SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):A112.14.1-2003Backwater Valves
- C. American Society of Sanitary Engineering (ASSE):

1001-2008F	Performance l	Requirements	for A	Atmospl	neric	Type
\	/acuum Breal	kers				

1003-2009	Performance Requirements for Water Pressure
	Reducing Valves for Domestic Water Distribution
	Systems

- 1011-2004.....Performance Requirements for Hose Connection Vacuum Breakers
- 1013-2011.....Performance Requirements for Reduced Pressure
 Principle Backflow Preventers and Reduced Pressure
 Principle Fire Protection Backflow Preventers
- 1015-2011......Performance Requirements for Double Check
 Backflow Prevention Assemblies and Double Check
 Fire Protection Backflow Prevention Assemblies

	1017-2009	Performance Requirements for Temperature Actuated Mixing Valves for Hot Water Distribution Systems
	1020-2004	Performance Requirements for Pressure Vacuum Breaker Assembly
	1035-2008	Performance Requirements for Laboratory Faucet Backflow Preventers
	1069-2005	Performance Requirements for Automatic Temperature Control Mixing Valves
	1070-2004	Performance Requirements for Water Temperature Limiting Devices
	1071-2012	Performance Requirements for Temperature Actuated Mixing Valves for Plumbed Emergency Equipment
D.	American Society for	or Testing and Materials (ASTM):
	A126-2004(R2009)	.Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings
	A276-2013a	Standard Specification for Stainless Steel Bars and Shapes
	A536-1984(R2009)	.Standard Specification for Ductile Iron Castings
	B62-2009	Standard Specification for Composition Bronze or Ounce Metal Castings
	B584-2013	Standard Specification for Copper Alloy Sand Castings for General Applications
E.	International Code	Council (ICC):
	IPC-2012	International Plumbing Code
F.	Manufacturers Star Inc. (MSS):	dardization Society of the Valve and Fittings Industry,
	SP-25-2008	Standard Marking Systems for Valves, Fittings, Flanges and Unions
	SP-67-2011	Butterfly Valves
	SP-70-2011	Gray Iron Gate Valves, Flanged and Threaded Ends
	SP-71-2011	Gray Iron Swing Check Valves, Flanged and Threaded Ends
	SP-80-2013	Bronze Gate, Globe, Angle, and Check Valves
	SP-85-2011	Gray Iron Globe & Angle Valves, Flanged and Threaded Ends
	SP-110-2010	Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

- G. National Environmental Balancing Bureau (NEBB):
 - 7th Edition 2005......Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems
- H. NSF International (NSF):
 - 61-2012......Drinking Water System Components Health Effects 372-2011.....Drinking Water System Components Lead Content
- I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR):
 - 9th Edition......Manual of Cross-Connection Control

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - Gate Valves.
 - Check Valves.
 - 4. Globe Valves.
 - 5. Water Pressure Reducing Valves and Connections.
 - 6. Backflow Preventers.
 - Chainwheels.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 4. Piping diagrams of thermostatic mixing valves to be installed.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- Bronze valves shall be made with dezincification resistant materials.
 Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 m (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- F. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

A. Cold:

- 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
- 2. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.

2.3 CHECK VALVES

- A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.
- B. 100 mm or DN100 (4 inches) and larger:
 - Check valves shall be Class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A126, bolted bonnet, flanged ends, bronze trim.
 - 2. All check valves on the discharge side of submersible sump pumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops.

2.4 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

A. 75 mm or DN75 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The pressure reducing valve shall meet ASSE 1003. The bronze bell housing and access cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly

- shall be accessible for maintenance without having to remove the body from the line.
- B. 100 mm or DN100 (4 inches) and larger: The pressure reducing valve shall consist of a flanged cast iron body and rated to 1380 kPa (200 psig). The valve shall have a large elastomer diaphragm for sensitive response. The pressure reducing valve shall meet ASSE 1003.
- C. The regulator shall have a tap for pressure gauge.
- D. The regulator shall have a temperature rating of 100 degrees C (212 degrees F) for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9 kPa (+/- 1 psig).
- E. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
- F. Connections Valves and Strainers: Shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gage shall be installed on the inlet and outlet of the valve.

2.5 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be approved by the University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USCFCCC).
- B. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS&Y positive-seal resilient gate valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The checks and the relief valve shall be accessible for maintenance without removing the device from the line. An epoxy coated wye type strainer with flanged connections shall be installed on the inlet. Reduced pressure backflow preventers shall be installed in the following applications.
 - 1. Water make up to heating systems, cooling tower, chilled water system, generators, and similar equipment consuming water.
 - 2. Water service entrance from loop system.
- C. The pipe applied or integral atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be cast bronze. The seat disc shall be the elastomer type suited for water service. The device shall be accessible for maintenance without removing the device from the service line. The

installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Atmospheric vacuum breakers shall be installed in the following applications.

2.6 CHAINWHEELS

- A. Valve chain wheel assembly with sprocket rim brackets and chain shall be constructed according to the following:
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to ball valve stem.
 - 3. Sprocket rim with chain guides: Ductile or cast iron of type and size required for valve with zinc coating.
 - 4. Chain: Hot dipped galvanized steel of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material.
 Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.

- E. Install chain wheels on operators for ball valves NPS 100 mm or DN100 (4 inches) and larger and more than 3.6 m (12 feet) above floor. Chains shall be extended to 1524 mm (60 inches) above finished floor.
- F. Check valves shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- G. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.
 - 1. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- H. Install pressure gages on outlet of backflow preventers.
- I. Do not install bypass piping around backflow preventers.
- Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.
 - 2. Master, thermostatic, water mixing valves.
 - 3. Manifold, thermostatic, water-mixing-valve assemblies.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.

- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.5 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

END OF SECTION 22 05 23