 08 - OPENINGS	
00 11 12	Hallan Makal Danna and Engman	01 12
08 11 13	Hollow Metal Doors and Frames	01-13
08 14 00	Interior Wood Doors	02-16
08 31 13	Access Doors and Frames	02-16
08 71 00	Door Hardware	01-16
08 71 13	Automatic Door Operators	02-16
08 80 00	Glazing	10-15
08 90 00	Louvers and Vents	05-15
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	02-15
09 06 00.1	Schedule for Finishes	04-15
09 22 16	Non-Structural Metal Framing	05-16
09 29 00	Gypsum Board	11-14
09 30 13	Ceramic/Porcelain Tiling	10-15
09 51 00	Acoustical Ceilings	12-15
09 65 13	Resilient Base and Accessories	02-16
09 65 16	Resilient Sheet Flooring	02-16
09 65 19	Resilient Tile Flooring	12-15
09 67 23.30	Resinous High Performance Flooring System with Urethane Body	07-14
09 91 00	Painting	01-16
03 32 00	- 42	01 10
	DIVISION 10 - SPECIALTIES	
10 14 00	Signage	10-15
	Wall and Door Protection	10-15
10 26 00 10 44 13	Fire Extinguisher Cabinets	08-14
10 44 13		06-14
10 51 13	Plastic Lockers	06-14
	DIVISION 11 - EQUIPMENT	
11 40 00	Food Service Equipment	11-11
	DIVISION 12 - FURNISHINGS	
12 24 00	Window Shades	09-15
12 31 00	Manufactured Metal Casework	05-15
12 36 00	Countertops	09-15
	DIVISION 13 - SPECIAL CONSTRUCTION	

13 21 29	Constant Temperature Rooms	11-11
	DIVISION 14- CONVEYING EQUIPEMENT (NA)	
	DIVISION 21- FIRE SUPPRESSION	
21 08 00	Commissioning of Fire Suppression System	11-16
21 13 13	Wet-Pipe Sprinkler Systems	11-16
	DIVISION 22 - PLUMBING	
00 05 11		11 16
22 05 11 22 05 23	Common Work Results for Plumbing	11-16 11-16
22 05 23	General-Duty Valves for Plumbing Piping Plumbing Insulation	11-16
22 08 00	Commissioning of Plumbing Systems	11-16
22 10 13	Natural Gas Piping	02-15
22 10 13	Facility Water Distribution	11-16
22 13 00	Facility Water Distribution Facility Sanitary and Vent Piping	11-16
22 13 00	Sanitary Waste Interceptors	11-16
22 40 00	Plumbing Fixtures	11-16
22 10 00	Trumbing Fixedies	11 10
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-15
23 05 12	General Motor Requirements for HVAC and Steam	02-15
	Generation Equipment	
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	02-15
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-15
23 07 11	HVAC Insulation	02-15
23 08 00	Commissioning of HVAC Systems	06-13
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	09-12
23 22 13	Steam and Condensate Heating Piping	02-15
23 25 00	HVAC Water Treatment	02-15
23 31 00	HVAC Ducts and Casings	03-13
23 34 00	HVAC Fans	02-15
23 36 00	Air Terminal Units	02-15
23 37 00	Air Outlets and Inlets	02-15
23 40 00	HVAC Air Cleaning Devices	02-12
23 73 00	Indoor Central-Station Air-Handling Units	04-11
23 81 00	Decentralized Unitary HVAC Equipment	04 11
23 82 00 23 82 16	Convection Heating and Cooling Units Air Coils	04-11
23 02 10	AII COIIS	04-11
	DIVISION 25 - INTEGRATED AUTOMATION	
25 13 00	Building Automation System (BAS) Integration	08-13
	DIVISION 26 - ELECTRICAL	
26 05 03	Electrical Equipment Mounting Requirements	03-16

26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	07-13
26 05 26	Grounding and Bonding for Electrical Systems	12-12
26 05 33	Raceway and Boxes for Electrical Systems	05-14
26 05 73	Overcurrent Protective Device Coordination Study	12-15
26 09 23	Lighting Controls	05-14
26 24 16	Panelboards	05-14
26 27 26	Wiring Devices	01-16
26 29 11	Motor Controllers	08-14
26 29 21	Enclosed Switches and Circuit Breakers	12-12
26 51 00	Interior Lighting	08-14
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	06-15
27 05 11	Grounding and Bonding for Communications Systems	06-15
27 05 26		06-15
27 10 00	Raceways and Boxes for Communications Systems Structured Cabling	06-15
27 15 00	Communications Horizontal Cabling	06-13
27 51 16	Public Address and Mass Notification Systems	10-15
27 31 10	Public Address and Mass Nothication Systems	10-15
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
20 05 00	Common Howly Depults for Electronic Cofety and Cognitive	09-11
28 05 00 28 05 13	Common Work Results for Electronic Safety and Security	09-11
28 05 13	Conductors and Cables for Electronic Safety and Security	09-11
28 05 26	Grounding and Bonding for Electronic Safety and	09-11
	Security	
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security	09-11
28 08 00	Commissioning of Electronic Safety and Security Systems	06-13
28 13 00	Physical Access Control System	10-11
28 31 00	Fire Detection and Alarm	10-11
	DIVISION 31 - EARTHWORK (NA)	
I	DIVISION 32 - EXTERIOR IMPROVEMENTS (NA)	
	DIVISION 33 - UTILITIES (NA)	
	DIVISION 33 - UTILITIES (NA)	
	DIVISION 33 - UTILITIES (NA) DIVISION 34 - TRANSPORTATION (NA)	

SECTION 21 08 00

CONTRACTOR SUPPORT OF COMMISSIONING FIRE SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Fire Suppression systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 21 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 21, is required in cooperation with the VA and the Commissioning Agent.
- B. The Fire Suppression systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the building fire suppression systems will require inspection of individual elements of the fire suppression construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING

REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Contracting Officer Representative (COR). The Contractor shall review
and comment on the tests prior to approval. The Contractor shall
provide the required labor, materials, and test equipment identified in
the test procedure to perform the tests. The Commissioning Agent will
witness and document the testing. The Contractor shall sign the test
reports to verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 21 Sections for additional Contractor training requirements.

---- END ----

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation, for the entire second floor of the 'C' Wing.
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 09 91 00, PAINTING.
- D. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- E. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.

- b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Fire Protection contractor shall perform their own flow test to determine actual system flow and pressure.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

1. Qualifications:

- a. Provide a copy of the installing contractors state contractor's license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a

- Registered Professional Engineer licensed in the field of Fire Protection Engineering.
- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
 - b. Submit calculations of loads for sizing of sway bracing in accordance with NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.

- 2) One complete set in electronic pdf format.
- 3) One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Wisconsin's contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and

equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):
 - 13-13.....Installation of Sprinkler Systems
 - 25-14......Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems
 - 101-15.....Life Safety Code
 - 170-15.....Fire Safety Symbols
- C. Underwriters Laboratories, Inc. (UL):
 - Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM):
 Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
 - 3. Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 40 with grooved connections. Grooves in Schedule 40 piping shall be rolled grooved only.
 - 4. Plastic piping shall not be permitted.

2.2 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 13.
 - 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type.

 Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.

D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.4 SPRINKLERS

- A. All sprinklers shall be FM approved quick response. Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, and refrigerators.
- B. Temperature Ratings: In accordance with NFPA 13.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.6 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.11 ANTIFREEZE SOLUTION

Antifreeze solution shall be in accordance with NFPA 13 and shall be compatible with use in a potable water supply.

2.12 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished

ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.

- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.

- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- L. Where dry pendent sprinklers are used for freezers or similar spaces and they are connected to the wet pipe system, provide an EPDM boot around the dry pendent sprinkler on the heated side and securely seal to the pipe and freezer to prevent condensation from entering the freezer.
- M. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- N. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- O. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- P. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)

- 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.

3. Hydraulic Placards:

- a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- Q. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- R. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior

to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. CDA: Copper Development Association
 - 14. C: Celsius
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. COR: Contracting Officer's Representative
 - 18. CPVC: Chlorinated Polyvinyl Chloride
 - 19. CR: Chloroprene
 - 20. CRS: Corrosion Resistant Steel
 - 21. CWP: Cold Working Pressure
 - 22. CxA: Commissioning Agent
 - 23. db(A): Decibels (A weighted)
 - 24. DDC: Direct Digital Control
 - 25. DI: Digital Input
 - 26. DISS: Diameter Index Safety System
 - 27. DO: Digital Output
 - 28. DVD: Digital Video Disc
 - 29. DN: Diameter Nominal

- 30. DWV: Drainage, Waste and Vent
- 31. ECC: Engineering Control Center
- 32. EPDM: Ethylene Propylene Diene Monomer
- 33. EPT: Ethylene Propylene Terpolymer
- 34. ETO: Ethylene Oxide
- 35. F: Fahrenheit
- 36. FAR: Federal Acquisition Regulations
- 37. FD: Floor Drain
- 38. FED: Federal
- 39. FG: Fiberglass
- 40. FNPT: Female National Pipe Thread
- 41. FPM: Fluoroelastomer Polymer
- 42. GPM: Gallons Per Minute
- 43. HDPE: High Density Polyethylene
- 44. Hg: Mercury
- 45. HOA: Hands-Off-Automatic
- 46. HP: Horsepower
- 47. HVE: High Volume Evacuation
- 48. ID: Inside Diameter
- 49. IPS: Iron Pipe Size
- 50. Kg: Kilogram
- 51. kPa: Kilopascal
- 52. lb: Pound
- 53. L/s: Liters Per Second
- 54. L/min: Liters Per Minute
- 55. MAWP: Maximum Allowable Working Pressure
- 56. MAX: Maximum
- 57. MED: Medical
- 58. m: Meter
- 59. MFG: Manufacturer
- 60. mg: Milligram
- 61. mg/L: Milligrams per Liter
- 62. ml: Milliliter
- 63. mm: Millimeter
- 64. MIN: Minimum
- 65. NF: Oil Free Dry (Nitrogen)
- 66. NPTF: National Pipe Thread Female
- 67. NPS: Nominal Pipe Size

- 68. NPT: Nominal Pipe Thread
- 69. OD: Outside Diameter
- 70. OSD: Open Sight Drain
- 71. OS&Y: Outside Stem and Yoke
- 72. OXY: Oxygen
- 73. PBPU: Prefabricated Bedside Patient Units
- 74. PH: Power of Hydrogen
- 75. PLC: Programmable Logic Controllers
- 76. PP: Polypropylene
- 77. PPM: Parts per Million
- 78. PSIG: Pounds per Square Inch
- 79. PTFE: Polytetrafluoroethylene
- 80. PVC: Polyvinyl Chloride
- 81. PVDF: Polyvinylidene Fluoride
- 82. RAD: Radians
- 83. RO: Reverse Osmosis
- 84. RPM: Revolutions Per Minute
- 85. RTRP: Reinforced Thermosetting Resin Pipe
- 86. SCFM: Standard Cubic Feet Per Minute
- 87. SDI: Silt Density Index
- 88. SPEC: Specification
- 89. SPS: Sterile Processing Services
- 90. STD: Standard
- 91. SUS: Saybolt Universal Second
- 92. SWP: Steam Working Pressure
- 93. TEFC: Totally Enclosed Fan-Cooled
- 94. TFE: Tetrafluoroethylene
- 95. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 96. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 97. T/P: Temperature and Pressure
- 98. USDA: U.S. Department of Agriculture
- 99. V: Volt
- 100. VAC: Vacuum
- 101. VA: Veterans Administration
- 102. VAMC: Veterans Administration Medical Center
- 103. VAC: Voltage in Alternating Current
- 104. WAGD: Waste Anesthesia Gas Disposal
- 105. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- F. Section 05 50 00, METAL FABRICATIONS.
- G. Section 07 84 00, FIRESTOPPING.
- H. Section 07 92 00, JOINT SEALANTS.
- I. Section 09 91 00, PAINTING.
- J. Section 22 07 11, PLUMBING INSULATION.
- K. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- L. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- M. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- N. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

ASME Boiler and Pressure Vessel Code -

BPVC Section IX-2013....Welding, Brazing, and Fusing Qualifications B31.1-2012......Power Piping

- C. American Society for Testing and Materials (ASTM):
 - A36/A36M-2012......Standard Specification for Carbon Structural Steel
 - A575-96(R2013)el......Standard Specification for Steel Bars, Carbon,

 Merchant Quality, M-Grades
 - E84-2013a.....Standard Test Method for Surface Burning

Characteristics of Building Materials E119-2012a.....Standard Test Methods for Fire Tests of

Building Construction and Materials

F1760-01(R2011)......Standard Specification for Coextruded

Poly(Vinyl Chloride) (PVC) Non-Pressure Plastic
Pipe Having Reprocessed-Recycled Content

D. International Code Council, (ICC):

IBC-2012.....International Building Code

IPC-2012.....International Plumbing Code

Ε.	Manufacturers Standardization Society (MSS) of the Valve and Fittings
	Industry, Inc:
	SP-58-2009Pipe Hangers and Supports - Materials, Design,
	Manufacture, Selection, Application and
	Installation
	SP-69-2003Pipe Hangers and Supports - Selection and
	Application
F.	Military Specifications (MIL):
	P-21035BPaint High Zinc Dust Content, Galvanizing
	Repair (Metric)
G.	National Electrical Manufacturers Association (NEMA):
	MG 1-2011Motors and Generators
Н.	National Fire Protection Association (NFPA):
	51B-2014Standard for Fire Prevention During Welding,
	Cutting and Other Hot Work
	54-2012National Fuel Gas Code
	70-2014National Electrical Code (NEC)
I.	NSF International (NSF):
	5-2012Water Heaters, Hot Water Supply Boilers, and
	Heat Recovery Equipment
	14-2012Plastic Piping System Components and Related
	Materials
	61-2012Drinking Water System Components - Health
	Effects
	372-2011Drinking Water System Components - Lead Content
J.	Department of Veterans Affairs (VA):
	PG-18-10Plumbing Design Manual
	PG-18-13-2011Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.

- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- I. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8 inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, controls, piping, pumps, valves and other items. All valves, trap primer valves, water hammer

arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.

- 1. Mechanical equipment rooms.
- 2. Hangers, supports, and bracing.
- 3. Pipe sleeves.
- 4. Equipment penetrations of floor, wall, and ceilings.
- J. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.
 - 2. Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00 CONTRACTOR TO SUPPORT COMMISSIONING OF PLUMBING SYSTEMS.
- L. Submit training plans, trainer qualifications and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.

- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, critical instrumentation shall be submitted for project record and inserted into the operations and maintenance manual.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all

- performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to

- commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.
- 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- G. Cleanliness of Piping and Equipment Systems:
 - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.

- Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
- 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.
 Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.
 Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2017 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing

agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.
- B. In-line devices such as building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- C. End point devices such as electric water coolers, lavatory faucets, kitchen faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC) and Section 13 05 41, B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Self-drilling expansion shields and machine bolt expansion anchors:

 Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 2. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- G. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide

Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.

- 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays an bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.

- H. Pre-insulated Calcium Silicate Shields:
 - 1. Provide 360 degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.

- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

2.13 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.14 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, and chases shall be accurately coordinated with equipment and piping locations.

F. Cutting Holes:

1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor

- considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 2. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- I. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- K. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

- L. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- M. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.

N. Work in Existing Building:

- Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.

O. Inaccessible Equipment:

- Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.

C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.

D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.

E. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

F. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.

- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.

- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make

performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A112.14.1-2003......Backwater Valves C. American Society of Sanitary Engineering (ASSE): 1001-2008......Performance Requirements for Atmospheric Type Vacuum Breakers 1003-2009................Performance Requirements for Water Pressure Reducing Valves for Domestic Water Distribution Systems 1011-2004......Performance Requirements for Hose Connection Vacuum Breakers 1013-2011......Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers 1015-2011......Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies

Distribution Systems

1017-2009......Performance Requirements for Temperature

Actuated Mixing Valves for Hot Water

	1020-2004	.Performance Requirements for Pressure Vacuum
		Breaker Assembly
	1035-2008	.Performance Requirements for Laboratory Faucet
		Backflow Preventers
	1069-2005	.Performance Requirements for Automatic
		Temperature Control Mixing Valves
	1070-2004	.Performance Requirements for Water Temperature
		Limiting Devices
	1071-2012	.Performance Requirements for Temperature
		Actuated Mixing Valves for Plumbed Emergency
		Equipment
D. American Society for Testing and Materials (ASTM):		sting and Materials (ASTM):
	A126-2004(R2009)	.Standard Specification for Gray Iron Castings
		for Valves, Flanges, and Pipe Fittings
	A276-2013a	.Standard Specification for Stainless Steel Bars
		and Shapes
	A536-1984(R2009)	.Standard Specification for Ductile Iron
		Castings
	B62-2009	.Standard Specification for Composition Bronze
		or Ounce Metal Castings
	B584-2013	.Standard Specification for Copper Alloy Sand
		Castings for General Applications
Ε.	International Code Coun	cil (ICC):
	IPC-2012	.International Plumbing Code
F.	Manufacturers Standardi	zation Society of the Valve and Fittings
	<pre>Industry, Inc. (MSS):</pre>	
SP-25-2008Standard Marking Systems for Valves, Fi		.Standard Marking Systems for Valves, Fittings,
		Flanges and Unions
	SP-67-2011	.Butterfly Valves
	SP-70-2011	.Gray Iron Gate Valves, Flanged and Threaded
		Ends
	SP-71-2011	.Gray Iron Swing Check Valves, Flanged and
		Threaded Ends
	SP-80-2013	.Bronze Gate, Globe, Angle, and Check Valves
	SP-85-2011	.Gray Iron Globe & Angle Valves, Flanged and
		Threaded Ends
	SP-110-2010	.Ball Valves Threaded, Socket-Welding, Solder
		Joint, Grooved and Flared Ends

- G. National Environmental Balancing Bureau (NEBB):
 - 7th Edition 2005 Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
- H. NSF International (NSF):
 - 61-2012......Drinking Water System Components Health

 Effects
 - 372-2011......Drinking Water System Components Lead Content
- I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR):
 - 9th Edition......Manual of Cross-Connection Control

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Butterfly Valves.
 - 3. Balancing Valves.
 - 4. Check Valves.
 - 5. Water Pressure Reducing Valves and Connections.
 - 6. Backflow Preventers.
 - 9. Chainwheels.
 - 10. Thermostatic Mixing Valves..
- D. Test and Balance reports for balancing valves.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

- 4. Piping diagrams of thermostatic mixing valves to be installed.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, CONTRACTOR TO SUPPORT COMMISSIONING OF PLUMBING SYSTEMS.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials.

 Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 m (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- F. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA

recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
 - 2. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.
 - 3. 100 mm DN100 (4 inches) and larger:
 - a. Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The butterfly valve shall be lug type, suitable for bidirectional dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall be EPDM with stainless steel disc and stem.
 - b. Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall be epoxy coated ductile iron conforming to ASTM A536 with two piece stainless steel stem, Buna encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated.

2.3 BALANCING VALVES

A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure

read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.

B. Larger than 75 mm or DN75 (3 inches): Manual balancing valves shall be of heavy duty cast iron flanged construction with 861 kPa (125 psig) flange connections. The flanged manual balancing valves shall have either a brass ball with glass and carbon filled TFE seal rings or fitted with a bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. The design pressure shall be 1200 kPa (175 psig) at 121 degrees C (250 degrees F).

2.4 CHECK VALVES

- A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.
- B. 100 mm or DN100 (4 inches) and larger:
 - 1. Check valves shall be Class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A126, bolted bonnet, flanged ends, bronze trim.

2.6 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

A. 75 mm or DN75 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The pressure reducing valve shall meet ASSE 1003. The bronze bell housing and access cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly shall be accessible for maintenance without having to remove the body from the line.

- B. 100 mm or DN100 (4 inches) and larger: The pressure reducing valve shall consist of a flanged cast iron body and rated to 1380 kPa (200 psig). The valve shall have a large elastomer diaphragm for sensitive response. The pressure reducing valve shall meet ASSE 1003.
- C. The regulator shall have a tap for pressure gauge.
- D. The regulator shall have a temperature rating of 100 degrees C (212 degrees F) for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9 kPa (+/- 1 psig).
- E. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
- F. Connections Valves and Strainers: Shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gage shall be installed on the

2.8 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be approved by the University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USCFCCC).
- B. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS&Y positive-seal resilient gate valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The checks and the relief valve shall be accessible for maintenance without removing the device from the line. An epoxy coated wye type strainer with flanged connections shall be installed on the inlet. Reduced pressure backflow preventers shall be installed in the following applications.
 - 1. Water make up to heating systems, chilled water system, and similar equipment consuming water.
 - 2. Cart washer.

- C. The pipe applied or integral atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be cast bronze. The seat disc shall be the elastomer type suited for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Atmospheric vacuum breakers shall be installed in the following applications.
 - 1. Hose bibs and sinks with threaded outlets.
 - 2. Disposers.
 - 3. All kitchen equipment, if not protected by air gap.
 - 4. Ventilating hoods with wash down system.
 - 6. Service sinks (integral with faucet only).
- D. The hose connection vacuum breaker shall be ASSE listed 1011. The main body shall be cast brass with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to hose thread outlets. Hose connection vacuum breakers shall be installed in the following locations requiring non-continuous pressure:
 - 1. Hose bibbs and wall hydrants.
- E. The pressure vacuum breaker shall be ASSE listed 1020. The main body shall be brass. The disc and O-ring seal shall be the elastomer type. The valve seat and disc float shall be the thermoplastic type. Tee handle or lever handle shut-off ball valves. Test cocks for testing and draining where freezing conditions occur. All materials shall be suitable for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Pressure vacuum breakers shall be installed in the following locations requiring continuous pressure and no backpressure including equipment with submerged inlet connections:

 1. Lawn Irrigation.
- F. The double check backflow prevention assembly shall be ASSE listed 1015 and supply with full port, OS&Y, positive-seal, resilient gate valves. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be

stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The first and second check valve shall be accessible for maintenance without removing the device from the line. Double check valves shall be installed in the following location requiring continuous pressure subject to backpressure and backsiphonage conditions.

1. Food Processing Equipment.

2.10 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
 - 1. Shall meet ASSE requirements for water temperature control.
 - 2. The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.
 - 3. No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
 - 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
 - 5. Valve finish shall be chrome plated in exposed areas.
 - 6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures up to 82°C (180°F) for 30 minutes or 50 mg/L (50 ppm) chlorine residual concentration for 24 hours.
 - 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
 - 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.
 - 9. Provide mixing valves with integral check valves with screens and stop valves.

E. Water Temperature Limiting Devices:

- 1. Application: Single plumbing fixture point-of-use such as sinks or lavatories.
- 2. Standard: ASSE 1070.

- 3. Pressure Rating: 861 kPa (125 psig).
- 4. Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
- 5. Connections: Threaded union, compression or soldered inlets and outlet.
- 6. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.

F. Temperature Activated Mixing Valves:

- 1. Application: Emergency eye/face/drench shower equipment.
- 2. Standard: ASSE 1071.
- 3. Pressure Rating: 861 kPa (125 psig).
- 4. Type: Thermostatically controlled water mixing valve set at 24-30 degrees C (75-85 degrees F).
- 5. Connections: Soldered or threaded union inlets and outlet.
- 6. Thermometers shall be provided to indicate mixed water temperature.
- 7. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.5 gpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed.

 Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Install chain wheels on operators for butterfly valves NPS 100 mm or DN100 (4 inches) and larger and more than 3.6 m (12 feet) above floor. Chains shall be extended to 1524 mm (60 inches) above finished floor.
- F. Check valves shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- G. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.
 - 1. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- H. Install pressure gages on outlet of backflow preventers.
- I. Do not install bypass piping around backflow preventers.
- J. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.

- 2. Master, thermostatic, water mixing valves.
- 3. Manifold, thermostatic, water-mixing-valve assemblies.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
 - 2. Re-insulation of plumbing piping and equipment after asbestos abatement and or replacement of any part of existing insulation system (insulation, vapor retarder jacket, protective coverings/jacket) damaged during construction.

B. Definitions:

- 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited areas above a ceiling or below the floor, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
- 4. Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
- 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
- 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 7. FSK: Foil-scrim-Kraft facing.
- 8. Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
- 9. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).

- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- D. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT: Insulation containing asbestos material.
- E. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- F. Section 11 40 00 Food Service Equipment: Insulation used in refrigerators and freezers.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- I. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- J. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-2014......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011.....Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2007 (R2013)......Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014)......Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging Adjunct to C450......Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc. C533-2013......Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534/C534M-2014.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-2015......Standard Specification for Mineral Fiber Pipe Insulation C552-2014.....Standard Specification for Cellular Glass Thermal Insulation C553-2013.....Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C591-2013.....Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation C680-2014.....Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs

	C612-2014	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-2014	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-2012	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	C1710-2011	.Standard Guide for Installation of Flexible
		Closed Cell Preformed Insulation in Tube and
		Sheet Form
	D1668/D1668M-1997a (201	4)el Standard Specification for Glass Fabrics
		(Woven and Treated) for Roofing and
		Waterproofing
	E84-2015a	.Standard Test Method for Surface Burning
		Characteristics of Building Materials
	E2231-2015	.Standard Practice for Specimen Preparation and
		Mounting of Pipe and Duct Insulation to Assess
		Surface Burning Characteristics
C.	Federal Specifications	(Fed. Spec.):
	L-P-535E-1979	.Plastic Sheet (Sheeting): Plastic Strip; Poly
		(Vinyl Chloride) and Poly (Vinyl Chloride -
		Vinyl Acetate), Rigid.
D.	International Code Council, (ICC):	
	IMC-2012	.International Mechanical Code
E.	Military Specifications	(Mil. Spec.):
	MIL-A-3316C (2)-1990	.Adhesives, Fire-Resistant, Thermal Insulation
	MIL-A-24179A (2)-1987	.Adhesive, Flexible Unicellular-Plastic Thermal
		Insulation
	MIL-PRF-19565C (1)-1988	.Coating Compounds, Thermal Insulation, Fire-and
		Water-Resistant, Vapor-Barrier
	MIL-C-20079H-1987	.Cloth, Glass; Tape, Textile Glass; and Thread,
		Glass and Wire-Reinforced Glass
F.	National Fire Protection	n Association (NFPA):
	90A-2015	.Standard for the Installation of Air-
		Conditioning and Ventilating Systems
G.	Underwriters Laboratori	es, Inc (UL):
	723-2008 (R2013)	.Standard for Test for Surface Burning
		Characteristics of Building Materials

1887-2004 (R2013)......Standard for Fire Test of Plastic Sprinkler

Pipe for Visible Flame and Smoke

Characteristics

H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; http://.www.pipeinsulation.net

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

D. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

E. Samples:

 Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.

- Each type of facing and jacket: Minimum size 100 mm (4 inches square).
- 3. Each accessory material: Minimum 120 ml (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives cement, mastic.
- F. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through
 - 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:
 - **4.3.3.1** Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.
 - 4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).
 - 4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.
 - 4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.
 - 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
 - 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and

- condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2017 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof,

- it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers.

Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (842 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, Type III, grade 1, k=0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service vapor retarder jacket (ASJ) and with PVC premolded fitting covering.
- B. Equipment Insulation, ASTM C1126, Type II, grade 1, $k=0.021\ (0.15)$ at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket (ASJ).

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m 3 (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to 482 degrees C (900 degrees F) with or without all service vapor retarder jacket (ASJ).

- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.
- D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, Type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with PVC premolded fitting covers.
- B. Equipment and duct insulation, ASTM C591, Type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.7 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II.
- D. Characteristics:

Insulation Characteristics				
ITEMS	TYPE I	TYPE II		
Surface Temperature, maximum degrees C (degrees F)	649 (1200)	927 (1700)		

Density (dry), Kg/m ³ (lb/ ft3)	240 (15)	352 (22)
Thermal conductivity:		
Min W/ m K (Btu in/h ft² degrees F)@ mean temperature of 93 degrees C (199 degrees F)	0.065 (0.45)	0.078 (0.540)
Surface burning characteristics:		
Flame spread Index, Maximum	0	0
Smoke Density index, Maximum	0	0

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or

caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all interior piping exposed to outdoor air (i.e.; piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2070 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated or with cut aluminum gores to match shape of fitting and of 0.6 mm (0.024 inch) minimum thickness aluminum. Aluminum fittings shall be of same construction with an internal moisture barrier as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands with wing seals shall be installed on all circumferential joints. Bands shall be 15 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)		
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)	
Up through 125 (5)	150 (6) long	
150 (6)	150 (6) long	

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.

- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- E. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- F. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- G. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary

- supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- H. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- I. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- J. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- N. Freeze protection of above grade outdoor piping (over heat tracing tape): 20 mm (3/4 inch) thick insulation, for all pipe sizes 75 mm (3 inches) and smaller and 25 mm (1 inch) thick insulation for larger pipes. Provide metal jackets for all pipe insulations. Provide freeze protection for cold water make-up piping and equipment where indicated

- on the drawings as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- O. Provide vapor barrier systems as follows:
 - 2. All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity locations.
- P. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 1829 mm (6 feet) of the floor, that connects to kitchen equipment. Jackets may be applied with pop rivets except for cold pipe or tubing applications. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- Q. Provide PVC jackets over insulation as follows:
 - 1. Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Vapor retarder faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Bio-based materials shall be utilized when possible.) Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain unfaced board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating

- and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowelled to a smooth finish.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- 3. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with vapor retarder ASJ or FSK. Seal all facings, laps, and termination points and do not use staples or other attachments that may puncture ASJ or FSK.
 - a. Water filter.
- 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with unsealed ASJ or FSK.
 - a. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.

- c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

C. Rigid Cellular Phenolic Foam:

- 1. Rigid closed cell phenolic insulation may be provided, exterior only, for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
- 2. Note the ASTM E84 or UL 723 surface burning characteristics requirements of maximum 25/50 indexes in paragraph "Quality Assurance".
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together.
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- 8. Condensation control insulation: Minimum 25 mm (1 inch) thick for all pipe sizes depending on high humidity exposures.
 - a. Waste piping from icemakers to drainage system.
 - c. Waste piping located above basement floor from ice making from equipment (including trap) to main vertical waste pipe.

D. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - a. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and exposures to the public.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.

- E. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping and equipment for temperature up to 149 degree C (300 degree F).
 - 2. Install insulation, vapor retarder and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor retarder integrity.
 - 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications). Provide insulation contractions joints for very cold process temperatures.
 - 4. If insulation thickness exceeds 65 mm (2-1/2 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
 - 5. For cold applications, vapor retarder shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall be used to attach the vapor retarder or jacketing. No wire ties capable of penetrating the vapor retarder shall be used to hold the insulation in place. Stainless steel banding shall be used for cold applications to attach PVC or metal jacketing.
 - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane or polyisocyanurate spray-foam to fill PVC elbow jacket is prohibited on cold applications.
 - 7. For cold applications, the vapor retarder on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor retarder adhesive tape. Bio-based materials shall be utilized when possible.
 - 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints). Bio-based materials shall be utilized when possible.
 - 9. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph "Quality Assurance". Refer to paragraph "General Requirements" for items not to be insulated.

10. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.

F. Flexible Elastomeric Cellular Thermal Insulation:

- 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

G. Calcium Silicate:

1. Minimum thickness in millimeter (inches) specified below for piping.

Nominal Thickness Of Calcium Silicate Insulation (Non-Boiler Plant)							
Nominal Pipe Size Millimeters (Inches)	32 to 75 (1-1/4 to 3)	100-200 (4 to 8)	Greater than 200 (8)				
93-260 degrees C (199-500 degrees F)(HPS, HPR)	100(4)	125(5)	150(6)	Greater than 150(6)			

3.3 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)

		Nominal	Pipe Size M	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1½)	38 - 75 (1½ - 3)	100 (4) and Greater
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Rigid Cellular Phenolic Foam (Above ground piping only) (exterior locations only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-15 degrees C (40-60 degrees F) (Domestic Cold Water piping)	Rigid Cellular Phenolic Foam (Above ground piping only) (exterior locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F) (Domestic Cold Water piping)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
(4-15 degrees C (40-60 degrees F) (Ice water piping)	Flexible Elastomeric Cellular Thermal (Above ground piping	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)

	only)				
4-15 degrees C (40-60 degrees F) (Domestic Cold Water Piping)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 22 08 00

CONTRCTOR TO SUPPORT COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.
- B. The Plumbing systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. . All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Contracting Officer's Representative (COR)Resident Engineer. The
Contractor shall review and comment on the tests prior to approval.
The Contractor shall provide the required labor, materials, and test
equipment identified in the test procedure to perform the tests. The
Commissioning Agent will witness and document the testing. The
Contractor shall sign the test reports to verify tests were performed.
See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional
details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the <u>Contracting Officer's Representative (COR)</u>

Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the <u>COR Resident Engineer</u> after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL

COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

---- END ----

SECTION 22 10 13 NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

Fuel gas systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 07 92 00, JOINT SEALANTS.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 05 23, GENERAL DUTY VALVES FOR PLUMBING PIPING
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe & Fittings.
 - 2. Valves.
 - 3. Strainers.
 - 4. All items listed in Part 2 Products.
- C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.):

A-A-59617......Unions, Brass or Bronze Threaded, Pipe

Connections and Solder-Joint Tube Connections

C. American National Standards Institute (ANSI):

American Society of Mechanical Engineers (ASME): (Copyrighted Society)

A13.1-(2007)Scheme for Identification of Piping Systems

B16.3- (2006)......Malleable Iron Threaded Fittings: Classes 150

and 300 ANSI/ASME

B16.9-2007.....Factory-Made Wrought Steel Buttwelding Fittings
ANSI/ASME

	B16.11-2009	Forged Steel Fittings, Socket-Welding and
		Threaded ANSI/ASME
	B16.15-2006	Cast Copper Alloy Threaded Fittings: Classes
		125 and 250 ANSI/ASME
	В31.8-2010	Gas Transmission and Distribution Piping
		Systems ANSI/ASME
D.	American Society for Tes	ting and Materials (ASTM):
	A47-99(2009)	Standard Specification for Ferritic Malleable
		Iron Castings
	A53-10	Standard Specification for Pipe, Steel, Black
		And Hot-Dipped, Zinc-coated Welded and Seamless
	A183-09	Standard Specification for Carbon Steel Track
		Bolts and Nuts
	A536-09	Standard Specification for Ductile Iron
		Castings
	A733-03(2009) e1	Standard Specification for Welded and Seamless
		Carbon Steel and Austenitic Stainless Steel
		Pipe Nipples
	B687-99(2005) e1	Standard Specification for Brass, Copper, and
		Chromium-Plated Pipe Nipples
Ε.	National Fire Protection	
	54-2009	
F.	International Code Counc	
		International Plumbing Code
		International Fuel Gas Code
G.		on of Plumbing and Mechanical Officials (IAPMO):
	Uniform Plumbing Code -	
	IS6-06	
н.		ation Society of the Valve and Fittings
	Industry, Inc. (MSS):	
	SP-72-2010	Ball Valves with Flanged or Butt-Welding For
	ap 110 2010	General Service
	5r-110-2010	Ball Valve Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends
E 03	VOTEM DDECCIDE	oothe, Grooved and Frared Ends

1.5 SYSTEM PRESSURE

Natural gas systems are designed and materials and equipment selected to prevent failure under gas pressure of $34.5\ \mathrm{kPa}\ (5\ \mathrm{psi})$ upstream of

the regulator and 1.8 kPa (7 inches W.C.) at downstream side of pressure regulator.

PART 2 - PRODUCTS

2.2 FUEL GAS PIPING

- A. Pipe: Black steel, ASTM A53, Schedule 40.
- B. Nipples: Steel, ASTM A733, Schedule 40.
- C. Fittings:
 - 1. Sizes 50 mm (2 inch) under ANSI B 16.3 threaded malleable iron.
 - 2. Over 50 mm (2 inch) and up to 100 mm (4 inch) ANSI B16.11 socket welded.
 - 3. Over 100 mm (4 inch) ANSI 16.9 butt welded.
- D. Joints: Provide welded or threaded joints.

2.3 EXPOSED FUEL GAS PIPING

- A. Finished Room, including Kitchens: Use full iron pipe size chrome plated brass piping for exposed fuel gas piping connecting fixtures, casework, cabinets and equipment when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: Fed. Spec. WW-P-351, standard weight
 - 2. Fittings: ANSI B16.15 cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples: ASTM B 687, Chromium-plated.
 - 4. Unions: 50 mm (2 inches and smaller) Mss SP-72, SP-110, Brass or Bronze threaded with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
 - 5. Valves: Mss SP-72, SP-110, Brass or bronze with chrome finish.
- B. Unfinished Rooms: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING

2.4 VALVES

- A. Ball Valve: Bronze body, rated for 1025 kPA at 185°C (150 psi at 365°F), 1725 kPa at 121°C (250 psi at 250°F), reinforced TFE seat, stem seal and thrust washer; end entry, threaded ends, UL-listed for natural or LP gas shut off service when used on those services.
- B. Gas Vent Cocks: Type 701: Bronze body, tee handle, rated for 205 kPa at 38°C (30 psi at 100°F), ground plug, rated for tight shut-off on fuel gas service.

2.6 STRAINERS

A. Provide on high pressure side of pressure reducing valves, on inlet side of indicating and control instruments and equipment subject to

sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.

- B. Gas Lines: "Y" type with removable mesh lined brass strainer sleeve.
- C. Body: Smaller than 80 mm (3 inches), brass or bronze; 80 mm (3 inches) and larger, cast iron or semi-steel.

2.7 DIELECTRIC FITTINGS

Provide dielectric couplings or unions between ferrous and non-ferrous pipe.

2.8 GAS EQUIPMENT CONNECTORS

Flexible connectors with teflon core, interlocked galvanized steel protective casing, AGA certified design.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Fuel Gas Code and the following:
 - Install branch piping for fuel gas and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, shall be reamed to full size after cutting.
 - 3. All pipe runs shall be laid out to avoid interference with other work.
 - 4. Install valves with stem in horizontal position whenever possible.

 All valves shall be easily accessible.
 - 5. Install union and shut-off valve on pressure piping at connections to equipment.
 - 6. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the International Fuel Gas Code, Chapter No. 4.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with red lead or zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split unplated cast iron, chrome plated in finished areas.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.

- 5) Concrete Inserts: "Universal" or continuous slotted type.
- 6) Hanger Rods: Mild, low carbon steel, fully threaded or
 Threaded at each end with two removable nuts at each end for
 positioning rod and hanger and locking each in place.
- 7) Riser Clamps: Malleable iron or steel.
- 8) Rollers: Cast iron.
- 9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
- 10) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories.
- 7. Install cast chrome plated escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

8. Penetrations:

- a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

 Completely fill and seal clearances between piping and openings with the fire stopping materials.
- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- B. Piping shall conform to the following:

1. Fuel Gas:

- a. Entire fuel gas piping installation shall be in accordance with requirements of NFPA 54.
- b. Provide fuel gas piping with plugged drip pockets at low points.

3.2 CLEANING OF SYSTEM AFTER INSTALLATION

Clean all piping systems in the project area to remove all dirt, coatings and debris.

3.3 TESTS

- A. General: Test system either in its entirety or in sections after system is installed or cleaned.
- B. Test shall be made in accordance with Section 406 of the International Fuel Gas Code. The system shall be tested at a minimum of 1.5 times maximum working pressure, but not less than 3 psig (20 kPa) gage).

3.4 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

- - - E N D - - -

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 07 92 00, JOINT SEALANTS.
- E. Section 09 91 00, PAINTING.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007 (R2013)Scheme for Identification of Piping Systems
B16.3-2011Malleable Iron Threaded Fittings: Classes 150
and 300

B16.9-2012Factory-Made Wrought Buttwelding Fittings
B16.11-2011Forged Fittings, Socket-Welding and Threaded
B16.12-2009 (R2014)Cast Iron Threaded Drainage Fittings
B16.15-2013
125 and 250
B16.18-2012Cast Copper Alloy Solder Joint Pressure

B16.18-2012	.Cast	Copper	Alloy	Solder	Joint	Pressure
	Fitt	ings				

B16.22-2013	.Wrought	Copper	and	Copper	Alloy	Solder-Joint
	Pressure	e Fittir	ngs			

B16.24-2011	.Cast Copp	er Alloy	Pipe	Flang	ges ai	nd Fla	anged	
	Fittings:	Classes	150,	300,	600,	900,	1500,	and
	2500							

B16.51-2013.....Copper and Copper Alloy Press-Connect Fittings

	ASME Boiler and Pressure Vessel Code -
	BPVC Section IX-2015Welding, Brazing, and Fusing Qualifications
C.	American Society of Sanitary Engineers (ASSE):
	1010-2004Performance Requirements for Water Hammer
	Arresters
D.	American Society for Testing and Materials (ASTM):
	A47/A47M-1999 (R2014)Standard Specification for Ferritic Malleable
	Iron Castings
	A53/A53M-2012Standard Specification for Pipe, Steel, Black
	and Hot-Dipped, Zinc-Coated, Welded and
	Seamless
	A183-2014Standard Specification for Carbon Steel Track
	Bolts and Nuts
	A269/A269M-2014e1Standard Specification for Seamless and Welded
	Austenitic Stainless Steel Tubing for General
	Service
	A312/A312M-2015Standard Specification for Seamless, Welded,
	and Heavily Cold Worked Austenitic Stainless
	Steel Pipes
	A403/A403M-2014Standard Specification for Wrought Austenitic
	Stainless Steel Piping Fittings
	A536-1984 (R2014)Standard Specification for Ductile Iron
	Castings
	A733-2013Standard Specification for Welded and Seamless
	Carbon Steel and Austenitic Stainless Steel
	Pipe Nipples
	B32-2008 (R2014)Standard Specification for Solder Metal
	B43-2014Standard Specification for Seamless Red Brass
	Pipe, Standard Sizes
	B61-2008 (R2013)Standard Specification for Steam or Valve
	Bronze Castings
	B62-2009Standard Specification for Composition Bronze
	or Ounce Metal Castings
	B75/B75M-2011Standard Specification for Seamless Copper Tube
	B88-2014Standard Specification for Seamless Copper Water Tube
	B584-2014Standard Specification for Copper Alloy Sand
	Castings for General Applications
	caserings for denetal Applicacions

	B687-1999 (R2011)Standard Specification for Brass, Copper, and
	Chromium-Plated Pipe Nipples
	C919-2012Standard Practice for Use of Sealants in
	Acoustical Applications
	E1120-2008Standard Specification for Liquid Chlorine
	E1229-2008Standard Specification for Calcium Hypochlorite
F.	American Welding Society (AWS):
	${\tt A5.8M/A5.8-2011-AMD1Specification} \ \ {\tt for} \ \ {\tt Filler} \ \ {\tt Metals} \ \ {\tt for} \ \ {\tt Brazing} \ \ {\tt and}$
	Braze Welding
G.	International Code Council (ICC):
	IPC-2012International Plumbing Code
н.	Manufacturers Specification Society (MSS):
	SP-58-2009Pipe Hangers and Supports - Materials, Design,
	Manufacture, Selection, Application, and
	Installation
	SP-72-2010aBall Valves with Flanged or Butt-Welding Ends
	for General Service
	SP-110-2010Ball Valves Threaded, Socket-Welding, Solder
	Joint, Grooved and Flared Ends
I.	NSF International (NSF):
	14-2015Plastics Piping System Components and Related
	Materials
	61-2014aDrinking Water System Components - Health
	Effects
	372-2011Drinking Water System Components - Lead Content
J.	Plumbing and Drainage Institute (PDI):
	PDI-WH 201-2010Water Hammer Arrestors

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights,

materials, applications, standard compliance, model numbers, size, and capacity.

- 1. All items listed in Part 2 Products.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written

description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2016 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.3 ABOVE GROUND (INTERIOR) WATER PIPING

A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.

B. Fittings for Copper Tube:

- 1. Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
- 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, C84400. Mechanical grooved couplings, 2070 kpa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
- 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical press-connect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.
- 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
- 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.

C. Fittings for Stainless Steel:

- 1. Stainless steel butt-welded fittings, Type 316, Schedule 10, conforming to ASME B16.9.
- 2. Grooved fittings, stainless steel, Type 316, Schedule 40, conforming to ASTM A403/A403M. Segmentally fabricated fittings are not allowed. Mechanical grooved couplings, ductile iron, 4138 kPa (600 psig), ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.

- D. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- E. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- F. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.4 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, when not concealed by apron including those specified in other sections.
 - 1. Pipe: ASTM B43, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
 - 3. Nipples: ASTM B687, Chromium-plated.
 - 4. Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish.

 Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.7 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.8 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.9 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1120.
- B. Liquid Chlorine: ASTM E1229.

2.10 WATER HAMMER ARRESTER

A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings

pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:

- 1. All solenoid valves.
- 2. All groups of two or more flush valves.
- 3. All quick opening or closing valves.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - 3. All pipe runs shall be laid out to avoid interference with other work/trades.
 - 4. Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.

- 6) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel.

