Construct Patient Parking Garage

Kansas City VA Medical Center
4801 Linwood Blvd, Kansas City, Missouri

_

Specifications

Volume 1 of 2

100% Construction Documents Submittal
October 28, 2014
Updated January 4, 2016

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 10	Table of Contents	
00 01 15	List of Drawing Sheets	09-11
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	10-13
01 33 23	Shop Drawings, Product Data, and Samples	11-08
01 42 19	Reference Standards	09-11
01 45 29	Testing Laboratory Services	07-13
01 57 19	Temporary Environmental Controls	01-11
01 74 19	Construction Waste Management	09-13
01 81 11	Sustainable Design Requirements	02-13
01 91 00	General Commissioning Requirements	06-13
	DIVISION 02 - EXISTING CONDITIONS	
02 21 00	Site Surveys	05-13
02 41 00	Demolition	04-13
02 41 00	Demotition	04-13
	DIVISION 03 - CONCRETE	
03 30 00	Cast-in-Place Concrete	10-12
03 38 00	Post-Tensioned Concrete	1 2 12
	DIVISION 04 - MASONRY	
04 05 13	Masonry Mortaring	09-11
04 05 16	Masonry Grouting	09-11
04 20 00	Unit Masonry	05-12
	DIVISION 05 - METALS	
	32120333 00 12232	
05 12 00	Structural Steel Framing	11-12
05 31 00	Steel Decking	10-12
05 50 00	Metal Fabrications	09-11
05 51 00	Metal Stairs	09-11
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	09-11
_		
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 11 13	Bituminous Dampproofing	05-12
07 40 00	Roofing and Siding Panels	10-11

07 60 00	Flashing and Sheet Metal	12-13
07 72 00	Roof Accessories	10-11
07 92 00	Joint Sealants	12-11
07 32 00	oothe scaranes	12 11
	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-13
08 44 13	Glazed Aluminum Curtain Walls	10-11
08 71 00	Door Hardware	12-13
08 80 00	Glazing	10-12
	DIVISION 09 - FINISHES	
09 06 00	Schedule for Finishes	10-11
09 91 00	Painting	07-13
	DIVISION 10 - SPECIALTIES	
10 14 00	Signage	11-11
10 14 00	Signage	11-11
	DELITATION 11 DOUBLEWAY	
	DIVISION 11 - EQUIPMENT	
	DIVISION 12 - FURNISHINGS	
	DIVISION 12 - FORNISHINGS	
	DIVISION 13 - SPECIAL CONSTRUCTION	
	DIVIDION 13 DIRETTE CONSTRUCTION	
	DIVISION 14- CONVEYING EQUIPEMENT	
14 21 00	Electric Traction Elevators	09-11
	DIVISION 21- FIRE SUPPRESSION	
21 05 11	Common Work Results for Fire Suppression	11-09
21 12 00	Fire-Suppression Standpipes	12-05
	DIVISION 22 - PLUMBING	
00.05.11		0.4.11
22 05 11	Common Work Results for Plumbing	04-11
22 05 12 22 13 23	General Motor Requirements for Plumbing Equipment Sanitary Waste Interceptors	12-09
22 13 23	Facility Storm Drainage	12-09
22 14 00	Sump Pumps	01-11
	camp 1 ampo	01 11
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	11-10
23 05 93	Testing, Adjusting, and Balancing for HVAC	05-11
23 08 00	Commissioning of HVAC Systems	06-13
23 23 00	Refrigerant Piping	02-10
23 34 00	HVAC Fans	11-09
23 81 00	Decentralized Unitary HVAC Equipment	02-11

VOLUME TWO		
VOLIOME INO	DIVISION 25 - INTEGRATED AUTOMATION	
	DIVISION 25 - INTEGRATED AUTOMATION	
05 10 10		00 10
25 10 10	Advanced Utility Metering System	02-10
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	12-12
26 05 13	Medium-Voltage Cables	12-12
26 05 19	Low-Voltage Electrical Power Conductors and Cables	07-13
26 05 26	Grounding and Bonding for Electrical Systems	12-12
26 05 33	Raceway and Boxes for Electrical Systems	09-10
26 05 41	Underground Electrical Construction	12-12
26 05 73	Overcurrent Protective Device Coordination Study	12-12
26 08 00	Commissioning of Electrical Systems	06-13
26 09 23	Lighting Controls	09-10
26 22 00	Low-Voltage Transformers	12-12
26 24 16	Panel boards	12-12
26 27 26	Wiring Devices	12-12
26 29 11	Motor Controllers	12-12
26 29 21	Enclosed Switches and Circuit Breakers	12-12
26 36 23	Automatic Transfer Switches	12-12
26 41 00	Facility Lightning Protection	12-12
26 42 00	Cathodic Protection	12-12
26 43 13	Surge Protector Devices	12-12
26 51 00	Interior Lighting	12-12
26 56 00	Exterior Lighting	09-10
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	11-09
27 05 26	Grounding and Bonding for Communications Systems	10-06
27 05 33	Raceways and Boxes for Communications Systems	12-05
27 08 00	Commissioning of Communications Systems	06-13
27 00 00	Commissioning of Communications systems	00 13
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
	DIVIDION 20 DESCRIPTION DESCRIPTION	
28 05 00	Common Work Results for Electronic Safety and Security	09-11
28 05 13	Conductors and Cables for Electronic Safety and Security	09-11
	Security	
28 05 26	Grounding and Bonding for Electronic Safety and	09-11
	Security	
28 05 33	Raceways and Backboxes for Electronic Safety and	
	Security	
28 08 00	Commissioning of Electronic Safety and Security Systems	06-13
28 23 00	Video Surveillance	09-11
	DIVISION 31 - EARTHWORK	
31 20 00	Earthwork	10-12
31 23 23.33	Flowable Fill	10-12
31 63 26	Drilled Caissons	10-12
	DIVISION 32 - EXTERIOR IMPROVEMENTS	
32 05 23	Cement and Concrete for Exterior Improvements	05-13
00 00		

32 12 16	Asphalt Paving	10-09
32 17 23	Pavement Markings	04-10
	DIVISION 33 - UTILITIES	
33 10 00	Water Utilities	01-14
33 40 00	Storm Sewer Utilities	10-11
	DIVISION 34 - TRANSPORTATION	
	DIVISION 48 - Electrical Power Generation	

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.	<u>Title</u>
GENERAL	
GI001	COVER SHEET
GI002	LIFE SAFETY & CODE ANALYSIS
CIVIL	
C-001	GENERAL NOTES - LEGENDS - ABBREVIATIONS
C-002	SURVEY CONTROL AND MISC INFORMATION
C-003	SURVEY
C-101	DEMOLITION PLAN
C-102	SITE LAYOUT PLAN
C-103	GRADING PLAN
C-104	SITE UTILITY PLAN
C-105	STORM SEWER PLAN
C-106	WATER LINE PLAN
C-107	SWPPP PLAN
C-201	UTILITY PROFILES
C-501	SITE PLAN DETAILS
C-502	STORM SEWER DETAILS
C-503	STORM SEWER DETAILS
C-504	WATER LINE DETAILS
C-505	SWPPP DETAILS
C-701	EXISTING DRAINAGE AREA MAP
C-702	DRAINAGE AREA MAP
STRUCTURAL	
S-001	GENERAL NOTES
S-002	GENERAL NOTES
S-003	STRUCTURAL SYMBOLS & ABBREVIATIONS
S-004	CONCRETE COVER REQUIREMENTS
S-005	REINFORCING STEEL DETAILS
S-006	REINFORCING STEEL DETAILS
S-007	LOAD KEY PLANS
S-008	LOAD KEY PLANS
S-101	LEVEL 1 FOUNDATION PLAN
S-102	LEVEL 2 FRAMING PLAN
S-103	LEVEL 3 FRAMING PLAN
S-104	LEVEL 4 FRAMING PLAN
S-105 S-106	LEVEL 5 FRAMING PLAN
S-106 S-201	CANOPY PLANS AND DETAILS AXONOMETRICS
S-202	AXONOMETRICS
S-211	BUILDING SECTIONS
S-212	BUILDING SECTIONS