 Pipe Hangers and riser clamps shall have a copper finish when
 supporting bare copper pipe or tubing.
- 7) Rollers: Cast iron.
- 8) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
- 9) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
- 10) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 11) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.
- 6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

7. Penetrations:

a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING.

- Completely fill and seal clearances between raceways and openings with the firestopping materials.
- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Domestic Water piping shall conform to the following:
 - 1. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - 2. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff

- and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- D. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- D. Section 07 92 00, JOINT SEALANTS: Sealant products.
- E. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- G. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007	Scheme	for	the	Identification	of	Piping	Systems
A112.36.2M-1991(R 2012)	.Cleano	ıts					

A112.6.3-2001	(R2007)	.Standard	for	Floor	and	Trench	Drains

B16.1-2010	Gray	Iron	Pipe	Flanges	and	Flanged	Fittings

B16.4-2011.....Standard for Grey Iron Threaded Fittings

Classes 125 and 250

B16.15-2013Cast	Copper	Alloy	Threaded	Fittings,	Classes
125 a	and 250				

B16.18-2012......Cast Copper Alloy Solder Joint Pressure
Fittings

B16.21-2011.....Nonmetallic Flat Gaskets for Pipe Flanges

B16.22-2013......Wrought Copper and Copper Alloy Solder-Joint

Pressure Fittings

	B16.23-2011Cast	Copper Alloy Solder Joint Drainage
	Fitt	ings: DWV
	B16.24-2001 (R2006)Cast	Copper Alloy Pipe Flanges and Flanged
	Fitt	ings
		ght Copper and Wrought Copper Alloy Solder-
	Joir	t Drainage Fittings: DWV
		eable Iron Threaded Pipe Unions Classes
		250, and 300
		re, Hex, Heavy Hex, and Askew Head Bolts
	and	Hex, Heavy Hex, Hex Flange, Lobed Head, and
	Lag	Screws (Inch Series)
C.	. American Society of Sanitary	Engineers (ASSE):
	1001-2008Peri	ormance Requirements for Atmospheric Type
	Vacu	um Breakers
	1018-2001Peri	ormance Requirements for Trap Seal Primer
	Valv	es - Potable Water Supplied
	1044-2001Peri	ormance Requirements for Trap Seal Primer
	Devi	ces - Drainage Types and Electronic Design
	Туре	s
	1079-2012Peri	ormance Requirements for Dielectric Pipe
	Unio	ns
D.	. American Society for Testing	and Materials (ASTM):
	A53/A53M-2012Star	dard Specification for Pipe, Steel, Black
	And	Hot-Dipped, Zinc-coated, Welded and
	Sear	less
	A74-2013aStar	dard Specification for Cast Iron Soil Pipe
	and	Fittings
	A888-2013aStar	dard Specification for Hubless Cast Iron
	Soil	Pipe and Fittings for Sanitary and Storm
	Drai	n, Waste, and Vent Piping Applications
	B32-2008Star	dard Specification for Solder Metal
	B43-2009Star	dard Specification for Seamless Red Brass
	Pipe	, Standard Sizes
	B75-2011Star	dard Specification for Seamless Copper Tube
	B88-2009Star	dard Specification for Seamless Copper
	Wate	r Tube
	B306-2013Star	dard Specification for Copper Drainage Tube
	(DWV)

	B584-2013Standard Specification for Copper Alloy Sand
	Castings for General Applications
	B687-1999 (R 2011)Standard Specification for Brass, Copper, and
	Chromium-Plated Pipe Nipples
	B813-2010Standard Specification for Liquid and Paste
	Fluxes for Soldering of Copper and Copper Alloy
	Tube
	B828-2002 (R 2010)Standard Practice for Making Capillary Joints
	by Soldering of Copper and Copper Alloy Tube
	and Fittings
	C564-2012Standard Specification for Rubber Gaskets for
	Cast Iron Soil Pipe and Fittings
Ε.	Cast Iron Soil Pipe Institute (CISPI):
	2006Cast Iron Soil Pipe and Fittings Handbook
	301-2012Standard Specification for Hubless Cast Iron
	Soil Pipe and Fittings for Sanitary and Storm
	Drain, Waste, and Vent Piping Applications
	310-2012Specification for Coupling for Use in
	Connection with Hubless Cast Iron Soil Pipe and
	Fittings for Sanitary and Storm Drain, Waste,
	and Vent Piping Applications
F.	Copper Development Association, Inc. (CDA):
	A4015Copper Tube Handbook
G.	International Code Council (ICC):
	IPC-2012International Plumbing Code
Н.	Manufacturers Standardization Society (MSS):
	SP-123-2013Non-Ferrous Threaded and Solder-Joint Unions
	for Use With Copper Water Tube
I.	Plumbing and Drainage Institute (PDI):
	WH-201 (R 2010)Water Hammer Arrestors Standard
J.	Underwriters' Laboratories, Inc. (UL):
	508-99 (R2013)Standard For Industrial Control Equipment
1.4 S	JBMITTALS
A.	Submittals, including number of required copies, shall be submitted in

accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Grease Removal Unit.
 - 4. Cleanouts.
 - 5. Trap Seal Protection.
 - 6. Penetration Sleeves.
 - 7. Pipe Fittings.
 - 8. Traps.
 - 9. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2016 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing

agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - 1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Interior waste and vent piping above grade.
 - 2. Cast iron Pipe shall be hubless (plain end or no-hub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - 4. Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

B. Copper Tube, (DWV):

- 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground.
- 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
- 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
- 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.3 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.

- 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.4 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.5 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches. Cleanouts shall be easily accessible and shall be gastight and

- watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule.

2.6 FLOOR DRAINS

A. General Data: floor drain shall comply with ASME Al12.6.3. A caulking flange, inside gasket, or hubbess connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening will not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to

drain pipe. For drains not installed in connection with a waterproof membrane, a .45 kg (16-ounce) soft copper 1.1 to 1.8 Kg (2.5 to 4 lbs.)flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.

B. See schedule on plans for floor drain types.

2.7 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.9 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.

- G. The piping shall be installed free of sags and bends.
- H. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends.

 Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Buried soil and waste drainage be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- K. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- L. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- B. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
- D. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6~m (15 feet).
- E. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.

- 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 6. Riser clamps shall be malleable iron or steel.
- 7. Rollers shall be cast iron.
- 8. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- F. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

J. Penetrations:

- 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under

test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- 2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
- 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
- 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 13 23 SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to metal sanitary waste interceptors used for the removal of grease from waste streams for installations within the building envelope.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Section 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

 C891-2011.....Standard Practice for Installation of

 Underground Precast Concrete Utility Structures
- C. International Code Council (ICC)
 IPC-2012......International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 23, SANITARY WASTE INTERCEPTORS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data: For each type of interceptor indicated, the submittal shall include materials of fabrication, dimensions, rated capacities, retention capacities, operating characteristics, size and location of each pipe connection, furnished specialties, and accessories.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain shall be submitted.

- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments, construction revisions and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.
 Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.
 Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2016 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.2 GREASE REMOVAL UNIT

A. See schedule on plans for size and location.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Interceptors shall be set level and plumb on 4" thick concrete pad that extends a minimum of 6" beyond all edges of the floor mounted grease interceptor.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 CONNECTIONS

- A. Pipe installation requirements are specified in Section 22 13 00, FACILITY SANITARY AND VENT PIPING.
- B. Piping connections shall be made between interceptors and piping systems in accordance with interceptor manufacturer's written guidelines.

3.4 STARTUP AND TESTING

- A. As recommended by product manufacturer and listed standards and under actual or simulated operating conditions, tests shall be conducted to prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with each integrated system.
- B. The tests shall include system capacity, control function, and alarm functions.
- C. When any defects are detected, correct defects and repeat test at no additional costs to the Government.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
- D. Section 08 31 13, ACCESS DOORS AND FRAMES: Flush panel access doors.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME):
 - A112.6.1M-1997 (R2012)..Supports for Off-the-Floor Plumbing Fixtures

 for Public Use
 - A112.19.1-2013......Enameled Cast Iron and Enameled Steel Plumbing
 Fixtures
 - A112.19.2-2013......Ceramic Plumbing Fixtures
 - A112.19.3-2008......Stainless Steel Plumbing Fixtures
- C. American Society for Testing and Materials (ASTM):
 - A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes
 - B584-2008......Standard Specification for Copper Alloy Sand

 Castings for General Applications
- D. CSA Group:
 - B45.4-2008 (R2013).....Stainless Steel Plumbing Fixtures
- E. National Association of Architectural Metal Manufacturers (NAAMM):

 AMP 500-2006......Metal Finishes Manual

- F. American Society of Sanitary Engineering (ASSE):

 1016-2011......Automatic Compensating Valves for Individual
 - Showers and Tub/Shower Combinations
- G. NSF International (NSF):
 - 14-2013......Plastics Piping System Components and Related Materials
 - 61-2013......Drinking Water System Components Health
 - 372-2011......Drinking Water System Components Lead Content
- H. American with Disabilities Act (A.D.A)
- I. International Code Council (ICC):
 - IPC-2015......International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 OUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring

binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD version 2016provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.3 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in solid-surface, wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to the COR.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.
- E. Mental Health Area: Provide stainless steel drain guard for all lavatories not installed in casework.

2.4 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.5 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing. Aerators are prohibited.
- B. Flow Control Restrictor:
 - 1. Capable of restricting flow from 32 ml/s to 95 ml/s (0.5 gpm to 1.5 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks P-505 through P-520, P-524 and P-528; and 174 ml/s to 190 ml/s

- (2.75 gpm to 3.0 gpm) for dietary food preparation and rinse sinks or as specified.
- 2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psig and 80 psig).
- 3. Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.6 CARRIERS

- A. ASME All2.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME All2.6.1M, lavatory, chair carrier for thin wall construction concealed arm support. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.
- C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.

2.7 FIXTURES

A. See fixture schedule on plans.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Through Bolts: For free standing marble and metal stud partitions refer to Section 10 21 13, TOILET COMPARTMENTS.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.
- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches)

into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.

- F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm $(1\ 1/4\ \text{inches})$ into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- I. Aerators are prohibited on lavatories and sinks.
- J. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. VAPM: VA Project ManagerVA Project Manager
 - 4. COTR: Contracting Officer's Representative.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS
- B. Section 01 00 00, GENERAL REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- F. Section 05 50 00, METAL FABRICATIONS
- G. Section 07 84 00, FIRESTOPPING
- H. Section 07 92 00, JOINT SEALANTS
- I. Section 09 91 00, PAINTING
- J. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC
- K. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- L. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- M. Section 23 07 11, HVAC INSULATION.
- N. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- O. Section 23 82 00, CONVECTION HEATING and COOLING UNITS
- P. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- Q. Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUITS and CABLES.
- R. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS

1.3 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that

- are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 3. Conform to codes and standards as required by the specifications.

 Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the VA Project Manager.
- 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.

- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the VA Project Manager for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the VA Project Manager at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.

VA Project ManagerVA Project ManagerH. Layout Drawings:

- Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 Refer to Section 00 72 00, GENERAL CONDITIONS, Article, SUBCONTRACTS AND WORK COORDINATION.
- 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
- 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
- 4. In addition, for HVAC systems, provide details of the following:

- a. Mechanical equipment rooms.
- c. Hangers, supports, and bracing.
- d. Pipe sleeves.
- e. Duct or equipment penetrations of floors, walls, ceilings, or
- I. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the VA Project Manager.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009......Central Station Air-Handling Units
- D. Rubber Manufacturers Association (ANSI/RMA):

 IP-20-2007......Specifications for Drives Using Classical

 V-Belts and Sheaves

	IP-21-2009Specifications for Drives Using Double-V
	(Hexagonal) Belts
	IP-22-2007Specifications for Drives Using Narrow V-Belts
	and Sheaves
Ε.	Air Movement and Control Association (AMCA):
	410-96
	Devices
F.	American Society of Mechanical Engineers (ASME):
	Boiler and Pressure Vessel Code (BPVC):
	Section I-2007Power Boilers
	Section IX-2007Welding and Brazing Qualifications
	Code for Pressure Piping:
	B31.1-2007Power Piping
G.	American Society for Testing and Materials (ASTM):
	A36/A36M-08Standard Specification for Carbon Structural
	Steel
	A575-96(2007)Standard Specification for Steel Bars, Carbon,
	Merchant Quality, M-Grades
	E84-10Standard Test Method for Surface Burning
	Characteristics of Building Materials
	E119-09cStandard Test Methods for Fire Tests of
	Building Construction and Materials
н.	Manufacturers Standardization Society (MSS) of the Valve and Fittings
	Industry, Inc:
	SP-58-2009Pipe Hangers and Supports-Materials, Design and
	Manufacture, Selection, Application, and
	Installation
	SP 69-2003Pipe Hangers and Supports-Selection and
	Application
	SP 127-2001Bracing for Piping Systems, Seismic - Wind -
	Dynamic, Design, Selection, Application
I.	National Electrical Manufacturers Association (NEMA):
	MG-1-2009Motors and Generators
J.	National Fire Protection Association (NFPA):
	31-11Standard for Installation of Oil-Burning
	Equipment
	54-15National Fuel Gas Code
	70-14National Electrical Code

85-15Boiler and Combustion Systems Hazards Code
90A-15Standard for the Installation of Air
Conditioning and Ventilating Systems
101-09Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Place damaged equipment in first class, new operating condition; or replace same as determined and directed by the VA Project Manager. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

B. Cleanliness of Piping and Equipment Systems:

- 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
- 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the VA Project Manager

- during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the VA Project Manager.
- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

 Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed.

 Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer Representative will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch or fixed-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.

- 2. Provide fixed-pitch drives for drives larger than those listed above.
- 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- C. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- D. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

A.	Design	basis	as	Asea	Brown	Bovari	(ABB),	or	approved	equal;
	Bidding	g on:								
	_									

Manufacturer	Name:
Brand:	
No.:	

- B. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications.
- C. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- D. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- E. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- F. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 30,000 AIC. Provide AC input line reactors (3% impedance)on incoming power line. Provide output line reactors on line between drive and motor for motors over 50 HP or where the distance between the breaker and motor exceeds 50 feet.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for

- maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.

E. Valve Tags and Lists:

- 1. HVAC: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.9 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND PLUMBING INSULATION, for firestop pipe and duct insulation.

2.10 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:

- 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
- 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Self-drilling expansion shields and machine bolt expansion anchors:

 Permitted in concrete not less than 102 mm (four inches) thick when approved by the VA Project Manager for each job condition.
 - 2. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the VA Project Manager for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
- G. Attachment to existing structure: Support from existing floor/roof frame.
- I. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- J. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel

rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or pre-insulated calcium silicate shield for insulated piping at each hanger.

K. Supports for Piping Systems:

- 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or pre-insulated calcium silicate shields. Provide Type 40 insulation shield or pre-insulated calcium silicate shield at all other types of supports and hangers including those for pre-insulated piping.
- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Pre-insulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with nonadhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

L. Pre-insulated Calcium Silicate Shields:

- 1. Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
- 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.

- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of VA Project Manager.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide sleeve for pipe passing through floor of mechanical rooms above basement.

- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.13 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.14 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the VA Project Manager, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Metal, permanently identified for intended service and mounted, or located, where directed by the VA Project Manager.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.15 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.16 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:

Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by VA Project Manager where working area space is limited.

- 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by VA Project Manager. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to VA Project Manager for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the VA Project Manager. Damaged or defective items in the opinion of the VA Project Manager, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or

- staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Install steam piping expansion joints as per manufacturer's recommendations.
- M. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the VA Project Manager. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the VA Project Manager for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After VA Project Manager's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- O. Switchgear/Electrical Equipment and Panels Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear and panels. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment to ceiling structure, whichever is lower (NFPA 70).
- P. Inaccessible Equipment:
 - 1. Where the VA Project Manager or Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and

- reinstalled or remedial action performed as directed at no additional cost to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Contractor shall check structure adequacy prior to placement of air handling unit.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

 All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to VA Project Manager for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the VA Project Manager.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted.

 Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.

F. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

G. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating conditions without excessive displacement or structural failure.
- 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Refer to structural

- drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the VA Project Manager. Such access shall be provided without additional cost or time to the Government. B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of hospital operation. Perform all flame cutting to maintain the fire safety integrity of this hospital. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the VA Project Manager or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to VA Project Manager and stored as directed. The Contractor shall remove all other material and

- equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks.
 Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 5. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate: 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.

- b. Steam:52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- 6. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices.

 Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to VA Project Manager in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

- start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.11 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the VA Project Manager.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.13 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS, and Section 23 08 11, DEMONSTRATIONS AND TESTS.

- - - E N D - - -

SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC equipment.

1.2 RELATED WORK:

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- E. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 SUBMITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Shop Drawings:

- 1. Provide documentation to demonstrate compliance with drawings and specifications.
- 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.

C. Manuals:

- 1. Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the VA Project Manager:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 - MG 1-2006 Rev. 1 2009 .. Motors and Generators
 - MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

 Motors and Generators
- C. National Fire Protection Association (NFPA):
 70-14......National Electrical Code (NEC)
- D. Institute of Electrical and Electronics Engineers (IEEE):

 112-04......Standard Test Procedure for Polyphase Induction

 Motors and Generators
- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
 - 90.1-2007.....Energy Standard for Buildings Except Low-Rise
 Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - Contractor's Option Electrically Commutated motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic commutation. The motor

shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.

- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt systems: 230 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746~W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.

3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.

J. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
- 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the

provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	Efficie	ncies	Minimum Premium Efficiencies				
	Open Dri	o-Proof		Totally	Enclosed	l Fan-Coo	led	
Rating	1200	1800	3600	Rating	1200	1800	3600	
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM	
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%	
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%	
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%	
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%	
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%	
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%	
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%	
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%	
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%	
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%	
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%	

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- D. All test data shall be complied into a report form for each motor and provided to the Contracting Officer Representative.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of all equipment. Coordinate the startup and contractor testing schedules with VA Project Manager and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.
- M. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35
Corridors(Public)	40
Dining Rooms, Food Services/ Serving	40
Kitchens	50
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
General Work Rooms	40

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition

after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - d. Thrust restraints
 - 2. Bases.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning
 Engineers, Inc. (ASHRAE):
 - 2009Fundamentals Handbook, Chapter 7, Sound and Vibration

- A307-07b......Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

 D2240-05(2010).....Standard Test Method for Rubber Property
 Durometer Hardness
- D. Manufacturers Standardization (MSS):
 - SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA):
 29 CFR 1910.95......Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):

 ASCE 7-10Minimum Design Loads for Buildings and Other

 Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008......Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC):
 2009 IBC......International Building Code.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base

- dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).

2.5 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - 1. No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width.

 Provide shims to facilitate pipe connections, leveling, and bolting.
 - 4. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
 - 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
 - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust,

repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	3	ON GRADE	м	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	SOFT	FLOOR	SPAN
	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL	MIN
COMPRESSORS															
UP THROUGH 1-1/2 HP		D,L,	0.8		D,L, W	0.8		D,L, W	1.5		D,L, W	1.5		D, L, W	
2 HP AND OVER:															
500 - 750 RPM		Д	8.0	 	ß	8.0	 	ß	1.5		S	1.5	 	ß	2.5
750 RPM & OVER	1	Д	8.0	1	ß	8.0	1 1	ß	1.5	1	ß	1.5	1 1	W	2.5
CENTRIFUGAL FANS	SI.														
UP TO 50 HP:															
UP TO 200 RPM	В	N	0.3	В	ß	2.5	В	ß	2.5	В	ß	3.5	В	ß	3.5
201 - 300 RPM	В	Ŋ	0.3	В	Ø	2.0	В	ß	2.5	В	W	2.5	В	W	3.5
301 - 500 RPM	В	N	0.3	В	ß	2.0	В	യ	2.0	В	ß	2.5	В	ß	3.5
501 RPM & OVER	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5
AIR HANDLING UNIT PA	PACKAGES	r0													
SUSPENDED 7-1/2 HP	& OVER:														
UP TO 500 RPM		! !	-		H, THR	1.5		H, THR	2.5		H, THR	2.5	 	H, THR	2.5
501 RPM & OVER	-	 			H, THR	8.0		H, THR	0.8	-	н, тн К	0.8	 - -	н, тн R	2.0
													1		

EQUIPMENT	0	ON GRADE	м	20FT	20FT FLOOR SPAN	SPAN	30FT	30FT FLOOR SPAN	SPAN	40FT	40FT FLOOR SPAN	SPAN	SOFT	50FT FLOOR SPAN	SPAN
	BASE TYPE	ISOL	MIN	BASE TYPE	ISOL	MIN	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL	MIN	BASE TYPE	ISOL	MIN
FLOOR MOUNTED (INCLUDING PLATFORM MOUNTED):	JDING E	LATFOR	M MOUN!	TED):											
UP TO 500 RPM	-	Q		ద	S, THR	1.5	R.	S, THR	2.5	ద	S, THR	2.5	딵	S, THR	2.5
501 RPM & OVER		О	1	 	S, THR	8.0	 	S, THR	0.8	ద	S, THR	1.5	껁	S, THR	2.0
CENTRIFUGAL FANS, FLOOR MOUNTED: (APR 9)	LOOR MC	UNTED:	(APR	6)											
UP THRU 50 HP:															
UP TO 300 RPM		Д		R	Ø	2.5	R	S	2.5	꿈	S	2.5	껖	Ø	3.5
301 - 500 RPM		Д		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	꿈	S	2.5

NOTES:

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - 6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. Hydronic Systems: Includes chilled water, heating hot water and glycol-water systems.
- 6. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- 7. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 07 11, HVAC INSULATION
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

- H. Section 23 31 00, HVAC DUCTS AND CASINGS
- G. Section 23 36 00, AIR TERMINAL UNITS

1.3 QUALITY ASSURANCE

A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

B. Oualifications:

- 1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
- 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the VA Project Manager and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the VA Project Manager and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist

- loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the VA Project Manager. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. Tab Criteria:

- One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
- b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
- c. Exhaust hoods/cabinets: 0 percent to plus 10 percent.
- d. Minimum outside air: 0 percent to plus 10 percent.
- e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
- f. Heating hot water coils: Minus 5 percent to plus 5 percent.
- h. Chilled water coils: Minus O percent to plus 5 percent.
- i. Glycol-water coils: Minus O percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the VA

 Project Manager for one air distribution system (including all fans,
 three terminal units, three rooms randomly selected by the VA

 Project Manager) and one hydronic system (pumps and three coils) as
 follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the VA Project Manager staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB
- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.

- 3. Duct Air Leakage Test Report.
- 4. Systems Readiness Report.
- 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
- 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning
 Engineers, Inc. (ASHRAE):
- C. Associated Air Balance Council (AABC):
 - 2002......AABC National Standards for Total System
 Balance
- D. National Environmental Balancing Bureau (NEBB):
 - 7th Edition 2005Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
 - 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
 - $3^{\rm rd}$ Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide permanent accessible duct test ports in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the VA Project Manager of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to VA Project Manager.
 - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in

- standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the VA Project Manager.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the VA Project Manager if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the VA Project Manager.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre-construction air and water flow rates. Provide TAB reports foreach phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow adequate time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, and kitchen exhaust hoods.

- 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
- Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
- 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode.
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- 6. Establish initial filter pressure alarm settings and coordinate with Temperature Controls contractor.
- 7. Special testing of exhaust fans for fan speed and airflow correlation. Refer to Temperature Controls plans for requirements of each exhaust fan. Submit recorded individual test data for each exhaust fan to the A/E and Temperature Controls contractor for review. This data will be used for tracking make-up air ventilation to offset the actual exhaust at any given time.
- F. Water Balance and Equipment Test: Include coils:
 - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating

and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the VA Project Manager. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the VA Project Manager.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - 1. Take readings in rooms, approximately fifteen (15) percent of all rooms. The VA Project Manager may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2011 ASHRAE Handbook, "HVAC Applications", Chapter 48, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - 1. When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."

d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 10 meters (30 feet) for sound level location.
- 3. Where sound pressure levels are specified in terms of dB(A), measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the VA Project Manager and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the VA Project Manager based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be

restored if disturbed at any time. Style and colors used for markings shall be coordinated with the VA Project Manager.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 2. Re-insulation of HVAC piping, ductwork and equipment, plumbing piping and equipment after asbestos abatement.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather.. Shafts, chases, re not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
- 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 14. MPR: Medium pressure steam condensate return.
- 15. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 16. LPR: Low pressure steam condensate gravity return.
- 17. HWH: Hot water heating supply.
- 18. HWHR: Hot water heating return.
- 19. GH: Hot glycol-water heating supply.
- 20. GHR: Hot glycol-water heating return.
- 21. CW: Cold water.
- 22. SW: Soft water.
- 23. HW: Hot water.
- 24. CH: Chilled water supply.
- 25. CHR: Chilled water return.
- 26. GC: Chilled glycol-water supply.
- 27. GCR: Chilled glycol-water return.
- 28. RS: Refrigerant suction.
- 29. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- C. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT.
- D. Section 07 84 00, FIRESTOPPING.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 23 21 13, HYDRONIC PIPING.
- H. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING

1.3 QUALITY ASSURANCE

A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

B. Criteria:

- 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and UL 723.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
 - **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
 - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
 - (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
 - 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
 - 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
 - 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
 - 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
 - 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- (1) Not exceeding a $25.4 \ \mathrm{mm}$ (1 in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in ASTM E 119 and UL 263.
- 2. Test methods: ASTM E84 and UL 723.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

```
L-P-535E (2)- 99......Plastic Sheet (Sheeting): Plastic Strip; Poly

(Vinyl Chloride) and Poly (Vinyl Chloride -

Vinyl Acetate), Rigid.
```

C. Military Specifications (Mil. Spec.):

```
MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation
MIL-A-24179A (1)-87.....Adhesive, Flexible Unicellular-Plastic
Thermal Insulation
```

	MIL-C-20079H-87	.Cloth, Glass; Tape, Textile Glass; and Thread,
		Glass and Wire-Reinforced Glass
D.	American Society for Te	sting and Materials (ASTM):
	A167-99(2004)	.Standard Specification for Stainless and
		Heat-Resisting Chromium-Nickel Steel Plate,
		Sheet, and Strip
	B209-07	.Standard Specification for Aluminum and
		Aluminum-Alloy Sheet and Plate
	C411-05	.Standard test method for Hot-Surface
		Performance of High-Temperature Thermal
		Insulation
	C449-07	.Standard Specification for Mineral Fiber
		Hydraulic-Setting Thermal Insulating and
		Finishing Cement
	C533-09	.Standard Specification for Calcium Silicate
		Block and Pipe Thermal Insulation
	C534-08	.Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-07	.Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-04	Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
	D1660 0F (0006)	Insulation
	D1668-97a (2006)	Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing

	E84-10Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
	E119-09cStandard Test Method for Fire Tests of Building
	Construction and Materials
	E136-09bStandard Test Methods for Behavior of Materials
	in a Vertical Tube Furnace at 750 degrees C
	(1380 F)
Ε.	National Fire Protection Association (NFPA):
	90A-15Standard for the Installation of Air
	Conditioning and Ventilating Systems
	96-14Standards for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
	101-15Life Safety Code
F.	Underwriters Laboratories, Inc (UL):
	723UL Standard for Safety Test for Surface Burning
	Characteristics of Building Materials with
	Revision of 09/08
G.	Manufacturer's Standardization Society of the Valve and Fitting
	<pre>Industry (MSS):</pre>
	SP58-2009Pipe Hangers and Supports Materials, Design,
	and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m 3 (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m 3 (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, $k = 0.037 \ (0.26)$ at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 DUCT WRAP FOR KITCHEN HOOD GREASE DUCTS

- A. Light weight, high temperature mineral fiber or ceramic fiber insulating material with low thermal conductivity K value of 0.060 W/m^2 degrees C (0.417 Btu in/hr ft² degrees F) at mean temperature of 260 degrees C (500 degrees F).
- B. Material shall be fully encapsulated by UL classified aluminum foil and tested to ASTM E84 standard.
- C. Material shall be UL tested for internal grease fire to 1093 degrees C (2,000 degrees F) with zero clearance and for through-penetration firestop.
- D. Material shall be UL classified for 2 hour fire rating for grease duct enclosure, and meet NFPA 96 requirements for direct applied insulating material to grease ducts with zero clearance.
- E. Material flame spread and smoke developed ratings shall not be higher than 5, as per ASTM E 84/UL 723 Flammability Test.

2.8 CALCIUM SILICATE

A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.

- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics				
ITEMS	TYPE I	TYPE II		
Temperature, maximum degrees C	649 (1200)	927 (1700)		
(degrees F)				
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)		
Thermal conductivity:				
Min W/ m K (Btu in/h ft² degrees F)@	0.059	0.078		
mean temperature of 93 degrees C	(0.41)	(0.540)		
(200 degrees F)				
Surface burning characteristics:				
Flame spread Index, Maximum	0	0		
Smoke Density index, Maximum	0	0		

2.9 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets.

 Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.10 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - 2. Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - 4. Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass insulation of the same thickness as adjacent insulation..

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation.

2.12 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.13 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.14 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.15 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.16 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the VA Project Manager for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.

 Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS

- ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Insulate PRVs, flow meters, and steam traps.
 - I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 5. In hot piping: Unions, flexible connectors, control valves, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
 - K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
 - L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated

to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.

- M. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- O. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - 2. All interior piping and ducts conveying fluids below ambient air temperature.
- P. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to kitchen equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct and after filter housing.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 50mm (2 inch) thick insulation faced with ASJ.
- 5. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
- 6. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 - a. Reheat coil casing.
 - b. Booster water heaters for Dietetics and Canteen dish washers and for wash-down grease-extracting hoods.

B. Flexible Mineral Fiber Blanket:

1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder

- penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
- 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
- 3. Concealed supply air ductwork.
- a4. Concealed return air duct:
 - d. Concealed return air or transfer air ductwork need not be insulated.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.

- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

D. Rigid Cellular Phenolic Foam:

- Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
- 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet.

E. Cellular Glass Insulation:

1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.

G. Flexible Elastomeric Cellular Thermal Insulation:

- Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation

- manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
- 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- H. Duct Wrap for Kitchen Hood Grease Ducts:
 - The insulation thickness, layers and installation method shall be as per recommendations of the manufacturer to maintain the fire integrity and performance rating.
- I. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping.
 - 4. Kitchen Exhaust Duct work: Type II, class D, 65 mm (2.5 inches) nominal thickness. Wire insulation in place with 12 gauge galvanized wire.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75	100 (4) and Above
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)
100-121 degrees C (212-250 degrees F) (MPR, LPS)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
100-121 degrees C (212-250 degrees F) (MPR, LPS)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		

4-16 degrees C	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)		,			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Cellular	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Glass Closed- Cell	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
(40-60 degrees F)	Flexible	38	38 (1.5)	38 (1.5)	38 (1.5)
(CH, CHR, GC, GCR and RS for DX refrigeration)	Elastomeric Cellular Thermal (Above ground piping only)	(1.5)			

- - - E N D - - -

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process. The Contractor shall make necessary preparations and assist the VA appointed commissioning agent (CxA).

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.

1.4 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.5 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
COR. The Contractor shall review and comment on the tests prior to
approval. The Contractor shall provide the required labor, materials,
and test equipment identified in the test procedure to perform the
tests. The Commissioning Agent will witness and document the testing.
The Contractor shall sign the test reports to verify tests were
performed.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Division 23 Sections for additional Contractor training requirements.

---- END ----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings, and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, coordination with other Contractors, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers.
 - 2. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, coordination with other Contractors, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
 - 3. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The Contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the BAS shall have no effect on the field controllers, including those involved with global strategies.
- B. Some products are furnished but not installed by the Contractor administered by this Section of the technical specifications. The Contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other Contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:

 1. Control valves.

- 2. Sensor wells and sockets in piping.
- 3. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- C. Some products are not provided by, but are nevertheless integrated with the work executed by, the Contractor administered by this Section of the technical specifications. The Contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other Contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system Contractor, to be monitored.
 - 2. Variable speed motor controllers (VSMC) will be directly controlled by the associated primary controller. A secondary communication trunk will be run to the associated JACE for reporting as part of Division 25, System Integrator.
- D. The Division 23 09 23 Contractor shall be an entity separate from Division 25 31 00.

E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
LAN conduits and raceway	25 13 00	25 13 00	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
All control system nodes, equipment, housings,	23 09 23	23 09 23	23 09 23	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
enclosures and control panels.				
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
VSMCs Control	23 09 23	26	23 09 23	26
VSMCs Monitoring & Trending	25 13 00	26	25 13 00	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28

The Contractor administered by this Section of the technical specifications shall formally coordinate this Responsibility Table in writing and receive from all Contractors listed a formal acknowledgement and acceptance in writing.

- F. This facility has two primary Building Automation Systems (BAS). The first is Metasys by Johnson Control (JCI) and the second is Tridium. The Johnson Controls Metasys BAS is located at HVAC Shop GB1-08.
 - 1. All work associated with this project will be integrated into the Tridium BAS.
 - 2. Leave existing direct-digital control system intact and in place.

 Provide a new standalone BACnet-compliant control system serving the work in this project. No interoperability is required with existing JCI BAS.
 - 3. The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the Controls Contractor administered by this Section of the technical specifications.
 - 4. The Contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The Contractor administered by this Section of the technical specifications shall observe the capabilities,

- communication network, services, spare capacity of the existing control systems.
- 5. The Contractor administered by this Section of the technical specifications shall provide a system that is capable of stand-alone operation, but that will also be integrated into the Tridium BAS. This Contractor is responsible for all device mounting and wiring.
- 6. Responsibility Table:

Item/Task	Section 23 09 23 Contactor	Section 25 13 00 Contractor	VA
BAS expansion		X	
BAS programming		X	
Devices, controllers, control panels and equipment	X		
Point addressing: all hardware and software points including setpoint, calculated point, data point(analog/binary), and reset schedule point	Х		
Point mapping		X	
Network Programming	X		
BAS Graphics		X	
Controller programming and sequences	X		
Integrity of LAN communications	X		
Electrical wiring	X		
Operator system training	X	X	
LAN connections to devices	X		
LAN connections to BAS		X	
IP addresses			X
Overall system verification		X	
Controller and LAN system verification	Х		

G. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 22 13, Steam and Condensate Heating Piping.
- C. Section 26 05 11, Requirements for Electrical Installations.
- D. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- E. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- F. Section 26 05 33, Raceway and Boxes for Electrical Systems.

- G. Section 26 27 26, Wiring Devices.
- H. Section 27 15 00, Communications Horizontal Cabling

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of

- transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device.

 Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are

- generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (BAS): The centralized control point for the intelligent control network. The BAS comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.

- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. Java Application Control Engine (JACE): A Vykon Tridium network communications node that provides connectivity of common network protocols into a unified system. Tridium is an entity of Honeywell International.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.

- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.

CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.3 DIVISION OF WORK

- A. The Controls Contractor shall be responsible for all controllers (DDC), control devices, control panels, controller programming, controller programming software, controller input/output wiring, power wiring, interlock and safety wiring, controller network wiring, and Ethernet LAN wiring, if applicable.
- B. The System Integrator (SI) shall be responsible for the controller interface device (JACE), workstations, printers, servers, software and programming of the JACE, graphical user interface software (GUI), development of all graphical screens, setup of schedules, logs and alarms, network management, global supervisory control applications, system integration and coordination of the JACE to the local or wide area network.
- C. The point of demarcation for the products to be provided by the System Integrator shall be up to and including the controller interface (JACE). Communication trunks to the Tridium JACE cabinets are the responsibility of the Controls Contractor. Termination of the communication trunks within the JACE cabinets are the responsibility of the System Integrator.

1.4 QUALITY ASSURANCE

A. Criteria:

1. Single Source Responsibility of Sub-Contractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation Sub-Contractor. The controls Sub-Contractor shall be responsible for the complete design, installation, and commissioning of the system installed by controls Sub-contractor. The controls Sub-Contractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.

2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.

- 3. The controls Sub-Contractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- 4. The controls Sub-Contractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls Sub-Contractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

B. Codes and Standards:

- 1. All work shall conform to the applicable Codes and Standards.
- Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two
 seconds. Analog objects shall start to adjust within two (2) seconds.

- 2. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- 3. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 4. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 5. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Air flow (measuring stations)	±5% of reading
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

6. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.)

7. Extent of direct digital control: control design shall allow for at least the points indicated on the point lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The Controls supplier shall assist the Systems Integrator for problem resolution, remotely, within (2) hours of problem being reported.
- D. The Controls supplier shall dispatch the qualified personnel to the job site to resolve problem within 24 hours after the problem is reported in the event that remote coordinated assistance cannot resolve reported problem.
- E. Controls and Instrumentation Sub-Contractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Installation Plan Including manufacturer's literature and data for all components and the following:

- 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
- 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
- 3. Control dampers and control valves schedule, including the size and pressure drop.
- 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
- 5. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings. This will include logic diagrams as well as a detailed narrative of each control loop.
- 6. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 7. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 8. Updated communication trunk diagrams of wiring between JACEs and all new and existing controllers on the same communication trunk.

Diagrams will include device labels, locations and addresses.

Diagrams will be submitted directly to the Controls Integrator,

Division 25. These will in turn be submitted to the VA Project

Manager as part of the Division 25 deliverables. Include a points

list for each controller. Repetitive controllers (example: VAVs)

may have a summarized points list but must include a description of how they will vary from controller to controller and a listing from 2 controllers.

- Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 10.Quantities of submitted items may be reviewed but are the responsibility of the Contractor administered by this Section of the technical specifications.E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
 - 3. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- F. Submittal for software shall be provided demonstrating the capacity to operate the software required to interface with local controls and to document the software that shall be installed. Existing laptop shall be utilized for O/M training of operating staff and shall be left with VA Project Manager.
 - 1. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- G. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including procedures for logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.

- b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- H. Submit Performance Report to VA Project Manager prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 12 hours, given in multiple training sessions (each no longer than four hours in length each), conducted between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls Sub-

Contractor will provide 12 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel. Control contractor shall provide five eight-hour training sessions during a period of one week for three designated representatives of the operating staff. Contractor shall coordinate with VA representatives of the operating staff and scheduling.

- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls Sub-Contractor will review the manual contents with VA facilities personnel during second phase of training. Controls Sub-Contractor shall provide software on one laptop with the operating capacity to be utilized in the second phase training and review of O/M Manuals. Existing laptop shall be used to demonstrate direct connection to local control panel and local control access.
- 4. Training shall be given by direct employees of the controls system Sub-Contractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. Peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning
 Engineers (ASHRAE):

Standard 135-10.....BACNET Building Automation and Control Networks

- C. American Society of Mechanical Engineers (ASME):
 - B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings.
 - B16.22-01......Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
- D. American Society of Testing Materials (ASTM):

B32-08	Standard Specification for Solder Metal
B88-09	Standard Specifications for Seamless Copper
	Water Tube
B88M-09	Standard Specification for Seamless Copper
	Water Tube (Metric)
B280-08	Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	Standard Specification for Polyethylene (PE)
	Plastic Tubing

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11	.Information Technology-Telecommunications and
	Information Exchange between Systems-Local and
	Metropolitan Area Networks- Specific
	Requirements-Part 3: Carrier Sense Multiple
	Access with Collision Detection (CSMA/CD)
	Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-14National	Ele	ctric Code		
90A-15Standard	for	Installation	of	Air-Conditioning
and Vent:	ilat:	ion Systems		

H. Underwriter Laboratories Inc (UL):

94-10	Tests for Flammability of Plastic Materials for
I	Parts and Devices and Appliances
294-10	Access Control System Units
486A/486B-10	Wire Connectors
555S-11	Standard for Smoke Dampers
916-10	Energy Management Equipment
1076-10	Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

 The Controls Systems shall consist of associated equipment controlled by controllers that are connected on communication trunks of industry standard digital and communication network arrangements.

- These communication trunks will be connected to the Tridium JACE communication nodes that are controlled by the Systems Integrator.
- 2. The building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party Sub-Contractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - b. Active processing building controllers connected together with their power supplies and associated equipment.
 - c. Addressable elements, sensors, transducers and end devices.
 - d. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
- e. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.

C. Network Architecture

- 1. The Controls communication network shall utilize either BACnet or LonWorks communications protocol.
- 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They may also utilize digital wireless technologies as appropriate to the application and if approved by the VA.
- 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.

D. Third Party Interfaces:

- The Contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
- 2. Other manufacturers and Contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the Contractor administered by this Section of the technical

specifications in a timely manner and at their cost to ensure complete functional integration.

2.3 COMMUNICATION

A. General

- a. The existing BAS JACE communication nodes are capable of a wide number of communication types and protocols including but not limited to the following:
 - i. Serial RS232 port for either Modbus or BACnet
 - ii. RS435 2-wire port for Modbus, LONWORKS or BACnet
 - iii. LAN port for either LONWORKS, BACnet IP or BACnet Ethernet
- b. Controls contractor must coordinate with the Controls Integrator (Division 25) and the VA Project Manager for the availability of specific communication trunks and protocols.
- c. For this project, the following communication types are required, unless special approval is given by the AE, VA Project Manager and Controls Integrator:

B. BACnet MS/TP

- a. Interface: RS-485
- b. Data transfer method: RS-485 MS/TP, half -duplex
- c. Transfer cable: STP (Shielded Twisted Pair), type Belden 9841 or equal
- d. Connector: 2.5mm²
- e. Electrical isolation: Functional
- f. BACnet MS/TP: Compliant with ANSI/ASHRAE Standard 135-2004
- g. Baud rate: 9600, 19200, 38400, and 76800

C. BACnet IP/Ethernet

- a. Interface: 100Base Tx, IEEE 802.3 compatible
- b. Data transfer method: Ethernet half/full -duplex
- c. Data transfer speed: 10/100 MBit/S, autosensing
- d. Protocol: BACnet over UDP/IP
- e. Connector: Shielded RJ45 connector
- f. Cable type: CAT6 STP
- g. Compliant with ANSI/ASHRAE Standard 135-2004
 - i. Ethernet: Provide equipment as necessary for routing data from source to end device and interface.
 - ii. IP: Provide gateway(s) as necessary for routing data from source to end device and interface.

D. LONWORKS

- a. Data transfer speed: 32k-1.25MBit/S.
- b. Protocol: Echelon, LonTalk
- c. Connector: as required to accommodate cable type
- d. Cable type:
 - i. TP/FT-10 Free Topology
 - 1. TIA 568A CAT5, 24WAWG, 0.5mm diameter
 - 2. Belden 8471 PVC jacket or equal, 16AWG, 1.3mm diameter
 - 3. Belden 85102 Tefzel jacket or equal, 16AWG, 1.3mm diameter
 - 4. Level IV cable, 22AWG, 0.65mm diameter
 - 5. JY (st) Y 2x2x0.8, 20.4AWG, 0.8mm diameter
 - ii. TP/XF-78 Bus Topology
 - 1. Level IV cable, 22AWG, 0.65mm diameter
 - iii. TP/XF-1250 Bus Topology
 - 1. TIA 568A CAT5, 24WAWG, 0.5mm diameter
 - 2. Level IV cable, 22AWG, 0.65mm diameter
 - iv. TP-RS485
 - 1. Shielded, twisted pair cable approved by manufacturer for use with EIA RS-485 transceivers
 - v. Maximum lengths specified by manufacturer shall not be exceeded.

2.4 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the BAS and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.

- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
- 6. Communication. Each controller shall connect to the control network associated with this project and connect to the JACE integration controller provided by the Division 25 Contractor.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

B. Direct Digital Controller Software

- The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under Microsoft Windows.
- 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the BAS.
- 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical

processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the BAS. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of four (4) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the BAS or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one

year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- b. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the BAS based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- c. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the BAS and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- d. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.5 SENSORS (AIR, WATER, STEAM AND OCCUPANCY)

A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the BAS.

- B. Temperature Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - 1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - 1) Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - b. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - c. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - c. Wire: Twisted, shielded-pair cable.
 - d. Output Signal: 4-20 ma.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
- F. Current Switches: Current operated switches shall be self-powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.
- G. Room Differential Pressure Sensor and Monitor: The differential pressure across doors shown on the drawings shall be monitored. One sensor per location shall measure and display pressure differential through a sampling tube installed in the wall separating the room from the adjacent space, and display the value on its associated monitor. Audible and visual alarms able to be silenced shall alert users of conditions outside setting tolerances with onboard diagnostics for trouble shooting. Additionally, a magnehelic differential pressure gage

shall be installed above the room monitor for non-electronic room pressure verification.

The sensor shall meet the following as a minimum:

- 1. Operating range: -0.20 to +0.20 inches of water column.
- 2. Resolution: 5 percent of reading.
- Accuracy: +/- 10 percent of reading +/- 0.00001 inches of water column.
- 4. Analog output: 0-10 VDC or 4-20 ma.
- 5. Housing: Molded plastic with flush mounted color touch screen password protected.
- 6. Mounts in standard depth electrical box.
- 7. Model Manufacturer: TSI Pressura model RPM 20.

The magnehelic differential pressure gage shall meet following as a minimum:

- a. Zero center range with 0.125 to zero to 0.125 inch water gage with \pm +/- 4 percent accuracy.
- b. Nominal 100 mm (four inch) diameter dial face.
- c. Die cast aluminum housing case and bezel with acrylic cover.
- d. Flush-mounted in aluminum panel board
- e. Complete with static tips, copper or aluminum tubing and accessory items to provide zero adjustment.
- H. Occupancy Sensors: Refer to Section 26 09 23 LIGHTING CONTROLS and VAVR sequence of operation for HVAC interface with indoor occupancy sensors.

2.6 CONTROL CABLES

A. General:

- Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.

- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing.

 Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the JACE and the local digital controllers shall be 100BASE-TX Ethernet, Category 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media or proprietary equipment to be installed as a part of this project.
 - 2. Copper digital communication cable shall not exceed 180 feet in continuous run. Lengths required in excess of this distance shall utilize repeater equipment, means of boosting signal and rectifying, or install optical digital communication fiber in lieu of copper digital communication cable.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

E. Control communication cabling shall be in raceway. Raceway shall be painted blue with junction box cover plates identified for use with building automation control wiring only.

2.7 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
 - 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs)

- situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
- b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
- c. Pressure drop through the flow station shall not exceed 4 Pascal $(0.015"\ \text{W.G.})$ at 1,000 meter per minute $(3,000\ \text{FPM})$.

3. Electronics Panel:

- a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
- b. Electronics Panel shall be A/C powered 24 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sens	sor Density
Area (sq.ft.)	Qty. Sensors
<=1	2
>1 to <4	4
4 to <8	6
8 to <12	8
12 to <16	12
>=16	16

- a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.

2.7 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAVR Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - 1. Leakage: Except as specified in subparagraph 2 below, maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.
 - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
 - 6. Maximum air velocity and pressure drop through free area the dampers:
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
 - 7. Provide dampers listed for grease exhaust air in systems serving kitchen grease exhaust hoods.

D. Control Valves:

- Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
- 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.

- 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
- 4. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
- 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- E. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow

for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

- a. VAVR Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
- 4. See drawings for required control operation.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- 1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to VA Project Manager for resolution before proceeding for installation.
- 2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- 3. Install all equipment and piping in readily accessible locations. Do not run conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- 6. Run wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.

B. Electrical Wiring Installation:

- 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
- 2. Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital

- communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
- 3. Install conduit and wiring between digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work, including control wiring and power wiring, required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:

- a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
- b. Calibrate sensors to accuracy specified, if not factory calibrated.
- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

2. Pressure Sensors:

a. Install snubbers and isolation valves on steam pressure sensing devices.

3. Room Differential Pressure Sensor and Monitor:

- a. Install recessed flush mounted on corridor side of room wall at 60 inches above the floor adjacent to door. Verify exact location with VA Project Manager. Install per manufacturer's instructions.
- b. Install associated magnehelic differential gage directly above room pressure monitor on the corridor side of the wall at 80 inches above the floor.

4. Actuators:

- a. Mount and link damper and valve actuators according to manufacturer's written instructions.
- b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

D. Installation of digital controllers and programming:

- 1. Provide a separate digital control panel for each major piece of equipment, such as air handling unit, etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
- 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each air handling unit, fan, terminal unit, etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the Contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

B. Validation

1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the primary controllers and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check

list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

- 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of hardware alarm conditions and software alarms necessary for operation for each alarm and ensure that these alarms are received at the assigned location, as well as the BAS.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate

- properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

D. Commissioning

1. Accommodate commissioning process as specified in Section 01 91 00.

---- END ----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping.
 - 3. Glycol-water piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section 23 07 11, HVAC INSULATION: Piping insulation.
- E. Section 23 23 00, REFRIGERANT PIPING: Refrigerant piping and refrigerants.
- F. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- G. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS: VAV and CV units, fan coil units, and radiant ceiling panels.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.

- 2. Pipe and tubing, with specification, class or type, and schedule.
- 3. Pipe fittings, including miscellaneous adapters and special fittings.
- 4. Flanges, gaskets and bolting.
- 5. Grooved joint couplings and fittings.
- 6. Valves of all types.
- 7. Strainers.
- 8. Flexible connectors for water service.
- 9. Pipe alignment guides.
- 12. All specified hydronic system components.
- 13. Water flow measuring devices.
- 14. Gages.
- 15. Thermometers and test wells.
- D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - 1. One complete set of drawings.
 - 2. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.
- B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI):
 - B1.20.1-83(R2006)......Pipe Threads, General Purpose (Inch)
 - B16.4-06......Gray Iron Threaded FittingsB16.18-01 Cast

Copper Alloy Solder joint Pressure fittings

- B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings
- B40.100-05......Pressure Gauges and Gauge Attachments
- C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI):
 - 70-2-2006......Control Valve Seat Leakage

D.	American Society of Med	hanical Engineers (ASME):
٥.	_	.Cast Iron Pipe Flanges and Flanged Fittings
		.Malleable Iron Threaded Fittings: Class 150 and
	22010 20001111111111111	300
	B16.4-2006	.Gray Iron Threaded Fittings: (Class 125 and
		250)
	B16.5-2003	.Pipe Flanges and Flanged Fittings: NPS ½
		through NPS 24 Metric/Inch Standard
	B16.9-07	.Factory Made Wrought Butt Welding Fittings
	B16.11-05	.Forged Fittings, Socket Welding and Threaded
	B16.18-01	.Cast Copper Alloy Solder Joint Pressure
		Fittings
	B16.22-01	.Wrought Copper and Bronze Solder Joint Pressure
		Fittings.
	B16.24-06	.Cast Copper Alloy Pipe Flanges and Flanged
		Fittings
	B16.39-06	.Malleable Iron Threaded Pipe Unions
	B16.42-06	.Ductile Iron Pipe Flanges and Flanged Fittings
	B31.1-08	.Power Piping
Ε.	American Society for Te	sting and Materials (ASTM):
Ε.		sting and Materials (ASTM): .Ferritic Malleable Iron Castings
E.	A47/A47M-99 (2004)	
Ε.	A47/A47M-99 (2004)	.Ferritic Malleable Iron Castings
Ε.	A47/A47M-99 (2004)	.Ferritic Malleable Iron Castings .Standard Specification for Pipe, Steel, Black
Ε.	A47/A47M-99 (2004) A53/A53M-07	.Ferritic Malleable Iron Castings .Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and
E.	A47/A47M-99 (2004) A53/A53M-07	.Ferritic Malleable Iron Castings .Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
E.	A47/A47M-99 (2004) A53/A53M-07	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon
E.	A47/A47M-99 (2004) A53/A53M-07	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service
E.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04	.Ferritic Malleable Iron Castings .Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless .Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service .Standard Specification for Gray Iron Castings
E.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track Bolts and Nuts
Ε.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track
E.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track Bolts and Nuts
Ε.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04 A183-03 A216/A216M-08	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service
Ε.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04 A183-03 A216/A216M-08	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service Piping Fittings of Wrought Carbon Steel and
E.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04 A183-03 A216/A216M-08	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature
E.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04 A183-03 A216/A216M-08 A234/A234M-07	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
E.	A47/A47M-99 (2004) A53/A53M-07 A106/A106M-08 A126-04 A183-03 A216/A216M-08 A234/A234M-07	Ferritic Malleable Iron Castings Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings Standard Specification for Carbon Steel Track Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature

	A536-84 (2004)	Standard Specification for Ductile Iron Castings
	A615/A615M-08	Deformed and Plain Carbon Steel Bars for
		Concrete Reinforcement
	A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
		Iron Alloy Coated (Galvannealed) By the Hot-Dip
		Process
	В32-08	Standard Specification for Solder Metal
	В62-02	Standard Specification for Composition Bronze or
		Ounce Metal Castings
	B88-03	Standard Specification for Seamless Copper Water Tube
	в209-07	Aluminum and Aluminum Alloy Sheet and Plate
	C177-04	Standard Test Method for Steady State Heat Flux
		Measurements and Thermal Transmission Properties
		by Means of the Guarded Hot Plate Apparatus
	C478-09	Precast Reinforced Concrete Manhole Sections
	C533-07	Calcium Silicate Block and Pipe Thermal
		Insulation
	C552-07	Cellular Glass Thermal Insulation
	D3350-08	Polyethylene Plastics Pipe and Fittings
		Materials
	C591-08	Unfaced Preformed Rigid Cellular
		Polyisocyanurate Thermal Insulation
F.	American Water Works Ass	sociation (AWWA):
	C110-08	.Ductile Iron and Grey Iron Fittings for Water
	C203-02	.Coal Tar Protective Coatings and Linings for
		Steel Water Pipe Lines Enamel and Tape Hot
		Applied
G.	American Welding Society	y (AWS):
	B2.1-02	Standard Welding Procedure Specification
Н.	Copper Development Associ	ciation, Inc. (CDA):
	CDA A4015-06	.Copper Tube Handbook
I.	Expansion Joint Manufact	turer's Association, Inc. (EJMA):
	EMJA-2003	.Expansion Joint Manufacturer's Association
		Standards, Ninth Edition
J.	Manufacturers Standardiz	zation Society (MSS) of the Valve and Fitting
	<pre>Industry, Inc.:</pre>	
	SP-67-02a	.Butterfly Valves

	SP-70-06Gray Iron Gate Valves, Flanged and Threaded
	Ends
	SP-71-05Gray Iron Swing Check Valves, Flanged and
	Threaded Ends
	SP-80-08Bronze Gate, Globe, Angle and Check Valves
	SP-85-02Cast Iron Globe and Angle Valves, Flanged and
	Threaded Ends
	SP-110-96Ball Valves Threaded, Socket-Welding, Solder
	Joint, Grooved and Flared Ends
	SP-125-00Gray Iron and Ductile Iron In-line, Spring
	Loaded, Center-Guided Check Valves
К.	National Sanitation Foundation/American National Standards Institute,
	<pre>Inc. (NSF/ANSI):</pre>
	61-2008Drinking Water System Components - Health
	Effects

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used on this project.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water, Condenser Water, Heating Hot Water, and Glycol-Water, and Vent Piping:
 - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:
 - 1. From air handling units: Copper water tube, ASTM B88, Type M, or schedule 40 PVC plastic piping.
 - 2. From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.
- E. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional.
 - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.
- D. Grooved Mechanical Pipe Couplings and Fittings (Contractor's Option):
 Grooved Mechanical Pipe Couplings and Fittings may be used, with cut or
 roll grooved pipe, in water service up to 110 degrees C (230 degrees F)
 in lieu of welded, screwed or flanged connections. All joints must be
 rigid type.
 - Grooved mechanical couplings: Malleable iron, ASTM A47 or ductile iron, ASTM A536, fabricated in two or more parts, securely held together by two or more track-head, square, or oval-neck bolts, ASTM A449 and A183.

- 2. Gaskets: Rubber product recommended by the coupling manufacturer for the intended service.
- 3. Grooved end fittings: Malleable iron, ASTM A47; ductile iron, ASTM A536; or steel, ASTM A53 or A106, designed to accept grooved mechanical couplings. Tap-in type branch connections are acceptable.

2.4 FITTINGS FOR COPPER TUBING

A. Joints:

- 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.

C. Shut-Off Valves

- 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2760 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
- 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
 - c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - 1) Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 3) 3. Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves):
 - a) 50 mm (2 inches) and smaller: MSS-SP 80, Bronze, 1034 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

D. Globe and Angle Valves

1. Globe Valves

a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.

2. Angle Valves:

- a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
- E. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball or Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.

2.10 STRAINERS

- A. Y Type.
 - Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.

2.15 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.16 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
- B. Provide one each of the following test items to the VA Project ManagerVA Project Manager:
 - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, -- 100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
 - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.17 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Glycol-Water: 0-38 degrees C (32-100 degrees F).
 - 2. Hot Water and Glycol-Water: -1 116 degrees C (30-240 degrees F).

2.18 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to

the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.

- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.5 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the VA Project ManagerVA Project Manager. Tests may be either of those below, or a combination, as approved by the VA Project ManagerVA Project Manager.
- $\ensuremath{\mathtt{B}}.$ An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the VA Project Manager.
 - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
 - 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.7 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the VA Project Manager, for instructing VA operating personnel.

3.9 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 07 11, HVAC INSULATION.
- L. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. All specified steam system components.
 - 9. Gages.
 - 10. Thermometers and test wells.
- C. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - 1. One set drawings.
 - 2. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

В.	American Society of Mechanical Engineers/American National Standards				
	<pre>Institute (ASME/ANSI):</pre>				
	B1.20.1-83(R2006)Pipe Threads, General Purpose (Inch)				
	B16.4-2006Gray Iron Threaded Fittings				
C.	American Society of Mechanical Engineers (ASME):				
	B16.1-2005Gray Iron Pipe Flanges and Flanged Fittings				
	B16.3-2006Malleable Iron Threaded Fittings				
	B16.9-2007Factory-Made Wrought Buttwelding Fittings				
	B16.11-2005Forged Fittings, Socket-Welding and Threaded				
	B16.14-91Ferrous Pipe Plugs, Bushings, and Locknuts with				
Pipe Threads					
B16.22-2001Wrought Copper and Copper Alloy Sold					
	Pressure Fittings				
	B16.23-2002Cast Copper Alloy Solder Joint Drainage				
	Fittings				
	B16.24-2006Cast Copper Alloy Pipe Flanges and Flanged				
	Fittings, Class 150, 300, 400, 600, 900, 1500				
	and 2500				
	B16.39-98Malleable Iron Threaded Pipe Unions, Classes				
	150, 250, and 300				
	B31.1-2007Power Piping				
	B31.9-2008Building Services Piping				
	B40.100-2005Pressure Gauges and Gauge Attachments				
	Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels,				
	Division 1				
D.	American Society for Testing and Materials (ASTM):				
	A47-99Ferritic Malleable Iron Castings				
	A53-2007Pipe, Steel, Black and Hot-Dipped, Zinc-Coated,				
	Welded and Seamless				
	A106-2008Seamless Carbon Steel Pipe for High-Temperature				
	Service				
	A126-2004Standard Specification for Gray Iron Castings				
	for Valves, Flanges, and Pipe Fittings				
	A181-2006Carbon Steel Forgings, for General-Purpose				
	Piping				
	A183-2003 Carbon Steel Track Bolts and Nuts				

	A216-2008 Standard Specification for Steel Castings,	
	Carbon, Suitable for Fusion Welding, for High Temperature Service	
	A285-01 Pressure Vessel Plates, Carbon Steel, Low-and-	
	Intermediate-Tensile Strength	
	A307-2007 Carbon Steel Bolts and Studs, 60,000 PSI Tensile	3
	Strength	
	A516-2006 Pressure Vessel Plates, Carbon Steel, for	
	Moderate-and- Lower Temperature Service	
	A536-84(2004)e1 Standard Specification for Ductile Iron Castings	;
	B32-2008 Solder Metal	
	B61-2008 Steam or Valve Bronze Castings	
	B62-2009 Composition Bronze or Ounce Metal Castings	
	B88-2003 Seamless Copper Water Tube	
Ε.	American Welding Society (AWS):	
	A5.8-2004Filler Metals for Brazing and Braze Welding	
	B2.1-00Welding Procedure and Performance	
	Qualifications	
F.	Manufacturers Standardization Society (MSS) of the Valve and Fitting	
	<pre>Industry, Inc.:</pre>	
	SP-67-95Butterfly Valves	
	SP-70-98Cast Iron Gate Valves, Flanged and Threaded	
	Ends	
	SP-71-97Gray Iron Swing Check Valves, Flanged and	
	Threaded Ends	
	SP-72-99Ball Valves with Flanged or Butt-Welding Ends	
	for General Service	
	SP-78-98Cast Iron Plug Valves, Flanged and Threaded	
	Ends	
	SP-80-97Bronze Gate, Globe, Angle and Check Valves	
	SP-80-97Bronze Gate, Globe, Angle and Check Valves SP-85-94Cast Iron Globe and Angle Valves, Flanged and	
~	SP-80-97Bronze Gate, Globe, Angle and Check Valves SP-85-94Cast Iron Globe and Angle Valves, Flanged and Threaded Ends	
G.	SP-80-97Bronze Gate, Globe, Angle and Check Valves SP-85-94Cast Iron Globe and Angle Valves, Flanged and Threaded Ends Military Specifications (Mil. Spec.):	
G.	SP-80-97Bronze Gate, Globe, Angle and Check Valves SP-85-94Cast Iron Globe and Angle Valves, Flanged and Threaded Ends	

- H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping:
 - 1. Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
 - 2. All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.

- 2. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, $ASTM\ A307$, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - 1. Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass gate valves may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Shut-Off Valves

1. Gate Valves:

- a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150
 lb.), wedge disc, rising stem, union bonnet.
- b. 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke.
 - 1) MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

D. Globe and Angle Valves:

- 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.

2.8 STRAINERS

- A. Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast iron or bronze.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, iron body.
- D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 1. 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids.

2.12 STEAM SYSTEM COMPONENTS

- G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.

- b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure.
 Condensate may be lifted to the return line.
- 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping, (4 bolt raised face flange). For systems without relief valve traps shall be 5. Mechanism: Brass, stainless steel or corrosion resistant alloy rated for the pressure upstream of the PRV supplying the system.
- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- H. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.

2.13 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam condensate to 103 kPa(15 psig)	0 to 207 kPa (30 psig).		
Medium pressure steam and steam condensate nominal 413 kPa (60 psig)	0 to 689 kPa (100 psig).		

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the VA Project Manager:
 - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range.
 - 3. 0 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.15 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, coils, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government.

 Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than

- 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

3.6 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the VA Project Manager in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.

C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.7 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.8 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 4. Glycol-water "Gray-water" heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- E. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.

- 3. Chemical treatment for open loop systems, including installation and operating instructions.
- 4. Glycol-water system materials, equipment, and installation.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):
 70-14......National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02 (2008) ... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.

- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

2.4 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume to match the existing glycol-water system concentration and to provide one-half tank reserve supply.

2.5 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - 1. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - 2. Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient

- drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
- 3. Provide piping for the flow assembly piping to the main control panel and accessories.
 - a. The inlet piping shall connect to the discharge side of the circulating water pump.
 - b. The outlet piping shall connect to the water piping serving the cooling tower downstream of the heat source.
 - c. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.
- 4. Install injection nozzles with corporation stops in the water piping serving the cooling tower downstream of the heat source.
- 5. Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.
- 7. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, ${\tt GENERAL}$ REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, outside air, and exhaust air, systems.
 - 2. Exhaust duct for kitchen hood exhaust (grease) and "wet exhaust" ducts.

B. Definitions:

- 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
- Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
- 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
- 4. Exposed Duct: Exposed to view in a finished room, exposed to weather.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. Kitchen Hoods: Section 11 38 13, COMMERCIAL-KITCHEN HOODS.
- F. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- H. Duct Insulation: Section 23 07 11, HVAC INSULATION
- I. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- J. Air Flow Control Valves and Terminal Units: Section 23 36 00, AIR TERMINAL UNITS.
- K. Duct Mounted Coils: Section 23 82 16, AIR COILS.
- L. Supply Air Fans: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- M. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- N. Air Filters and Filters' Efficiencies: Section 23 40 00, HVAC AIR CLEANING DEVICES.

- O. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- P. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- Q. Smoke Detectors: Section 28 31 00, FIRE DETECTION and ALARM.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.

- 10 Details and design analysis of alternate or optional duct systems.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 - Common Work Results for HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE):

 ASCE7-05..........Minimum Design Loads for Buildings and Other

 Structures
- C. American Society for Testing and Materials (ASTM): A167-99(2009)......Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
 - A653-09......Standard Specification for Steel Sheet,

 Zinc-Coated (Galvanized) or Zinc-Iron Alloy
 coated (Galvannealed) by the Hot-Dip process
 - A1011-09a......Standard Specification for Steel, Sheet and
 Strip, Hot rolled, Carbon, structural, HighStrength Low-Alloy, High Strength Low-Alloy
 with Improved Formability, and Ultra-High
 Strength
 - B209-07......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 - C1071-05e1.....Standard Specification for Fibrous Glass Duct

 Lining Insulation (Thermal and Sound Absorbing

 Material)
 - E84-09a.....Standard Test Method for Surface Burning
 Characteristics of Building Materials
- D. National Fire Protection Association (NFPA):
 - 90A-09......Standard for the Installation of Air
 Conditioning and Ventilating Systems
 96-08.....Standard for Ventilation Control and Fire
 - Protection of Commercial Cooking Operations
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 2nd Edition 2005.....HVAC Duct Construction Standards, Metal and Flexible

- 1st Edition 1985.....HVAC Air Duct Leakage Test Manual 6th Edition - 2003.....Fibrous Glass Duct Construction Standards
- F. Underwriters Laboratories, Inc. (UL):

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Optional Duct Materials:
 - 1. Grease Duct: Double wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust duct. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown on the drawings will have to be converted to equivalent round size.
- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- E. Wet Air Exhaust Ducts and Accessories: Ducts for dishwashers, scullery hood, cart washers, manual cart washers shall be 1.3 mm (18 gage) stainless steel made liquid tight with continuous external weld for all seams and joints. Provide neoprene gaskets at flanged connections. Where ducts are not self draining back to the equipment, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access door in side of duct at drain pockets.
- G. Kitchen Grease Hood Exhaust Ducts: Comply with NFPA 96.
 - Material: 1.6 mm (16 gage) steel sheet (black iron), ASTM A1011, or
 1.3 mm (18 gage) stainless steel. Use stainless steel for exposed duct in occupied areas. See Optional Duct Materials.
 - 2. Construction: Liquid tight with continuous external weld for all seams and joints. Where ducts are not self-draining back to the equipment, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access doors or panels for duct cleaning inside of horizontal duct at drain pockets, at 6 m (20 feet) intervals, and at each change of direction.
 - 3. Access doors or panels shall be of the same material and thickness of the duct with gaskets and sealants that are rated 815 degrees C (1500 degrees F) and shall be grease-tight.
 - 4. Grease Duct: Double-wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen hood exhaust. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown in the drawings will have to be converted to equivalent round size.

- M. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - 1. Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
 - 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.

 Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the VA— Contracting Officer Representative (COR) Project Manager.
- O. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, of adequate size to access plenum interior for cleaning. Provide view port in the doors where shown. Provide drain for exhaust and outside air louver plenums. Exhaust and outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.

- P. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- Q. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil.
 - 2. Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust and food digester exhaust shall be of stainless steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - 1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.

2. Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS

- A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450 m/min (1500 fpm). Maximum static pressure loss: 32 Pa (0.13 inch W.G.).
- B. Maximum air leakage, closed damper: 0.32 cubic meters /min/square meter (4.0 CFM per square foot) at 750 Pa (3 inch W.G.) differential pressure.
- C. Minimum requirements for dampers:
 - 1. Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - 2. Frame: Galvanized steel channel with side, top and bottom stops or seals.
 - 3. Blades: Galvanized steel, parallel type preferably, 300 mm (12 inch) maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
 - 4. Shafts: Galvanized steel.
 - 5. Bearings: Nylon, bronze sleeve or ball type.
 - 6. Hardware: Zinc plated.
 - 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.8 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 71 degrees C (160 degrees F) fusible link, 3 hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent

free opening with no part of the blade stack or damper frame in the air stream.

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted. Exhaust fans serving kitchen grease hood exhaust shall not have flexible connections.

2.11 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.13 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.15 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.16 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.17 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated.

 Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions

- with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Provide duct access doors at the following locations:
 - 1. Motor operated dampers
 - 2. Smoke, fire, fire/smoke dampers and smoke detectors. Doors shall be identified with letters, no less than 1/2 inch in height, to indicate the device and its location within.
 - 3. Air flow measuring stations
 - 4. In return and exhaust ducts at maximum 20 ft. intervals
 - 5. At the base of all vertical rises and at square throat elbows
 - 6. At any device in the duct which requires maintenance, service, cleaning, or inspection.
 - 7. Provide pre-fabricated accesses door rated for 2000°F in all duct systems covered with fire rated insulation. For grease exhaust ducts, provide duct access doors every 20 feet and at all turn in directions.
- E. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the VA— Contracting Officer Representative

 (COR) Project Manager. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting

- of fire dampers and operation of smoke dampers to the VA- <u>Contracting</u>
 Officer Representative (COR)Project Manager.
- F. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - 2. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by VA— Contracting Officer Representative (COR) Project—Manager. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and
 Balancing Contractor directly contracted by the General Contractor and
 independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the VA Contracting Officer

Representative (COR) Project Manager on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.

- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the VA <u>Contracting</u>

 <u>Officer Representative (COR)</u> <u>Project Manager</u> and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the VA <u>Contracting Officer Representative (COR)</u>

 <u>Project Manager</u> and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the VA-Contracting Officer Representative (COR)Project Manager.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- H. Section 23 82 16, AIR COILS.
- I. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency

- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - 1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
 - 2. Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - d. Industrial fans.
- C. Utility fans.C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Belt guards.
- F. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- G. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

в.	Air Movement and Control Association International, Inc. (AMCA):
	99-86Standards Handbook
	210-06Laboratory Methods of Testing Fans for
	Aerodynamic Performance Rating
	261-09Directory of Products Licensed to bear the AMCA
	Certified Ratings Seal - Published Annually
	300-08Reverberant Room Method for Sound Testing of
	Fans
C.	American Society for Testing and Materials (ASTM):
	B117-07aStandard Practice for Operating Salt Spray
	(Fog) Apparatus
	D1735-08Standard Practice for Testing Water Resistance
	of Coatings Using Water Fog Apparatus
	D3359-08Standard Test Methods for Measuring Adhesion by
	Tape Test
	G152-06Standard Practice for Operating Open Flame
	Carbon Arc Light Apparatus for Exposure of Non-
	Metallic Materials
	G153-04Standard Practice for Operating Enclosed Carbon
	Arc Light Apparatus for Exposure of Non-
	Metallic Materials
D.	National Fire Protection Association (NFPA):
	NFPA 96-08Standard for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
Ε.	Underwriters Laboratories, Inc. (UL):
	181-2005Factory Made Air Ducts and Air Connectors
6 E	XTRA MATERIALS

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 2. SWSI fans: Arrangement as scheduled.

- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a BlO life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.
 - 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
 - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
 - 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.
 - 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.
- D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.F. Industrial Fans: Use where scheduled or in lieu of centrifugal fans for low volume high static

- service. Construction specifications paragraphs A and C for centrifugal fans shall apply. Provide material handling flat blade type fan wheel.
- E. Utility Fans: Class 1 design, arc welded housing, spun intake cone.

 Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300 mm (12 inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.
- G. Section 23 82 16, AIR COILS.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
 - 2. Air flow control valves.
- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI):

 880-08.....Air Terminals Addendum to ARI 888-98

 incorporated into standard posted 15th December

2002

- C. National Fire Protection Association (NFPA):
 - 90A-09.....Standard for the Installation of Air
 Conditioning and Ventilating Systems
- D. Underwriters Laboratories, Inc. (UL):
 - 181-08.....Standard for Factory-Made Air Ducts and Air Connectors
- E. American Society for Testing and Materials (ASTM):
 - C 665-06......Standard Specification for Mineral-Fiber

 Blanket Thermal Insulation for Light Frame

 Construction and Manufactured Housing

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - 1. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Sound Power Levels:
 - Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule (...) shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.
- C. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4-lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material.
 - 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.

- 3. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- D. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- E. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- F. Provide static pressure tubes.
- G. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times.

 Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 08 90 00, LOUVERS and VENTS.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code:
 - 1062 GRD-84......Certification, Rating, and Test Manual $4^{\rm th}$ Edition
- C. American Society of Civil Engineers (ASCE):
 - ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):
 - A167-99 (2004)......Standard Specification for Stainless and

 Heat-Resisting Chromium-Nickel Steel Plate,

 Sheet and Strip
 - B209-07......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

- E. National Fire Protection Association (NFPA):
 - 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems
- F. Underwriters Laboratories, Inc. (UL):
 - 181-08.....UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS

Refer to Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 AIR OUTLETS AND INLETS

A. Materials:

- Aluminum. Use aluminum air outlets and inlets. Exhaust air registers shall be constructed from aluminum. Provide manufacturer's standard gasket.
- 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.

C. Air Supply Outlets:

- Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, white finish, square or round neck connection as shown on the drawings. Provide square to round adapters as required.
 - a. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid.

 Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.

- D. Exhaust and Transfer Grilles:
 - 1. Finish: White baked enamel for ceiling mounted units.
 - 2. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
 - 3. Egg Crate Grilles: Aluminum 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by VA Contracting Officer Representative (COR). Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 40 00

HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to VA Contracting Officer Representative (COR), indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
 - 2. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of

service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.

- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, UL classification, and file number.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning
 Engineers, Inc. (ASHRAE):
 - 52.2-2007......Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

- A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide two complete sets of additional filters to the VA Contracting Officer Representative (COR).
- B. The VA Contracting Officer Representative (COR) will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.

С.	HVAC	Filter	Types

			lter Types e 2.2C	
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a

uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.

B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be

- adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	11
Gross Media Area (Sq. Ft.)	197	197
Dust Holding Capacity (Grams)	486	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500
Final Resistance (inches w.g.)	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.27

D. Equipment Identification: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.5 INSTRUMENTATION

A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, Gauges shall be flush-mounted in aluminum panel

- board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.6 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

2.7 FILTER RETURN GRILLES

Refer to Section 23 37 00 AIR OUTLETS AND INLETS.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install supports, filters and gages in accordance with manufacturer's instructions.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the VA.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of housed-centrifugal fan with V-belt drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Sound and vibration requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- C. Piping and duct insulation: Section 23 07 11, HVAC INSULATION.
- D. Piping and valves: Section 23 21 13 / 23 22 13, HYDRONIC PIPING / STEAM AND CONDENSATE HEATING PIPING.
- E. Heating and cooling coils and pressure requirements: Section 23 82 16, AIR COILS.
- F. Fans: Section 23 34 00, HVAC FANS.
- G. Requirements for flexible duct connectors, sound attenuators, and air leakage: Section 23 31 00, HVAC DUCTS and CASINGS.
- H. Air filters and filters' efficiency: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. HVAC controls: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Testing, adjusting and balancing of air and water flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- K. Types of motors: Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
- L. Types of motor starters: Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- M. HVAC Commissioning: Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS

1.3 QUALITY ASSURANCE

A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- B. Air Handling Units Certification
 - Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. Separate each air handling unit into an individual submittal. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - Submittals for AHUs shall include fans, drives, motors, coils, filter housings, , and all other related accessories. The contractor

- shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections,, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).
- 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.

 Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.

- 1. Prior to ordering the air handling unit, the contractor shall schedule a site visit with a representative of the air handling unit manufacturer to verify that the proposed air handling unit will fit in the design location.
- 2. Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
- 3. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
- 4. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 5. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-01......Standard for Forced-Circulation Air-Heating and Air-Cooling Coils
 - 430-09......Central Station Air Handling Units
- C. Air Movement and Control Association International, Inc. (AMCA): 210-07......Laboratory Methods of Testing Fans for Rating
- D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):
 - 170-2008......Ventilation of Health Care Facilities

- E. American Society for Testing and Materials (ASTM):
 - ASTM B117-07a.....Standard Practice for Operating Salt Spray
 (Fog) Apparatus
 - ASTM D1654-08......Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
 - ASTM D1735-08......Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus
 - ASTM D3359-08.....Standard Test Methods for Measuring Adhesion by

 Tape Test
- F. Military Specifications (Mil. Spec.):
 - MIL-P-21035B-2003......Paint, High Zinc Dust Content, Galvanizing Repair (Metric)
- G. National Fire Protection Association (NFPA):
 - NFPA 90A.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

A. General:

- 1. AHUs shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units, subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.
- 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.

- 3. AHUS shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
- 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer Representative (COR) that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher.

B. Base:

 Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as

- required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.
- 2. AHUs shall be completely self supporting for installation on steel support pedestals, or suspended as shown on drawings.
- 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - 1. General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Casing Construction:

Table 2.1.C.2

Outer Panel	0.8 mm (22 Gage) Minimum		
Inner Panel	0.8 mm (22 Gage) Minimum		
Insulation	Foam		
Thickness	50 mm (2 inch) Minimum		
Density	48 kg/m 3 (3.0 lb/ft 3) Minimum		
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)		
	Minimum		

3. Casing Construction (Contractor's Option):

Table 2.1.C.3

Outer Panel	1.3 mm (18 Gage) Minimum
Inner Panel	1.0 mm (20 Gage) Minimum
Insulation	Fiberglass
Thickness	50 mm (2 inch) Minimum
Density	24 kg/m 3 (1.5 lb/ft 3) Minimum
Total R Value	1.4 m ² .K/W (8.0 ft ² .°F.hr/Btu)
	Minimum

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 6. Access Doors: Provide in each access section and where shown on drawings. Access doors shall be accessible from catwalk side of unit. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).
 - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control

wiring. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.

E. Floor:

- 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- 2. Furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.
- F. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - 1. An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - 2. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.

- 3. Installation, including frame, shall be designed and sealed to prevent blow-by.
- G. Housed Centrifugal Fan Sections:
 - 1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined or forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, re-greasable ball-type bearings selected for a B (10) life of not less than 50,000 hours and an L (50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
 - 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements.
 - 3. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- H. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable

- for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- I. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - 1. Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- J. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Copper fins are also required for all duct-mounted and terminal reheat coils. Refer to Drawings and Section 23 82 16, AIR COILS for additional coil requirements.
 - 1. Integral Face and Bypass Steam Coils: Provide integral vertical face and bypass dampers. Electric damper operators shall be furnished and mounted by the AHU manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

- K. Discharge Section:
 - Provide aerodynamically designed framed discharge opening.
- L. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. LED vapor-proof lights shall be installed in access sections for fan and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt one phase connection at junction box.
 - 2. Provide a convenience duplex receptacle next to the light switch.
 - 3. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.
- C. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.

- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 81 00 DECENTRALIZED UNITARY HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies rooftop units.
- B. Definitions:
 - 1. Energy Efficiency Ratio (EER): The ratio of net cooling capacity is Btu/h to total rate of electricity input in watts under designated operating conditions (Btu hour/Watt).
 - 2. Seasonal Energy Efficiency Ratio (EER): The ratio of the total cooling output of an air conditioner during its normal annual usage period for cooling in Btu/h divided by total electric energy input in watts during the same period (Btu hour/Watt).
 - 3. Unitary: A Unitary Air Conditioner consists of one or more factory-made assemblies which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well.
 - 4. Where such equipment is provided in more than one assembly the separated assemblies are to be designed to be used together and the requirements of rating are based upon use of matched assemblies.

1.2 RELATED WORK

- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Requirements for different types of vibration isolators and noise ratings in the occupied areas.
- D. Section 23 07 11, HVAC INSULATION: Requirements for piping insulation.
- F. Section 23 36 00, AIR TERMINAL UNITS and Section 23 82 00, CONVECTION HEATING and COOLING UNITS: Requirements for other similar units.
- G. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Requirements for air handling units using chilled water and hot water coils.
- I. Section 23 40 00, HVAC AIR CLEANING DEVICES: Requirements for air filtration
- J. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

L. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC:
Requirements for testing and adjusting air balance.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Safety Standards: ASHRAE Standard 15, Safety Code for Mechanical Refrigeration.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Manufacturer's literature and data:
 - 1. Sufficient information, including capacities, pressure drops and piping connections clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Unit Dimensions required clearances, operating weights accessories and start-up instructions.
 - 3. Electrical requirements, wiring diagrams, interlocking and control wiring showing factory installed and portions to be field installed.
 - 4. Mounting and flashing of the roof curb to the roofing structure with coordinating requirements for the roof membrane system.
- C. Certification: Submit proof of specified ARI Certification.
- D. Performance Rating: Submit catalog selection data showing equipment ratings and compliance with required sensible-to-heat-ratio, energy efficiency ratio (EER), and coefficient of performance (COP).
- E. Operating and Maintenance Manual: Submit three copies of Operating and Maintenance manual to COR three weeks prior to final inspection.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. Military Specifications (Mil. Specs.):
 MIL-PRF-26915D-06......Primer Coating, for Steel Surfaces
- D. Air-Conditioning, Heating, and Refrigeration Institute (AHRI):

 210/240-08......Performance Rating of Unitary Air-Conditioning
 and Air-Source Heat Pump Equipment

	270-08 Sound Rating of Outdoor Unitary Equipment
	340/360-07Performance Rating of Commercial and Industrial
	Unitary Air-Conditioning and Heat Pump
	Equipment
	520-04Performance Rating of Positive Displacement
	Condensing Units
Ε.	Air Movement and Control Association (AMCA):
	210-07Laboratory Methods of Testing Fans for
	Aerodynamic Performance Rating (ANSI)
	410-96Recommended Safety Practices for Users and
	Installers of Industrial and Commercial Fans
F.	American National Standards Institute (ANSI):
	S12.51-02(R2007)Acoustics - Determination of Sound Power Levels
	of Noise Sources Using Sound Pressure -
	Precision Method for Reverberation Rooms (same
	as ISO 3741:1999)
G.	American Society of Heating, Refrigerating, and Air-Conditioning
	Engineers (ASHRAE):
	2016 HandbookHVAC Systems and Equipment
	15-10Safety Standard for Refrigeration Systems
	(ANSI)
н.	American Society of Testing and Materials (ASTM):
	B117-09Standard Practice for Operating Salt Spray
	(Fog) Apparatus
I.	American Society of Civil Engineers (ASCE)
	ASCE 7-10Minimum Design Loads for Buildings and Other
	Structures
J.	National Electrical Manufacturer's Association (NEMA):
	MG 1-09 (R2010)Motors and Generators (ANSI)
	ICS 1-00 (R2005, R2008). Industrial Controls and Systems: General
	Requirements
К.	National Fire Protection Association (NFPA) Publications:
	90A-15Standard for the Installation of Air-
	Conditioning and Ventilating Systems
RT :	2 - PRODUCTS

PART 2 - PRODUCTS

2.1 UNITARY AIR CONDITIONERS - GENERAL

- A. Applicable ARI Standards:
 - 1. Cooling Capacity 39.6 kW (135,000 Btu/h) and More: AHRI 340/ 360.

- 2. Cooling Capacity Less Than 39.6 kW (135,000 Btu/h): AHRI 210/240. Units shall be listed in the AHRI Directory of Certified Unitary Air-Conditioners.
- B. Performance Rating: Cooling capacity of units shall meet the sensible heat and total heat requirements shown in the contract documents. In selecting unit size, make true allowance for "sensible to total heat ratio" to satisfy required sensible cooling capacity.
- C. Machinery Guards: Provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor. Drive guards may be excluded where motors and drives are inside factory fabricated casings.
- D. Corrosion Prevention: Unless specified otherwise, equipment fabricated from ferrous metals that do not have a zinc coating or a duplex coating of zinc and paint shall be treated for prevention of rust with a factory coating or paint system that will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall be tested for 500 hours. The salt-spray fog test shall be in accordance with ASTM B117 using a 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no signs of blistering, wrinkling or cracking, no loss of adhesion, and the specimen shall show no signs of rust beyond 3 mm (1/8-inch) on both sides from the scratch mark.

2.4 ROOFTOP AIR CONDITIONERS

- A. Casing: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed. Exterior casing of 1.6 mm (0.0626 inch) thick galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs. Galvanized G90 (0.90 oz. of zinc per square foot) inner casing. Casing insulation and adhesive shall comply with NFPA 90A or NFPA 90B and comply with ASTM C 1071, Type I and shall be 32 kg/m³ (2.0 lb/ft³) density with a total thermal resistance (R-value) of approximately 2.3 m.K/W (13.0 hr-ft² °F/BTU). Space between double wall panels filled with foam insulation and sealed moisture tight. Removable cam latched access panel to allow access to internal parts.
- B. Corrosion Prevention: Paint shall be treated for prevention of rust with a factory coating or paint system that will withstand 500 hours in

- a salt-spray fog test. The salt-spray fog test shall be in accordance with ASTM B117 using a 20 percent sodium chloride solution. Provide factory-coated coils for protection from corrosion. Refer to Section 23 82 16, AIR COILS, for additional coil requirements.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2016.
- D. Supply-Air Fan: Direct driven, centrifugal; with permanently lubricated, motor resiliently mounted in the fan inlet. Fan wheel shall be aluminum or painted-steel.
 - F. Condenser-Coil Fans: Propeller, mounted on shaft of permanently lubricated EC motor.
 - I. Fan Motor: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT.
 - J. Supply-Air Refrigerant Coil: Aluminum or Copper -plate fins and seamless copper tube in steel casing with equalizing-type vertical distributor. Polymer strip shall prevent all copper coils from contacting steel coil frame or condensate pan. Coil shall have factory install expansion valves.
 - K. Condensate Drain Pan: Formed sections of stainless-steel sheet, a minimum of 50 mm (2 inches) deep, and complying with ASHRAE 62.1-2007. Drain connections shall be threaded.
 - L. Outdoor-Air Refrigerant Coil: Aluminum or Copper -plate fins and seamless copper tube in steel casing with equalizing-type vertical distributor. Polymer strip shall prevent copper coil from contacting steel coil frame or condensate pan. Coil shall have baked phenolic or cathodic epoxy coating.
 - M. Hot-Gas Reheat Refrigerant Coil: Aluminum or Copper -plate fins and seamless copper tube in steel casing with equalizing-type vertical distributor. Polymer strip shall prevent copper coil from contacting steel coil frame or condensate pan. Coil shall have baked phenolic or cathodic epoxy coating.
 - O. Refrigerant Circuit Components:
 - 1. Number of Independent Refrigerant Circuits: Two.
 - 2. Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.
 - P. Refrigerant: R-410A.
 - Q. Refrigeration Specialties:

- 1. Expansion valve with replaceable thermostatic element.
- 2. Refrigerant filter/dryer.
- 3. Manual-reset high-pressure safety switch.
- 4. Automatic-reset low-pressure safety switch.
- 5. Minimum off-time relay.
- 6. Automatic-reset compressor motor thermal overload.
- 7. Brass service valves installed in compressor suction and liquid lines.
- 8. Low-ambient kit high-pressure sensor.
- 9. Hot-gas reheat solenoid valve with a replaceable magnetic coil.
- 10. Hot-gas bypass solenoid valve with a replaceable magnetic coil.
- 11. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.
- R. Air Filtration: Minimum arrestance according to ASHRAE 52.1, and MERV rating according to ASHRAE 52.2.
 - 1. Pleated: Minimum 90 percent arrestance, and MERV 7.
- S. Gas Furnace: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54. Furnace shall be designed and certified by and bearing label of CSA.
 - 1. Burners: Stainless steel.
 - 2. Fuel: Natural gas.
 - 3. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
 - 5. Heat-Exchanger and Drain Pan: Stainless steel.
 - 7. Power Vent: Integral, motorized centrifugal fan interlocked with gas valve with vertical extension.
 - 8. Safety Controls:
 - a. Gas Control Valve: Modulating.
 - b. Gas Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.
- U. Outdoor-Air Damper: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet.
- V. Damper Motor: Modulating with adjustable minimum position.

X. Electrical Power Connection: A single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

Y. Controls:

- 1. Basic Unit Controls:
 - a. Control-voltage transformer.
 - b. Wall-mounted thermostat or sensor with heat-cool-off switch.
 - c. Fan on-auto switch.
 - d. Fan-speed switch.
 - e. Manual and Automatic changeover.
 - f. Adjustable deadband.
 - g. Concealed set point.
 - h. Concealed indication.
 - i. Degree F indication.
 - j. Unoccupied-period-override push button.
 - k. Data entry and access port to input temperature set points, occupied and unoccupied periods, and output room temperature, supply-air temperature, operating mode, and status.
 - Remote wall annunciator panel with lights to indicate power on, cooling, heating, fan running, filter dirty, and unit alarm or failure.
 - m. DDC controller or programmable timer and interface with HVAC instrumentation and control system and to digital display outdoor-air temperature, supply-air temperature, economizer damper position, indoor-air quality, and control parameters. Interface with BMS/DDC system via BACnet open protocol.
- 2. Electronic DDC controller shall have volatile-memory backup.
- 3. Safety Control Operation:
 - a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected and with additional contacts for alarm interface to fire alarm control panel.
 - b. Fire Stats: Stop fan and close outdoor-air damper if air greater than 54 deg C (130 deg F)] enters unit and with additional contacts for alarm interface to fire alarm control panel.
 - c. Fire Alarm Control Panel Interface: Control interface to coordinate with operating sequence described in Section 28 31 00, FIRE DETECTION and ALARM.

- d. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply air temperature is less than 4 deg C (40 deg F).
- e. Defrost Control for Condenser Coil: Pressure differential switch to initiate defrost sequence.
- 4. Scheduled Operation: Occupied and unoccupied periods on 7 -day clock with a minimum of 4 programmable periods per day.
- 5. Unoccupied Period: Heating Setback: System off.
- 6. Cooling Setback: System off.
- 7. Override Operation: Two hours unless otherwise indicated.
- 8. Supply Fan Operation:
 - a. Occupied Periods: Run fan continuously.
 - b. Unoccupied Periods: Fan off.
- 9. Refrigerant Circuit Operation:
 - a. Occupied Periods: Cycle or stage compressors, and operate hotgas bypass to match compressor output to cooling load to maintain room temperature. Cycle condenser fans to maintain maximum hotgas pressure. Operate low-ambient control kit to maintain minimum hot-gas pressure.
 - b. Unoccupied Periods: Compressors off
- 10. Gas Furnace Operation:
 - a. Occupied Periods: Modulate burner to maintain room temperature.
 - b. Unoccupied Periods: System off.
- 12. Fixed Minimum Outdoor-Air Damper Operation:
 - a. Occupied Periods: Open to 25 percent.
 - b. Unoccupied Periods: Close the outdoor-air damper.
- 13. Outdoor-Air Damper Operation:
 - a. Occupied Periods: Open to 100 percent of the fan capacity to provide make-up air to kitchen exhaust hood.
 - b. Unoccupied Periods: Close outdoor-air damper.
- 16. Interface Requirements for HVAC Instrumentation and Control System:
 - a. Interface relay for scheduled operation.
 - b. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 - c. Compatible with BACnet for central HVAC control workstation for adjusting set points, monitoring supply fan start, stop, and operation, inquiring data to include outdoor-air damper position, supply- and room-air temperature and humidity, monitoring occupied and unoccupied operations, monitoring constant and

variable motor loads, monitoring variable-frequency drive operation, monitoring cooling load, monitoring economizer cycles and monitoring air-distribution static pressure and ventilation air volume.

Z. Accessories:

- Electric heater with integral thermostat maintains minimum 10 deg C
 (50 deg F) temperature in gas burner compartment.
- 2. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
- 3. Low-ambient kit using variable-speed condenser fans for operation down to 1.7 deg C (35 deg F).
- 4. Filter differential pressure switch with sensor tubing on both sides of filter. Set for final filter pressure loss.
- 5. Coil guards of painted, galvanized-steel wire.
- 6. Hail guards of galvanized steel, painted to match casing.
- 7. Concentric diffuser with white louvers and polished aluminum return grilles, insulated diffuser box with mounting flanges, and interior transition.
- AA. Roof curbs: Vibration isolators and wind restraints shall be as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Manufacturer's spring vibration isolation curbs constructed of galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 - 1. Curb Insulation and Adhesive: Factory applied and complying with NFPA 90A or NFPA 90B and ASTM C 1071, Type I or II. Thickness shall be (50 mm (2 inches). Insulation shall be applied with adhesive and mechanical fasteners to the internal surface of curb. Liner adhesive shall comply with ASTM C 916, Type I. Liner shall be fastened with mechanical fasteners of galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied without causing leakage in cabinet. Liner materials shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity. Liner adhesive shall comply with ASTM C 916, Type I.
 - 2. Curb Height: 458 mm (18 inches).

3. Wind Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for wind-load requirements.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Roof Curb: Install on roof structure or concrete base, level and secure, according to AHRI Guideline B. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00, ROOF ACCESSORIES. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- B. Rooftop Unit Support: Install unit level on structural curbs. Secure rooftop units to structural support with anchor bolts.
- C. Install wind restraints according to manufacturer's written instructions.
- D. Install units level and plumb maintaining manufacturer's recommended clearances and tolerances.

3.2 CONNECTIONS

- A. Verify condensate drainage requirements.
- B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- C. Install piping adjacent to units to allow service and maintenance.
- D. Gas Piping: Comply with applicable requirements in Section 22 10 13, NATURAL-GAS PIPING. Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
- E. Install ducts to termination at top of roof curb. Cut roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
- F. Connect ducts to units with flexible duct connectors specified in Section 23 31 00, HVAC DUCTS and CASINGS.
- H. Install normal-weight, 20.7-MPa (3000-psi), compressive strength (28-day) concrete mix inside roof curb, 100 mm (4 inches) thick.
- I. Ground equipment and install power wiring, switches, and controls systems.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections: After installing units and after electrical circuitry has been energized, test units for compliance with requirements. Inspect for and remove shipping bolts, blocks, and tiedown straps. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Remove and replace malfunctioning units and retest as specified above.

3.4 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

3.5 STARTUP AND TESTING

The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Radiant ceiling panels and cabinet unit heaters.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- C. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- D. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- G. Section 23 82 16, AIR COILS: Additional coil requirements.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cabinet unit heaters.
 - 2. Radiant ceiling panels.
- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning

 Agent and completed by the contractor, signed by a qualified technician

and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI):

440-08......Performance Rating of Room Fan Coils National Fire Protection Association (NFPA):

90A-15.....Standard for the Installation of Air Conditioning and Ventilating Systems

70-14.....National Electrical Code

C. Underwriters Laboratories, Inc. (UL):

181-08......Standard for Factory-Made Air Ducts and Air Connectors

1995-05......Heating and Cooling Equipment

1.6 GUARANTY

In accordance with FAR clause 52.246-21

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

- A. General: Horizontal type for hot waterheating medium, as indicated.
- B. Cabinet: Not less than 1.3 mm (18 gage) steel with front panel and hinged front panel for horizontal units. Finish on exposed cabinet shall be factory-baked enamel in manufacturer's standard color as selected by the Architect.
- C. Fan: Centrifugal blower, direct driven by a single phase, two-speed, electric motor with inherent overload protection. Provide resilient motor/fan mount.
- D. Filter: Manufacturer's standard, one inch thick, throwaway type MERV 7 filters.
- E. Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psi)working pressure.
- F. Factory Mounted Controls: Manual fan starter and three-position (low, high and off) fan speed switch. Provide field installed remote wall

mounted line voltage electric space thermostat to control the unit fan. Provide an aquastat on hot water units to prevent fan operation when the heating system is off.

2.2 RADIANT CEILING PANELS:

B. Hydronic Radiant Panels: Lay-in type, 1.00 mm (0.040) inch aluminum faceplate with 13 mm (1/2-inch) I.D copper serpentine water coil mechanically bonded to faceplate, finished with two coats baked white polyester finish with a light reflection value of 70 to 80 percent. Panels shall weigh no more than 0.68 kg (1.5 pounds) per square foot when filled with water. Provide 75 mm (3-inch) un-faced fiberglass blanket insulation pre-cut for installation above panels. Panels shall be continuous linear arranged as shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Install fiberglass blanket insulation with a minimum R value of 8 above hydronic radiant panels.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the VA Project Manager and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section $23\ 08\ 00$ COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

Heating coils for and duct applications

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS
- C. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- D. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 36 00, AIR TERMINAL UNITS, or Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-01...........Forced-Circulation Air-Cooling and Air-Heating Coils
- C. American Society for Testing and Materials (ASTM):
 B75/75M-02......Standard Specifications for Seamless Copper
 Tube
- D. National Fire Protection Association (NFPA): 70-14......National Electric Code
- E. National Electric Manufacturers Association (NEMA):

 250-11.....Enclosures for Electrical Equipment (1,000

 Volts Maximum)

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- D. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- E. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- F. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- G. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- H. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- I. Pressures kPa (PSIG):

	Pressur	re	Water Coil		l Steam Coil		Refrigerant Coil	
	Test	2	070 (300)	17	25 (250)		2070 (300)	
W	Jorking	1	380 (200)	5	520 (75)		1725 (250)	

- J. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- K. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.

L. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 REHEAT COILS, DUCT MOUNTED

The coils shall be continuous circuit booster type for hot water as shown on drawings. Use the same coil material as listed in Paragraphs 2.1.

2.3 WATER COILS

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
 - 1. Cooling, all types.
 - 2. Heating or preheat.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the VA Project Manager and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 25 13 00 BUILDING AUTOMATION SYSTEM (BAS) INTEGRATION

PART 1 GENERAL

1.1 SUMMARY

- A. This section describes the Systems Integration scope of work for the project. This section also coordinates the responsibilities of the Mechanical and Electrical trade contractors pertaining to control products or systems, furnished by each trade, which will be integrated by this Section.
- B. Integrate direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings, and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The existing Tridium BAS consists of a high speed network of JACE Vykon communication nodes, a virtual server, and web access to the BAS. These JACE nodes are capable of a wide variety of communications including BACnet, LonWorks, and Modbus. The web browser allows access to the control system graphics for changing of setpoints, adding overrides, access to alarms, adjustment of schedules, etc
 - 2. The control system shall accommodate multiple web-based users simultaneously, and the access to the system should be congruent with existing access control strategies.
- C. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, warranty, specified services and items required for complete and fully functional system.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the Contractor administered

by this Section of the technical specifications. The Contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other Contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:

1. Variable frequency drives (VFDs). Control of VFDs will be directly from the primary controllers. A secondary BACnet line will be directly connected to the JACEs for monitoring and alarms.

E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
LAN conduits and raceway	25 13 00	25 13 00	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermo-wells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
VFDs Control	23 09 23	26	23 09 23	26
VFDs Monitoring & Trending	25 13 00	26	25 13 00	26
Fire Alarm shutdown relay	28	28	28	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
interlock wiring				
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Starters, HOA switches	23	23	N/A	26

- F. This facility has a secondary BAS manufactured by Johnson Controls (JCI). The JCI Metasys BAS is accessible from the HVAC Shop GB1-08.
 - 1. No interoperability is required with existing JCI BAS.
 - 2. Modify existing Tridium system as required to accommodate all new components as specified. Modifications include, but are not limited to, graphics modifications to accommodate new spaces and equipment, operating sequences, scheduling, and setpoints.
- G. The Tridium BAS service company is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control System Integrator is responsible for Tridium user interface system graphics and expansion.
 - 1. The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the Controls Contractor administered by Section 23 09 23 of the technical specifications.
 - 2. The Contractor administered by this Section of the technical specifications shall coordinate all work with the Controls Contractor as defined in Section 23 09 23 of the technical specifications.
 - 3. The Contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked distributed control system. This Contractor is responsible for all device mounting and wiring.

4. Responsibility Table:

Item/Task	Section 23 09 23 Contactor	Section 25 13 00 Contractor	VA
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control	X		
panels and equipment			
Point addressing: all hardware	X		
and software points including			
setpoint, calculated point,			
data point(analog/ binary), and			
reset schedule point			
Point mapping		Х	
Network Programming	X		
ECC Graphics		X	
	Section	Section	
Item/Task	23 09 23	25 13 00	VA
	Contactor	Contractor	
Controller programming and	x		
sequences	Δ.		
Integrity of LAN communications	X		
Electrical wiring	X		
Operator system training	X	Х	
LAN connections to devices	X		
LAN connections to ECC		Х	
IP addresses			X
Overall system verification		Х	
Controller and LAN system	V		
verification	X		

1.2 RELATED WORK

- A. Section 23 09 23, Direct Digital Control for HVAC
- B. Section 26 05 11, Requirements for Electrical Installations.
- C. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- D. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- E. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- F. Section 26 27 26, Wiring Devices.
- G. Section 27 15 00, Communications Horizontal Cabling

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network.
 ARCNET is a deterministic LAN technology; meaning it's possible

- to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. BAS: Building Automation System, comprised of the peer-to-peer network based distributed control system and interface.
- M. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).

- N. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- O. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- P. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- Q. Control Unit (CU): Generic term for any controlling unit, standalone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- R. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- S. Device: a control system component that contains a BACnet Device
 Object and uses BACnet to communicate with other devices.
- T. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- U. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- V. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- W. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control

loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

- X. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- Y. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Z. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- AA. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- BB. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- CC. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- DD. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- EE. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- FF. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts

- for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- GG. GIF: Abbreviation of Graphic Interchange Format.
- HH. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- II. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- JJ. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- KK. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-toend confirmation and guaranteed sequence of delivery.
- LL. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- MM. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- NN. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- OO. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- PP. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without

- intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- QQ. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- RR. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- SS. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- TT. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- UU. Operating system (OS): Software, which controls the execution of computer application programs.
- VV. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- WW. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- XX. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- YY. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- ZZ. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- AAA.Repeater: A network component that connects two or more physical segments at the physical layer.
- BBB.Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.

- CCC. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- DDD. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 SYSTEM DESCRIPTION

A. The Tridium BAS shall be comprised of a network of Vykon JACE communication nodes and a virtual server, which are interconnected through the existing facility LAN. equipment controller(s) within each facility, connected to a control interface device(s) (JACE), which connects to a head-end control graphical user interface, for a distributed network control system, with access from the ECC. The existing Tridium system shall be extended as required to accommodate new equipment controls. The control interface device (JACE) shall connect to the owner's local or wide area network, depending on configuration. Access to the system, either locally in each building, or remotely from a central site or sites, shall be accomplished through standard Web browsers, via the Internet and/or local area network. Each JACE shall communicate to DDC controllers provided under Division 23.

1.5 SYSTEM INTEGRATION CONTRACTOR QUALIFICATIONS

A. General:

- The System Integrator shall have a successful history in the design and installation of open control systems with browser based wide area network connectivity and shall provide evidence of this history as a condition of acceptance of bid.
- 2. The System Integrator shall have an office that is staffed with LONWORKS®, Modbus, BACnet and Internet Protocol (IP) trained and experienced engineers and technicians fully capable of providing instruction and routine emergency maintenance service on all system components within 24 hours of notification.
- 3. The System Integrator shall be a certified Vykon System Integrator.

http://www.vykon.com/purchase

http://www.vykon.com/partner-channels

4. Contractor Service:

- a. Provide a competent and experienced Project Manager employed by the Systems Integrator. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Systems Integrator.
- b. System Integrator shall have qualified service personnel, fully capable of providing instructions and routine or emergency maintenance service.
- 5. Control System Integrator will be required to submit to VA processes for gaining access to networked systems. All individuals that will need access to the VA network will need to submit to this process.
 - a. Fingerprinting Individuals will need to come on-site.

 Coordinate with the COR for time and location. A Service

 Agreement Check must be filled out with personal information and fingerprints taken.
 - b. Background Check A thorough background investigation (BI) will be completed by the VA. This process can take a year. Any individuals that do not clear the background check will not be allowed to work at the VA.
 - c. Training All individuals will be required to create a training account for online training in the VA https://www.tms.va.gov/learning/user/login.jsp
 Once the account has been created, coordinate with the COR to have the account linked and setup with the necessary training modules. The individuals are responsible for completing all training and maintaining
 - d. Computer Account Creation Once the BI has cleared and training is complete, send a request to the COR for the creation of a computer account. This process can take several weeks. The individual will need to come on-site to receive account information and activate the account.

Training may be done

an up-to-date training profile.

over the web.

- e. Computer Account Access Upgrade Once the account has been activated, send a request to the COR to upgrade the access for administrative access to the Tridium BAS server. This process can take several weeks.
- f. Remote Access (VPN CAG) request An option is available for remote access to the VA network over the internet. A special request must be made to the COR. This will require filling out a form. This process can take several weeks.

1.6 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two (2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.

1.7 SUBMITTAL

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. System Integrator Qualifications Submit proposal for the Control System Integrator to be utilized to the COR for review and approval. Submittal must include:

 Acknowledgement that technicians are fully capable of providing instruction and routine emergency maintenance service on all system components within 24 hours of notification.

Certification that the company is a Vykon Systems Integrator. http://www.vykon.com/purchase

http://www.vykon.com/partner-channels

- 2. List of no less than five similar projects that have Building Automation Systems installed by the System Integrator. These projects must be on-line and functional such that the owner's representatives can observe the BAS in full operation. Include proper references and contact numbers.
- 3. Resumes listing experience
 - a. Submit resumes indicating prior Instrumentation and Control experience. Resumes must include training and experience in LONWORKS, Modbus, BACnet, and Internet Protocol. Experience must include Alerton and JCI controls.
 - b. Submit resumes indicating passing certificates for wide area network infrastructure Design, Installation and Maintenance Training Program for Tridium.
- 4. Submit an organizational diagram indicating the key technical staff proposed for the project including Project Manager, Application Engineer, etc.
- C. Installation Plan Manufacturer's literature and data for all components including the following:
 - Shop drawings shall also contain complete wiring and schematic diagrams, software descriptions, calculations, and any other details required to demonstrate that the system has been coordinated and will properly function as a system.
 - 2. Submittal shall include a network cable schematic diagram depicting operator workstations, control panel locations and a description of the communication type, media and protocol.
 - 3. Catalog cut sheets of all equipment used. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and

- drawings should clearly reference the specification and/or drawings that it supposed to represent.
- 4. Color prints of proposed graphics with a list of points for display.
- 5. Schematic wiring diagrams for JACE communication panels. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 6. Scaled plan drawings showing routing of communication trunks and location of controllers, routers, gateways, ECC, and larger controlled devices.
 - a. Include construction details of all penetrations and their protection.
- 7. Provide proposed initial alarm settings for all new points for COR to review and edit.

D. As Built Control Drawings:

- 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
- 2. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- 3. Updated communication trunk diagrams connected to the JACE(s) depicting all new and existing devices on the affected communication trunks including address, label and location.
- 4. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- 5. Licenses and Passwords: Provide licenses and passwords for all software residing on and used by the Controls Systems and transfer these licenses and passwords to the Owner prior to completion.

E. Operation and Maintenance (O/M) Manuals):

- Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
- 2. Include the following documentation:
 - a. General description and specifications for all components, including procedures for logging on/off, alarm handling,

- producing trend reports, overriding computer control, and changing set points and other variables.
- b. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- c. Complete troubleshooting procedures and guidelines for all systems.
- d. Complete operating instructions for all systems.
- e. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- f. Licenses, guaranty, and other pertaining documents for all equipment and systems.

1.8 SPECIFICATION NOMENCLATURE

A. Acronyms used in this specification are as follows:

BAS	Building Automation System
DDCS	Direct Digital Control System
JACE	Vykon Tridium network communications node
NS	Network Supervisor
IDC	Interoperable Digital Controller
ASC	Application Specific Controller
PCU	Programmable Control Unit
IBC	Interoperable BACnet Controller
GUI	Graphical User Interface
WBI	Web Browser Interface
POT	Portable Operator's Terminal
PMI	Power Measurement Interface
DDC	Direct Digital Controls
LAN	Local Area Network
WAN	Wide Area Network
OOT	Object Oriented Technology
PICS	Product Interoperability Compliance Statement

1.9 DIVISION OF WORK

- A. The Controls Contractor shall be responsible for all controllers (DDC), control devices, control panels, controller programming, controller programming software, controller input/output wiring, power wiring, interlock and safety wiring, controller network wiring, and Ethernet LAN wiring, if applicable.
- B. The System Integrator (SI) shall be responsible for the controller interface device (JACE), workstations, printers, servers, software and programming of the JACE, graphical user interface software (GUI), development of all graphical screens, setup of schedules, logs and alarms, network management, global supervisory control applications, system integration and coordination of the JACE to the local or wide area network.
- C. The point of demarcation for the products to be provided by the System Integrator shall be up to and including the controller interface (JACE). Communication trunks to the Tridium JACE cabinets are the responsibility of the Controls Contractor. Termination of the communication trunks within the JACE cabinets are the responsibility of the System Integrator.

1.10 WORK INCLUDED

- A. Furnish and install the following application software as outlined in this section.
 - 1. User Interface software
- B. The following will be coordinated with the owner/owner's agent:
 - Provide custom set-up and development of the software to provide the functional and performance requirements specified. Develop system graphics for all specified mechanical and electrical systems, using animated objects to display all system variables and process valves, according to owner's standards.
 - 2. Provide supervisory control strategies for mechanical and other systems to permit the global sequence of operations specified herein.

1.11 AGENCY AND CODE APPROVALS

- A. All work shall conform to the applicable Codes and Standards.
- B. All products of the BAS shall be provided with the following agency approvals. Verification that the approvals exist for all submitted products shall be provided with the submittal package.

Systems or products not currently offering the following approvals are not acceptable.

- 1. UL-916; Energy Management Systems
- 2. ULC; UL Canadian Standards Association
- 3. FCC, Part 15, Subpart J, Class A Computing Devices

1.12 SOFTWARE LICENSE AGREEMENT

A. The Owner shall sign a copy of the manufacturer's standard software and firmware licensing agreement as a condition of this contract. Such license shall grant use of all programs and application software to Owner as defined by the manufacturer's license agreement, but shall protect manufacturer's rights to disclosure of trade secrets contained within such software.

1.13 DELIVERY, STORAGE AND HANDLING

A. Provide factory-shipping cartons for each piece of equipment and control device. Maintain cartons through shipping, storage, and handling as required to prevent equipment damage. Store equipment and materials inside and protected from weather.

1.14 JOB CONDITIONS

A. Cooperation with Other Trades: Coordinate the Work of this section with that of other sections to insure that the Work will be carried out in an orderly fashion. It shall be this Contractor's responsibility to check the Contract Documents for possible conflicts between his Work and that of other crafts in equipment location, pipe, duct and conduit runs, electrical outlets and fixtures, air diffusers, and structural and architectural features.

1.15 PROJECT CONDITIONS (Environmental Conditions of Operation)

- A. Equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65°C (-40 to 150°F).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.16 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. BAS failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all components associated with the integration work installed as a part of this contract.
- C. The on-line support service shall allow the Systems Integrator to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with online support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.

1.17 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

Standard 135-10BACNET Building Automation and Control Networks

C. American Society of Mechanical Engineers (ASME):

D. D. American Society of Testing Materials (ASTM):

E. E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11 Information TechnologyTelecommunications and Information
Exchange between Systems-Local and
Metropolitan Area Networks- Specific
Requirements-Part 3: Carrier Sense
Multiple Access with Collision
Detection (CSMA/CD) Access method and
Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-14 National Electric Code 90A-15 Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

4-10 Tests for Flammability of Plastic Materials for Parts and Devices and	
Appliances	
94-10 Access Control System Units	
86A/486B-10Wire Connectors	
55S-11 Standard for Smoke Dampers	
16-10 Energy Management Equipment	
076-10 Proprietary Burglar Alarm Units and	
Systems	

PART 2 MATERIALS

2.1 GENERAL

- A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations.

 Spare parts shall be available for at least five years after completion of this contract.
- B. The installed system shall provide secure password access to all features, functions and data contained in the overall BAS. Secure access shall be divided into no less than four levels:
 - 1. Read only access.
 - 2. Basic user access with limited override capabilities as defined by the VA.
 - 3. Advanced user access with comprehensive override and setpoint adjustment capabilities as defined by the VA.
 - 4. Administrator user access with full access rights to all functions and programming.

2.2 JACE NODES

A. Manufacturers/Model: Vykon JACE-8000 or approved equal. Equal must be approved at the time of bid. Include the following in the bid:

Bidding on:

Manufacture	r Name:
Brand:	
Model:	
No:	

- B. Architecture: Tridium Niagara
- C. Hardware requirements:
 - 1. Memory: 1 GB DDR3 SDRAM
 - 2. Flash storage: Removable micro-SD card with 4GB flash total storage/2GB user storage.
 - 3. USB Type A connector
 - 4. Two 10/100MB Ethernet ports
 - 5. Secure boot
 - 6. 24VAC/DC power supply
 - 7. Niagara 4.1 and later
 - 8. Real time clock
 - 9. Processor: TI AM3352: 1000 MHz ARM Cortex-A8
 - 10. Expansion: Capacity for 4 expansion modules
 - a. Initial installation will always include one expansion module with dual RS485 connections.

2.3 OPEN, INTEROPERABLE, INTEGRATED ARCHITECTURES

- A. The intent of this specification is to provide a peer-to-peer networked, stand-alone, distributed control system with the capability to integrate many communication protocols in one open, interoperable system.
- B. The Controls Systems shall consist of multiple JACE Vykon communication nodes and associated equipment connected by industry standard digital and communication network arrangements.
- C. The supplied computer software shall employ object-oriented technology (OOT) for representation of all data and control devices within the system. In addition, adherence to industry standards including ANSI / ASHRAE™ Standard 135-1995, BACnet to assure interoperability between all system components is required. For each BACnet device, the device supplier must provide a PICS document showing the installed device's compliance

- level. Minimum compliance is Level 3; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet or MSTP.
- D. The building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party Sub-Contractor.
- E. All components and controllers supplied under this contract shall be true "peer-to-peer" communicating devices. Components or controllers requiring "polling" by a host to pass data shall not be acceptable.
 - 1. The networks shall, at minimum, comprise, as necessary, the following:
 - a. VA workstation for access to the system.
 - b. Network computer processing, data storage and BACnetcompliant communication equipment including digital data processors. Network equipment and connection shall be provided by the VA for head-end software and data storage for trending. Coordination of such equipment requirements shall be addressed by the Systems Integrator.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- F. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.

- G. The supplied system must incorporate the ability to access all data using standard Web browsers without requiring proprietary operator interface and configuration programs. An Open DataBase Connectivity (ODBC) or Structured Query Language (SQL) compliant server database is required for all system database parameter storage. This data shall reside on a supplier-installed server for all database access. Systems requiring proprietary database and user interface programs shall not be acceptable.
- H. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer's internal Intranet network. Systems employing a "flat" single tiered architecture shall not be acceptable.
 - 1. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 5 seconds for network connected user interfaces.
 - 2. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 60 seconds for remote or dial-up connected user interfaces.

I. Network Architecture

- 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
- 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They may also utilize digital wireless technologies as appropriate to the application and if approved by the VA.
- 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.

J. Third Party Interfaces:

 The Contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.

- 2. Other manufacturers and Contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the Contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- K. Provide JACE-600 controllers to address network communication protocols and integration of DDC and proprietary control components.
 - 1. Provide switch for connection to one LAN port.
 - 2. Provide expansion card to enable four ports for RS485 communication connection.
 - 3. Ports five and six shall remain empty to allow for future expansion.

2.4 NETWORKS

- A. The Local Area Network (LAN) shall be a 100 Megabits/sec Ethernet network supporting BACnet, Java, XML, and HTTP for maximum flexibility for integration of building data with enterprise information systems and providing support for multiple Controller interface devices (JACEs), user workstations and, if specified, a local server.
- B. Local area network minimum physical and media access requirements:
 - The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
 - 2. Copper digital communication cable between the JACE(s) and the existing VA network data closet(s), Category 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - a. Copper digital communication cable shall not exceed 180 feet in continuous run. Lengths required in excess of this distance shall utilize repeater equipment, means of boosting signal and rectifying, or install optical

- digital communication fiber in lieu of copper digital communication cable.
- 3. Minimum throughput; 100 Mbps, with ability to increase to 100 Mbps
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute specified control system operation. An authorized operator shall be able to edit cross-controller links by typing a standard object address.

2.5 INTEGRATION TO THE EXISTING TRIDIUM NIAGRA BUILDING AUTOMATION SYSTEM

- A. ECC Hardware:
 - 1. Vykon JACE
 - a. JACE (Java Application Control Engine) shall be a Network Automation Controller combining integrated control, supervision, data logging, alarming, scheduling and network management functions with Internet connectivity and web serving capabilities. It shall be able to control and manage external devices over the Internet and present real-time information to users in web-based graphical views.
 - b. The JACE shall be part of the VYKON suite of Java™ based controller/server products, software applications and tools, which are designed to integrate a variety of devices and protocols into unified, distributed systems. Powered by NiagaraAX Framework® supporting protocols including LonWorks™, BACnet™, Modbus®, oBIX and Internet standards.

- c. The JACE shall be able to accept optional input/output plug-in modules for applications and support a wide range of field busses for connection to remote I/O and standalone controllers.
- d. The JACE shall include the following:
 - 1. PowerPC 440 524 MHz processor.
 - 2. 256MB DDR RAM & 128 MB Serial Flash.
 - 3. Dual port RS-485 adapter.
 - 4. Battery Backup
 - 5. Real-time clock
 - 6. Supports open and legacy protocols.
 - 7. QNX™ Real-time Operating System.
 - 8. Web User interface (standard) serves rich graphical browser presentations.
 - 9. Supports two optional communications boards.
 - 10. Run stand-alone control, energy management, and integration applications.
 - 11. Operating System: QNX Real-time Operating System, IBM J9 JVM Java Virtual Machine, NiagaraAX 3.4 or later.
 - 12. Chassis: plastic construction, din rail or screw mount chassis, internal air convection cooling.
 - 13. Environment Operating Range: 0° to 50°C (32°F to 122°F), 5% to 95% RH non-condensing.
 - 14. Agency Listings: RoHS Compliant, BTL, UL 916, FCC part 15 Class A

B. ECC Software:

- Server Operating System The VA has provided a Windows 2008 virtual server. The contractor is responsible for necessary updates to the server.
- 2. Tridium Server Software
 - a. The Existing Tridium Niagra system provides for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically

- restore the database for that panel. This capability may be disabled by the operator.
- b. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
- c. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.

3. Graphical User Interface

- a. The operator web-based interface shall be graphically oriented and consistent with existing graphics. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC.
- b. Graphics Library. Update the library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators as necessary for completion of this project.
- c. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
- d. User access shall be protected by a flexible and Owner redefinable software-based password access protection.

 Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password.

 Provide an audit trail of all user activity on the Controls Systems including all actions and changes.

- e. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - 1. Dynamic color graphics and graphic control.
 - 2. Alarm management.
 - 3. Event scheduling.
 - 4. Dynamic trend definition and presentation.
 - 5. Program and database editing.
 - 6. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.
- f. The web-based interface shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme or menu selection.
- g. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.)

 Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
- h. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without predefined screen refresh values.
- i. Color shall be used to indicate status and change in status of the equipment. Colors shall be consistent with current color scheme.
- j. The clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps,

coils, standard ductwork, piping, valves and laboratory symbols shall be updated as necessary for the project.

4. Scheduling and Override:

- a. Provide override access through menu selection from the graphical interface consistent with existing scheduling.
- b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems consistent with current formats. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1. Weekly schedules.
 - 2. Zone schedules, minimum of 100 zones.
 - 3. Scheduling up to 365 days in advance.
 - 4. Scheduled reports to print at workstation.

5. Trends:

- a. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - 1. A general list of all selected points in the network.
 - 2. List of all points in the alarm.
 - 3. List of all points in the override status.
 - 4. List of all disabled points.
 - 5. List of all points currently locked out.
 - 6. List of user accounts and password access levels.
 - 7. List of weekly schedules.
 - 8. List of holiday programming.
 - 9. List of limits and dead bands.
 - 10. Custom reports.
 - 11. System diagnostic reports, including, list of digital controllers on the network.
 - 12. List of programs.
- b. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value,

- both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
- c. Reports may be customized to include individual points or predefined groups of at least six points consistent with existing trend reports. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
- d. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
 - Variable frequency drives shall be integrated with the system to accommodate monitoring and trending that may not be available through local controller installed by Controls Contractor.
- e. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.

6. Alarm Management:

- a. Alarm routing shall allow the operator to send alarm notification to web-interface, email, or text message based on time of day, alarm severity, or point type.
- b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms

- and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
- c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
- d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
- e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- f. A list of points with recommended alarms will be submitted to the COR for review and adjustment.

2.6 AUDIT LOG

- A. Provide and maintain an Audit Log that tracks all activities performed on the JACE. Provide the ability to specify a buffer size for the log and the ability to archive the log based on time to the Network Supervisor. For each log entry, provide the following data:
 - 1. Time and date
 - 2. User ID
 - 3. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

2.7 DATABASE BACKUP AND STORAGE

- A. The Tridium BAS shall have the ability to automatically backup its database. The database shall be backed up based on a user-defined time interval.
- B. Copies of the current database and, at the most recently saved database shall be stored on the Network Supervisor. The age of the most recently saved database is dependent on the user-defined database save interval.

2.7 WEB BROWSER CLIENTS

A. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet Explorer™. Systems requiring additional software (to enable a standard Web

- browser) to be resident on the client machine, or manufacturerspecific browsers shall not be acceptable.
- B. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser.

 Systems that require specific machine requirements in terms of processor speed, memory, etc., in order to allow the Web browser to function with the BAS, shall not be acceptable.
- C. The Web browser client shall support at a minimum, the following functions:
 - User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.
 - 2. HTML programming shall not be required to display system graphics or data on a Web page. HTML editing of the Web page shall be allowed if the user desires a specific look or format.
 - Real-time values displayed on a Web page shall update automatically without requiring a manual "refresh" of the Web page.
 - 4. Users shall have administrator-defined access privileges.
 Depending on the access privileges assigned, the user shall be able to perform the following:
 - a. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 - Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 - Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
 - b. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
 - c. View logs and charts
 - d. View and acknowledge alarms

- e. Setup and execute SQL queries on log and archive information
- 5. The system shall provide the capability to specify a user's (as determined by the log-on user identification) home page. Provide the ability to limit a specific user to just their defined home page. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.
- 6. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

PART 3 EXECUTION

3.1 INSTALLATION

- A. All work described in this section shall be performed by a system integrator that have a successful history in the design and installation of integrated control systems. The installing office shall have a minimum of five years of integration experience and shall provide documentation in the submittal package verifying the company's experience.
- B. Install system and materials in accordance with manufacturer's instructions, and as detailed on the project drawing set.
- C. Drawings of BAS network are diagrammatic only and any apparatus not shown, but required to make the system operative to the complete satisfaction of the VA shall be furnished and installed without additional cost.
- D. Line and low voltage electrical connections to control equipment shown specified or shown on the control diagrams shall be furnished and installed by the Control sub-contractor in accordance with the specifications in Divisions 23, 26, and 27.

3.2 WIRING

- A. All electrical power wiring to the JACE, computers and network components (routers, hubs, switches, etc.) but not shown on the electrical plans shall be the responsibility of the Division 25 Contractor.
- B. All control wiring to the JACE from DDC control components shall be the responsibility of the Division 23, DDC Contractor. Final connections to the JACE are the responsibility of the Division 25, Systems Integrator.

- C. All control and communication wiring to the JACE, from non-DDC, proprietary packaged systems, or VFD's, shall be the responsibility of the Division 23, Controls contractor and require conversion to DDC.
- D. All control and communication wiring from the JACE to computers and network components (routers, hubs, switches, etc.) shall be the responsibility of the Division 25, Systems Integrator.
- E. All wiring shall be in accordance with the Project Electrical Specifications (Division 26), the National Electrical Code and any applicable local codes. All BAS wiring shall be installed in the conduit types specified in the Project Electrical Specifications (Division 26) and Communications Specifications (Division 27) unless otherwise allowed by the National Electrical Code or applicable local codes. Where BAS plenum rated cable wiring is allowed it shall be run parallel to or at right angles to the structure, properly supported and installed in a neat and workmanlike manner.
- F. Control communication cabling shall be in raceway. Raceway shall be painted blue with junction box cover plates identified for use with building automation control wiring only.

3.3 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the Contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

B. Validation

1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's

- representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

- 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate setpoint changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate alarm responsiveness.
 - h. Demonstrate trend outputs.
 - i. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

3.4 WARRANTY

- A. Equipment, materials and workmanship incorporated into the work shall be warranted for a period of one year from the time of system acceptance.
- B. Within this period, upon notice by the Owner, any defects in the work provided under this section due to faulty materials, methods of installation or workmanship shall be promptly (within 48 hours after receipt of notice) repaired or replaced by the Division 25 contractor at no expense to the Owner

3.5 WARRANTY ACCESS

A. The Owner shall grant to the Division 25 contractor, reasonable access to the BAS during the warranty period. The owner shall allow the contractor to access the BAS from a remote location for the purpose of diagnostics and troubleshooting, via the Internet, during the warranty period.

3.6 ACCEPTANCE TESTING

- A. Upon completion of the installation, the Division 25 contractor shall load all system software and start-up the system. The Division 23 contractor shall perform all necessary calibration, testing and de-bugging and perform all required operational checks to insure that the system is functioning in full accordance with these specifications. The Division 23 and 25 contractors are to coordinate the checkout of the system such that each Division has a representative present during system checkout.
- B. The Division 23 contractor shall perform tests to verify proper performance of components, routines, and points. Repeat tests until proper performance results. This testing shall include a point-by-point log to validate 100% of the input and output points of the DDC system operation. The Division 25 contractor shall have a representative present during system checkout by the Division 23 contractor.
- C. Upon completion of the performance tests described above, repeat these tests, point by point as described in the validation log above in presence of Owner's Representative, as required. Properly schedule these tests so testing is complete at a time directed by the Owner's Representative. Do not delay tests so as to prevent delay of occupancy permits or building occupancy.

D. System Acceptance: Satisfactory completion is when the Division 23, 26 and 25 contractors have performed successfully all the required testing to show performance compliance with the requirements of the Contract Documents to the satisfaction of the Owner's Representative. System acceptance shall be contingent upon completion and review of all corrected deficiencies.

PART 4 SEOUENCES OF OPERATION

4.1 SUMMARY

A. The Division 25 contractor shall refer to this Item under Division 23 to determine the level of control functionality the Controller interface device, must provide, which is the responsibility of this Division. It is the responsibility of the Division 25 contractor to coordinate control functions, such as scheduling and supervisory-level global control with the Division 23 contractor.

PART 5 POINT LISTS

5.1 SUMMARY

A. The Division 25 contractor shall refer to this Item under Division 23 to determine the data in the local controllers that must be integrated into the Controller interface device, which is the responsibility of this Division. It is the responsibility of the Division 25 contractor to coordinate control functions, such as scheduling and supervisory-level global control with the Division 23 contractor.

PART 6 COMMISSIONING

6.1 SUMMARY

A. Accommodate commissioning process as specified in Section 23 08 00.

---- END ----

SECTION 26 05 03 ELECTRICAL EQUIPMENT MOUNTING REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

A. The section provides the standard mounting heights for electrical equipment. Any mounting heights on the architectural or electrical drawings supersede the mounting heights in this section.

1.2 REFERENCES

- A. NECA Standard of Installation.
- B. NFPA National Fire Protection Association.
- C. ADA American with Disabilities Act.

PART 2 - PRODUCTS

Not Used.

PART 3 - EXECUTION

3.1 MOUNTING HEIGHTS

A. General

- 1. All mounting heights are to the centerline of the item unless noted otherwise.
- 2. All equipment installed in this project shall be mounted per the American Disabilities Act (ADA) requirements.

B. Wiring Devices

- 1. Switches and Switch/Receptacle Combinations: 46 inches above finished floor.
- 2. Receptacles:
 - a. Standard: 18 inches above finished floor, unless specifically noted otherwise on floor plans.
 - b. Above countertops: Horizontally mounted, 6 inches above backsplash.

C. Telecommunication Outlets

- 1. Standard: 18 inches above finished floor.
- 2. Above countertops: 6 inches above backsplash.
- 3. Wall mount: 54 inches above finished floor.
- D. Low Voltage Switching Equipment
 - 1. Switches: 46 inches above finished floor.
 - 2. Relay panels: 72 inches above finished floor to top of enclosure.

E. Disconnect Switches

1. Disconnect switches: 72 inches above finished floor to top of enclosure.

F. Panelboards

 Panelboards: 84 inches above finished floor to top of enclosure; install panelboards taller than 84 inches with bottom of the enclosure, 4 inches above floor.

G. Motor Controllers

1. Motor controllers: 60 inches above finished floor to top of enclosure.

H. Interior Luminaires

- 1. Fixtures to be mounted at 80" minimum above finished floor to bottom of fixture:
 - a. Wall mounted luminaires protruding greater than 4" from wall.
 - b. Pendant mounted fixtures located above walkways.
- 2. See electrical and architectural drawings for additional information further defining mounting height requirements.

I. Fire Alarm System

- 1. Pull stations: 46 inches above finished floor.
- 2. Alarm indicating device: 80" above finished floor or 6" below finished ceiling whichever is lower.
- 3. Control panel: 72 inches above finished floor to top of enclosure.
- 4. Remote annunciator: 60 inches above finished floor to top of enclosure.

J. Public Address System

1. Wall mounted speakers: 16 inches below finished ceiling.

K. Television Distribution System

1. Television outlets-wall or ceiling mounted: 12 inches below furnished ceiling.

L. Security Systems

- 1. Card Readers and key pads: 46 inches above finished floor.
- 2. Control panels: 72 inches above finished floor to top of enclosure.

M. Intercom Systems

- 1. Wall mounted stations: 60 inches above finished floor.
- 2. Desk mounted stations: 18 inches above finished floor.
- 3. Control/Terminal Panel: 72 inches above finished floor to top of enclosure.

---END---

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of motors, transformers, conductors and cable, switchboards, panelboards, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
 Laboratories, Inc. (UL), Institute of Electrical and Electronics
 Engineers (IEEE), and National Fire Protection Association (NFPA) codes
 and standards are the minimum requirements for materials and
 installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that

- maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Oualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the VA Contracting Officer Representative (COR) a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the VA Contracting Officer Representative (COR) fourteen (14) days prior

- to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the VA Contracting Officer Representative (COR).
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.

- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work.
 Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the VA Contracting Officer Representative (COR), and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the VA Contracting Officer Representative (COR), and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.

- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the VA Contracting Officer Representative (COR), and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as panelboards, cabinets, motor controllers, fused and non-fused safety switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved

lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.

- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the VA Contracting Officer Representative (COR) in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include four copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION______".

- 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
- 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.

- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the VA Contracting Officer Representative (COR) with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.

C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the VA Contracting Officer Representative (COR) at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10	.Standard	Specification	for	Vinyl	Chloride
	Plastic	Pressure-Sensit	ive	Electi	rical
	Insulati	ng Tape			

D2304-10Test Method for Thermal Endurance of Rigid
Electrical Insulating Materials
D3005-10Low-Temperature Resistant Vinyl Chloride
Plastic Pressure-Sensitive Electrical

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA):
 - WC 70-09......Power Cables Rated 2000 Volts or Less for the
 Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):
 - 70-14.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):

44-10	.Thermoset-Insulated Wire	es and	Cables
83-08	.Thermoplastic-Insulated	Wires	and Cables

467-07......Grounding and Bonding Equipment

467-07..... Grounding and Bonding Equipmen

486A-486B-03.....Wire Connectors

486C-04.....Splicing Wire Connectors

486D-05.....Sealed Wire Connector Systems

486E-09......Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

493-07......Thermoplastic-Insulated Underground Feeder and

Branch Circuit Cables

 $514B\text{-}04\text{-}\dots\text{-}\text{Conduit},$ Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

D. Color Code:

- No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Conductors shall be color-coded as follows:

208/120 V	Phase			
Black	A			
Red	В			
Blue	С			
White	Neutral			
* or white with colored (other than green) tracer.				

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the VA Contracting Officer Representative (COR)Project Manager.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zincplated.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.

C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be cadmiumplated.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, or pullboxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.

- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- I. No more than three branch circuits shall be installed in any one conduit.
- J. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, and pullboxes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

A. Install a permanent wire marker on each wire at each termination.

- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the VA Project Manager.
 - 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07Standard	Specification	for	Hard-Drawn	Copper
Wire				

- B3-07.....Standard Specification for Soft or Annealed Copper Wire
- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 81-83......IEEE Guide for Measuring Earth Resistivity,
 Ground Impedance, and Earth Surface Potentials
 of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
 - 70-14.....National Electrical Code (NEC)
 - 70E-14......National Electrical Safety Code
 - 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

3.4 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.

- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

H. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.5 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

3.6 GROUND RESISTANCE

A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path
 for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.

- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05......Electrical Rigid Steel Conduit C80.3-05......Steel Electrical Metal Tubing C80.6-05......Electrical Intermediate Metal Conduit C. National Fire Protection Association (NFPA): 70-14......National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-11.....Surface Metal Raceway and Fittings 50-95......Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13..... Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings 514C-07......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings

	651A-11	.Type EB and A Rigid PVC Conduit and HDPE
		Conduit
	797-07	.Electrical Metallic Tubing
	1242-06	.Electrical Intermediate Metal Conduit - Steel
Ε.	National Electrical Man	ufacturers Association (NEMA):
	TC-2-13	.Electrical Polyvinyl Chloride (PVC) Tubing and
		Conduit
	TC-3-13	.PVC Fittings for Use with Rigid PVC Conduit and
		Tubing
	FB1-12	.Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing and
		Cable
	FB2.10-13	.Selection and Installation Guidelines for
		Fittings for use with Non-Flexible Conduit or
		Tubing (Rigid Metal Conduit, Intermediate
		Metallic Conduit, and Electrical Metallic
		Tubing)
	FB2.20-12	.Selection and Installation Guidelines for
		Fittings for use with Flexible Electrical
		Conduit and Cable
F.	American Iron and Steel	Institute (AISI):
	S100-2007	.North American Specification for the Design of
		Cold-Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 19 mm (0.75-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

B. Conduit:

- 1. Size: In accordance with the NEC, but not less than 19 mm (0.75-inch).
- 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
- 4. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.

- 5. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 6. Flexible Metal Conduit: Shall conform to UL 1.
- 7. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 8. Surface Metal Raceway: Shall conform to UL 5.

C. Conduit Fittings:

- 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.

2. Electrical Metallic Tubing Fittings:

- a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
- b. Only steel or malleable iron materials are acceptable.
- c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
- c. Indent-type connectors or couplings are prohibited.

- d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of
 "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 6. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
- 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm \times 38 mm (1.5 \times 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.

- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.

F. Metal Wireways:

- 1. Not allowed unless approved by VA Project Manager.
- 2. Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

2.2 COLOR CODING

- A. Conduit and back boxes shall be color coded the following color scheme:
 - 1. NORMAL UNPAINTED
 - 2. EMERGENCY YELLOW
 - 3. CRITICAL ORANGE
 - 4. FIRE ALARM RED
 - 5. SECURITY WHITE
 - 6. PAGING GREEN.
 - 7. HVAC CONTROL MEDIUM BLUE

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the VA Project Manager prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the VA Project Manager where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.
- D. Contractor shall install pipe sleeves and fire caulk around all new and existing pipe penetrations (possibly previously un-sleeved) through the floor before conduit/raceway/risers are enclosed within or behind wall cavities.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
 - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 - 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 10. Conduit installations under fume and vent hoods are prohibited.
 - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.

12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the VA Project Manager

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
- 1. No conduit shall be installed in concrete. B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT.

 Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 3. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 4. Tightening set screws with pliers is prohibited.
 - 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.

- ${\tt E.}$ Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- F. Surface Metal Raceways: Use only where shown on drawings.

3.5 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.6 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.7 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.8 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.9 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.

- 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

---END---

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the feeder circuit breaker to the new panelboard.
- D. The VA has a study, including a significant portion of the existing facility, performed by Technicon Engineering, Inc.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Product data on the software program to be used for the study.
 Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - 2. Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.

a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE):

241-90	.Recommended	Practice	Electrical	Systems	in
	Commercial 1	Buildings			

- 242-01......Recommended Practice for Protection and

 Coordination of Industrial and Commercial Power

 Systems
- 1584B-11.....Performing Arc-Flash Hazards Calculations Amendment 2
- C. National Fire Protection Association (NFPA):

70-14National Electrical Code (NEC)
70E-15Standard for Electrical Safety in the Workplace
99-15Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.

- d. Voltage at each bus.
- e. Identification of each bus, matching the identification on the drawings.
- f. Conduit, conductor, and busway material, size, length, and X/R ratios.

D. Short-Circuit Study:

- The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
- 2. Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
- 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.

E. Coordination Study:

- 1. Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
- 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.

- f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.

F. Arc Flash Calculations and Analysis:

- 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
- 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
- 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
- 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install arc flash labels on all new electrical distribution equipment and new labels on any existing electrical distribution equipment where ratings have changed. Install labels on the exterior of equipment.

---END---

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.

2. Manuals:

a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data

- sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Green Seal (GS): GC-12-03.....Occupancy Sensors C. National Electrical Manufacturer's Association (NEMA): C136.10-10......American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles-Physical and Electrical Interchangeability and Testing ICS-1-08..... Standard for Industrial Control and Systems General Requirements ICS-2-05......Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-11.....Standard for Industrial Controls and Systems Enclosures D. National Fire Protection Association (NFPA): 70-14......National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 20.....Standard for General-Use Snap Switches 773-95......Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

773A-06......Nonindustrial Photoelectric Switches for Lighting Control

98-04Enclosed and Dead-Front Switches
916-07Standard for Energy Management Equipment
Systems
917-06Clock Operated Switches
924-06Emergency Lighting and Power Equipment (for use
when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 CEILING-MOUNTED PHOTOELECTRIC SWITCHES

- A. Solid-state, light-level sensor unit, with separate relay unit.
 - 1. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 2. Monitoring Range: 10 to 200 fc
 - 3. Time Delay: Adjustable from 5 to 300 seconds, with deadband adjustment.
 - 4. Indicator: Two LEDs to indicate the beginning of on-off cycles.
 - 5. Types:
 - a. Type A: 0-10V Dimming
 - 1)Sensor Output: 0-10 VDC signal consistently dims to maintain even illumination, as defined by owner.
 - b. Type B: On/Off
 - 1)Sensor Output: Contacts rated to operate the associated relay. Sensor shall be powered from the relay unit.
 - 2)Monitoring Range: has an adjustment for turn-on and turn-off levels.

2.2 INDOOR OCCUPANCY / VACANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.

4. Mounting:

- a. Sensor: Suitable for mounting in any position on a standard outlet box.
- b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- 8. Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
- 9. HVAC interface: Low voltage output when motion is detected. Refer to plans when interface is required.
- 10. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.3 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - 1. Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.

- 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 5. Switch: Manual operation to turn lights on and override lights off.
- 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 10 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability.
 Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of VA Contracting Officer Representative (COR).

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.

2. Manuals:

a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.

- 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
- 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

Α.	Design	basis	as	Square	D,	or	approved	equal;
Bi	dding or	1:						
	Manufac	cturer	Nar	ne:				

Brand:	 	 	
No.:	 	 	

2.2 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. Series-rated panelboards are not permitted.

2.3 ENCLOSURES AND TRIMS

A. Enclosures:

- 1. Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
- 2. Enclosures shall not have ventilating openings.
- 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
- 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.

5. Include removable inner dead front cover, independent of the panelboard cover.

B. Trims:

- 1. Hinged "door-in-door" type.
- 2. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.4 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 73, OVERCURRENT PROTECTION DEVICE COORDINATION STUDY.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.

- 7. An operating handle which indicates closed, tripped, and open positions.
- 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
- 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
- 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the VA Project Manager. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- D. Provide blank cover for each unused circuit breaker mounting space.
- F. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims with finishes to match surrounding surfaces after the panelboards have been installed. Do not paint nameplates.
- G. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.

- b. Inspect physical, electrical, and mechanical condition.
- c. Verify appropriate anchorage and required area clearances.
- d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

2. Manuals:

a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA):
 - 70-14......National Electrical Code (NEC)
 - 99-15.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):
 - WD 1-10......General Color Requirements for Wiring Devices
 - WD 6-12Wiring Devices Dimensional Specifications
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-11.....Surface Metal Raceways and Fittings
 - 20-10......General-Use Snap Switches
 - 231-08.....Power Outlets
 - 467-13..... Grounding and Bonding Equipment
 - 498-12.....Attachment Plugs and Receptacles
 - 943-15.....Ground-Fault Circuit-Interrupters
 - 1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color when served from the "normal" source and shall have an "ivory" face. Bodies shall be red in color when served from the "emergency" source and shall have a "red" face.
 - 2. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 3. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
- C. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.

2.2 TOGGLE SWITCHES

A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color. Switches controlling circuits

that are part of the essential electrical system shall have red handles.

- 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
- 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
- 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be ivory in color. Dimming control and faceplates shall be red when controlling circuits that are part of the essential electrical system.

2.4 WALL PLATES

A. General:

1. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.

B. Food Service Areas:

1. Wall plates for switches and receptacles in food service areas shall be stainless steel.

C. Office Spaces:

- 1. Wall plates for switches and receptacles in office type spaces shall be type smooth nylon. Oversize plates are not acceptable.
- 2. Color shall be ivory unless otherwise specified.
- 3. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:

- a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
- 2. Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
- 3. Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
- 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
- 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
- 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to

locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.

- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - 2) Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - 3) Elementary schematic diagrams shall be provided for clarity of operation.
 - 4) Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE):

 519-92.............Recommended Practices and Requirements for

 Harmonic Control in Electrical Power Systems

 C37.90.1-02............Standard Surge Withstand Capability (SWC) Tests

 for Relays and Relay Systems Associated with

 Electric Power Apparatus
- C. International Code Council (ICC):
 IBC-12.....International Building Code
- D. National Electrical Manufacturers Association (NEMA):

	ICS 1-08	Industrial Control and Systems: General
		Requirements
	ICS 1.1-09	Safety Guidelines for the Application,
		Installation and Maintenance of Solid State
		Control
	ICS 2-05	Industrial Control and Systems Controllers,
		Contactors, and Overload Relays Rated 600 Volts
	ICS 4-05	Industrial Control and Systems: Terminal Blocks
	ICS 6-06	Industrial Control and Systems: Enclosures
	ICS 7-06	Industrial Control and Systems: Adjustable-
		Speed Drives
	ICS 7.1-06	Safety Standards for Construction and Guide for
		Selection, Installation, and Operation of
		Adjustable-Speed Drive Systems
	MG 1 Part 31	Inverter Fed Polyphase Motor Standards
Ε.	National Fire Protection	Association (NFPA):
	70-14	National Electrical Code (NEC)
F.	Underwriters Laboratorie	es Inc. (UL):
	508A-07	Industrial Control Panels
	508C-07	Power Conversion Equipment
	UL 1449-06	Surge Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - 2. Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.

- 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- D. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - 3. For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.

E. Overload relays:

- 1. Electronic type. Devices shall be NEMA type.
- 2. One for each pole.
- 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
- 4. Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
- 5. Electronic overload relays shall utilize internal current transformers and electro-mechanical components. The relays shall have ambient temperature compensation, single-phase protection, manual or automatic reset, and trip classes of 10, 15, 20 and 30. The relay shall provide fault cause indication, including jam/stall, ground fault, phase loss, and overload.
- F. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- G. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- H. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- I. Provide green (RUN) and red (STOP) pilot lights.

- J. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- K. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: 1000 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +104°F Minimum +32 °F
 - 3. Relative Humidity: 95%
 - 4. VSMC Location: Non-Air conditioned space
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - 3. Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.

- 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
- 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
- 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- 8. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- 9. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
 - 10. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.

- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23. Provide each VSMC with a communications port that interfaces with the building automation system of the successful temperature controls contractor and BacNet. Coordinate required communications protocol with the successful temperature controls contractor.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.

- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMA-rated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Install manual motor controllers in flush enclosures in finished areas.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify VA Project Manager before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:

1. Visual Inspection and Tests:

- a. Compare equipment nameplate data with specifications and approved shop drawings.
- b. Inspect physical, electrical, and mechanical condition.
- c. Verify appropriate anchorage, required area clearances, and correct alignment.
- d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
- e. Verify overload relay ratings are correct.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.
- g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
- h. Test all control and safety features of the motor controllers.
- i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the VA Project Manager.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

2. Manuals:

a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
- 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.4 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: Class RK5, time delay.
- C. Control Circuits: fast acting.

2.5 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the VA Contracting Officer Representative (COR).

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit four copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.

- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

 C635-07......Manufacture, Performance, and Testing of Metal

 Suspension Systems for Acoustical Tile and Layin Panel Ceilings
- C. Environmental Protection Agency (EPA):
 40 CFR 261.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC):

 CFR Title 47, Part 15...Radio Frequency Devices

 CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society (IES):
 - LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products
 - LM-80-08..... Measuring Lumen Maintenance of LED Light Sources

F. Institute of Electrical and Electronic Engineers (IEEE):

J. Underwriters Laboratories, Inc. (UL):

924-12	.Emergency Lighting and Power Equipment
1598-08	.Luminaires
8750-09	.Light Emitting Diode (LED) Light Sources for
	Use in Lighting Products

PART 2 - PRODUCTS

2.1 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - 1. Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings.

 Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.2 LED LIGHT FIXTURES

A. General:

- 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
- 2. LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
- 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
- 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE $\mbox{\scriptsize SCHEDULE}$.

B. LED Downlights:

 Housing, LED driver, and LED module shall be products of the same manufacturer.

C. LED Troffers:

- 1. LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
- 2. Housing, LED driver, and LED module shall be products of the same manufacturer.
- 3. Housing depth shall not exceed 4".

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.

C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.

D. Lighting Fixture Supports:

- 1. Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
- 2. Shall maintain the fixture positions after cleaning and relamping.
- 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
- 4. Hardware for recessed fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.

5. Surface mounted lighting fixtures:

- a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
- b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.

- c. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 6. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 7. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the VA Project Manager. Observe for visually

detectable flicker over full dimming range, and replace defective components at no cost to the Government.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere		
AC	Alternating Current		
AE	Architect and Engineer		
AFF	Above Finished Floor		
AHJ	Authority Having Jurisdiction		
ANSI	American National Standards Institute		
AWG	American Wire Gauge (refer to STP and UTP)		
AWS	Advanced Wireless Services		
BCT	Bonding Conductor for Telecommunications (also		
	Telecommunications Bonding Conductor (TBC))		
BDA	Bi-Directional Amplifier		
BICSI	Building Industry Consulting Service International		
BIM	Building Information Modeling		
BOM	Bill of Materials		
BTU	British Thermal Units		
CAD	AutoCAD		
CBC	Coupled Bonding Conductor		
CCS	TIP's Cross Connection System (refer to VCCS and		
	HCCS)		

CFE	Contractor Furnished Equipment		
CFM	US Department of Veterans Affairs Office of		
	Construction and Facilities Management		
cm	Centimeters		
CO	Central Office		
COR	Contracting Officer Representative		
CPU	Central Processing Unit		
CSU	Customer Service Unit		
dВ	Decibel		
dBm	Decibel Measured		
dBmV	Decibel per milli-Volt		
DC	Direct Current		
DSU	Data Service Unit		
EBC	Equipment Bonding Conductor		
ECC	Engineering Control Center (refer to DCR, EMCR)		
EDGE	Enhanced Data (Rates) for GSM Evolution		
EDM	Electrical Design Manual		
EMCR	Emergency Management Control Room (refer to DCR, ECC)		
EMI	Electromagnetic Interference (refer to RFI)		
EMS	Emergency Medical Service		
EMT	Electrical Metallic Tubing or thin wall conduit		
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,		
	LEC)		
EPBX	Electronic Digital Private Branch Exchange		
ESR	Vendor's Engineering Service Report		
FA	Fire Alarm		
FMS	VA's Headquarters or Medical Center Facility's		
	Management Service		
FR	Frequency (refer to RF)		
FTS	Federal Telephone Service		
GFE	Government Furnished Equipment		
GPS	Global Positioning System		
GSM	Global System (Station) for Mobile		

CCS & VCCS) HDPE High Density Polyethylene Conduit HDTV Advanced Television Standards Committee High- Definition Digital Television HEC Head End Cabinets(refer to HEIC, PA) HEIC Head End Interface Cabinets(refer to HEC, PA) HF High Frequency (Radio Band; Re FR, RF, VHF & UHF) HSPA High Speed Packet Access HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service MATV Master Antenna Television	HCCS TIP's Horizontal Cross Connection System (refer t			
HDTV Advanced Television Standards Committee High- Definition Digital Television HEC Head End Cabinets(refer to HEIC, PA) HEIC Head End Interface Cabinets(refer to HEC, PA) HF High Frequency (Radio Band; Re FR, RF, VHF & UHF) HSPA High Speed Packet Access HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service		CCS & VCCS)		
Definition Digital Television HEC Head End Cabinets(refer to HEIC, PA) HEIC Head End Interface Cabinets(refer to HEC, PA) HF High Frequency (Radio Band; Re FR, RF, VHF & UHF) HSPA High Speed Packet Access HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	HDPE	High Density Polyethylene Conduit		
HEC Head End Cabinets(refer to HEIC, PA) HEIC Head End Interface Cabinets(refer to HEC, PA) HF High Frequency (Radio Band; Re FR, RF, VHF & UHF) HSPA High Speed Packet Access HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	HDTV	Advanced Television Standards Committee High-		
HEIC Head End Interface Cabinets(refer to HEC, PA) HF High Frequency (Radio Band; Re FR, RF, VHF & UHF) HSPA High Speed Packet Access HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	Definition Digital Television			
HF High Frequency (Radio Band; Re FR, RF, VHF & UHF) HSPA High Speed Packet Access HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	HEC	Head End Cabinets(refer to HEIC, PA)		
HSPA High Speed Packet Access HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	HEIC	Head End Interface Cabinets(refer to HEC, PA)		
HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)		
IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	HSPA	High Speed Packet Access		
ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	HZ	Hertz		
ICRA Infectious Control Risk Assessment IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IBT	Intersystem Bonding Termination (NEC 250.94)		
IDEN Integrated Digital Enhanced Network IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IC	Intercom		
IDC Insulation Displacement Contact IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	ICRA	Infectious Control Risk Assessment		
IDF Intermediate Distribution Frame ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IDEN	Integrated Digital Enhanced Network		
ILSM Interim Life Safety Measures IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IDC	Insulation Displacement Contact		
IMC Rigid Intermediate Steel Conduit IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IDF	Intermediate Distribution Frame		
IRM Department of Veterans Affairs Office of Information Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	ILSM	Interim Life Safety Measures		
Resources Management ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IMC	Rigid Intermediate Steel Conduit		
ISDN Integrated Services Digital Network ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IRM	Department of Veterans Affairs Office of Information		
ISM Industrial, Scientific, Medical IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service		Resources Management		
IWS Intra-Building Wireless System LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	ISDN	Integrated Services Digital Network		
LAN Local Area Network LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	ISM	Industrial, Scientific, Medical		
LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	IWS	Intra-Building Wireless System		
LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	LAN	Local Area Network		
LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	LBS	Location Based Services, Leased Based Systems		
LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)		
LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service	LED	Light Emitting Diode		
Communications Technology M Meter MAS Medical Administration Service	LMR	Land Mobile Radio		
M Meter MAS Medical Administration Service	LTE	Long Term Evolution, or 4G Standard for Wireless Data		
MAS Medical Administration Service		Communications Technology		
	M	Meter		
MATV Master Antenna Television	MAS	Medical Administration Service		
	MATV	Master Antenna Television		

MCR	Main Computer Room		
MCOR	Main Computer Operators Room		
MDF	Main Distribution Frame		
MHz Megahertz (10 ⁶ Hz)			
mm	Millimeter		
MW	Microwave (RF Band, Equipment or Services)		
NID	Network Interface Device (refer to DEMARC)		
NEC	National Electric Code		
NOR	Network Operations Room		
NRTL	OSHA Nationally Recognized Testing Laboratory		
NS	Nurse Stations		
NTIA	U.S. Department of Commerce National		
	Telecommunications and Information Administration		
OEM	Original Equipment Manufacturer		
OI&T	Office of Information and Technology		
OSH	Department of Veterans Affairs Office of Occupational		
	Safety and Health		
OSHA	United States Department of Labor Occupational Safety		
	and Health Administration		
OTDR	Optical Time-Domain Reflectometer		
PA	Public Address System (refer to HE, HEIC, RPEC)		
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)		
PCS	Personal Communications Service (refer to UPCS)		
PE	Professional Engineer		
PM	Project Manager		
PoE	Power over Ethernet		
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,		
	PBX)		
PSTN	Public Switched Telephone Network		
PSRAS	Public Safety Radio Amplification Systems		
PTS	Pay Telephone Station		
PVC	Poly-Vinyl Chloride		
PWR Power (in Watts)			

RAN	Radio Access Network		
RBB	Rack Bonding Busbar		
RE	Resident Engineer or Senior Resident Engineer		
RF	Radio Frequency (refer to FR)		
RFI	Radio Frequency Interference (refer to EMI)		
RFID	RF Identification (Equipment, System or Personnel)		
RMC	Rigid Metal Conduit		
RMU	Rack Mounting Unit		
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,		
	PA)		
RTLS	Real Time Location Service or System		
SFO	Solicitation for Offers		
SME	Subject Matter Experts (refer to AHJ)		
SMR	Specialized Mobile Radio		
SMS	Security Management System		
SNMP	Simple Network Management Protocol		
SPCC	Security Police Control Center (refer to PCR, SMS)		
STP	Shielded Balanced Twisted Pair (refer to UTP)		
STR	Stacked Telecommunications Room		
TAC	VA's Technology Acquisition Center, Austin, Texas		
TCO	Telecommunications Outlet		
TER	Telephone Equipment Room		
TGB	Telecommunications Grounding Busbar (also Secondary		
	Bonding Busbar (SBB))		
TIP	Telecommunications Infrastructure Plant		
TMGB	Telecommunications Main Grounding Busbar (also		
	Primary Bonding Busbar (PBB))		
TMS	Traffic Management System		
TOR	Telephone Operators Room		
TP	Balanced Twisted Pair (refer to STP and UTP)		
TR	Telecommunications Room (refer to STR)		
TWP	Twisted Pair		
UHF	Ultra High Frequency (Radio)		

UMTS	Universal Mobile Telecommunications System				
UPCS	Unlicensed Personal Communications Service (refer to				
	PCS)				
UPS	Uninterruptible Power Supply				
USC	United States Code				
UTP	Unshielded Balanced Twisted Pair (refer to TP and				
	STP)				
UV	Ultraviolet				
V	Volts				
VAAR	Veterans Affairs Acquisition Regulation				
VACO	Veterans Affairs Central Office				
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)				
VCCS	TIP's Vertical Cross Connection System (refer to CCS				
	and HCCS)				
VHF	Very High Frequency (Radio)				
VISN	Veterans Integrated Services Network (refers to				
	geographical region)				
VSWR	Voltage Standing Wave Radio				
W	Watts				
WEB	World Electronic Broadcast				
WI-FI	Wireless Fidelity				
WMTS	Wireless Medical Telemetry Service				
WSP	Wireless Service Providers				

B. Definitions:

- 1. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 2. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 3. Conduit: Includes all raceway types specified.
- 4. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles

- such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 5. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EQUIPMENT AND SYSTEMS.
- 6. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 7. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 8. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 9. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 10. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 11. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 12. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 13. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.

- 14. Ohm: A unit of restive measurement.
- 15. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 16. Sound (SND): Changing air pressure to audible signals over given time span.
- 17. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 18. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 19. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 20. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.

B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:

- 1. Federal Communications Commission, (FCC) CFR, Title 47: Restrictions of use for Part 15 listed RF Part 15 Equipment in Safety of Life Emergency Functions and Equipment Locations Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Television Broadcast Service Part 58 Radio and Television Broadcast Rules Part 73 Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration National Telecommunications and Information Chapter XXIII Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book'- Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations
- 2. US Department of Commerce/National Institute of Standards
 Technology,(NIST):

FIPS PUB 1-1	Telecommunications Information Exchange
FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
	Circuit Terminating Equipment for operation
	with Packet Switched Networks, or Between Two
	DTEs, by Dedicated Circuit
FIPS PUB 140/2	Telecommunications Information Security
	Algorithms
FIPS PUB 143	General Purpose 37 Position Interface between
	DTE and Data Circuit Terminating Equipment
FIPS 160/2	Electronic Data Interchange (EDI),
FIPS 175	Federal Building Standard for
	Telecommunications Pathway and Spaces
FIPS 191	Guideline for the Analysis of Local Area
	Network Security
FIPS 197	Advanced Encryption Standard (AES)
FIPS 199	Standards for Security Categorization of
	Federal Information and Information Systems

3. US Department of Defense, (DoD):

MIL-STD-188-110 Interoperability and Performance Standards for Data Modems

MIL-STD-188-114 Electrical Characteristics of Digital Interface Circuits

MIL-STD-188-115 Communications Timing and Synchronizations Subsystems

MIL-C-28883 Advanced Narrowband Digital Voice Terminals

MIL-C-39012/21 Connectors, Receptacle, Electrical, Coaxial, Radio Frequency, (Series BNC (Uncabled), Socket Contact, Jam Nut Mounted, Class 2)

- 4. US Department of Health and Human Services:

 The Health Insurance Portability and Accountability Act of 1996
 (HIPAA) Privacy, Security and Breach Notification Rules
- US Department of Justice:
 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
- 6. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards):

Subpart	7	Approved NRTLs; obtain a copy at
		http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.htm
		<u>l</u>)
Subpart	35	Compliance with NFPA 101, Life Safety Code
Subpart	36	Design and Construction Requirements for Exit
		Routes
Subpart	268	Telecommunications
Subpart	305	Wiring Methods, Components, and Equipment for
		General Use
Subpart	508	Americans with Disabilities Act Accessibility
		Guidelines; technical requirement for
		accessibility to buildings and facilities by

7. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:

individuals with disabilities

- a. CoG, "Continuance of Government" communications guidelines and compliance.
- b. COMSEC, "VA wide coordination and control of security classified communication assets."
- c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information Security Office of Cyber and Information Security, and Handbook 6500 - Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. VHA's National Center for Patient Safety Veterans Health
 Administration (VHA) Warning System, Failure of Medical Alarm
 Systems using Paging Technology to Notify Clinical Staff, July
 2004.
- h. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- i. Wireless and Handheld Devices, "Guidelines and Compliance,"
- j. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/dts/otpca/nrtl/index.html
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - 2. Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - 3. Intertek Testing Services NA, Inc., (ITSNA), formerly and Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduits
6-2007	Rigid Metal Conduits
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables

444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
797-2007	Electrical Metallic Tubing
1069-2007	Hospital Signaling and Nurse Call Equipment
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety

D. Industry Standards:

1. Advanced Television Systems Committee (ATSC):

A/53	Part	1:	2013	ATSC Digital Television Standard, Part 1,
				Digital Television System
A/53	Part	2:	2011	ATSC Digital Television Standard, Part 2,
				RF/Transmission System Characteristics
A/53	Part	3:	2013	ATSC Digital Television Standard, Part 3,
				Service Multiplex and Transport System
				Characteristics
A/53	Part	4:	2009	ATSC Digital Television Standard, Part 4, MPEG-
				2 Video System Characteristics
A/53	Part	5:	2014	ATSC Digital Television Standard, Part 5, AC-3
				Audio System Characteristics
A/53	Part	6:	2014	ATSC digital Television Standard, Part 6,
				Enhanced AC-3 Audio System Characteristics

- 2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities.
- 3. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft Standard Test Methods for Laboratory Compaction D1557 (2012) Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) B258-02 (2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors Standard Test Methods for Electrical D4566 (2008) Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable
- 4. American Telephone and Telegraph Corporation (AT&T) Obtain following AT&T Publications at https://ebiznet.sbc.com/SBCNEBS/): ATT-TP-76200 (2013) Network Equipment and Power Grounding, Environmental, and Physical Design Requirements ATT-TP-76300(2012) Merged AT&T Affiliate Companies Installation Requirements

ATT-TP-76305 (2013) Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways
ATT-TP-76306 (2009) Electrostatic Discharge Control
ATT-TP-76400 (2012) Detail Engineering Requirements
ATT-TP-76402 (2013) AT&T Raised Access Floor Engineering and Installation Requirements
ATT-TP-76405 (2011) Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments
ATT-TP-76416 (2011) Grounding and Bonding Requirements for Network Facilities
ATT-TP-76440 (2005) Ethernet Specification
ATT-TP-76450 (2013) Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces
ATT-TP-76461 (2008) Fiber Optic Cleaning

5. British Standards Institution (BSI):

BS EN 50109-2 Hand Crimping Tools - Tools for The Crimp

Termination of Electric Cables and Wires for

Low Frequency and Radio Frequency Applications

- All Parts & Sections. October 1997

6. Building Industry Consulting Service International(BICSI):

ANSI/BICSI 004-2012 Information Technology Systems Design and

Implementation Best Practices for Healthcare

Institutions and Facilities

ANSI/NECA/BICSI

568-2006 Standard for Installing Commercial Building
Telecommunications Cabling

NECA/BICSI 607-2011 Standard for Telecommunications Bonding and
Grounding Planning and Installation Methods for
Commercial Buildings

ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System

Design and Implementation Best Practices

7. Electronic Components Assemblies and Materials Association, (ECA).

ECA EIA/RS-270 (1973)Tools, Crimping, Solderless Wiring Devices
Recommended Procedures for User Certification

EIA/ECA 310-E (2005) Cabinets, and Associated Equipment

- 8. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities.
- 9. Insulated Cable Engineers Association (ICEA):

	ANSI/ICEA	
	S-80-576-2002	Category 1 & 2 Individually Unshielded Twisted-
		Pair Indoor Cables for Use in Communications
		Wiring Systems
	ANSI/ICEA	
	S-84-608-2010	Telecommunications Cable, Filled Polyolefin
		Insulated Copper Conductor, S-87-640(2011)
		Optical Fiber Outside Plant Communications
		Cable
	ANSI/ICEA	
	S-90-661-2012	Category 3, 5, & 5e Individually Unshielded
		Twisted-Pair Indoor Cable for Use in General
		Purpose and LAN Communication Wiring Systems
	S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,
		Polyolefin Insulated, Copper Conductors
	S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
		Insulated, Copper Conductors
	ICEA S-102-700	
	(2004)	Category 6 Individually Unshielded Twisted Pair
		Indoor Cables (With or Without an Overall
		Shield) for use in Communications Wiring
		Systems Technical Requirements
10. Institute of Electrical and Electronics Engineers (IEEE):		
	ISSN 0739-5175	March-April 2008 Engineering in Medicine and
		Biology Magazine, IEEE (Volume: 27, Issue:2)
		Medical Grade-Mission Critical-Wireless
		Networks
	IEEE C2-2012	National Electrical Safety Code (NESC)
	C62.41.2-2002/	
	COR 1-2012 IEEE	Recommended Practice on Characterization of
		Surges in Low-Voltage (1000 V and Less) AC
		Power Circuits 4)
	C62.45-2002	IEEE Recommended Practice on Surge Testing for
		Equipment Connected to Low-Voltage (1000 V and
		Less) AC Power Circuits
	81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground
		Impedance, and Earth Surface Potentials of a
		Grounding System

100-1992 IEEE the New IEEE Standards Dictionary of Electrical and Electronics Terms IEEE Recommended Practice for Electric Systems 602-2007 in Health Care Facilities 1100-2005 IEEE Recommended Practice for Powering and Grounding Electronic Equipment 11. International Code Council: AC193 (2014) Mechanical Anchors in Concrete Elements 12. International Organization for Standardization (ISO): ISO/TR 21730 (2007) Use of Mobile Wireless Communication and Computing Technology in Healthcare Facilities -Recommendations for Electromagnetic Compatibility (Management of Unintentional Electromagnetic Interference) with Medical Devices 13. National Electrical Manufacturers Association (NEMA): Enclosures for Electrical Equipment (1,000V NEMA 250 (2008) Maximum) ANSI/NEMA FB 1 (2012) Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing EMT) and Cable ANSI/NEMA OS 1 (2009) Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports NEMA SB 19 (R2007) NEMA Installation Guide for Nurse Call Systems TC 3 (2004) Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing NEMA VE 2 (2006) Cable Tray Installation Guidelines 14. National Fire Protection Association (NFPA): 70E-2014 Standard for Electrical Safety in the Workplace 70-2014 National Electrical Code (NEC) 72-2014 National Fire Alarm Code 75-2014 Standard for the Fire Protection of Information Technological Equipment Recommended Practice for the Fire Protection of 76-2014 Telecommunications Facilities 77-2014 Recommended Practice on Static Electricity 90A-2015 Standard for the Installation of Air Conditioning and Ventilating Systems

	99-2015	Health Care Facilities Code
	101-2015	Life Safety Code
	241	Safeguarding construction, alternation and
		Demolition Operations
	255-2010	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
15.	Society for Protective	ve Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
16.	Telecommunications In	ndustry Association (TIA):
	TIA-120 Series	Telecommunications Land Mobile communications
		(APCO/Project 25) (January 2014)
		TIA-155 Guidelines for the Assessment and
		Mitigation of Installed Category 6 Cabling to
		Support 10GBASE-T (2010)
	TIA TSB-162-A	Telecommunications Cabling Guidelines for
		Wireless Access Points (2013)
		TIA/EIA-423-B Electrical Characteristics of
		Unbalanced Voltage Digital Interface Circuits
		(2012)
	TIA-526-7-B	Measurement of Optical Power Loss of Installed
		Single-Mode Fiber Cable Plant - OFSTP-7
		(December 2008)
	TIA-526.14-A	Optical Power Loss Measurements of Installed
		Multimode Fiber Cable Plant - SFSTP-14 (August
		1998)
	TIA-568	Revision/Edition: C Commercial Building
		Telecommunications Cabling Standard Set: (TIA-
		568-C.0-2 Generic Telecommunications Cabling
		for Customer Premises (2012), TIA-568-C.1-1
		Commercial Building Telecommunications Cabling
		Standard Part 1: General Requirements (2012),

	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4
	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-C	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as "rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.

- 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
- 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
- 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- 6. General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
- 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
- 8. Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
- 9. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 14. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- 15. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.

- 16. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 17. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 18. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 19. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
- 20. Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.
- 21. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - 2. Movement of materials: Unload materials and equipment delivered to site.
 - 3. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.

- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - 2. Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 - 1. Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:

- a. ANSI/TIA-1152 Level IIIe or better twisted pair cabling test instrument.
- b. Volt-Ohm meter.
- c. Digital camera.
- 3. Supply only test equipment with a calibration tag from Government-accepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.

I. Submittal Drawings:

- 1. Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Equipment rooms.
- 2. Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.

- 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
- 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
- 4. Furnish remaining manuals prior to final completion.
- 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
- 6. Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
- 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
 - Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.

C. Record Wiring Diagrams:

1. Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.

- 2. General Drawing Specifications: Detail and elevation drawings to be
 D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale
 of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other
 enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm
 (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch =
 12 inches). Building composite floor plan drawings to be D size 61
 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175
 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg or.rvt formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - 1. OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - 4. Identify factory wiring on equipment being furnished and on wiring diagrams.

- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - 1. When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

- A. Comply with FAR clause 52.246-21, except as follows:
 - 1. Warranty material and equipment to be free from defects, workmanship, and remain so for a period of one year for Emergency Systems from date of final acceptance of system by Government; provide OEM's equipment warranty document to COR.
 - 2. Government maintenance personnel must have ability to contact OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time; contractor and OEM must provide this capability.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.
- B. In cases of renovations in historic or otherwise restrictive buildings, where it has been determined as impossible to follow above stated guidelines, exceptions must not modify maximum distances set forth in TIA 568 and 569; and exceptions must not in any way effect performance of entire TIP system.
- C. Modification to administrative issues requires written approvals from COR with concurrence from SMCS 005OP2H3, OEM, contractor, and local authorities.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

C.

2.3 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.4 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.

- C. Provide access panels where items installed require access and are concealed in wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - 1. Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - Provide sleeves and packing materials at penetrations of walls, partitions, and floors.
 - 4. Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
 - 5. Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
 - 6. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
 - 7. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
 - 8. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
 - 9. Do not support piping risers or conduit on sleeves.
 - 10. Identify unused sleeves and slots for future installation.
 - 11. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.

B. Core Drilling:

1. Avoid core drilling whenever possible.

- 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
- 3. Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
- 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.

- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- ${\tt N.}$ Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:

- Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
- 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
- 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - 2. Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.

- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or non-compliance with project provisions.
 - 1. COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.

G. Tests:

- 1. Interim inspection is required at approximately 50 percent of installation.
- 2. Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
- 3. Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.

- 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
- 5. Verify cabling terminations in TRs and head end rooms, workstation locations and TCO adhere to color code for T568A pin assignments and cabling connections are in compliance with TIA standards.
- 6. Visually confirm minimum Category 5e cable marking at TCOs, CCSs locations, patch cords and origination locations.
- 7. Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:
 - a. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - b. Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof

of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.

- 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
- 2. Measure and record signal, aural and control carrier levels of each voice and data channel, at each of the following minimum points in system:
 - a. MCR interconnections.
 - b. MCOR interconnections.
 - c. TER interconnections.
 - d. TOR interconnections.
 - e. TR interconnections.
 - f. System interfaces in locations listed herein.
 - q. HE interconnections.
 - h. Communications circulating ground system.
 - i. Each general floor areas.
 - j. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

I. Acceptance Test:

- Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- 2. Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. $\ensuremath{\text{VISN-CIO}}$, $\ensuremath{\text{Network}}$ Officer and $\ensuremath{\text{VISN}}$ representatives.
 - c. Facility:
 - d. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.

- 4. Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - 2) Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - 3) Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
 - 4) If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.

J. Acceptance Test Procedure:

- Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
- 2. A system inventory including available spare parts must be taken at this time.
- 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
- 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
- Inventory system diagrams, record drawings, equipment manuals, pretest results.
- 6. Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.

K. Operational Test:

- 1. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.

- b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
- c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - 1. If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.

J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - 3. Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - 2. Certifications: Two weeks prior to final inspection, submit following to VA Contracting Officer Representative (COR):
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - 2. Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm 2 (10 AWG) and smaller.
- B. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- C. Telecommunications Grounding Busbar (TGB):

- 1. 6.4 mm (1/4 inch) thick solid copper bar.
- 2. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
- 3. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - a. 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - b. 3 lugs with 25.4 mm (1 inch) hole centers.
- 4. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
- 5. Listed as grounding and bonding equipment.
- D. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- E. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- F. Antioxidant Joint Compound: Oxide inhibiting joint compound for copper-to-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- B. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- C. Boxes, Cabinets, and Enclosures:

- 1. Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass.
- D. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- E. Telecommunications Grounding System:
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 2. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - 3. Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 4. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.

5. Bonding Jumpers:

- a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
- b. Use connector manufacturer's compression tool.
- 6. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
 - c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
 - d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.

- F. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
- G. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- H. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- I. Communications Raceway Grounding:
 - 1. Conduit: Use insulated $16~\text{mm}^2$ (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.

J. Ground Resistance:

- 1. Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
- 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
- 3. Backfill only after below-grade connection have been visually inspected by VA Contracting Officer Representative (COR). Notify VA Contracting Officer Representative (COR) twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.

- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- B. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
 - 2. Flexible Galvanized Steel Conduit: Conform to UL 1.
 - 3. Surface Metal Raceway: Conform to UL 5.
 - 4. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to

prevent wires and cables from changing from one partitioned pathway to another.

C. Conduit Fittings:

- 1. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - 2) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 2. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 3. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- 4. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 5. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.

d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

E. Outlet, Splice, and Pull Boxes:

- 1. Conform to UL-50 and UL-514A.
- 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
- 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
- 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
- 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.

G. Outlet Boxes:

- 1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
- 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.

H. Cable Tray:

- 1. Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
- 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.

- b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
- c. Rounded edges and smooth surfaces.
- 3. Provide continuous welded top side wire to protect cable insulation and installers.
- 4. High strength steel wires formed into a 50×100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
- 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: 105 mm (4 inch).
 - c. Width: 300 mm (12 inches),450 mm (18 inches),600 mm (24 inches).
- 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
- 7. Provide accessories to protect, support and install wire basket tray system.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Master Antenna Television Equipment and Systems	27 41 31	J-Hooks, Bridle Rings, conduit to Cable Tray, Partitioned Cable Tray
Public Address and Mass Notification Systems	27 51 16	Complete conduit
Intercommunications and Program systems	27 51 23	Conduit to Cable Tray, Partitioned Cable Tray
Security Emergency Call, Duress Alarm, and Telecommunications	27 52 31	Conduit to Cable Tray, Partitioned Cable Tray
Physical Access Control System	28 13 00	Conduit to Cable Tray Partitioned Cable Tray
Security Access Detection	28 13 53	Complete Conduit
Video Surveillance	28 23 00	Complete Conduit

System	Specification Section	Installed Method
Electronic Personal Protection System	28 26 00	Conduit to Cable Tray, Partitioned Cable Tray
Fire Detection and Alarm	28 31 00	Complete Conduit

B. Penetrations:

1. Cutting or Holes:

- a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and Contracting Officer's Representative (COR) prior to drilling through structural sections.
- b. Make holes through concrete and masonry in existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
- c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - 1) Fill and seal clearances between raceways and openings with fire stop material.
 - 2) Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.

C. Conduit Installation:

- 1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
- 2. Install insulated bushings on all conduit ends.
- 3. Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
- 4. Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits

- to enter telecommunication rooms next to wall and flush with backboard.
- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.
- 8. Minimum radius of communication conduit bends:

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- 10. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- 13. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling

- supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
- E. Furred or Suspended Ceilings and in Walls:
 - 1. Align and run conduit parallel or perpendicular to building lines.
 - 2. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - 1. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - 4. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:

- a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
- b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
- c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

G. Expansion Joints:

- 1. Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
- 2. Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.

H. Conduit Supports, Installation:

- 1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
- 2. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is $2.5\ m$ (8 foot) on center.
- 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
- 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
- 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - 1) Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - 3) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.

- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- 8. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- 9. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

I. Box Installation:

- 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- 3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 10 00

STRUCTURED CABLING CONTROL, AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 and 28.
- C. The contractor is responsible for proposing an integrated design with all cable and termination components working together as a system. Where performance specifications are noted it is intended that these parameters reflect Channel performance including cable, termination hardware and Patch cords.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - 2. Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - 3. Government will not approve any submittal without this certification.

- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.

D. Closeout Submittals:

- Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
- 2. Provide certified OEM sweep test tags from each cable reel to Contracting Officer's Representative (COR).
- 3. Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
- 4. Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
- 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Remote Control Cable:
 - 1. Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).
 - 3. Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
 - 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:

- 1) 18 AWG, minimum, Outside.
- 2) 20 AWG, minimum, Inside.
- d. Color Coding: Required, EIA industry standard.
- e. Bend Radius: 10 times cable outside diameter.
- f. Impedance: As required.
- g. Shield Coverage: As required by OEM specification.
- h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum		
0.7	5.2		
1.0	6.5		
4.0	14.0		
8.0	19.0		
16.0	26.0		
20.0	29.0		
25.0	33.0		
31.0	36.0		
50.0	52.0		

- D. Distribution System Signal Wires and Cables:
- Provide in same manner, and use construction practices, as Fire
 Protective and other Emergency Systems identified and defined in
 NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70,
 National Electrical Code, Chapter 7, Special Conditions.
- 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
- 3. Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
- 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems; provide not less than TIA Performance Category 6.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:

- 1. Provide connectors for transmission lines, and signal extensions to maintain un-interrupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
- 2. Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wire-wrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.
 - 2) Data Cable Shields.
 - 3) Conduits.
 - 4) Cable Trays.
 - 5) Power Panels.
 - 6) Connector Panels.
 - 7) Grounding Blocks.
 - 2. Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.

- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - 1. Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - 2. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.
 - c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
 - 3. Fireproofing:

- a. Install fireproofing where low voltage cables are installed in same maintenance holes with high voltage cables; also cover low voltage cables with arc proof and fireproof tape.
- b. Use tape of same type used for high voltage cables, and apply tape in a single layer, one-half lapped or as recommended by manufacturer. Install tape with coated side towards the cable and extend minimum 25 mm (1 inch) into each duct.
- c. Secure tape in place by a random wrap of glass cloth tape.
- B. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
 - 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
 - 5. Concealed splices are not allowed.
 - 6. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
 - 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, wires or cables, on the right.
 - 8. Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
 - 9. Laying wires or cables directly on drooping down walls, walkways, floors, etc. is not permitted.
 - 10. Wires or cables installed outside of conduit, cable trays, wire ways, cable duct, etc.:

- a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
- b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
- c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
- d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
- e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
- f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.

C. AC Power:

- Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
- 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
- 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
- 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.

- 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
- 3. Install labels retaining their markings after cleaning.
- 4. Industry Standard: ANSI/TIA-606-B.
- 5. Print lettering for voice and data circuits using laser printers handwritten labels are not acceptable.
- 6. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- 7. Equipment: Permanently labeled system equipment with contrasting plastic laminate or bake-lite material. Label system equipment on face of unit corresponding to its source.
- 8. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- 9. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Middleton Medical Center, Renovate third floor to relocate Administration Functions Project. The System shall include, but not be limited to: relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- D. The Voice and Digital Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum, the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care

Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

- E. The VA Project Manager (VAPM) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the RE before proceeding with the change.
- F. The Horizontal Cabling System described by this document is based on the installation of Category 6, 4-pair Unshielded Twisted Pair (UTP) for Voice and Data. Cables are to be installed from Standard Information Outlet to the Telecommunications Room serving that area.
- G. The drawings show the locations and types of telecommunications outlets to be installed, each identified by a unique icon.
- H. The contractor is responsible for proposing an integrated design with all cable and termination components working together as a system.

 Where performance specifications are noted it is intended that these parameters reflect Channel performance including cable, termination hardware and Patch cords.
- I. The contractor is responsible for all cabling and terminations in all locations shown on the contract drawings. As well as installation of accessories, wire wrap, cabling, jacks and faceplates in the owner provided systems furniture and storage shelving as indicated on the contract drawings.

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.
- E. Specification Section 26 27 26, WIRING DEVICES.

- F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- G. Specification Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
- B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC) - 2014	
75	Protection of Electronic Computer/Data Processing Equipment - 2014	
77	Recommended Practice on Static Electricity - 2014	
99	Standard for Health Care Facilities - 2015	
101	Life Safety Code - 2015	
1221	Emergency Services Communication Systems - 2016	

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568C	COMMERCIAL BUILDING TELECOMMUNICATION CABLING FAMILY OF STANDARDS C.O, C.1, C.2, C.3
569D	COMMERCIAL BUILDING STANDARD FOR TELECOMMUNICATIONS PATHWAYS AND SPACES
606B	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF

	COMMERCIAL BUILDINGS
607C	GROUNDING AND BONDING REQUIREMENTS FOR TELECOMMUNICATIONS IN COMMERCIAL BUILDINGS
758В	CUSTOMER OWNED OUTSIDE PLANT TELECOMMUNICATIONS INFRASTRUCTURE

- E. International Telecommunication Union Telecommunication Standardization Sector (ITU-T)
- F. Federal Information Processing Standards (FIPS) Publications.
- G. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
- H. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- I. Joint Commission on Accreditation of Health Care Organization (JCAHO):
 Comprehensive Accreditation Manual for Hospitals.
- J. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.

- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.
- F. The contractor/vendor must have BICSI(Building Industry Consulting Service International, Inc.) Registered Installers and Technicians on staff and assign them to this project. The project shall be stalled at all times by Installers and Technicians who are BICSI Certified. All personnel shall be BICSI Registered Telecommunications Installers. Of that, 25 percent shall be registered at the Technician level. A copy of their registrations must be submitted prior to installation of any equipment.

1.5 SUBMITTALS

- A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The PM shall retain one copy for review and approval.
 - 1. If the submittal is approved the PM shall retain one copy for Official Records and return three (3) copies to the Contractor.
 - 2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The RE shall retain one copy for Official Records.
- B. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center. Wm. S. Middleton Memorial Veterans Hospital.
 - b. Contractor's name, address, and telephone (including FAX) numbers.
 - c. Date of Submittal.
 - d. VA Project No.607-15-101

- 2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 - a. Installation Location and Name.
 - b. Owner's or User's name, address, and telephone (including FAX) numbers.
 - c. Date of Project Start and Date of Final Acceptance by Owner.
 - d. System Project Number.
 - e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
- 3. Narrative Description of the system.
- 4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required.
 - Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 5. List of test equipment as per paragraph 1.5.C. below.

C. Test Equipment List:

- 1. The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
- 2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - a. Fluke DTX 1800 or equivalent cable analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).

D. Certifications:

1. Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM.

- Include the individual's exact name and address and OEM credentials in the certification.
- 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
- 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- E. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the PM. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.

F. Record Wiring Diagrams:

- 1. Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the PM. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
- 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The RE shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. System Requirements:

1. The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:

- a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
- b. Be a voice and data cable distribution system that is based on a physical "Star" Topology. All station cabling shall be installed in a "home run" fashion unless specifically noted on the project plans.
 2. Cable Systems Unshielded Twisted Pair (UTP) and Fiber optic Cable:

a. General:

- 1) The Contractor shall be responsible for providing a new system conforming to current and accepted telephone, digital , and analog RF industrial/commercial cable distribution standards. The distribution cable installation shall be fully coordinated with the Facility, the PM, and the Contractor prior to the start of installation.
- 2) The Contractor is responsible for complete knowledge of the space and cable pathways (i.e. equipment rooms, TCs, conduits, wireways, etc.) of the Facility. The Contractor shall at a minimum design and install the System using the Pathway Design Handbook H-088C3, TIA/EIA Telecommunications Building Wiring Standards, and Facility Chief of Information Resource Management's (IRM) instructions, as approved in writing by the PM.
- 3) The System cables shall be fully protected by cable duct, trays, wireways, conduit (rigid, thin wall, or flex), and when specifically approved, flexible innerduct. It is the responsibility of the Contractor to confirm all contract drawings and the Facility's physical layout to determine the necessary cable protective devices to be provided. If flexible innerduct is used, it shall be installed in the same manner as conduit.

- 4) Cable provided in the system (i.e. backbone, outside plant, inside plant, and station cabling) shall conform to accepted industry and OEM standards with regards to size, color code, and insulation. The pair twists of any pair shall not be exactly the same as any other pair within any unit or sub-unit of cables that are bundled in twenty-five (25) pairs or less. The absence of specifications regarding details shall imply that best general industry practices shall prevail and that first quality material and workmanship shall be provided. Certification Standards, (i.e., EIA, CCITT, FIPPS, and NFPA) shall prevail.
- 5) Some areas of this Facility may be considered "plenum". All wire and cable used in support of the installation in those areas (if any) shall be in compliance with national and local codes pertaining to plenum environments. It is the responsibility of the Contractor to review the VA's cable and wire requirements with the PM and the IRM prior to installation to confirm the type of environment present at each location.
- 6) The Contractor shall provide outside and inside plant cables that furnishes the number of cable pairs required in accordance with the System requirements described herein. The Contractor shall fully coordinate and obtain approval of the design with the OEM, PM and the IRM prior to installation.
- 7) All metallic cable sheaths, etc. shall be grounded by the Contractor (i.e.: risers, underground, station wiring, etc.) as described herein.
- 8) If temporary cable and wire pairs are used, they shall be installed so as to not present a pedestrian safety hazard and the Contractor shall be responsible for all work associated with the temporary installation and for their removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the PM and the IRM prior to installation.
- 9) Conductors shall be cabled to provide protection against induction in voice and data and analog RF circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.

- 10) Measures shall be employed by the Contractor to minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 11) The System's cables shall be labeled on each end and been fully tested and certified in writing by the Contractor to the RE before proof of performance testing can be conducted. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The tests required for data cable must be made to guarantee the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. All cable installation and test records shall be made available at acceptance testing by the RE or Contractor and thereafter maintained in the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 12) The Contractor shall coordinate with the PM and the IRM to provide all cable pairs/circuits from the Facility Telephone switch room and establish circuits throughout the Facility for all voice, data, computer alarm (except fire alarm), private maintenance line, Radio Paging, PA, LAN, DHCP, and any low voltage circuits as described herein.
- 13) The Contractor shall coordinate with the Facility Chief of Medical Media Production Service (MMPS) to install baseband analog RF, video and audio interface cables and circuits from the TC to designated TCO locations and as shown on the drawings. The Contractor shall work with the Facility Chief of MMPS to establish circuits throughout the Facility and shall provide proper test equipment to guarantee that analog RF, video and audio cables meet each OEM's standard transmission requirements, and guarantee the cables will carry analog video

and audio transmissions at the required speeds, frequencies and fully loaded bandwidth.

- b. Telecommunications Closets (TC):
 - 1) Cabling shall be run to the existing TC, as indicated.
 - 2) Additionally, the TC's may house fire alarm, nurse call, code one (or blue), Code orange, video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all backbone, vertical, and horizontal coper and fiber optic and analog RF coaxial cables shall be terminated on appropriate cross-connection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.
 - 3) Existing data racks within the TC shall be used for all new cabling terminations and patch panels.
- 4) The existing Vertical Cable Management System shall be used.
- 5) Horizontal cable managers: Shall be provided for patch cord routing across each standard data rack. The horizontal managers shall have an integrated dual hinged cover both front and rear if applicable.
 - a) Double sided 2RU horizontal cable managers shall be installed per project drawings on the top and bottom of each standard data rack. Panduit model number NCMH2.
 - b) Single sided 4RU horizontal cable managers shall be provided per project drawings at mid rack height across each standard data rack. Panduit model number NCMHAEF2.
- 6) Overhead cable raceway: Shall be provided within the TC if necessary to provide cable support and transition cabling from the ceiling into each of the data racks. Overhead cable raceway shall be:
 - a) Black finish Ladder Rack type cable raceway measuring 24" wide by 1 %" deep or black finish Basket type cable raceway measuring 24" wide by 4" deep. Ladder and Basket type cable raceway manufactured by Cablofil, Flextray, B-Line, Chatsworth, or equivalent are acceptable.
 - b) Supported by black finished hardware manufactured by the same manufacturer of the ladder or basket type cable raceway provided.

- c) Supported every 5ft. or less and within 2ft. of any mated junction between two cable raceway sections from building structure as well as from the top of the data racks. Wall mounted hardware shall be provided where the end of the cable raceway comes into contact with any wall. See project drawings for overhead cable raceway installation.
- 8) Grounding: Proper grounding and bonding shall be provided for each TC and all internal equipment. Reference shall be made to proper codes and standards, such that all grounding systems must comply with all applicable National, Regional, and Local Building and Electrical codes. The most stringent code of these governing bodies shall apply.
 - a) If local grounding codes do not exist for the system location, then at a minimum, a #6 American Wire Gauge (AWG) stranded copper wire, or equivalent copper braid, shall be connected to a separate earth grounding system for each TC (the looping of TCs in a general location is allowed as long as the specifications contained herein are met). Under no circumstances shall the AC neutral be used for this ground. See PART 3- EXECUTION for specific grounding instructions.

c. Riser cable:

- 1) All existing riser cables currently feeding the existing Floor TC shall be utilized as currently installed.
- 2) Riser cabled will be terminated on Category 5e 48-port angled patch panels that shall be installed in the new data racks within the new TC. The patch panels shall be Panduit DPA485E88TGY UTP Cat 5e Patch Panels. Refer to project drawing details for mounting position on racks.
- 3) Riser cables shall be terminated one pair per port utilizing the white/blue blue/white pair of each port with the 25th pair in each 25 pair binder spared off on the rear of the patch panel. Each patch panel shall be capable of 48 single pair ports.
- 4) All voice and data communications (analog RF coaxial cable is not to be provided in riser systems) riser cables shall be enclosed with a thermoplastic outer jacket.
- 5) The complete riser cabling system shall be labeled and tested as described herein.

6) Contractor will need to make provisions with the VA prior to disconnect of the existing copper backbone cable, continued support of any circuits such as elevator phones, alarms, or non-project areas workstation outlet voice or data cabling that will need to stay in operation or may only be disconnected for a short window of time.

d. Horizontal and Station Cable:

1) All cables (cat 6 or better) shall be constructed of four (4) individually twisted pairs with 24 AWG insulated copper conductors. Pairs of all cables will be unshielded and will be identified by a banded color code in which conductors are marked with a dominant color and banded with a contrasting color, which will be the dominant color of its' mate. By pair number, the pair colors(Dominant/Band) are:

Pair 1: Tip - White/Blue; Ring - Blue (or Blue/White)

Pair 2: Tip - White/Orange; Ring - Orange (or Orange/White)

Pair 3: Tip - White/Green; Ring - Green (or Green/White)

Pair 4: Tip - White/Brown; Ring - Brown (or Brown/White)

- 2) All Cable shall meet the physical requirements of ANSI/TIA-568-C Standard for commercial Building Wiring; Underwriters Laboratory (UL)listed, and shall comply with Article 800 (Communications Circuits) of the National Electrical Code.
- 3) All cables and Termination hardware shall be technically compliant with and installed in accordance with TIA-568-C.
- 4) All voice and Data cables and all associated Termination Components shall be selected from distributor stock that is independently verified for performance. The manufacturer shall be Panduit TX6000 Cat 6 UTP Cable, to match existing hospital systems.
- 5) All cables shall meet a CMR (Riser) rating and shall be suitable for installation in "free-air" in building risers.
- 6) Voice Cable jacket color shall be Green and Data cable jacket color shall be Yellow. Any variance from this shall not be done without written approval from the VA Project manager.
- e. Horizontal Category 6 Station cable Patch Panels
 - 1) At the Telecommunications Room, each 4-pair UTP Cable shall be terminated on a 19" rack and mountable angled modular jack patch panel. The patch panels shall be selected from distributor stock

that is independently verified for performance. The manufacturer shall be The Panduit Corporation

- 2) The interface between the voice and the data cable and the patch panels shall be an 8-pin modular jack and shall be IDC type connections. Jacks mounted in patch panels shall be designed to maintain the cable pair twists as closely as possible to the point of mechanical termination. The installer shall insure that the twists are preserved to within ½" of the termination. Data Patch Pane; shall be Panduit model number CPPLA48WBLY.
- 3) All Jacks are to be pinned per T568A wiring configuration with the pairing as follows:

Pair 1 - Pins 5&4

Pair 2 - Pins 3&6

Pair 3 - Pins 1&2

Pair 4 - Pins 7&8

Panduit model number CJ688TGXX

4) Voice and Data jack positions shall be distinguished by color and symbol. Voice and Data jacks are to be identified using a color coded insert which also incorporates an icon indicating the application. Jack positions are to be identified as follows:

Voice - Green "Telephone" Icon

Data - Yellow "PC" Icon

Patient Monitor - Orange "PC" Icon

- 5) The panels must provide strain relief for the incoming station cables. Panduit model number SRBCT.
- 6) All pair combinations must be considered, with the worst-case measurement being the basis for compliance.
- 7) Panels shall be designed and installed in a fashion as to allow future station cabling to be terminated on the panel without disruption to existing connections.
- 8) Voice and data shall be terminated in order on the same patch panels. Provide separate dedicated patch panels for:
 - a) The combination of Voice and Data station cabling.
 - b) Wireless Access Point workstations
 - c) Patient monitor workstations
- 9) Provide enough patch panel ports for all station cables plus 20% growth.

- f. telecommunications Outlet (TCO), jacks: The top jacks in each faceplate shall be eight pin RJ-45/11 compatible jacks, labeled, and designated for telephone applications only. The bottom two jacks shall be eight pin RJ-45 type unkeyed (sometimes called center keyed) jacks, labeled, and designated for data. (Unless otherwise noted on project plans)

 1) The Telecommunications outlet shall consist of a mounting frame designed for use with a minimum of four (4) modular jacks. Voice and Data jack assemblies shall snap in to the mounting frame at a 45 degree angle. Any unused jack positions will be fitted with a removable blank cover. Color of the frame and snap-in assemblies or covers shall be ivory.
 - 2) All Voice and Data jacks shall be selected from distributor stock that is independently verified for performance. The manufacturer shall be the Panduit Corporation, to match existing hospital systems.
 - 3) Voice and Data Cables shall each be terminated at the outlet in an eight-pin modular jack. The installer shall insure that the twists are preserved to within $\frac{1}{2}$ " of the termination.
 - 4) The interface between the jack and the station cable shall be an IDC type connection.
 - 5) Voice and Data Faceplate should have an "angled shroud" design, with a downward angle of approximately 45 degrees. Panduit model number CFPSL4EIY
 - 6) All jacks are to be pinned per T568A wiring configuration with the paining as follows:

Pair 1 - Pins 5&4

Pair 2 - Pins 3&6

Pair 3 - Pins 1&2

Pair 4 - Pins 7&8

Panduit model number CJ688TGXX shall be used where XX-color.

7) Voice and Data Jack positions shall be distinguished by color and symbol. Voice and Data jacks are to be identified using a color coded insert which also incorporates an icon indicating the application. Jack positions are to be identified as follows:

Voice - Green "telephone" Icon

Data - Yellow "PC" icon

Patient Monitor - orange "PC" Icon

8) This project requires 3 data jacks and 1 voice jack at each location, unless otherwise noted on the project drawings.

- 9) Work with patient room Boom manufacturer for those TCOs that must be located in the Booms within each room.
- g. CODE ORANGE: Code Orange stations shall be installed in each Exam room and at each check-in desk location. Contractor shall install a Category 6 cable from the device to the data closet for each location. Provide a data jack at each location and label it as "LYNC". Data jack shall be tied in to the Network in the Data Closet.

h. Optical Fiber:

- 1) The fiber optic backbone use a conventional hierarchical "star" design where each TC is wired to the primary hub (main cross-connect system) or a secondary hub (intermediate cross-connect system) and then to the primary hub. There shall be no more than two hierarchical levels of cross-connects in the backbone writing.
- 2) Coordinate the disconnection of any existing optical fiber system with the VA to verify that the optical fiber system is not still in use prior to disconnect. For safety reasons all optical fiber should be disconnected or unpatched at the distant end prior to relocation.

i. Patch Cords

- 1) The Contractor shall not "cross connect" the copper or fiber optic cabling systems and subsystems even though appropriate "patch" cores are to be provided for each "patch", "punch", or "breakout" panel. In addition, the Contractor shall not provide active electronic distribution or interface equipment as a part of the system.
- 2) Patch cables shall be provided by the Contractor. The Contractor shall supply the patch cords in the length and color dictated by the VA. If no length is dictated by the VA, the patch cords shall be provided as follows: Ten (10)feet at the work station and five (5) and seven (7) feet at the Patch Panel in the Telecommunications room.
- 3) All patch cords shall be selected from distributor stock that has been independently verified for performance. The manufacturer shall be The Panduit Corporation.

B. General:

- 1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - a. Maintains a stock of replacement parts for the item submitted.

- b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
- c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
- 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.

C. Equipment Standards and Testing

- 1. The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes(which ever are more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
- 2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials, or equipment. See paragraph minimum requirements Section 27 05 11. REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.
- 3. The provided active and passive equipment required by the System design and approves technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
- 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 TELECOMMUNICATION CLOSET REQUIREMENTS

Refer to the VA Handbook H-088C3, Telephone System Requirements, for specific TC guidelines for size, power input, security, and backboard mounting requirements. It is the Contractors responsibility to ensure TC compliance with the System Requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - 1. Delivery: Deliver materials to the job site in ORM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The PM may inventory the cable, patch panels, and related equipment.
 - 2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the PM.

B. System Installation

- 1. After the contract has been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification.
- 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
- 3. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
- 4. A minimum of 3ft. slack loop will be provided above each workstation outlet location.
- 5. A minimum of 8ft. of slack will be provided and dressed in the Telecommunications Closet to provide the necessary cable for future modification to the room or relocation.
- 6. All wireless Access Point (WAP) workstations as indicated on the project drawings will have a 15 ft. slack loop provided to allow easy relocation of WAP equipment if needed.
- 7. All cabling will be dressed in neatly formed bundles within the Telecommunications Closet. These bundles will be secured using Velcro

Tie Straps to allow for ease of cable additions in the future. Tie wraps will not be allowed.

C. Conduit and Signal Ducts:

1. Conduit:

- a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockers, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 25.4 mm (1 in.).
- b. All cables shall be installed in separate conduit and/or signal ducts. Conduits shall be provided in accordance with Section 27 0533, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the system, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, its' installation guidelines and standards shall be specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit (GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be run separate from signal conduit.
- f. Ensure that Critical Care Nurse Call, PA, and Radio Paging Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the PM.
- 3. Distribution System Signal Wires and Cables:
 - a. Wires and cables shall be provided in the same manner and use like construction practices as Fire Protective and other Emergency

Systems that are identified and outlined in NFPA 101, Life Safety Code, Chapters 7,12, and/or 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions. The wires and cables shall be able to withstand adverse environmental conditions in their respective location without deterioration. Wires and cables shall enter each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of the cables.

- b. Each wire and cable shall terminate on an item of equipment by direct connection. Spare or unused wire and cable shall be provided with appropriate connectors (female types) that are installed in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
- c. Fiber optic cables that are spare, unused or dark shall be provided with Industry Standard "LC" type female connectors installed in appropriate break out, patch, bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
- d. Coaxial cables that are spare, unused or dark shall be provided with the cable OEM specified type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
- e. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible.

4. Routing and Interconnection:

- a. Wires or cables between consoles, cabinets, racks and other equipment shall be in an approved conduit, signal duct, cable duct, or cable try that is secured to building structure.
- b. Wires and cables shall be insulated to prevent contact with signal or current carrying conductors. Wires or cables used in assembling consoles, panels, equipment cabinets and racks shall be formed into harnesses that are bundled and tied. Harnessed wires or cables shall be combed straight, formed and dressed in either a vertical or horizontal relationship to equipment, controls, components or terminations.

- c. Harnesses with intertwined members are not acceptable. Each wire or cable that breaks out from a harness for connection or termination shall have been tied off at that harness or bundle point, and be provided with a neatly formed service loop.
- d. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right. This installation shall be accomplished with ties and/or fasteners that will not damage or distort the wires or cables. Limit spacing between tied off points to a maximum of 150 mm (6 inches).
- e. Do not pull wire or cable through any box, fitting or enclosure where change of cable tray or signal or cable duct alignment or direction occurs. Ensure the proper bend radius is maintained for each wire or cable as specified by its OEM.
- f. Employ temporary guides, sheaves, rollers, and other necessary items to protect the wire or cable from excess tension or damage from bending during installation. Abrasion to wire or cable jackets are not acceptable and will not be allowed. Replace all cables whose jacket has been abraded. The discovery of any abraded and/or damaged cables during the proof of performance test shall be grounds for declaring the entire system unacceptable and the termination of the proof of performance test. Completely cover edges of wire or cable passing through holes in chassis, cabinets or racks, enclosures, pull or junction boxes, conduit, etc., with plastic or nylon grommeting.
- g. Cable runs shall be home run and splice free.
- h. Cables shall be installed and fastened without causing sharp bends or rubbing of the cables against sharp edges. Cables shall be fastened with hardware that will not damage or distort them.
- i. Cables shall be labeled with permanent markers at the terminals of the electronic and passive equipment and at each junction point in the System. The lettering on the cables shall correspond with the lettering on the record diagrams.

- j. Completely test all of the cables after installation and replace any defective cables.
- k. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.
 - 1) Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - 2) Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs not provided in conduit, which penetrates outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - 3) Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the PM, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
- D. Outlet Boxes, Back Boxes, and Faceplates:
 - Outlet Boxes: Signal, power, interface, connection, distribution, and junction boxes shall be provided as required by the system design, on-site inspection, and review of the contract drawings.
 - 2. Back Boxes: Back boxes shall be provided as directed by the OEM as required by the approved system design, on-site inspection, and review of the contract drawings.
 - 3. Face Plates (or Cover Plates): Faceplates shall be of a standard type, stainless steel, anodized aluminum or UL approved cycolac plastic construction and provided by the Contractor for each identified system outlet location. Connectors and jacks appearing on the faceplate shall be clearly and permanently marked.
- E. AC Power: AC power wiring shall be run separately from signal cable.
- F. Grounding:
 - 1. General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.

- a. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
- b. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
- G. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A.

 All lettering for voice and data circuits shall be stenciled using laser printers, inkjet printers, or thermal ink transfer process.

 Handwritten labels are not acceptable.
- Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A.
 Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
- Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
- 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
- 4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

A. Interim Inspection:

1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568A pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.

- 2. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
- 3. The Contractor shall notify the PM, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
- 4. Results of the interim inspection shall be provided to the PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
- 5. The PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer Representative shall ensure all test documents will become a part of the Systems record documentation.

B. Pretesting:

 Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.

2. Pretesting Procedure:

- a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
- b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses,

glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:

- 1) Local Telephone Company Interfaces or Inputs.
- 2) EPBX interfaces or inputs and outputs.
- 3) MDF interfaces or inputs and outputs.
- 4) EPBX output S/NR for each telephone and data channel.
- 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the PM.
- C. Acceptance Test: After the System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the PM 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

D. Verification Tests:

- 1. Test the UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
- 2. Multimode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-14A using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
- 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-7 using

Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.

E. Performance Testing:

- Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.

3.3 Warranty

- A. The Contractor shall warranty the cable system for a period of Five (5) years on materials, workmanship and installation, including all parts, components and subsystems proposed. The warranty shall commence upon satisfactory completion of all work, including test and documentation, relating to major system components. Provide documentation to the VA upon completion of the project for the five (5) year warranty.
- B. The contractor shall obtain and provide to the VA a minimum of a (15) year the manufacturer's warranty to include materials, workmanship and installation, including all parts, components and subsystems proposed. The warranty shall commence upon satisfactory completion of all work, including test and documentation, relating to major system components. Provide documentation to the VA upon completion of the project for the (15) year warranty.
- C. Any cable or hardware that proves defective, inoperable or incorrectly installed that must be replaced, modified or repaired to meet test criteria shall be performed by the Contractor at no additional costs to the VA. The Contractor shall provide all labor, equipment and materials necessary to effect warranty repairs or to the proposed system.
- D. All changes and/or repairs made by the Contractor under warranty shall be labeled and documented to the VA as described by this document.
- E. In the event that the Contractor fails to respond to warranty repair requests in a timely manner, the VA may secure repair services from others and charge the Contractor for the costs incurred. This action will not void any provisions of the ongoing warranty.

- - - E N D - - -

SECTION 27 51 16

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system warranty, and incidental to, the extension of the current existing and fully operating National Fire Protection Association (NFPA) Life Safety Code 101.3-2 (a) Labeled and (b) Listed Emergency Service Public Address System (PAS) and associated equipment (here-in-after referred to as the System) in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting PAS communications signals generated local and remotely as detailed herein.
- B. The existing system is interfaced with the Simplex FA system such that pages can be annunciated thru the Simplex Fire Alarm system.
- C. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 0050P3B) tested, certified and ready for operation.
- D. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- E. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- F. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE.

 HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS, SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's

EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's PM, VA Project Manager and TVE-0050P3B.

The VA PM is the only approving authority for other amendments to this document that may be granted, on a case by case basis, in writhing with technical concurrencies by VA's VA Project Manager, TVE-0050P3B and identified Facility Project Personnel.

G. The Original Equipment Manufacturer (OEM) and Contractor shall ensure that all management, sales, engineering and installation personnel have read and understand the requirements of this specification before the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement attesting this requirement as a part of the technical submittal that includes each name and certification, including the OEMs.

1.2 RELATED SECTIONS

- A. 01 33 23 Shop Drawings, Product Data and Samples.
- B. 07 84 00 Firestopping.
- C. 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- E. 27 05 11 Requirements for Communications Installations.
- F. 27 05 26 Grounding and Bonding for Communications Systems.
- G. 27 05 33 Raceways and Boxes for Communications Systems.
- H. 27 10 00 Control, Communication and Signal Wiring.
- I. 27 11 00 Communications Cabling Interface and Equipment Rooms Fittings.
- J. 27 15 00 Horizontal and Vertical Communications Cabling Equipment and Systems.

1.3 DEFINITIONS

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and warranty.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the

- contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.
- D. Headquarters Technical Review, for National and VA communications and security, codes, frequency licensing, standards, guidelines compliance:

 Office of Telecommunications

Special Communications Team (005OP2B)

1335 East West Highway - 3rd Floor

Silver Spring, Maryland 20910

- (O) 301-734-0350, (F) 301-734-0360
- E. Engineer: Ring and DuChateau, LLP

 17400 W. Capitol Drive

 Brookfield, WI 53045
 - (O) 414-778-1700, (F) 414-778-2360
- F. Owner: William S. Middleton Memorial Veterans Hospital
- H. Contractor: Radio Contractor; you; successful bidder

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards, including, but not limited to:
 - 1. United States Federal Law:
 - a. Departments of:
 - 1) Commerce, Consolidated Federal Regulations (CFR), Title 15 Under the Information Technology Management Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines that are developed by the:
 - a) Chapter II, National Institute of Standards Technology
 (NIST formerly the National Bureau of Standards). Under
 Section 5131 of the Information Technology Management
 Reform Act of 1996 and the Federal Information Security
 Management Act of 2002 (Public Law 107-347), NIST develops
 Federal Information Processing Standards Publication
 (FIPS) 140-2—Security Requirements for Cryptographic
 Modules.
 - 2) Health, (Public Law 96-88), CFR, Title 42, Chapter IV Health & Human Services, CFR, Title 46, Subpart 1395(a)(b) JCAHO "a hospital that meets JCAHO accreditation is deemed to meet the

Medicare conditions of Participation by meeting Federal Directives:"

- a) All guidelines for Life, Personal and Public Safety; and, Essential and Emergency Communications.
- 3) Labor, CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standard:
 - a) Subpart 7 Definition and requirements (for a NRTL 15 c's, for complete list, contact

(http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.html):

- 1) UL:
 - a) 44-02 Standard for Thermoset-Insulated Wires and Cables.
 - b) 65 Standard for Wired Cabinets.
 - c) 83-03 Standard for Thermoplastic-Insulated Wires and Cables.
 - d) 467-01 Standard for Electrical Grounding and Bonding Equipment
 - e) 468 Standard for Grounding and Bonding Equipment.
 - f) 486A-01 Standard for Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - g) 486C-02 Standard for Splicing Wire Connectors.
 - h) 486E-00 Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors.
 - i) 1863 Standard for Safety, Communications Circuits Accessories.
 - j) 60950-1/2 Information Technology Equipment -Safety.
- 2) Canadian Standards Association (CSA): same tests as for UL.
- 3) Communications Certifications Laboratory (CCL): same tests as for UL.
- 4) Intertek Testing Services NA, Inc. (ITSNA formerly Edison Testing Laboratory [ETL]): same tests as for UL.
- b) Subpart 35 Compliance with NFPA 101 Life Safety Code.
- c) Subpart 36 Design and construction requirements for exit routes.
- d) Subpart 268 Telecommunications.

- e) Subpart 305 Wiring methods, components, and equipment for general use.
- 6) Veterans Affairs (Public Law No. 100-527), CFR, Title 38, Volumes I & II:
 - a) Office of Telecommunications:
 - 1) Handbook 6100 Telecommunications.
 - a) Spectrum Management FCC & NTIA Radio Frequency Compliance and Licensing Program.
 - b) Special Communications Proof of Performance Testing, VACO Compliance and Life Safety Certification(s).
 - b) Office of Cyber and Information Security (OCIS):
 - 1) Handbook 6500 Information Security Program.
 - 2) Wireless and Handheld Device Security Guideline Version 3.2, August 15, 2005.
 - c) VA's National Center for Patient Safety Veterans Health Administration Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
 - d) VA's Center for Engineering Occupational Safety and Health, concurrence with warning identified in VA Directive 7700.
 - e) Office of Construction and Facilities Management (CFM):
 - 1) Master Construction Specifications (PG-18-1).
 - 2) Standard Detail and CAD Standards (PG-18-4).
 - 3) Equipment Guide List (PG-18-5.
 - 4) Electrical Design Manual for VA Facilities (PG 18-10), Articles 7 & 8.
 - 5) Minimum Requirements of A/E Submissions (PG 18-15):
 - a) Volume B, Major New Facilities, Major Additions; and Major Renovations, Article VI, Paragraph B.
 - b) Volume C Minor and NRM Projects, Article III, Paragraph S.
 - c) Volume E Request for Proposals Design/Build Projects, Article II, Paragraph F.
 - 6) Mission Critical Facilities Design Manual (Final Draft 2007).
 - 7) Life Safety Protected Design Manual (Final Draft 2007).
- b. Federal Specifications (Fed. Specs.):

- 1) A-A-59544-00 Cable and Wire, Electrical (Power, Fixed Installation).
- 2. United States National Codes:
 - a. American Institute of Architects (AIA): Guidelines for Healthcare Facilities.
 - b. American National Standards Institute/Electronic Industries
 Association/Telecommunications Industry Association
 (ANSI/EIA/TIA):
 - 1) 568-C Commercial Building Telecommunications Wiring Standards:
 - a) C-1 General Requirements.
 - b) C-2 Balanced twisted-pair cable systems.
 - c) C-3 Fiber optic cable systems.
 - 2) 569B Commercial Building Standard for Telecommunications Pathways and Spaces.
 - 3) 606B Administration Standard for the Telecommunications Infrastructure of Communications Buildings.
 - 4) 607C Commercial Building Grounding and Bonding Requirements for Telecommunications.
 - 5) REC 127-49 Power Supplies.
 - 6) RS 160-51 Sound systems.
 - 7) RS 270 Tools, Crimping, Solderless Wiring Devices, Recommended Procedures for User Certification.
 - 8) SE 101-A49 Amplifier for Sound Equipment
 - 9) SE 103-49 Speakers for Sound Equipment
 - e. Building Industries Communications Services Installation (BICSI):
 - 1) All standards for smart building wiring, connections and devices for commercial and medical facilities.
 - 2) Structured Building Cable Topologies.
 - 3) In consort with ANSI/EIA/TIA.
 - f. Institute of Electrical and Electronics Engineers (IEEE):
 - SO/TR 21730:2007 Use of mobile wireless communication and computing technology in healthcare facilities -Recommendations for electromagnetic compatibility (management of unintentional electromagnetic interference) with medical devices.
 - g. NFPA:
 - 1) 70 National Electrical Code 2014 Articles 517, 645 & 800.

- 2) 75 Standard for Protection of Electronic Computer Data-Processing Equipment - 2014.
- 3) 77 Recommended Practice on Static Electricity 2014.
- 4) 99 Healthcare Facilities 2015.
- 5) 101 Life Safety Code 2015.
- 6) 1600 Disaster Management, Chapter 5.9 Communications and Warning 2016.
- 4. Local Town, City and/or County Codes.
- 5. Accreditation Organization(s):
 - a. Joint Commission on Accreditation of Hospitals Organization(JCAHO) Section VI, Part 3a Operating Features.

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of systems of comparable size and complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.
- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the VA Project Manager before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.

E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's PA equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.

1.7 SCHEDULING

- A. After the award of contract, the Contractor shall prepare a detailed schedule (aka milestone chart) using "Microsoft Project" software or equivalent. The Contractor Project Schedule (CPS) shall indicate detailed activities for the projected life of the project. The CPS shall consist of detailed activities and their restraining relationships. It will also detail manpower usage throughout the project.
- B. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS

- A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
- B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.
- C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the

- system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.
- D. Provide information to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).
- E. Equipment OEM technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- F. Engineering drawings of the System, showing calculated of expected signal levels at the headend input and output, each input and output distribution point, and signal level at each telecommunications outlet.

1.9 PROJECT REPROJECT MANAGERD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floor plans shall be marked in pen to include the following:
 - 1. All device locations with UL labels affixed.
 - 2. Conduit locations.
 - 4. Each interface and equipment specific location.
 - Facility Entrance (aka DEMARC) Room(s) interface equipment and location(s).
 - 10. Telecommunication Outlet (s -TCO) equipment and specific location
 - 11. TIP Wiring diagram(s).
 - 12. Warranty certificate.
 - 13. System test results.
 - 14. System Completion Document(s) or MOU.

1.10 WARRANTIES / GUARANTY

A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.

B. The Contractor shall agree to grantee the system according to the quidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

- A. Use of the site shall be at the GC's direction.
- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.
- D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that is a part of the system.
- C. Contractor shall submit written notice that:
 - 1. Contract Documents have been reviewed.
 - 2. Project has been inspected for compliance with contract.
 - 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS

2.1 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

- A. Location of all PA equipment associated with the project is indicated on the drawings.
- B. Coordinate features and select interface components to form an integrated PA system. Match components and interconnections between the systems for optimum performance of specified functions.
- C. Expansion Capability: The PA equipment interfaces and cables shall be able to increase number of enunciation points in the future by a minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.
- D. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz.
- E. Deliver a fully functioning and operable PA in the specific locations shown on the drawings.

2.2 SYSTEM DESCRIPTION

- A. Modify and extend the existing complete and fully functional and operable PA System.
- B. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection, but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The total PA system shall be configured and installed so that the combination of equipment actually employed does not produce any undesirable visual or aural effects such as signal distortions, noise pulses, glitches, hum, transients, images, etc. The interface points must adhere to all standards described herein for the full separation of Critical Care and Life Safety systems.
- C. It is not acceptable to utilize the telephone cable system for the control of radio signals and equipment. The System Contractor shall connect the Telephone System Remote Control System to the Radio System Paging Control Unit ensuring that all NFPA and UL Critical Care and Life Safety Circuit and System separation guidelines are satisfied. The System Contractor is not allowed to make any connections to the

Telephone System. The Owner shall arrange for the interconnection between the PA and Telephone Systems with the appropriate responsible parties.

- D. The PA Head End Equipment is existing.
- E. The System shall interface with the Facility's existing PAS so that a global page (aka "all call" page) is communicated to the existing PAS and the new System of this project. Arrangements for interconnection of the System and the telephone system(s) shall be coordinated with the owner and the PBX provider.
- F. The system shall be designed to provide continuous electrical supervision of the complete and entire system (i.e. light bulbs, wires, contact switch connections, master control stations, wall stations, circuit boards, data, audio, and communication busses, main and UPS power, etc.). All alarm initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and UPS power circuits shall be supervised for a change in state (i.e. primary to backup, low battery, UPS on line, etc.). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the main supervisory panel, nurse control station and all remote amplifier locations.
- G. When the System is approved to connect to a separate communications system (i.e. LAN, WAN, Telephone, Nurse Call, radio raging, wireless systems, etc) the connection point shall be at one location and shall meet the following minimum requirements for each hard wired connection 1. UL 60950-1/2.
 - 2. FIPS 142.
 - 3. FCC Part 15 Listed Radio Equipment is not allowed.
- H. All passive distribution equipment shall meet or exceed -80 dB radiation shielding (aka RFI) shielding specifications and be provided with screw type audio connectors.
- I. All equipment face plates utilized in the system shall be stainless steel, anodized aluminum or UL approved cycolac plastic for the areas where provided.
- J. All trunk, branch, and interconnecting cables and unused equipment ports or taps shall be terminated with proper terminating resistors designed for RF, audio and digital cable systems without adapters.
- K. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and RF transmission line interface points. Coaxial cable

distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the system OEM. Base band cable systems shall utilize barrier terminal screw type connectors, at a minimum. As an alternate, crimp type connectors installed with a ratchet type installation tool are acceptable provided the cable dress, pairs, shielding, grounding, connections and labeling are the same as the barrier terminal strip connectors. Tape of any type, wire nuts or solder type connections are unacceptable and will not be approved.

L. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. Unless otherwise noted in this Part, equipment quantities shall be as indicated on the drawings.

2.3 SYSTEM PRFORMANCE:

- A. At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's PA system voice and data service as follows:
 - Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal Telecommunications System (FTS) at each PSTN and FTS interface, interconnection and terminating locations in the TERs.
 - 2. Audio Input: The signal level of each audio input channel at each input point shall be a MINIMUM of zero decibels measured (dBm), +0.10 dBm across 150 Ohms, balanced.
 - 3. Audio Output: The audio signal level at each speaker shall be a MINIMUM of +0.25 Watt (W) and a maximum of +20 W, 600 Ohms balanced impedance, on a 70.7 V audio distribution line Contractor to determine and set each speaker's proper audio signal level (top) based on speaker location and the ambient noise level in speaker coverage area.
 - 4. The system shall meet the following MINIMUM parameters at each speaker:
 - a. Cross Modulation: -46 dB
 - b. Hum Modulation: -55 dB
 - c. Isolation (outlet-outlet): 24 dB
 - d. Impedance:
 - 1) Distribution: 600 Ohm balanced @ 70.7 V audio line level.

- 2) Speaker: Selectable, as required.
- e. Audio Gain: 10 dB minimum @ mid-range measured with a sound pressure level meter (SPL)
- f. Signal to noise (S/N) ratio: 35 dB, minimum
- 5. THE USE OF TELEPHONE CABLE TO DISTRIBUTE PA SIGNALS CARRYING AC OR DC VOLTAGE IS NOT ACCEPTABLE AND WILL NOT BE APPROVED.
- 6. Additionally, each remote location shall be provided with the equipment required to ensure the system supervision and designed audio channel capacity at each speaker identified on the contract drawings.

2.4 MANUFACTURERS

- A. The products specified shall be new, FCC and UL Listed, labeled and produced by OEM of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,
 - 2. Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
 - 3. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid (IFB).
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.
- C. Equipment Standards and Testing:
 - 1. The System has been defined herein as connected to systems identified as an Emergency performing Public Safety Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Public and Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.

- 2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory (NRTL) where such standards have been established for the supplies, materials or equipment.
- 3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the VA Project Manager approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
- 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.5 PRODUCTS

A. General.

- Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
- 2. Each cabinet shall be provided with internal and external items to maintain a neat and orderly system of equipment, wire, cable and conduit connections and routing.
- 3. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.
 - b. The following equipment items are the minimum requirements of VA to provide an acceptable system described herein:

Item Quantity Unit

4. Distribution System(s)

4.a Equipment Back Box(s)

4.a.1. Speakers

4.a.1.a Overhead

4.a.1.b Horn

B. TER, and TR, Rooms and Equipment:

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.

- 1. Distributed Amplifier:
 - a. Provide the type and number of the amplifier(S) required to meet the system design. Provide this unit as complete and separate technical submittal during the IFB review portion of the project.
 - b. Provide one spare amplifier for each 20% (or portion thereof) of amplifiers used in the system.
- 2. Provide the equipment in the nearest TER where the System is installed to include the minimum equipment listed herein.

C. TIP DISTRIBUTION SYSTEM:

- 1. System Speakers:
 - a. Ceiling Cone-Type:
 - 1) Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.
 - 2) Frequency Response: Within plus or minus 3 dB from 70 to 15,000 Hz.
 - 3) Minimum Dispersion Angle: 100 degrees.
 - 4) Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
 - 5) Enclosures: Steel housings or back boxes, acoustically dampened, with front face of at least 0.0478-inch steel and whole assembly rust proofed and factory primed; complete with mounting assembly and suitable for surface ceiling, flush ceiling, pendant or wall mounting; with relief of back pressure.
 - 6) Baffle: For flush speakers, minimum thickness of 0.032-inch aluminum with textured white finish. Completely fill the baffle with fiberglass.

- 7) Vandal-Proof, High-Strength Baffle: For flush-mounted speakers, self-aging cast aluminum with tensile strength of 44,000 psi, 0.025-inch minimum thickness; countersunk heattreated alloy mounting screws; and textured white epoxy finish
- 8) Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
- 9) Have a minimum of two (2) safety wires installed to a solid surface or use a flexible conduit from ceiling / wall back box to the speaker back box.
- 10) The speakers and mounting shall be self-contained and wall mounted with flush back box at a minimum of 10 meter intervals and shall match (or contrast with, at the direction of the VA Project Manager) the color of the adjacent surfaces.
- 11) Provide one spare speaker, mount, and back box for each 50 speakers or portion thereof.

b. Wall Mounted Horn-Type:

- 1) Each horn speaker shall be provided with a means of adjusting the output level over the rated horn speaker range to an appropriate audio level in the area installed.
- 2) Minimum Power Rating of Driver: 15 W, continuous.
- 3) Minimum Dispersion Angle: 110 degrees.
- 4) Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
- 5) Provide one spare speaker, mount, and back box for each 20 speakers or portion thereof.
- 6) Provide horn speakers in rooms indicated on drawings.
- c. System Cables: In addition to the TIP provided under Specification Section 27 15 00 - TIP Horizontal and Vertical Communications Cabling, provide the following additional TIP installation and testing requirements, provide the following minimum System TIP cables & interconnections:
 - 1) Line Level Audio and Microphone Cable:
 - a) Line level audio and microphone cable for inside racks and conduit.
 - b) Shielded, twisted pair Minimum 22 American Wire Gauge (AWG), stranded conductors and 24 AWG drain wire with overall jacket.

- 2) Speaker Level (Audio 70.7Volt [V]) Cable, Riser Rated:
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
 - c) UL-1333 listed.
- 3) Speaker Level Audio Cable, Plenum Rated (70.7V):
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
- 4) All cabling shall be plenum rated.
- 5) Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.

2. Raceways, Back Boxes and conduit:

a. Raceways:

- 1) In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:
- 2) Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
- 3) Intercommunication System cable infrastructure: EMT or in J-hooks above accessible ceilings, 24 inches on center.
- 4) Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.
- 5) Flexible metal conduit is prohibited unless specifically approved by 0050P3B.

b. System Conduit:

- 1) The PA system is NFPA listed as Emergency / Public Safety
 Communication System which requires the entire system to be
 installed in a separate conduit system.
- 2) The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (0050P3B).
- 3) Conduit Sleeves:

- a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.
- b) The contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nurse-call cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.

D. Installation Kit:

1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the VA Project Manager all unused and partially opened installation kit boxes, coaxial, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation subkits:

2. System Grounding:

- a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
- b. This includes, but is not limited to:
 - 1) Data Cable Shields.
 - 2) Conduits.
 - 3) Cable Trays.
 - 4) Power Panels.
 - 5) Connector Panels.
 - 6) Grounding Blocks.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire

- wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT

- A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.
- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.

3.2 COORDINATION WITH OTHER TRADES

- A. Coordinate with the cabling contractor the location of the PA system faceplate and the faceplate opening for the PA system back boxes.
- B. Coordinate with the cabling contractor the location of TIP equipment in the TER, TCR, and TCOs in order to connect to the TIP cable network that was installed as a part of Section Specification 27 11 00.

 Contact the VA Project Manager immediately, in writing, if additional

location(s) are discovered to be activated that was not previously provided.

- C. Before beginning work, verify the location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems.
 - 2. Junction boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for the systems.
 - 3. System components installed by others.
 - 4. Overhead supports and rigging hardware installed by others.
- D. Immediately notify the Owner, GC and Consultant(s) in writing of any discrepancies

3.3 INSTALLATION

A. General

- Execute work in accordance with National, State and local codes, regulations and ordinances.
- 2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
- 3. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
- 4. Secure equipment firmly in place, including receptacles, speakers, equipment racks, system cables, etc.
 - a. All supports, mounts, fasteners, attachments and attachment points shall support their loads with a safety factor of at least 5:1.
 - b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
 - d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- 5. Locate overhead ceiling-mounted loudspeakers as shown on drawings, with minor changes not to exceed 12" in any direction.

- a. Mount transformers securely to speaker brackets or enclosures using screws. Adjust torsion springs as needed to securely support speaker assembly.
- b. Speaker back boxes shall be completely filled with fiberglass insulation.
- c. Seal cone speakers to their enclosures to prevent air passing from one side of the speaker to the other.
- 6. Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and 0050P3B.
- 7. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.
- 8. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone and data equipment, systems, and service.
- 9. Color code all distribution wiring to conform to the PA Industry Standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.
- B. Wiring Practice in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP Structured Communications Cabling, 27 11 00 - TIP Communications Rooms Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered too:
 - Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
 - Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
 - 3. Wiring shall be classified according to the following low voltage signal types:

- a. Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
- b. 70V audio speaker level audio.
- c. Low voltage DC control or power (less than 48VDC)
- 4. Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches. Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.
- 5. Do not splice wiring anywhere along the entire length of the run.

 Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
- 6. Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
- 7. Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
- 8. Use wire pulling lubricants and pulling tensions as recommended by the OEM.
- 9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 10.Do not use tape-based or glue-based cable anchors.
- 11. Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
- 12. Field wiring entering equipment racks shall be terminated as follows:
 - a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.
 - b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.")

 Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
 - c. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.

- 13. Use only balanced audio circuits unless noted otherwise 14. Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- C. Cable Installation In addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 -Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling and the following additional practices shall be adhered too:
 - 1. Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable tray, j-hooks, and bridal rings. Velcro wrap cable bundles loosely to the means of support with plenum rated Velcro straps. Plastic tie wraps are not acceptable as a means to bundle cables.
 - 2. Run cables parallel to walls.
 - 3. Install maximum of 10 cables in a single row of J-hooks. Provide necessary rows of J-hooks as required by the number of cables.
 - 4. Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
 - 5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.
 - 6. Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
 - 7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not

- leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
- 8. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
- 9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
- 10.Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 11.Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- 12. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 13. Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

14. Serve all cables as follows:

- a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heat shrink and serve as indicated below.
- b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing ¼" past the end of unused wires, fold back over jacket and secure with cable tie.
- c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.
- D. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for PA circuits shall be stenciled using laser printers.
 - 1. Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."

- 2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - a. Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
 - c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
- 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
- 4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."
- 5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
- 6. Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heat-shrink tubing covering the end of the overall jacket. Alternatively, computer generated labels of the type which include a clear protective wrap may be used.
- 7. Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
- 8. Ensure each OEM supplied item of equipment has appropriate UL Labels / Marks for the service the equipment is performed permanently attached / marked. SYSTEM EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.

E. Conduit and Signal Ducts: When the Contractor and/or OEM determines additional system conduits and/or signal ducts are required in order to meet the system minimum performance standards outlined herein, the contractor shall provide these items as follows:

1. Conduit:

- a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weather heads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed.
- b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow PA cables to be installed in partitioned cable tray with voice cables may be granted in writing by the VA Project Manager if requested). Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
- c. When metal, flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. Conduit fill (including GFE approved to be used in the system) shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.

2. Signal Duct, Cable Duct, or Cable Tray:

- a. The Contractor shall use GFE signal duct, cable duct, and/or cable tray, when identified and approved by the VA Project Manager.
- b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops

- or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
- c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The VA Project Manager shall approve width and height dimensions.
- d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible

3.4 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete the Work or to make its parts fit together properly.
- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate Contractor the Contractor's consent to cutting or otherwise altering the Work.
- E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the location shall be approved by the Project Manager prior to commencement of coring work.

3.5 FIREPROOFING

- A. Where PA wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.
- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.
- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.

3.5 GROUNDING

- A. Ground PA cable shields and equipment to eliminate shock hazard and to minimize ground loops, common mode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26 Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.
- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use " $3^{\rm rd}$ or $4^{\rm th}$ " wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.

PART 4 - TESTING / GUARANTY / TRAINING

4.1 SYSTEM LISTING

The PA System is NFPA listed as an "Emergency / Public Safety"
Communications system. Where Code Blue signals are transmitted, that

listing is elevated to "Life Support/Safety." Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and OEM.

4.2 PROOF OF PERFORMANCE TESTING

A. Intermediate Testing:

1. All inspections and tests shall be conducted by an OEM-certified contractor representative and witnessed by TVE-0050P3B if there is no local Government Representative that processes OEM and VA approved Credentials to inspect and certify the system. The results of the inspection will be officially recorded by the Government Representative and maintained on file by the VA Project Manager, until completion of the entire project. The results will be compared to the Acceptance Test results. An identical inspection may be conducted between the 65 - 75% of the system construction phase, at the direction of the VA Project Manager.

B. Pretesting:

1. Upon completing installation of the PA System, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.

2. Pretesting Procedure:

- a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.
- b. The Contractor shall pretest and verify that all PA System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, each of the following locations shall be fully pretested:
 - 1) System Speakers and/or Horns.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the VA Project Manager.

C. Acceptance Test:

1. After the PA System has been pretested and the Contractor has submitted the pretest results and certification to the VA Project

Manager, then the Contractor shall schedule an acceptance test date and give the VA Project Manager 30 day's written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of TVE 0050P3B and an OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Emergency / Public Safety compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

- 2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System. Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable. Retesting of the entire System shall be rescheduled at the convenience of the Government.
- 3. Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.

D. Acceptance Test Procedure:

- 1. Physical and Mechanical Inspection:
 - a. The TVE 0050P3B Representative will tour all areas where the PA system and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
 - b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.

c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.

2. Operational Test:

- a. After the Physical and Mechanical Inspection, the system head end equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
- b. Following the head end equipment test, each speaker (or on board speaker) shall be inspected to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
- c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last speaker in each leg to verify the PA distribution system meets all system performance standards.
- d. Additionally, each installed head end equipment, microphone console; amplifier, mixer, distributed speaker/amplifier, monitor speaker, telephone interface, power supply and remote amplifiers shall be checked insuring they meet the requirements of this specification.
- e. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully operating system. The typical functions are: "all call," three sub-zoned, minimum of 15 minutes of UPS operation, electrical supervision, trouble panel, corridor speakers and audio paging.

3. Test Conclusion:

- a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the VA Project Manager. Any retesting to comply with these specifications will be done at the Contractor's expense.
- b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.
- E. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the

submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:

- 1. Spectrum Analyzer.
- 2. Signal Level Meter.
- 3. Volt-Ohm Meter.
- 4. Sound Pressure Level (SPL) Meter.

4.3 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:
- B. Contractor's Responsibility:
 - 1. The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of two (2) years from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the VA Project Manager, that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
 - 3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the two year guaranty period:
 - a. Response Time During the Two Year Guaranty Period:
 - 1) A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by the VA Project Manager (or Facility Contracting Officer), Monday through Friday exclusive of Federal Holidays.
 - 2) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one (1) working day of its report. A routine trouble is considered a trouble which

- causes a power supply; one (1) master System control station, microphone console or amplifier to be inoperable.
- b) Routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as an emergency trouble call. The VA Project Manager (or Facility Contracting Officer) shall notify the Contractor of this type of trouble call.
- c) An emergency trouble call within four (4) hours of its report. An emergency trouble is considered a trouble which causes a sub-zone, zone, distribution point, terminal cabinet, or all call system to be inoperable at anytime.
- 3) If a PA System component failure cannot be corrected within four (4) hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate System equipment. The alternate equipment/system shall be operational within a maximum of 12 hours after the four (4) hour trouble shooting time and restore the effected location operation to meet the System performance standards. If any sub-system or major system trouble cannot be corrected within one working day, the Contractor shall furnish and install compatible substitute equipment returning the System or subsystem to full operational capability, as described herein, until repairs are complete.
- b. Required On-Site Visits During the Two Year Guaranty Period
 - 1) The Contractor shall visit, on-site, for a minimum of eight (8) hours, once every 12 weeks, during the guaranty period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this document.
 - 2) The Contractor shall arrange all Facility visits with the VA Project Manager (or Facility Contracting Officer) prior to performing the required maintenance visits.
 - 3) Preventive maintenance procedure(s)shall be performed by the Contractor in accordance with the OEM's recommended practice and service intervals during non-busy time agreed to by the VA Project Manager (or Facility Contracting Officer) and Contractor.

- 4) The preventive maintenance schedule, functions and reports shall be provided to and approved by the VA Project Manager (or Facility Contracting Officer).
- 5) The Contractor shall provide the VA Project Manager (or Facility Contracting Officer) a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the VA Project Manager with sample copies of these reports for review and approval at the beginning of the Acceptance Test. The following reports are the minimum required:
 - a) The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to VA Project Manager (or Facility Contracting Officer) by the fifth (5^{th)} working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance.
 - b) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 6) The VA Project Manager (or Facility Contracting Officer) shall convey to the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The VA Project Manager (or Facility Contracting Officer) shall ensure a copy of these reports is entered into the System's official acquisition documents.
 - b) The Facility Chief Engineer shall ensure a copy of these reports is entered into the System's official technical record documents.
- C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor,

contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the VA Project Manager or Facility Contracting Officer in writing upon the discovery of these incidents. The VA Project Manager or Facility Contracting Officer will investigate all reported incidents and render an official opinion in writing concerning the supplied information.

- - - E N D - - -

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, intrusion detection, duress alarms, elevator control interface, video assessment and surveillance, video recording and storage, delayed egress, personal protection system, intercommunication system, fire alarm interface, equipment cabinetry, dedicated photo badging system and associated live camera, report printer, photo badge printer, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and

installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.

F. Section Includes:

- 1. Description of Work for Electronic Security Systems,
- 2. Electronic security equipment coordination with relating Divisions,
- 3. Submittal Requirements for Electronic Security,
- 4. Miscellaneous Supporting equipment and materials for Electronic Security,
- 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- E. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for Commissioning.
- J. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.
- K. Section 28 13 16 PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying

- an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.

- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- XX. UTP: Unshielded Twisted Pair
- YY. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the

Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 30 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The VA Project Manager reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- 2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication
 Distribution Designer (RCDD) certified by Building Industry
 Consulting Service International. The staff member shall provide
 consistent oversight of the project cabling throughout design,
 layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

- A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to Contracting Owner's Representative (COR) for his or her comment and/or approval before initiating work.
- B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog

- information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
- 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section.

 Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - 1. The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 Design Submittal Procedures, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Contracting Officer Representative and Contractor review stamps.
 - 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy

standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Contracting Officer Representative for approval before the initiation of work.

- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - 1) Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Cross-referencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - 2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
 - e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.

- 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1) Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual

- shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance

of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.

- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal.

 Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return non-conforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- 8. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization.

 Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:

- a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCADTM drawings.
- b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
- c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
- d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - 2) The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram

shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.

i. Security Details:

- Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
- 2) Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- 6) Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)

- 3) Floor Plan Sheet Number
- 4) Standard Detail Number
- 5) Door Description (Derived from Loading Sheets)
- 6) Data Gathering Panel Input Number
- 7) Door Position or Monitoring Device Type & Model Number
- 8) Lock Type, Model Number & Power Input/Draw (standby/active)
- 9) Card Reader Type & Model Number
- 10) Shunting Device Type & Model Number
- 11) Sounder Type & Model Number
- 12) Manufacturer
- 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Electric Transfer Hinge
 - c) Electric Pass-through device
- 14) Remarks column indicating special notes or door configurations
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
 - d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
 - e. The DGP spreadsheet shall include an entry section for the following information:

- 1) DGP number
- 2) First Reader Number
- 3) First Monitor Point Number
- 4) First Relay Number
- 5) DGP, input or output Location
- 6) DGP Chain Number
- 7) DGP Cabinet Tamper Input Number
- 8) DGP Power Fail Input Number
- 9) Number of Monitor Points Reserved For Expansion Boards
- 10) Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 7) DGP or input module Input Location

- 8) Date Test
- 9) Date Passed
- 10) Cable Type
- 11) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 5. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 6. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response

- time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 7. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the VA Project Manager documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.
 - 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors

H. Group III Technical Data Package

1. Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Contracting Officer Representative for approval at least 60 calendar days prior to the requested test date.

I. Group IV Technical Data Package

- 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the VA Project Manager for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.

2. Training Documentation

- a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,
 - 5) All other security subsystems shown in the contract documents.

- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Contracting Officer Representative for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.
- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Contracting Officer Representative as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - 1. Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and

- explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
- 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the Contracting Officer Representative a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.

- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
 - j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the Contracting Officer Representative or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the

- contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the Contracting Officer Representative for review and approval of all changes or modifications to the documents. Each sheet shall have Contracting Officer Representative initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for Contracting Officer Representative review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before

substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:

- a. Certificates received instead of labels on bulk products.
- b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule

13. Record Construction Documents (Record As-Built)

- a. Upon project completion, the contractor shall submit the project master redlines to the Contracting Officer Representative prior to development of Record construction documents. The Contracting Officer Representative shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the Contracting Officer Representative, the Contracting Officer Representative will initial and date each sheet and turn redlines over to the contractor for as built development.
- b. The Contractor shall provide the Contracting Officer Representative a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, sub-contractor, or similar entity, is required to prepare the mark up

on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

K. FIPS 201 Compliance Certificates

- 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - b. Card Readers
 - d. PIV Middelware
 - e. Template Matcher
 - f. Electromagnetically Opaque Sleeve
 - g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
 - h. <list devices and software>
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the Contracting Officer Representative with one sample of each of the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

O. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a Contracting Officer Representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC):
 - A117.1......Standard on Accessible and Usable Buildings and Facilities
- C. American National Standards Institute (ANSI) / Security Industry
 Association (SIA):
 - AC-03......Access Control: Access Control Guideline Dye
 Sublimation Printing Practices for PVC Access
 Control Cards
 - CP-01-00......Control Panel Standard-Features for False Alarm Reduction

 - TVAC-01......CCTV to Access Control Standard Message Set for System Integration
- D. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA):
 - 330-09......Electrical Performance Standards for CCTV
 - 375A-76..... Electrical Performance Standards for CCTV Monitors
- E. American National Standards Institute (ANSI):
 - ANSI S3.2-99..... Method for measuring the Intelligibility of Speech over Communications Systems
- ${\tt F.}$ American Society for Testing and Materials (ASTM)
 - B1-07.....Standard Specification for Hard-Drawn Copper

	B3-07Standard Specification for Soft or Annealed
	Copper Wire
	B8-04Standard Specification for Concentric-Lay-
	Stranded Copper Conductors, Hard, Medium-Hard,
	or Soft
	C1238-97 (R03)Standard Guide for Installation of Walk-Through
	Metal Detectors
	D2301-04Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical Insulating
	Tape
G.	Architectural Barriers Act (ABA), 1968
Н.	Department of Justice: American Disability Act (ADA)
	28 CFR Part 36-2010 ADA Standards for Accessible Design
I.	Department of Veterans Affairs:
	VHA National CAD Standard Application Guide, 2006
	VA BIM Guide, V1.0 10
J.	Federal Communications Commission (FCC):
	(47 CFR 15) Part 15 Limitations on the Use of Wireless
	Equipment/Systems
К.	Federal Information Processing Standards (FIPS):
	FIPS-201-1Personal Identity Verification (PIV) of Federal
	rif5-201-1 (Fiv) of redetal
	Employees and Contractors
L.	
L.	Employees and Contractors
L.	Employees and Contractors Federal Specifications (Fed. Spec.):
	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed
	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation)
	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO):
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD):
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors Institute of Electrical and Electronics Engineers (IEEE):
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors Institute of Electrical and Electronics Engineers (IEEE): 81-1983IEEE Guide for Measuring Earth Resistivity,
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors Institute of Electrical and Electronics Engineers (IEEE): 81-1983IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors Institute of Electrical and Electronics Engineers (IEEE): 81-1983IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors Institute of Electrical and Electronics Engineers (IEEE): 81-1983IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08Power over Ethernet Standard
М.	Employees and Contractors Federal Specifications (Fed. Spec.): A-A-59544-08Cable and Wire, Electrical (Power, Fixed Installation) Government Accountability Office (GAO): GAO-03-8-02Security Responsibilities for Federally Owned and Leased Facilities Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors Institute of Electrical and Electronics Engineers (IEEE): 81-1983IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard

	C95.1-05Standards for Safety Levels with Respect to
	-
	Human Exposure in Radio Frequency
	Electromagnetic Fields
Ρ.	International Organization for Standardization (ISO):
	7810Identification cards - Physical characteristics
	7811Physical Characteristics for Magnetic Stripe
	Cards
	7816-1Identification cards - Integrated circuit(s)
	cards with contacts - Part 1: Physical
	characteristics
	7816-2Identification cards - Integrated circuit cards
	- Part 2: Cards with contacts -Dimensions and
	location of the contacts
	7816-3Identification cards - Integrated circuit cards
	- Part 3: Cards with contacts - Electrical
	interface and transmission protocols
	$78164\dots\dots\dots\text{Identification cards - Integrated circuit cards}$
	- Part 11: Personal verification through
	biometric methods
	781610
	- Part 4: Organization, security and commands
	for interchange
	14443Identification cards - Contactless integrated
	circuit cards; Contactless Proximity Cards
	Operating at 13.56 MHz in up to 5 inches
	distance
	15693Identification cards Contactless integrated
	circuit cards - Vicinity cards; Contactless
	Vicinity Cards Operating at 13.56 MHz in up to
	50 inches distance
	19794Information technology - Biometric data
	interchange formats
Q.	National Electrical Contractors Association
	303-2005Installing Closed Circuit Television (CCTV)
	Systems
R.	National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
	FB1-07Fittings, Cast Metal Boxes and Conduit Bodies
	for Conduit, Electrical Metallic Tubing and
	Cable

S.	National Fire Protection Association (NFPA):
	70-2014 National Electrical Code (NEC)
	731-2015Standards for the Installation of Electric
	Premises Security Systems
	99-2015Health Care Facilities
т.	National Institute of Justice (NIJ)
	0601.02-03Standards for Walk-Through Metal Detectors for
	use in Weapons Detection
	0602.02-03Hand-Held Metal Detectors for Use in Concealed
	Weapon and Contraband Detection
U.	National Institute of Standards and Technology (NIST):
	IR 6887 V2.1Government Smart Card Interoperability
	Specification (GSC-IS)
	Special Pub 800-37Guide for Applying the Risk Management Framework
	to Federal Information Systems
	Special Pub 800-63Electronic Authentication Guideline
	Special Pub 800-73-3Interfaces for Personal Identity Verification (4
	Parts)
	Pt. 1- End Point PIV Card Application Namespace,
	Data Model & Representation
	Pt. 2- PIV Card Application Card Command
	Interface
	Pt. 3- PIV Client Application Programming
	Interface
	Pt. 4- The PIV Transitional Interfaces & Data
	Model Specification
	Special Pub 800-76-1Biometric Data Specification for Personal
	Identity Verification
	Special Pub 800-78-2Cryptographic Algorithms and Key Sizes for
	Personal Identity Verification
	Special Pub 800-79-1Guidelines for the Accreditation of Personal
	Identity Verification Card Issuers
	Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
	Special Pub 800-85A-2PIV Card Application and Middleware Interface
	Test Guidelines (SP 800-73-3 compliance)
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-104AScheme for PIV Visual Card Topography
V.	Occupational and Safety Health Administration (OSHA):
	29 CFR 1910.97Nonionizing radiation
\mathbb{W} .	Section 508 of the Rehabilitation Act of 1973
Х.	Security Industry Association (SIA):

	AG-01Security CAD Symbols Standards
Υ.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04Surface Metal Raceway and Fittings
	6-07Rigid Metal Conduit
	44-05Thermoset-Insulated Wires and Cables
	50-07Enclosures for Electrical Equipment
	83-08Thermoplastic-Insulated Wires and Cables
	294-99The Standard of Safety for Access Control System Units
	305-08Standard for Panic Hardware
	360-09Liquid-Tight Flexible Steel Conduit
	444-08Safety Communications Cables
	464-09Audible Signal Appliances
	467-07 Electrical Grounding and Bonding Equipment
	486A-03Wire Connectors and Soldering Lugs for Use with
	Copper Conductors
	486C-04Splicing Wire Connectors
	486E-00Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
	493-07Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
	514A-04Metallic Outlet Boxes
	514B-04Fittings for Cable and Conduit
	636-01Standard for Holdup Alarm Units and Systems
	797-07 Electrical Metallic Tubing
	827-08Central Station Alarm Services
	1635-10Digital Alarm Communicator System Units
	1076-95Standards for Proprietary Burglar Alarm Units and Systems
	1242-06Intermediate Metal Conduit
	1479-03Fire Tests of Through-Penetration Fire Stops
	1981-03Central Station Automation System
	60950Safety of Information Technology Equipment
	60950-1Information Technology Equipment - Safety - Part
	1: General Requirements
7	Uniform Federal Accessibility Standards (UFAS) 1984
	United States Department of Commerce:
•	Special Pub 500-101Care and Handling of Computer Magnetic Storage
	Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

C. Personnel

1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Contracting Officer Representative shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Contracting

Officer Representative shall be provided copies of system manufacturer certification for the designated service representative.

D. Schedule of Work

1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.

E. System Inspections

- 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two
 - (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.

F. Emergency Service

- 1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and non-catastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from notification.

 Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

G. Operation

 Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.

H. Records & Logs

1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.

I. Work Request

1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

J. System Modifications

1. The Contractor shall make any recommendations for system modification in writing to the Contracting Officer Representative. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the Contracting Officer Representative. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

K. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software.

All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - 1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - 2. Damaged equipment shall be, as determined by the Contracting Officer Representative, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
 - 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - 1. Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - 3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
 - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - 1. Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - 2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.
 - 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
 - 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.
 - 5. Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.

- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Contracting Officer Representative a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the Contracting Officer Representative prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.
- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for [8] <insert hours> hours of operation at actual connected load.

Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.

- 1. Emergency Generator
 - a. Report Printers: Unit Control Room
 - b. Video Monitors: Unit Control Room
 - c. Intercom Stations
 - d. Radio System
 - e. Lights: Unit Control Room, Equipment Rooms, & Security Offices
 - f. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
 - g. Security Device Power Supplies (DGP, VASS, Card Access, Lock Power, etc.) powered from the security closets or remotely: various locations
 - h. Telephone/Radio Recording Equipment: Unit Control Room.
 - i. VASS Camera Power Supplies: Security Closets
 - j. VASS Pan/Tilt Units: Various Locations
 - k. VASS Outdoor Housing Heaters and Blowers: Various Sites
 - 1. Intercom Master Control System
 - m. Fiber Optic Receivers/Transmitters
 - n. Security office Weapons Storage
 - o. Outlets that charge handheld radios
- 2. Uninterruptible Power Supply (UPS) on Emergency Power
 - a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room
 - 3) Communications equipment: Control Equipment Room and various sites.
 - 4) VASS Matrix Switcher: Control Equipment Room
 - 5) VASS: Control Equipment Room
 - 6) Digital Video Recorders, encoders & decoders: Control Room
 - 7) All equipment Room racked equipment.
 - 8) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance

with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.

- 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- 2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- 3. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
- 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.

B. Grounding and Surge Suppression

- The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, under ground-fault conditions.
- 2. Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
- 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
- 4. Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
- 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
- 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - 1. Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component

- housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
- 2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
- 3. Covers shall be flanged. Enclosures shall not have pre-punched knockouts.
- 4. Any ventilator openings in enclosures shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Tamper Provisions and Tamper Switches:
 - Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
 - 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.
 - 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the door or cover and be wired so they break the circuit when the door

cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.

- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and current-carrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The Contracting Officer Representative shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the Contracting Officer Representative stating same. In the preparation of

- a list of substitutions, the following information shall be included, as a minimum:
- 1. Identity of the material or devices specified for which there is a proposed substitution.
- 2. Description of the segment of the specification where the material or devices are referenced.
- 3. Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
- 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-by-feature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein.

 Depending on the manufacturers selected by the COTR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the Contracting Officer Representative shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The Contracting Officer Representative shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-by-point statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with

the specification. Any submission that does not include a point-by-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.

All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COTR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COTR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COTR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COTR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.21 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] <insert hours> hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - 1. Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 - 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.

3. Controlling devices shall be utilized to interface the SMS with all field devices.

B. Wires and Cables:

- 1. Shall meet or exceed the manufactures recommendation for power and signals.
- 2. Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
- 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
- 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
- 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
- 9. For all equipment that is carrying digital data between Security Equipment Room, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION

- A. Transient Voltage Surge Suppression
 - 1. All cables and conductors extending beyond building perimeter, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state

surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:

- a. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
- d. Operating Temperature and Humidity: -40 to +85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, non-condensing.
- B. Physical Access Control Systems
 - 1. Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:
 - a. UL1449 2nd Edition, 2007, listed
 - b. UL1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Light(s)
 - d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 μsec)
 - e. Maximum Continuous Current: 15 Amps
 - f. MCOV: 125 VAC
 - g. Service Voltage: 110-120 VAC
 - 2. Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. UL 497B
 - b. Minimum Surge Current Capacity: 2,000 Amps per pair
 - c. Maximum Continuous Current: 5 Amps
 - d. MCOV: 33 Volts
 - e. Service Voltage: 24Volts
 - 3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. Conforms with UL497B standards (where applicable)
 - b. Clamp level for 12 and 24V power: 18VDC / 38VDC
 - c. Clamp level for Data/LED: 6.8VDC
 - d. Service Voltage for Power: 12VDC/24VDC

- e. Service Voltage for Data/LED: <5VDC
- f. Clamp level PoE Access Power: 72V
- q. Clamp level PoE Access Data: 7.9V
- h. Service Voltage PoE Access: 48VAC 54VAC
- i. Service Voltage PoE Data: <5VDC

C. Grounding and Surge Suppression

- 1. The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground-fault conditions.
- 2. The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
- 3. Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
- 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
- 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- D. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: $73.7 \times 41.1 \times 52.1 \text{ mm}$ (2.90 x 1.62 x 2.05 in)
 - 6. Weight: 2.88 g (0.18 lbs)
 - 7. Housing: ABS

2.4 INSTALLATION KIT

A. General:

1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap

terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:

2. System Grounding:

- a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
- b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
- 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.

- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and

installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 COMMISIONIN OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Contracting Officer Representative at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for <insert hours> hours to instruct VA personnel in operation and maintenance of units.
- E. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.

B. Level of Effort for Programming

- 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the Contracting Officer Representative on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the Contracting Officer Representative for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the Contracting Officer Representative has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:
 - a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with Contracting Officer Representative for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with Contracting Officer Representative to ensure data uploading is performed without incident of loss of function or data loss.
 - b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data

as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of Contracting Officer Representative to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.

- 2. The Contractor shall identify and request from the Contracting Officer Representative, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and Contracting Officer Representative coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

	Description of Tasks						
Desc ript ion of Syst ems	Develop System Loading Sheets	Coordinat ion	Initial Set-up Configura tion	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)

SMS Setu p & Conf igur atio n	e.g., program monitorin g stations, programmi ng networks, interconn ections between CCTV, intercoms , time synchroni zation	e.g., retrieve IP addresses , naming conventio ns, standard event descripti ons, programmi ng templates , coordinat e special system needs	e.g., Load system Operating System and Applicati on software, general system configura tions	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. , prog ram moni tori ng stat ions , prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s,	e.g., check all system diagno stics (e.g., client s, panels)	Load and set-up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration
	synchroni	ynchroni zation coordinat e special system tions	convert file into jpeg	CCTV , inte rcom	multi-screen		

Elec tron ic Entr y Cont rol Syst ems	e.g., setup of device, door groups & schedule s, REX, Locks, link graphics	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics		e.g. , setu p of devi ce, door grou ps & sche dule s, REX, Lock s, link grap hics	e.g., perfor ming entry testin g to confir m correc t set- up and config uratio n	e.g., creating a door, door configuration, adding request to exit, door monitors and relays, door timers, door related events (e.g., access, access denied, forced open, held open), linkages, controlled areas, advanced door monitoring, time zones, sequence of operations
Inte rcom s Syst ems	e.g., programm ing events & call-ups	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics		e.g. , prog ramm ing even ts & call -ups	e.g., confir m operat ion, SMS event genera tion and camera call- up	e.g., setup linkages, events for activations, device troubles, land devices on graphic maps
Cons ole Moni tori ng Comp onen ts	N/A	per monitor	per monitor	per graphic map	N/A	per monito r	N/A

Submittals.

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the Contracting Officer Representative at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COTR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the Contracting Officer Representative before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the Contracting Officer Representative at the conclusion of each phase of testing and prior to Contracting Officer Representative approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the Contracting Officer Representative within seven (7) calendar days after completion of each test.
- D. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the VA Project Manager, until completion of the entire project. The results will be compared to the Acceptance Test results.
- E. Contractor's Field Testing (CFT)
 - 1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test.

 Documentation package for CFT shall include completed (fully

annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to Contracting Officer Representative approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the Contracting Officer Representative's acceptance testing procedures. The Contractor shall provide the Contracting Officer Representative with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to VA Project Manager stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

F. Performance Verification Test (PVT)

1. Test team:

- a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the Contracting Officer Representative, then the Contractor shall schedule an acceptance test to date and give the Contracting Officer Representative written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the VA Project Manager. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for

- all travel and lodging expenses incurred for out-of-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.
- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the Contracting Officer Representative or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- 4. Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the VA Project Manager prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for VA Project Manager's approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.
- 6. Partial PVT At the discretion of VA Project Manager, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.

G. Endurance Test

 The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system.
 The endurance test shall be conducted in phases as specified below.

The endurance test shall not be started until the Contracting Officer Representative notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The Contracting Officer Representative may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Contracting Officer Representative prior to acceptance of the system.

- 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the Contracting Officer Representative. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the VA Project Manager.
- 3. Phase II (Assessment):
 - a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the VA Project Manager. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the Contracting Officer Representative. The meeting shall not be scheduled earlier than five (5) business days after the Contracting Officer Representative receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the VA Project Manager will provide a written determine of either the restart date or require Phase I be repeated.

4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COTR.

5. Phase IV (Assessment):

- 1. After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COTR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
- 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COTR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COTR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the Contracting Officer Representative receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the VA Project Manager will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the VA Project Manager may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

H. Exclusions

- 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.

c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the study of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings

sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - 2. Certificates: Two weeks prior to final inspection, deliver to the Contracting Officer Representative four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - 4. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.

В.	American Society of Testing Material (ASTM):
	D2301-04Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical Insulating
	Tape
С.	Federal Specifications (Fed. Spec.):
	A-A-59544-08Cable and Wire, Electrical (Power, Fixed
	Installation)
D.	National Fire Protection Association (NFPA):
	70-2014National Electrical Code (NEC)
Ε.	Underwriters Laboratories, Inc. (UL):
	44-05Thermoset-Insulated Wires and Cables
	83-08Thermoplastic-Insulated Wires and Cables
	467-07Electrical Grounding and Bonding Equipment
	486A-03Wire Connectors and Soldering Lugs for Use with
	Copper Conductors
	486C-04Splicing Wire Connectors
	486D-05Insulated Wire Connector Systems for Underground
	Use or in Damp or Wet Locations
	486E-00Equipment Wiring Terminals for Use with Aluminum
	and/or Copper Conductors
	493-07Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
	514B-04Fittings for Cable and Conduit
	1479-03Fire Tests of Through-Penetration Fire Stops

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Support of Open Cabling: NRTL labeled for support of Category 5e and Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. J-hooks, and D-rings.
 - 3. Straps and other devices.
- B. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Back boxes for Electrical Systems."[Flexible metal conduit shall not be used.]

1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-C.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-C.2, Category 6.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG; or MPP, CMP, MPR, CMR, MP, or MPG.
 - b. Communications, Plenum Rated: Type CMP; or MPP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CM; or MPP, CMP, or MPR, complying with UL 1666.
 - d. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - e. Multipurpose, Riser Rated: Type MPR or MPP, complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6 Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.

- 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
- 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.6 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.

5. Flame Resistance: NFPA 262, Flame Test.

2.7 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, [Type THHN-THWN, in raceway] [power-limited cable, concealed in building finishes] [power-limited tray cable, in cable tray] complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.8 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG.
 - 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 - 3. Multi-conductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.9 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.10 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.

- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.11 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.12 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - 7. Do not install bruised, kinked, scored, deformed, or abraded cable.

 Do not splice cable between termination, tap, or junction points.

Remove and discard cable if damaged during installation and replace it with new cable.

8. Pulling Cable:

- a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
- c. Use ropes made of nonmetallic material for pulling feeders.
- d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Contracting Officer Representative.
- e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - 1. Splices and terminations shall be mechanically and electrically secure
 - 2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- E. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- F. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- G. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- H. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- I. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- J. Open-Cable Installation:

- Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
- 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] <Insert dimension> apart.
- 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

K. Separation from EMI Sources:

- Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
- 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
- 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
- 5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.

2. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.

C. Wiring Method:

- 1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
- 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is[not] permitted.
- 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.

- 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
- 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting

bars in connection blocks. Test cables after termination but not cross connection.

- a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- b. Link End-to-End Attenuation Tests:
 - 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation.

- - - E N D - - -

SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.
- D. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - 2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Contracting Officer Representative/VA Project Manager:
 - 1. Certification that the materials and installation are in accordance with the drawings and specifications.

2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07Standard	Specification	for	Hard-Drawn	Copper
Wire				

- B3-07.....Standard Specification for Soft or Annealed Copper Wire
- B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983......IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System
 - C2-07.....National Electrical Safety Code
- D. National Fire Protection Association (NFPA):
 - 70-2014......National Electrical Code (NEC)
 - 99-2015......Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):

44-05	.Thermoset-Insulated Wires and Cables
83-08	.Thermoplastic-Insulated Wires and Cables
467-07	.Grounding and Bonding Equipment

486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm^2 (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

C. Above Grade:

- 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
- 2. Connection to Building Steel: Exothermic-welded type connectors.
- 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
- 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
- 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.

2.3 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.

3.2 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.3 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.4 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - 1. Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - 2. Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 - 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 - 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.5 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.

3.6 GROUNDING FOR RF/EMI CONTROL

- A. Install bonding jumpers to bond all conduit, sleeves and equipment for low voltage signaling and data communications circuits. Bonding jumpers shall consist of 100 mm (4 inches) wide copper strip or two 6 mm² (10 AWG) copper conductors spaced minimum 100 mm (4 inches) apart. Use 16 mm² (6 AWG) copper where exposed and subject to damage.
- B. Comply with the following when shielded cable is used for data circuits.
 - 1. Shields shall be continuous throughout each circuit.
 - 2. Connect shield drain wires together at each circuit connection point and insulate from ground. Do not ground the shield.
 - 3. Do not connect shields from different circuits together.
 - 4. Shield shall be connected at one end only. Connect shield to signal reference at the origin of the circuit. Consult with equipment manufacturer to determine signal reference.

3.7 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 - 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any

means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

- b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
 - 2. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- F. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- G. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Contracting Officer Representative four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- H. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 FB1-07......Fittings, Cast Metal Boxes and Conduit Bodies
 for Conduit, Electrical Metallic Tubing and
 Cable
- C. National Fire Protection Association (NFPA):

	70-2014National Electrical Code (NEC)
D.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04Surface Metal Raceway and Fittings
	50-07Enclosures for Electrical Equipment
	467-07Grounding and Bonding Equipment
	514A-04Metallic Outlet Boxes
	514B-04Fittings for Cable and Conduit
	514C-02Nonmetallic Outlet Boxes, Flush-Device Boxes and
	Covers
	797-07

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- B. Flexible galvanized steel conduit: Shall Conform to UL 1.

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - 5. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- B. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.

- 2. Clamp type, with insulated throat.
- C. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- D. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - 2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- D. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- E. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall.

 Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.8 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Contracting Officer Representative prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Contracting Officer Representative as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - 7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.

- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.

B. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

C. Layout and Homeruns:

- 1. Install conduit with wiring, including homeruns, as shown.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Contracting Officer Representative.

D. Fire Alarm:

1. Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Contracting Officer Representative prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- 4. Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.

- b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
- c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors 600 volts and below:
 - a. EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - 2. Align and run conduit parallel or perpendicular to the building lines.
 - 3. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.

- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.

L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.

- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings. Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 28 08 00

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Contracting Officer Representative. The Contractor shall review and
comment on the tests prior to approval. The Contractor shall provide
the required labor, materials, and test equipment identified in the
test procedure to perform the tests. The Commissioning Agent will
witness and document the testing. The Contractor shall sign the test
reports to verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Contracting Officer Representative and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA Contracting Officer Representative after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL

COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

---- END ----

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - General

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS.
- B. This Section includes addition of a number of card reader access control doors and expansion to the existing Physical Access Control System.
- C. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors
 - b. Credential cards and readers
- D. System Architecture:
 - Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.
- E. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- F. Physical Access Control System (PACS) shall consist of:
 - 1. Existing Head-End equipment server,
 - 2. Existing networked PC-based workstations,
 - 3. Existing Physical Access Control System and Database Management Software,
 - 4. Existing Field installed controllers,
 - 5. Card readers,
 - Door locks and sensors (Electric Strikes and Request to Exit device),
 - 7. Power supplies,
 - 8. Interfaces with:
 - a. Video Surveillance and Assessment System,
 - b. Fire Protection System,
- G. Information system supporting PACS , Head-End equipment server, workstations, network switches, routers and controllers shall comply

with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems).

- H. PACS system shall support:
 - 1. Multiple credential authentication modes,
 - 2. Bidirectional communication with the reader,
 - 3. Incident response policy implementation capability; system shall have capability to automatically change access privileges for certain user groups to high security areas in case of incident/emergency.
 - 4. Visitor management,
- I. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- J. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.
- K. System Software: Based on the current VA central-station Software, workstation operating system, server operating system, and application software.
- L. Software and controllers shall be capable of matching full 56 bit FASC-N plus minimum of 32 bits of public key certificate data.
- M. Software shall have the following capabilities:
 - Multiuser multitasking to allow for independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Support authentication and enrolment;
 - a. PIV verification,
 - b. Expiration date check,
 - c. Biometric check,
 - d. Digital photo display/check,
 - e. Validate digital signatures of data objects (Objects are signed by the Trusted Authority
 - f. Private key challenge (CAK & PAK to verify private key public key pairs exist and card is not a clone)

- 3. Support CRL validation via OCSP or SCVP on a scheduled basis and automatically deny access to any revoked credential in the system.
- 4. Graphical user interface to show pull-down menus and a menu tree format that complies with interface guidelines of Microsoft Windows operating system.
- 5. System license shall be for the entire system and shall include capability for future additions that are within the indicated system size limits specified in this Section.
- 6. Operator login and access shall be utilized via integrated smart card reader and password protection.

N. Systems Networks:

1. A standalone system network shall interconnect all components of the system. This network shall include communications between a central station and any peer or subordinate workstations, local annunciation stations, portal control stations or redundant central stations.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the PACS as shown. The Contractor shall also provide certification as required.
- B. The security system will be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.

D. Product Qualifications:

- Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
- 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

E. Contractor Qualifications:

1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The

Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Contracting Officer Representative reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- a. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- b. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- F. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, Section 02 41 00, DEMOLITION, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a complete and thorough pre-installation and as-built design package in both electronic format and on paper, minimum size 48×48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.

- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a complete list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all individual security systems that are applicable to the design package that will:
 - 1). Outline all general and job specific work required within the design package.
 - 2). Provide a detailed device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - 2. Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Clearly define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
 - 3. A detailed riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1

Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.

- 4. A detailed system drawing for each applicable security system shall:
 - a. Clearly identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A detailed schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the PACS, provide the door ID, door type (e.g. wood or metal), locking mechanism (e.g. strike or electromagnetic lock) and control device (e.g. card reader).
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- F. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per Section 01 00 00, GENERAL REQUIREMENTS, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- G. General: Submittals shall be in full compliance of the Contract

 Documents. All submittals shall be provided in accordance with this

section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. Additional general provisions are as follows:

- 1. The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 DESIGN SUBMITTAL PROCEDURES, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
- 2. The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
- 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Contracting Officer Representative and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Contracting Officer Representative for approval before the initiation of work.
- 6. Contractor Review: Review submittals prior to transmittal.

 Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return non-

conforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.

- 7. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 8. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- H. FIPS 201 Compliance Certificates
 - 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Card Readers
- I. Approvals will be based on complete submission of manuals together with shop drawings.
- J. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / Security Industry Association (SIA):
 - AC-03.....Access Control: Access Control Guideline Dye

 Sublimation Printing Practices for PVC Access

 Control Cards

	TVAC-01CCTV to Access Control Standard - Message Set
	for System Integration
C.	American National Standards Institute (ANSI) / International Code
	Council (ICC):
	All7.1Standard on Accessible and Usable Buildings and
	Facilities
D.	Department of Justice American Disability Act (ADA)
	28 CFR Part 36ADA Standards for Accessible Design 2010
Ε.	Department of Veterans Affairs (VA):
	PACS-R: Physical Access Control System (PACS) Requirements
	VA Handbook 0730 Security and Law Enforcement
F.	Government Accountability Office (GAO):
	GAO-03-8-02 Security Responsibilities for Federally Owned and Leased
	Facilities
G.	National Electrical Contractors Association
	303-2005Installing Closed Circuit Television (CCTV)
	Systems
Н.	National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
I.	National Fire Protection Association (NFPA):
	70-2014 National Electrical Code
J.	Underwriters Laboratories, Inc. (UL):
	294-99The Standard of Safety for Access Control
	System Units
	305-08Standard for Panic Hardware
	639-97Standard for Intrusion-Detection Units
	752-05Standard for Bullet-Resisting Equipment
	827-08Central Station Alarm Services
	1981-03Central Station Automation System
	2058-05High Security Electronic Locks
К.	Homeland Security Presidential Directive (HSPD):
	HSPD-12Policy for a Common Identification Standard for
	Federal Employees and Contractors
L.	Federal Communications Commission (FCC):
(4)	7 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems
Μ.	Federal Information Processing Standards (FIPS):

	FIPS-201-1Personal Identity Verification (PIV) of Federal
	Employees and Contractors
N.	National Institute of Standards and Technology (NIST):
	IR 6887 V2.1Government Smart Card Interoperability
	Specification (GSC-IS)
	Special Pub 800-63Electronic Authentication Guideline
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-73-3Interfaces for Personal Identity Verification
	(4 Parts)
	Pt. 1- End Point PIV Card Application
	Namespace, Data Model & Representation
	Pt. 2- PIV Card Application Card Command
	Interface
	Pt. 3- PIV Client Application Programming
	Interface
	Pt. 4- The PIV Transitional Interfaces & Data
	Model Specification
	Special Pub 800-78-2Cryptographic Algorithms and Key Sizes for
	Personal Identity Verification
	Special Pub 800-79-1Guidelines for the Accreditation of Personal
	Identity Verification Card Issuers
	Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
	Special Pub 800-85A-2PIV Card Application and Middleware Interface
	Test Guidelines (SP 800-73-3 compliance)
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-37Guide for Applying the Risk Management
	Framework to Federal Information Systems
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-104AScheme for PIV Visual Card Topography
	Special Pub 800-116Recommendation for the Use of PIV Credentials
	in Physical Access Control Systems (PACS)
Ο.	Institute of Electrical and Electronics Engineers (IEEE):
	C62.41IEEE Recommended Practice on Surge Voltages in
	Low-Voltage AC Power Circuits
P.	International Organization for Standardization (ISO):
	7810Identification cards - Physical characteristics

7811	.Physical Characteristics for Magnetic Stripe
	Cards
7816-1	.Identification cards - Integrated circuit(s)
	cards with contacts - Part 1: Physical
	characteristics
7816-2	.Identification cards - Integrated circuit cards
	- Part 2: Cards with contacts -Dimensions and
	location of the contacts
7816-3	.Identification cards - Integrated circuit cards
	- Part 3: Cards with contacts - Electrical
	interface and transmission protocols
7816-4	.Identification cards - Integrated circuit cards
	- Part 11: Personal verification through
	biometric methods
7816-10	.Identification cards - Integrated circuit cards
	- Part 4: Organization, security and commands
	for interchange
14443	.Identification cards - Contactless integrated
	circuit cards; Contactless Proximity Cards
	Operating at 13.56 MHz in up to 5 inches
	distance
15693	.Identification cards Contactless integrated
	circuit cards - Vicinity cards; Contactless
	Vicinity Cards Operating at 13.56 MHz in up to
	50 inches distance
19794	.Information technology - Biometric data
	interchange formats

- Q. Uniform Federal Accessibility Standards (UFAS) 1984
- R. ADA Standards for Accessible Design 2010
- S. Section 508 of the Rehabilitation Act of 1973

1.6 DEFINITIONS

- A. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16-character set.
- B. Access Control List: A list of (identifier, permissions) pairs associated with a resource or an asset. As an expression of security policy, a person may perform an operation on a resource or asset if and only if the person's identifier is present in the access control list

- (explicitly or implicitly), and the permissions in the (identifier, permissions) pair include the permission to perform the requested operation.
- C. Access Control: A function or a system that restricts access to authorized persons only.
- D. API Application Programming Interface
- E. Assurance Level (or E-Authentication Assurance Level): A measure of trust or confidence in an authentication mechanism defined in OMB Memorandum M-04-04 and NIST Special Publication (SP) 800-63, in terms of four levels: [M-04-04]
 - 1. Level 1: LITTLE OR NO confidence
 - 2. Level 2: SOME confidence
 - 3. Level 3: HIGH confidence
 - 4. Level 4: VERY HIGH confidence
- F. Authentication: A process that establishes the origin of information, or determines an entity's identity. In this publication, authentication often means the performance of a PIV authentication mechanism.
- G. Authenticator: A memory, possession, or quality of a person that can serve as proof of identity, when presented to a verifier of the appropriate kind. For example, passwords, cryptographic keys, and fingerprints are authenticators.
- H. Authorization: A process that associates permission to access a resource or asset with a person and the person's identifier(s).
- I. CAC EP CAC End Point with end point PIV applet
- J. CAC NG CAC Next Generation with transitional PIV applet
- K. Card Authentication Key (CAK): A PIV authentication mechanism (or the PIV Card key of the same name) that is implemented by an asymmetric or symmetric key challenge/response protocol. The CAK is an optional mechanism defined in NIST SP 800-73. [SP800-73] NIST strongly recommends that every PIV Card contain an asymmetric CAK and corresponding certificate, and that agencies use the asymmetric CAK protocol, rather than a symmetric CAK protocol, whenever the CAK authentication mechanism is used with PACS.
- L. Central Station: A PC with software designated as the main controlling PC of the PACS. Where this term is presented with initial capital letters, this definition applies.

- M. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- N. Credential: Data assigned to an entity and used to identify that entity.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. FIPS Federal Information Processing Standards
- Q. FRAC First Responder Authentication Credential
- R. HSPD Homeland Security Presidential Directive
- S. I/O: Input/Output.
- T. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- U. IEC International Electrotechnical Commission
- V. ISO International Organization for Standardization
- W. Legacy CAC Contact only Common Access Card with v1 and v2 applets
- X. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Y. NIST: National Institute of Standards and Technology
- Z. PACS: Physical Access Control System
- AA. PC/SC: Personal Computer / Smart Card
- BB. PIV: Personal Identification Verification
- CC. PIV-I PIV Interoperable credential
- DD. PPS: Protocol and Parameters Selection
- EE. RF: Radio frequency.
- FF. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- GG. RS-485: An TIA/EIA standard for multipoint communications.
- HH. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.

- II. TPDU: Transport Protocol Data Unit
- JJ. TWIC Transportation Worker Identification Credential
- KK. UPS: Uninterruptible power supply.
- LL. Vcc: Voltage at the Common Collector
- MM. WAN: Wide area network.
- NN. WAV: The digital audio format used in Microsoft Windows.
- OO. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.
- PP. Windows: Operating system by Microsoft Corporation.
- QQ. Workstation: A PC with software that is configured for specific limited security system functions.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door
- C. Physical Access Control System shall provide access to following Security Areas:

- 1. Controlled
- D. PACS shall provide:
 - 1. One authentication factor for access to Controlled security areas
- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - 4. Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.
- G. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for physical access control. If communications to Central Station are lost, all Controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.
- H. System Network Requirements:
 - 1. Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
 - 2. Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.
 - 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.
- I. Central Station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central Station shall

- control system networks to interconnect all system components, including workstations and field-installed Controllers.
- J. Field equipment shall include Controllers, sensors, and controls.

 Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records.

 Controllers are classified as alarm-annunciation or entry-control type.
- K. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- L. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect single-and double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multibit and burst error conditions.

 Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.
- M. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.
- N. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- O. References to industry and trade association standards and codes are minimum installation requirement standards.

P. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.9 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Contracting Officer Representative a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the Contracting Officer Representative prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.10 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.11 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Physical Access Control System
 - 2. Application Software
 - 3. Surge and Tamper Protection
 - 4. Standard Workstation Hardware
 - 5. Controllers (Data Gathering Panel)
 - 6. Secondary Alarm Annunciator
 - 7. Card Readers
 - 8. Credential Cards
 - 9. System Sensors and Related Equipment
 - 10. Push Button Switches
 - 11. Interfaces
 - 12. Door and Gate Hardware interface
 - 13. RS-232 ASCII Interface
 - 14. Cables
 - 15. Transformers

2.2 APPLICATION SOFTWARE

- A. System Software: Based on 32-bit, Microsoft Windows central-station and workstation operating system and application software. Software shall have the following features:
 - 1. Multiuser multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Graphical user interface to show pull-down menus and a menu tree format.
 - 3. Capability for future additions within the indicated system size limits.
 - 4. Open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with operating system.
 - 5. Password-protected operator and smart card login and access.
- B. Application Software: Interface between the alarm annunciation and entry-control Controllers, to monitor sensors[and DTS links], operate displays, report alarms, generate reports, and help train system operators. Software shall have the following functions:
 - 1. Resides at the Central Station, workstations, and Controllers as required to perform specified functions.
 - 2. Operate and manage peripheral devices.
 - 3. Manage files for disk I/O, including creating, deleting, and copying files; and automatically maintain a directory of all files, including size and location of each sequential and random-ordered record.
 - 4. Import custom icons into graphics views to represent alarms and I/O devices.
 - 5. Globally link I/O so that any I/O can link to any other I/O within the same Location, without requiring interaction with the host PC. This operation shall be at the Controller.
 - 6. Globally code I/O links so that any access-granted event can link to any I/O with the same Location without requiring interaction with the host PC. This operation shall be at the Controller.
 - 7. Messages from PC to Controllers and Controllers to Controllers shall be on a polled network that utilizes check summing and acknowledgment of each message. Communication shall be

- automatically verified, buffered, and retransmitted if message is not acknowledged.
- 8. Selectable poll frequency and message time-out settings shall handle bandwidth and latency issues for TCP/IP, RF, and other PC-to-Controller communications methods by changing the polling frequency and the amount of time the system waits for a response.
- 9. Automatic and encrypted backups for database and history backups shall be automatically stored at [the central control PC] [a selected workstation] and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
- 10. Operator audit trail for recording and reporting all changes made to database and system software.

C. Workstation Software:

- Password levels shall be individually customized at each workstation to allow or disallow operator access to program functions for each Location.
- 2. Workstation event filtering shall allow user to define events and alarms that will be displayed at each workstation. If an alarm is unacknowledged (not handled by another workstation) for a preset amount of time, the alarm will automatically appear on the filtered workstation.

D. Controller Software:

- 1. Controllers shall operate as an autonomous intelligent processing unit. Controllers shall make decisions about physical access control, alarm monitoring, linking functions, and door locking schedules for its operation, independent of other system components. Controllers shall be part of a fully distributed processing control network. The portion of the database associated with a Controller and consisting of parameters, constraints, and the latest value or status of points connected to that Controller, shall be maintained in the Controller.
- 2. Functions: The following functions shall be fully implemented and operational within each Controller:
 - a. Monitoring inputs.
 - b. Controlling outputs.
 - c. Automatically reporting alarms to the Central Station.

- d. Reporting of sensor and output status to Central Station on request.
- e. Maintaining real time, automatically updated by the Central Station at least once a day.
- f. Communicating with the Central Station.
- g. Executing Controller resident programs.
- h. Diagnosing.
- i. Downloading and uploading data to and from the Central Station.
- 3. Controller Operations at a Location:
 - a. Location: Up to 32 Controllers connected to RS-485 communications loop. Globally operating I/O linking and antipassback functions between Controllers within the same Location without central-station or workstation intervention. Linking and anti-passback shall remain fully functional within the same Location even when the Central Station or workstations are off line.
 - b. In the event of communications failure between the Central Station and a Location, there shall be no degradation in operations at the Controllers at that Location. The Controllers at each Location shall be connected to a memory buffer with a capacity to store up to 10,000 events; there shall be no loss of transactions in system history files until the buffer overflows.
 - c. Buffered events shall be handled in a first-in-first-out mode of operation.

4. Individual Controller Operation:

- a. Controllers shall transmit alarms, status changes, and other data to the Central Station when communications circuits are operable. If communications are not available, Controllers shall function in a stand-alone mode and operational data, including the status and alarm data normally transmitted to the Central Station, shall be stored for later transmission to the Central Station. Storage capacity for the latest 1024 events shall be provided at each Controller.
- b. Card-reader ports of a Controller shall be custom configurable for at least [120] different card-reader or keypad formats. Multiple reader or keypad formats may be used simultaneously at different Controllers or within the same Controller.

- c. Controllers shall provide a response to card-readers or keypad entries in less than 0.25 seconds, regardless of system size.
- d. Controllers that are reset, or powered up from a nonpowered state, shall automatically request a parameter download and reboot to its proper working state. This shall happen without any operator intervention.
- e. Initial Startup: When Controllers are brought on-line, database parameters shall be automatically downloaded to them. After initial download is completed, only database changes shall be downloaded to each Controller.
- f. Failure Mode: On failure for any reason, Controllers shall perform an orderly shutdown and force Controller outputs to a predetermined failure mode state, consistent with the failure modes shown and the associated control device.
- g. Startup After Power Failure: After power is restored, startup software shall initiate self-test diagnostic routines, after which Controllers shall resume normal operation.
- h. Startup After Controller Failure: On failure, if the database and application software are no longer resident, Controllers shall not restart, but shall remain in the failure mode until repaired. If database and application programs are resident, Controllers shall immediately resume operation. If not, software shall be restored automatically from the Central Station.

5. Communications Monitoring:

- a. System shall monitor and report status of RS-485 communications loop [TCP/IP communication status] of each Location.
- 6. Operating systems shall include a real-time clock function that maintains seconds, minutes, hours, day, date, and month. The real-time clock shall be automatically synchronized with the Central Station at least once a day to plus or minus 10 seconds. The time synchronization shall be automatic, without operator action and without requiring system shutdown.

E. PC-to-Controller Communications:

- Central-station or workstation communications shall use the following:
 - a. Direct connection using serial ports of the PC.
 - b. TCP/IP LAN network interface cards.
 - c. Dial-up modems for connections to Locations.

- 2. Serial Port Configuration: Each serial port used for communications shall be individually configurable for "direct communications," "modem communications incoming and outgoing," or "modem communications incoming only"; or as an ASCII output port.
- 3. Multiport Communications Board: Use if more than two serial ports are needed.
 - a. Expandable and modular design. Use a 4-, 8-, or 16-serial port configuration that is expandable to 32 or 64 serial ports.
 - b. Connect the first board to an internal PCI bus adapter card.
- 4. Direct serial, TCP/IP, and dial-up communications shall be alike in the monitoring or control of system, except for the connection that must first be made to a dial-up Location.
- 5. PC-to-Controller and Controller-to-Controller communications (direct, dial-up, or TCP/IP) shall use a polled-communication protocol that checks sum and acknowledges each message. All communications shall be verified and buffered and retransmitted if not acknowledged.
- F. Direct Serial or TCP/IP PC-to-Controller Communications:
 - 1. Communication software on the PC shall supervise the PC-to-Controller communications link.
 - 2. Loss of communications to any Controller shall result in an alarm at all PCs running the communications software.
 - 3. When communications are restored, all buffered events shall automatically upload to the PC, and any database changes shall be automatically sent to the Controller.
- G. Controller-to-Controller Communications:
 - 1. Controller-to-Controller Communications: RS-485, 4-wire, point-to-point, regenerative (repeater) communications network methodology.
 - 2. RS-485 communications signal shall be regenerated at each Controller.
- H. Operator Interface:
 - 1. Inputs in system shall have two icon representations, one for the normal state and one for the abnormal state.
 - 2. When viewing and controlling inputs, displayed icons shall automatically change to the proper icon to display the current system state in real time. Icons shall also display the input's state, whether armed or bypassed, and if the input is in the armed or bypassed state due to a time zone or a manual command.

- 3. Outputs in system shall have two icon representations, one for the secure (locked) state and one for the open (unlocked) state.
- 4. Icons displaying status of the I/O points shall be constantly updated to show their current real-time condition without prompting by the operator.
- 5. The operator shall be able to scroll the list of I/Os and press the appropriate toolbar button, or right click, to command the system to perform the desired function.
- 6. Graphic maps or drawings containing inputs, outputs, and override groups shall include the following:
 - a. Database to import and store full-color maps or drawings and allow for input, output, and override group icons to be placed on maps.
 - b. Maps to provide real-time display animation and allow for control of points assigned to them.
 - c. System to allow inputs, outputs, and override groups to be placed on different maps.
 - d. Software to allow changing the order or priority in which maps will be displayed.

7. Override Groups Containing I/Os:

- a. System shall incorporate override groups that provide the operator with the status and control over user-defined "sets" of I/Os with a single icon.
- b. Icon shall change automatically to show the live summary status of points in that group.
- c. Override group icon shall provide a method to manually control or set to time zone points in the group.
- d. Override group icon shall allow the expanding of the group to show icons representing the live status for each point in the group, individual control over each point, and the ability to compress the individual icons back into one summary icon.

8. Schedule Overrides of I/Os and Override Groups:

- a. To accommodate temporary schedule changes that do not fall within the holiday parameters, the operator shall have the ability to override schedules individually for each input, output, or override group.
- b. Each schedule shall be composed of a minimum of two dates with separate times for each date.

- c. The first time and date shall be assigned the override state that the point shall advance to, when the time and date become current.
- d. The second time and date shall be assigned the state that the point shall return to, when the time and date become current.
- 9. Copy command in database shall allow for like data to be copied and then edited for specific requirements, to reduce redundant data entry.

I. Operator Access Control:

- Control operator access to system controls through [three] <Insert number> password-protected operator levels. System operators and managers with appropriate password clearances shall be able to change operator levels for operators.
- 2. Three successive attempts by an operator to execute functions beyond their defined level during a 24-hour period shall initiate a software tamper alarm.
- 3. A minimum of [32] <Insert number> passwords shall be available with the system software. System shall display the operator's name or initials in the console's first field. System shall print the operator's name or initials, action, date, and time on the system printer at login and logoff.
- 4. The password shall not be displayed or printed.
- 5. Each password shall be definable and assignable for the following:
 - a. Commands usable.
 - b. Access to system software.
 - c. Access to application software.
 - d. Individual zones that are to be accessed.
 - e. Access to database.

J. Operator Commands:

- Command Input: Plain-language words and acronyms shall allow operators to use the system without extensive training or dataprocessing backgrounds. System prompts shall be a word, a phrase, or an acronym.
- 2. Command inputs shall be acknowledged and processing shall start in not less than [1] <Insert number> second(s).
- 3. Tasks that are executed by operator's commands shall include the following:

- a. Acknowledge Alarms: Used to acknowledge that the operator has observed the alarm message.
- b. Place Zone in Access: Used to remotely disable intrusion alarm circuits emanating from a specific zone. System shall be structured so that console operator cannot disable tamper circuits.
- c. Place Zone in Secure: Used to remotely activate intrusion alarm circuits emanating from a specific zone.
- d. System Test: Allows the operator to initiate a system-wide operational test.
- e. Zone Test: Allows the operator to initiate an operational test for a specific zone.
- f. Print reports.
- g. Change Operator: Used for changing operators.
- h. Security Lighting Controls: Allows the operator to remotely turn on/off security lights.
- i. Display Graphics: Used to display any graphic displays implemented in the system. Graphic displays shall be completed within 20 seconds from time of operator command.
- j. Run system tests.
- k. Generate and format reports.
- 1. Request help with the system operation.
 - 1). Include in main menus.
 - 2). Provide unique, descriptive, context-sensitive help for selections and functions with the press of one function key.
 - 3). Provide navigation to specific topic from within the first help window.
 - 4). Help shall be accessible outside the applications program.
- m. Entry-Control Commands:
 - 1). Lock (secure) or unlock (open) each controlled entry and exit up to four times a day through time-zone programming.
 - 2). Arm or disarm each monitored input up to four times a day through time-zone programming.
 - 3). Enable or disable readers or keypads up to twice a day through time-zone programming.
 - 4). Enable or disable cards or codes up to four times per day per entry point through access-level programming.

K. Alarms:

1. System Setup:

- a. Assign manual and automatic responses to incoming point status change or alarms.
- b. Automatically respond to input with a link to other inputs, outputs, operator-response plans, unique sound with use of WAV files, and maps or images that graphically represent the point location.
- c. 60-character message field for each alarm.
- d. Operator-response-action messages shall allow message length of at least 65,000 characters, with database storage capacity of up to 32,000 messages. Setup shall assign messages to [access point] [zone] [sensor]<other alarm originating device>.
- e. Secondary messages shall be assignable by the operator for printing to provide further information and shall be editable by the operator.
- f. Allow 25 secondary messages with a field of 4 lines of 60 characters each.
- g. Store the most recent 1000 alarms for recall by the operator using the report generator.

2. Software Tamper:

- a. Annunciate a tamper alarm when unauthorized changes to system database files are attempted. Three consecutive unsuccessful attempts to log onto system shall generate a software tamper alarm.
- b. Annunciate a software tamper alarm when an operator or other individual makes three consecutive unsuccessful attempts to invoke functions beyond their authorization level.
- c. Maintain a transcript file of the last 5000 commands entered at the each Central Station to serve as an audit trail. System shall not allow write access to system transcript files by any person, regardless of their authorization level.
- d. Allow only acknowledgment of software tamper alarms.
- Read access to system transcript files shall be reserved for operators with the highest password authorization level available in system.
- 4. Animated Response Graphics: Highlight alarms with flashing icons on graphic maps; display and constantly update the current status of alarm inputs and outputs in real time through animated icons.

- 5. Multimedia Alarm Annunciation: WAV files to be associated with alarm events for audio annunciation or instructions.
- 6. Alarm Handling: Each input may be configured so that an alarm cannot be cleared unless it has returned to normal, with options of requiring the operator to enter a comment about disposition of alarm. Allow operator to silence alarm sound when alarm is acknowledged.
- 7. CCTV Alarm Interface: Allow commands to be sent to CCTV systems during alarms (or input change of state) through serial ports.
- 8. Camera Control: Provides operator ability to select and control cameras from graphic maps.
- L. Alarm Monitoring: Monitor sensors, Controllers, and DTS circuits and notify operators of an alarm condition. Display higher-priority alarms first and, within alarm priorities, display the oldest unacknowledged alarm first. Operator acknowledgment of one alarm shall not be considered acknowledgment of other alarms nor shall it inhibit reporting of subsequent alarms.
 - Displayed alarm data shall include type of alarm, location of alarm, and secondary alarm messages.
 - Printed alarm data shall include type of alarm, location of alarm, date and time (to nearest second) of occurrence, and operator responses.
 - 3. Maps shall automatically display the alarm condition for each input assigned to that map, if that option is selected for that input location.
 - 4. Alarms initiate a status of "pending" and require the following two handling steps by operators:
 - a. First Operator Step: "Acknowledged." This action shall silence sounds associated with the alarm. The alarm remains in the system "Acknowledged" but "Un-Resolved."
 - b. Second Operator Step: Operators enter the resolution or operator comment, giving the disposition of the alarm event. The alarm shall then clear.
 - 5. Each workstation shall display the total pending alarms and total unresolved alarms.
 - 6. Each alarm point shall be programmable to disallow the resolution of alarms until the alarm point has returned to its normal state.

- 7. Alarms shall transmit to Central Station in real time, except for allowing connection time for dial-up locations.
- 8. Alarms shall be displayed and managed from a minimum of four different windows.
 - a. Input Status Window: Overlay status icon with a large red blinking icon. Selecting the icon will acknowledge the alarm.
 - b. History Log Transaction Window: Display name, time, and date in red text. Selecting red text will acknowledge the alarm.
 - c. Alarm Log Transaction Window: Display name, time, and date in red. Selecting red text will acknowledge the alarm.
 - d. Graphic Map Display: Display a steady colored icon representing each alarm input location. Change icon to flashing red when the alarm occurs. Change icon from flashing red to steady red when the alarm is acknowledged.
- 9. Once an alarm is acknowledged, the operator shall be prompted to enter comments about the nature of the alarm and actions taken.

 Operator's comments may be manually entered or selected from a programmed predefined list, or a combination of both.
- 10. For locations where there are regular alarm occurrences, provide programmed comments. Selecting that comment shall clear the alarm.
- 11. The time and name of the operator who acknowledged and resolved the alarm shall be recorded in the database.
- 12. Identical alarms from same alarm point shall be acknowledged at same time the operator acknowledges the first alarm. Identical alarms shall be resolved when the first alarm is resolved.
- 13. Alarm functions shall have priority over downloading, retrieving, and updating database from workstations and Controllers.
- 14. When a reader-controlled output (relay) is opened, the corresponding alarm point shall be automatically bypassed.
- M. Monitor Display: Display text and graphic maps that include zone status integrated into the display. Colors are used for the various components and current data. Colors shall be uniform throughout the system.
 - 1. Color Code:
 - a. FLASHING RED: Alerts operator that a zone has gone into an alarm or that primary power has failed.
 - b. STEADY RED: Alerts operator that a zone is in alarm and alarm has been acknowledged.

- c. YELLOW: Advises operator that a zone is in access.
- d. GREEN: Indicates that a zone is secure and that power is on.

2. Graphics:

- a. Support 32,000 graphic display maps and allow import of maps from a minimum of 16 standard formats from another drawing or graphics program.
- b. Allow I/O to be placed on graphic maps by the drag-and-drop method.
- c. Operators shall be able to view the inputs, outputs, and the point's name by moving the mouse cursor over the point on graphic map.
- d. Inputs or outputs may be placed on multiple graphic maps. The operator shall be able to toggle to view graphic map associated with inputs or outputs.
- e. Each graphic map shall have a display-order sequence number associated with it to provide a predetermined order when toggled to different views.
- N. System test software enables operators to initiate a test of the entire system or of a particular portion of the system.
 - 1. Test Report: The results of each test shall be stored for future display or printout. The report shall document the operational status of system components.

O. Anti-Passback:

- System shall have global and local anti-passback features, selectable by Location. System shall support hard and soft antipassback.
- 2. Hard Anti-Passback: Once a credential holder is granted access through a reader with one type of designation (IN or OUT), the credential holder may not pass through that type of reader designation until the credential holder passes though a reader of opposite designation.
- 3. Soft Anti-Passback: Should a violation of the proper IN or OUT sequence occur, access shall be granted, but a unique alarm shall be transmitted to the control station, reporting the credential holder and the door involved in the violation. A separate report may be run on this event.

- 4. Timed Anti-Passback: A Controller capability that prevents an access code from being used twice at the same device (door) within a user-defined amount of time.
- 5. Provide four separate zones per Location that can operate without requiring interaction with the host PC (done at Controller). Each reader shall be assignable to one or all four anti-passback zones. In addition, each anti-passback reader can be further designated as "Hard," "Soft," or "Timed" in each of the four anti-passback zones. The four anti-passback zones shall operate independently.
- 6. The anti-passback schemes shall be definable for each individual door.
- 7. The Master Access Level shall override anti-passback.
- 8. System shall have the ability to forgive (or reset) an individual credential holder or the entire credential holder population antipassback status to a neutral status.

P. Visitor Assignment:

- Provide for and allow an operator to be restricted to only working with visitors. The visitor badging subsystem shall assign credentials and enroll visitors. Allow only access levels that have been designated as approved for visitors.
- 2. Provide an automated log of visitor name, time and doors accessed, and whom visitor contacted.
- 3. Allow a visitor designation to be assigned to a credential holder.
- 4. PACS shall be able to restrict the access levels that may be assigned to credentials that are issued to visitors.
- 5. Allow operator to recall visitors' credential holder file, once a visitor is enrolled in the system.
- 6. The operator may designate any reader as one that deactivates the credential after use at that reader. The history log shall show the return of the credential.
- 7. System shall have the ability to use the visitor designation in searches and reports. Reports shall be able to print all or any visitor activity.
- Q. Training Software: Enables operators to practice system operation including alarm acknowledgment, alarm assessment, response force deployment, and response force communications. System shall continue normal operation during training exercises and shall terminate exercises when an alarm signal is received at the console.

- R. Entry-Control Enrollment Software: Database management functions that allow operators to add, delete, and modify access data as needed.
 - 1. The enrollment station shall not have alarm response or acknowledgment functions.
 - 2. Provide multiple, password-protected access levels. Database management and modification functions shall require a higher operator access level than personnel enrollment functions.
 - 3. The program shall provide means to disable the enrollment station when it is unattended to prevent unauthorized use.
 - 4. The program shall provide a method to enter personnel identifying information into the entry-control database files through enrollment stations. In the case of personnel identity verification subsystems, this shall include biometric data. Allow entry of personnel identifying information into the system database using menu selections and data fields. The data field names shall be customized during setup to suit user and site needs. Personnel identity verification subsystems selected for use with the system shall fully support the enrollment function and shall be compatible with the entry-control database files.
 - 5. Cardholder Data: Provide 99 user-defined fields. System shall have the ability to run searches and reports using any combination of these fields. Each user-defined field shall be configurable, using any combination of the following features:
 - a. MASK: Determines a specific format that data must comply with.
 - b. REQUIRED: Operator is required to enter data into field before saving.
 - c. UNIQUE: Data entered must be unique.
 - d. DEACTIVATE DATE: Data entered will be evaluated as an additional deactivate date for all cards assigned to this cardholder.
 - e. NAME ID: Data entered will be considered a unique ID for the cardholder.
 - 6. Personnel Search Engine: A report generator with capabilities such as search by last name, first name, group, or any predetermined user-defined data field; by codes not used in definable number of days; by skills; or by seven other methods.
 - 7. Multiple Deactivate Dates for Cards: User-defined fields to be configured as additional stop dates to deactivate any cards assigned to the cardholder.

- 8. Batch card printing.
- 9. Default card data can be programmed to speed data entry for sites where most card data are similar.
- 10. Enhanced ACSII File Import Utility: Allows the importing of cardholder data and images.

2.3 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the Central Station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - 1. The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network[with dc line supervision on each of its alarm inputs].
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal[, and for conditions as described in UL 1076 for line security equipment] [by monitoring for abnormal open, grounded, or shorted conditions] using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of [5] [10] percent or more for longer than 500 ms.
 - 2). Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
 - c. Outputs: Managed by Central Station software.
 - 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.
- E. Entry-Control Controller:

- Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - 1). On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.

2. Inputs:

- a. Data from entry-control devices; use this input to change modes between access and secure.
- b. Database downloads and updates from the Central Station that include enrollment and privilege information.

3. Outputs:

- a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
- b. Grant or deny entry by sending control signals to portal-control devices[and mask intrusion alarm annunciation from sensors stimulated by authorized entries].
- c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.

- d. Door Prop Alarm: If a portal is held open for longer than [20 seconds] [time listed in a schedule], alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.
 - a. Store up to [1000] <Insert number> transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Premium, valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full 1-year warranty and a pro rata 19-year warranty. With single-stage, constant-voltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltagecurrent, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - c. Backup Power Supply Capacity: [5] [90] minutes of battery supply. Submit battery and charger calculations.
 - d. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:
 - 1). Trouble Alarm: Normal power off load assumed by battery.
 - 2). Trouble Alarm: Low battery.

3). Alarm: Power off.

2.4 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be [800]<insert number>ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface or semiflush mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
- D. Display: LED or other type of visual indicator display shall provide visual[and audible] status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, card and/or PIN, card and/or pin supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.
- J. Shall be housed in an aluminum bezel with a wide lead-in for easy card entry.

- K. Shall contain read head electronics, and a sender to encode digital door control signals.
- L. LED's shall be utilized to indicate card reader status and access status.
- M. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- N. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.
- O. Shall have a minimum of two programmable inputs and two programmable outputs.
- P. All card readers that utilize keypad controls along with a reader and shall meet the following specifications:
 - 1. Entry control keypads shall use a unique combination of alphanumeric and other symbols as an identifier. Keypads shall contain an integral alphanumeric/special symbols keyboard with symbols arranged in ascending ASCII code ordinal sequence. Communications protocol shall be compatible with the local processor.
- Q. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected. The design of the keypad display or keypad enclosure shall limit the maximum horizontal and vertical viewing angles of the keypad. The maximum horizontal viewing angle shall be plus and minus five (5) degrees or less off a vertical plane perpendicular to the plane of the face of the keypad display. The maximum vertical viewing angle shall be plus and minus 15 degrees or less off a horizontal plane perpendicular to the plane of the face of the keypad display.
 - Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
 - 2. Shall be powered from the source as designed and shall not dissipate more than 150 Watts.

- 3. Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
- 4. Shall provide a means for users to indicate a duress situation by entering a special code.

R. PIV Contact Card Reader

- Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
- 2. Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.
- 3. Programming Voltage: PIV Readers shall not generate a Programming Voltage.
- 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
- 5. Retrieval Time: Retrieval time1 for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
- 6. Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.
- 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read character TA1 of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.

S. Contactless Smart Cards and Readers

- Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
- 2. The readers shall have "flash" download capability to accommodate card format changes.

- 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
- 4. The card reader shall be contactless and meet or exceed the following technical characteristics:
 - a. Data Output Formats: FIPS 201 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 200 bits. FIPS 201 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 232 bits. All Wiegand formats or the upgradeability from Low to Medium Levels can be field configured with the use of a command card.
 - b. FIPS 201 readers shall be able to read, but not be limited to, DESfire and iCLASS cards.
 - c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1'' to 2'' (2.5 5 cm).
 - d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
 - f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.
 - g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B communication signal interfaces as defined in ISO/IEC 14443-2:2001.
 - h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
 - i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.

- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.
- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (\sim 106 kbits/s), fc/64(\sim 212 kbits/s), and configurable to allow activation/deactivation.
- Readibility Range: The reader shall not be able to read PIV card more than 10cm(4inch) from the reader

2.5 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201.
- B. Visual Card Topography shall be compliant with NIST 800-104.
- C. PIV logical credentials shall contain multiple data elements for the purpose of verifying the cardholder's identity at graduated assurance levels. These mandatory data elements shall collectively comprise the data model for PIV logical credentials, and include the following:
 - 1. CHUID
 - 2. PIN
- D. The credential card (PIV) shall be an ISO 14443 type smart card with contactless interface that operates at 13.56 MHZ.
- E. The credential card (PIV) shall be an ISO 7816 type smart card.

2.6 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - 1. Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (± 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The

motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

C. Delayed Egress (DE)

1. General:

- a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.
- 2. The delay-locking device shall include all of the following features:

a. Delay Egress Mode

1). The delayed egress device shall be a SDC 101V Series Exit

Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door.

Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

- 2). Delayed egress doors will have bond sensors.
- 3). Delayed egress activation shall also trigger CCTV call -up.

b. Fire Alarm Mode

1). Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.

c. Reset Mode

- 1). The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
- 2). The delay egress device shall automatically reset upon fire alarm system reset.
- 3). The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.
- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.
- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs

1). The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read:

EMERGENCY EXIT.

PUSH UNTIL

ALARM SOUNDS

DOOR CAN BE OPENED,

IN 30 SECONDS.

- 2). Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2

 Braille.
- 3). Signs shall meet the current ADA requirements.
- 4). In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5). The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control interface shall support extended periods of automated and/or manual lock and unlock cycles.

D. Crash Bar:

- 1. Emergency Exit with Alarm (Panic):
 - a. Entry control portals shall include panic bar emergency exit hardware as designed.

- b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
- c. The panic bar shall include a conspicuous warning sign with one (1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
- d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
- e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
- f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.

q. Normal Exit:

- 1). Entry control portals shall include panic bar non-emergency exit hardware as designed.
- 2). Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
- 3). Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
- 4). When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
- 5). The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.

E. Key Bypass:

- 1. Shall be utilized for all doors that have a mortise or rim mounted door hardware.
- 2. Each door shall be individually keyed with one master key per secured area.
- 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
- 4. All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
- 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.
- F. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - 2. Door closing force shall be adjustable to ensure adequate closing control.
 - 3. Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
 - 4. Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
 - 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
 - 6. Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards Al17.1.
 - 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.
 - d. Have push button controls for setting door close and door open positions.
 - e. Have open obstruction detection and close obstruction detection built into the unit.

- f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
- g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
- h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.

G. Door Status Indicators:

- 1. Shall monitor and report door status to the SMS.
- 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.
 - d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
 - e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2'' (5 cm).

2.7 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:
 - a. Minimum continuous current rating of 10A at 120 V ac or 5A at 240-V ac.
 - b. Contacts that will make 720 VA at 60A and that will break at 720 VA at 10A.

- 2. Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
- 3. Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
- 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.8 PORTAL CONTROL DEVICES

- A. Shall be used to assist the PACS.
- B. Such devices shall:
 - 1. Provide a means of monitoring the doors status.
 - 2. Allow for exiting a space via either a push button, request to exit, or panic/crash bar.
 - 3. Provide a means of override to the PACS via a keypad or key bypass.
 - 4. Assist door operations utilizing automatic openers and closures.
 - 5. Provide a secondary means of access to a space via a keypad.
- C. Shall be connected to and monitored by the main PACS panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall provide a secondary means of physical access control within a secure area.
- F. Push-Button Switches:
 - 1. Shall be installed at each door location on the secure side.
 - 2. Shall be momentary contact, back lighted push buttons, and stainless steel switch enclosures for each push button as shown. Buttons are to be utilized for secondary means of releasing a locking mechanism.
 - a. In an area where a push button is being utilized for remote access of the locking device then no more than two (2) buttons shall operate one door from within one secure space. Buttons will not be wired in series with one other.
 - b. In an area where locally stationed guards control entry to multiple secure points via remote switches. An interface board shall be designed and constructed for only the amount of buttons it shall house. These buttons shall be flush mounted and clearly labeled for ease of use. All buttons shall be connected to the PACS and SMS system for monitoring purposes.

c. Shall have double-break silver contacts that will make 720 VA at 60 amperes and break 720 VA at 10 amperes.

G. Entry Control Devices:

- 1. Shall be hardwired to the PACS main control panel and operated by either a card reader or a biometric device via a relay on the main control panel.
- 2. Shall be fail-safe in the event of power failure to the PACS system.
- 3. Shall operate at 24 VCD, with the exception of turnstiles and be powered by a separate power supply dedicated to the door control system. Each power supply shall be rated to operate a minimum of two doors simultaneously without error to the system or overload the power supply unit.
- 4. Shall have a diode or metal-oxide veristor (MOV) to protect the controller and power supply from reverse current surges or backcheck.
- 5. Electric Strikes/Bolts: Shall be:
 - a. Made of heavy-duty construction and tamper resistant design.
 - b. Tested to over one million cycles.
 - c. Rated for a minimum of 1000 lbs. holding strength.
 - d. Utilize an actuating solenoid for the strike/bolt. The solenoid shall move from fully open to fully closed position and back in not more than 500 milliseconds and be rated for continuous duty.
 - e. Utilize a signal switch that will indicate to the system if the strike/bolt is not engaged or is unlocked when it should be secured.
 - f. Flush mounted within the door frame.
- 6. Electric Mortise Locks: Shall be installed within the door and an electric transfer hinge shall be utilized to allow the wires to be transferred from the door frame to the lock. If utilized with a double door then the lock shall be installed inside the active leaf. Electric Mortise Locks shall:
 - a. These locks shall be provided and installed by the Division 8 "DOOR HARDWARE" Contractor.
 - b. Have integrated Request to Exit switch for new doors receiving physical access control devices.
 - c. Provide integration of the Electric Mortise Locks with the PACS for:
 - 1). Lock Power

2). Request to Exit switch.

7. Electromagnetic Locks:

- a. These locks shall be without mechanical linkage utilizing no moving parts, and securing the door to its frame solely on electromagnetic force.
- b. Shall be comprised of two pieces, the mag-lock and the door plate. The electromagnetic locks shall be surface mounted to the door frame and the door plate shall be surface mounted to the door.
- c. Ensure a diode is installed in line with the DC voltage supplying power to the unit in order to prevent back-check on the system when the electromagnetic lock is powered.
- d. Shall utilize a magnetic bonding sensor (MBS) to monitor the door status and report that status to the SMS.
- e. Electromagnetic locks shall meet the following minimum technical characteristics:

Operating Voltage		24 VDC
Current Draw		.5A
Holding Force	Swing Doors	675 kg (1500 lbs)

2.9 INTERFACES

A. CCTV System Interface

1. An RS232 [Ethernet] interface associated driver, and controller shall be provided for connection of the SMS Central Computer to the CCTV Alarm interface and switcher. The interface shall provide alarm data to the CCTV Alarm interface for automatic camera call-up. If required the Security Contractor shall be responsible for programming the command strings into the SMS Server.

B. Intercom System Interface

- 1. The CCTV call-up from intercom stations shall be through the intercom unit via RS232 [Ethernet] communications interface to the SMS system, then through the matrix switcher.
 - a. Application Software
 - 1). Provides the interface between the Alarm Annunciation System and Operator; all sensors, local processors and data links, drive displays, report alarms, and report generation.

2). Software is categorized as System Software and Application Software. System Software must consist of software to support set-up, operation, hard drive back-ups and maintenance processor. Application Software must consist of software to provide the completion of Physical Access Control System.

C. Power Supplies:

- 1. Shall be UL rated and able to adequately power (enter number) entry control devices on a continuous base without failure.
- 2. Shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ (enter amperage)A
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide up to <> Ah
OUTPUT CURRENT	[10] amp max. [@ 13.8] VDC
	[5] amp max. [@ 27.6] VDC
PRIMARY FUSE SIZE	6.3 amp (non-removable)
BATTERY FUSE SIZE	12 amp, 3AG
CHARGING CIRCUIT	Built-in standard

2.10 WIRES AND CABLES

- A. Refer to section 280513 "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY".
- B. Comply with Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- C. PVC-Jacketed, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; PVC jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- D. Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield

coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

- 1. NFPA 70, Type CMP.
- 2. Flame Resistance: NFPA 262 Flame Test.
- E. RS-485 communications require 2 twisted pairs, with a distance limitation of 4000 feet (1220 m).
- F. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
- G. Plenum-Type, RS-485 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- H. Multiconductor, Readers and Wiegand Keypads Cables: No. 22 AWG, paired and twisted multiple conductors, stranded (7x30) tinned copper conductors, semirigid PVC insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage, plus tinned copper braid shield with 65 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
 - 3. For TIA/EIA-RS-232 applications.
- I. Paired Readers and Wiegand Keypads Cables: Paired, 3 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- J. Paired Readers and Wiegand Keypads Cable: Paired, 3 pairs, twisted, No. 20 AWG, stranded (7x28) tinned copper conductors, polyethylene (polyolefin) insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded (19x34) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- K. Plenum-Type, Paired, Readers and Wiegand Keypads Cable: Paired, 3 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic

insulation, individual aluminum foil-polypropylene tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and fluorinated-ethylene-propylene jacket.

- 1. NFPA 70, Type CMP.
- 2. Flame Resistance: NFPA 262 Flame Test.
- L. Plenum-Type, Multiconductor, Readers and Keypads Cable: 6 conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinated-ethylene-propylene insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage plus tinned copper braid shield with 85 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- M. Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- N. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- O. Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- P. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- Q. Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, overall aluminum foil-polyester tape shield with No. 22 AWG, stranded (7x30) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CMR.
 - 2. Flame Resistance: UL 1666 Riser Flame Test.

- R. Plenum-Type, Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, aluminum foil-polyester tape shield (foil side out), with No. 22 AWG drain wire, 100 percent shield coverage, and plastic jacket.

 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- S. Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (7x26) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
- T. Plenum-Type, Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- U. LAN (Ethernet) Cabling: Comply with Division 28 Section "Conductors and Cables for Electronic Safety and Security."

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. For each Location, record setup of Controller features and access requirements.
 - 2. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - 3. Set up groups, linking, and list inputs and outputs for each Controller.
 - 4. Assign action message names and compose messages.
 - 5. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 - 6. Prepare and install alarm graphic maps.
 - 7. Develop user-defined fields.
 - 8. Develop screen layout formats.
 - 9. Complete system diagnostics and operation verification.

- 10. Prepare a specific plan for system testing, startup, and demonstration.
- 11. Develop acceptance test concept and, on approval, develop specifics of the test.
- 12. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- D. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- E. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end
- F. Install cables without damaging conductors, shield, or jacket.
- G. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- H. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed [250 feet (75 m)] [500 feet (150 m)] <Insert distance>.
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of [25 feet (8 m)] <Insert distance>.

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems:

1. CCTV:

- a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings. As well as all emergency exits utilizing a fixed color camera.
- b. Be able to monitor, control and record cameras on a 24 hours hasis
- c. Be programmed automatically call up a camera when an access point is but into an alarm state.

2. IDS:

- a. Be able monitor door control sensors.
- b. Be able to monitor and control the IDS on a 24 hours basis.
- c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the operator via an audible alarm.
- d. For additional PACS system requirements as they relate to the IDS, refer to Section 28 16 11, INTRUSION DETECTION SYSTEM.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.

- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.

J. Existing Equipment:

- 1. The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
- 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.

- 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. The conduit riser shall terminate in a hotdipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.

M. Card Readers:

- 1. Connect all signal inputs and outputs as shown and specified.
- 2. Terminate input signals as required.
- 3. Program and address the reader as per the design package.
- 4. Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.

N. Portal Control Devices:

- Install all signal input and output cables as well as all power cables.
- 2. Devices shall be surface or flush mounted as per the design package.
- 3. Program all devices and ensure they are working.

O. Door Status Indicators:

- 1. Install all signal input and output cables as well as all power cables.
- 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.

- 3. Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2'' (5 cm).
- P. S. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.

Q. System Start-Up:

- 1. The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
 - b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - c. System wiring has been tested and verified as correctly connected as indicated.
 - d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
- 2. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer Representative and Commissioning Agent. Provide a minimum of 7 days prior notice.

R. Supplemental Contractor Quality Control:

 The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.

- 2. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect[, test, and adjust] field-assembled components and equipment installation, including connections[, and to assist in field testing]. Report results in writing.
- B. Testing Agency: [Owner will engage] [Engage] a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - 1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.

3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements.

Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.

D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and extension of the existing Simplex 4100 system to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Contracting Officer's Representative (COR) or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.

C. Fire alarm signals:

- 1. Building 1, Area 2C (Kitchen) shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the existing main fire alarm system control unit.

1.2 SCOPE

- A. A fully addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings.
- D Basic Performance:
 - 1. Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - 2. Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
 - 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

 Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.

- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- E. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- F. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- G. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- H. Section 28 08 00, COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.

1.4 SUBMITTALS

A. General: Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Drawings:

- 1. Prepare drawings using AutoCAD Release 14 or later software and include all contractors information. Layering shall be by VA criteria as provided by the COR. Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
- 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and

number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.

- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the VA Project Manager 3 sets of as-built drawings and one set of the as-built drawing computer files using AutoCAD release 14 or later. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.

C. Manuals:

- Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.

- e. Complete listing of all digitized voice messages.
- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:

- 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the VA Project Manager.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):

NFPA 70.......National Electrical Code (NEC), 2014 edition
NFPA 72......National Fire Alarm Code, 2014 edition
NFPA 90A......Standard for the Installation of Air
Conditioning and Ventilating Systems, 2015
edition

NFPA 101.....Life Safety Code, 2015 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011

- E. American National Standards Institute (ANSI):
 - S3.41......Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model and shall be compatible with the equipment currently installed. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduits shall be 3/4 inch (19 mm) minimum.

B. Wire:

- 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
- 2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
- 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the

- submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.

C. Terminal Boxes, Junction Boxes, and Cabinets:

- 1. Shall be galvanized steel in accordance with UL requirements.
- 2. All boxes shall be sized and installed in accordance with NFPA 70.
- 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
- 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
- 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

A. General:

- 1. The existing Simplex 4100 control panel located on Level 1 in room B1077 shall be reused. Additional control and NAC power supply equipment shall be provided as required for a complete system. Furnish 120V connections to each piece of equipment. Modify the existing fire alarm control panel and programming as specified herein and as required by the removal of existing devices and the installation of the new devices.
- 2. Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.
- 4. Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control unit.
- B. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the

- field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- C. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.

D. Trouble signals:

- 1. Arrange the trouble signals for automatic reset (non-latching).
- 2. System trouble switch off and on lamps shall be visible through the control unit door.
- E. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 VOICE COMMUNICATION SYSTEM (VCS)

A. General:

- 1. An existing emergency voice communication system shall be to serve this project.
- 2. Upon receipt of an alarm signal from the building fire alarm system, the VCS shall automatically transmit a pre-recorded fire alarm message.

B. Speaker Circuit Arrangement:

- 1. Speaker circuits shall be arranged such that there is one speaker circuit per smoke zone.
- 2. Audio amplifiers and control equipment shall be electrically supervised for normal and abnormal conditions.
- 3. Speaker circuits shall be either 25 VRMS or 70.7 VRMS with a minimum of 50 percent spare power available.
- 4. Speaker circuits and control equipment shall be arranged such that loss of any one speaker circuit will not cause the loss of any other speaker circuit in the system.

2.5 ALARM NOTIFICATION APPLIANCES

A. Speakers:

- 1. Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
- 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
- 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

B. Strobes:

- 1. Xenon flash tube type minimum 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
- 2. Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
- 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.

C. Fire Alarm Horns:

- 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
- 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on conduit boxes.
- 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.6 ALARM INITIATING DEVICES

A. Manual Fire Alarm Stations:

- 1. Shall be non-breakglass, address reporting type.
- Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so

- until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.

B. Smoke Detectors:

- 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
- 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

C. Heat Detectors:

- 1. Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
- 2. Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
- 3. Install as temporary monitoring during demolition but before new system is installed throughout jobsite.

2.7 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with

- an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
- 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.

2.8 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.9 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the VA Project Manager.

2.10 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Fire alarm strobes 1
 - 2. Fire alarm speakers 1
 - 3. Smoke detectors 1
 - 4. Monitor modules 1
 - 5. Control modules 1

- B. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- C. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system on site. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.11 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched

- in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the VA Project Manager.
- G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - 1. Operate the emergency voice communication system in the buildings in alarm. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - 2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in the buildings.
 - 3. Release only the magnetic door holders in the smoke zone after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that

machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.

- C. Smoke detectors in the primary elevator lobbies of Building 1shall, in addition to the above functions, return all elevators in the bank to the secondary floor.
- D. Smoke detectors in the remaining elevator lobbies, elevator machine room, or top of hoistway shall, in addition to the above functions, return all elevators in the bank to the primary floor.
- ${\tt E.}$ Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that floor. .
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.

- 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a Contracting Officer Representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - 1. Two 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the completion of installation.
 - 2. One 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation.
 - 3. One 2-hour session to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily

- determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 DIGITIZED VOICE MESSAGES:

A. Digitized voice messages shall be provided for each smoke zone of Building 1 Area 6A. The messages shall be arranged with a 3 second alert tone, a "Code Red" message and a description of the fire alarm area (building number, floor, level and smoke zone). A sample of such a message is as follows:

Alert Tone

Code Red

Building One, Second Floor, "C" Wing

4.2 LOCATION OF VOICE MESSAGES:

Upon receipt of an alarm signal from the building fire alarm system, the voice communication system shall automatically transmit a 3 second tone alert and a pre-recorded fire alarm message throughout the building.

- - END - -

•				
	-			
		,		
	,			