S-221	WALL SECTIONS
S-222	WALL SECTIONS
S-223	WALL SECTIONS
S-224	WALL SECTIONS
S-225	WALL SECTIONS
S-301	FOUNDATION & SLAB-ON-GRADE TYPICAL DETAILS
S-302	FOUNDATION & SLAB-ON-GRADE TYPICAL DETAILS
S-303	FOUNDATION & SLAB-ON-GRADE TYPICAL DETAILS
S-311	FOUNDATION DETAILS
S-312	FOUNDATION DETAILS
S-313	FOUNDATION DETAILS
S-401	FRAMING TYPICAL DETAILS-CONCRETE
S-402	FRAMING TYPICAL DETAILS-CONCRETE
S-403	FRAMING TYPICAL DETAILS-CONCRETE
S-404	FRAMING TYPICAL DETAILS-CONCRETE
S-405	FRAMING TYPICAL DETAILS
S-411	FRAMING DETAILS
S-412	FRAMING DETAILS
S-413 S-414	FRAMING DETAILS FRAMING DETAILS
S-501	COLUMN TYPICAL DETAILS
S-502	COLUMN TYPICAL DETAILS
S-611	BEAM AND GIRDER SCHEDULES
S-612	BEAM AND GIRDER SCHEDULES
S-621	COLUMN SCHEDULES
S-622	COLUMN SCHEDULES
<u>ARCHITECTURAL</u> AS101	GROUND LEVEL - FLOOR PLAN
AS101 AS102	LEVEL 2 - FLOOR PLAN
AS102 AS103	LEVEL 3 - FLOOR PLAN
AS104	LEVEL 4 - FLOOR PLAN
AS121	ROOF PLAN
AS201	EXTERIOR ELEVATIONS
AS201 AS202	EXTERIOR ELEVATIONS
AS301	BUILDING SECTIONS
AS302	BUILDING SECTIONS
AS311	WALL SECTIONS
AS311 AS312	WALL SECTIONS & DETAILS
AS401	ENLARGED FLOOR PLANS
AS401 AS402	CANOPY PLANS AND DETAILS
AS403	CANOPY SECTIONS & DETAILS
AS404	PRECAST CONCRETE ELEVATIONS
AS405 AS521	PRECAST CONCRETE ELEVATIONS
AS522	ROOF DETAILS WALKWAY CANOPY DETAILS
AS531	PRECAST CONRETE DETAILS
AS601	PARTITION TYPES & DOOR SCHEDULE + TYPES
AS611	STAIR SECTIONS & DETAILS
AS612	STAIR & ELEVATOR DETAILS
PARKING DK101	TEVET 1 DAVEMENT MADVING DIAM
PK101	LEVEL 1 PAVEMENT MARKING PLAN

00 01 15 - 2

Patient Parking Garage

Kansas City VA Medical Center Project Number: 589-370

3	
PK102	LEVEL 2 PAVEMENT MARKING PLAN
PK103	LEVEL 3 PAVEMENT MARKING PLAN
PK104	LEVEL 4 PAVEMENT MARKING PLAN
PK121	PAVEMENT MARKING DETAILS
PK201	LEVEL 1 SIGNAGE PLAN
PK202	LEVEL 2 SIGNAGE PLAN
PK203	LEVEL 3 SIGNAGE PLAN
PK204	LEVEL 4 SIGNAGE PLAN
PK220	SIGNAGE SCHEDULE
PK221	SIGN FACE DETAILS
PK222	SIGN FACE DETAILS
PK223	SIGN MOUNTING DETAILS
PK224	CLEARANCE BAR MOUNTING DETAILS
PK301	PARKING EQUIPMENT DETAIL PLAN
GENERAL MECHANICAL/ELI	ECTRICAL/PLUMBING
M-000	MEP SYMBOLS LIST
MECHANICAL	
M-101 M-103	MECHANICAL - GROUND LEVEL - FLOOR PLAN MECHANICAL - LEVEL 3 - FLOOR PLAN
M-103	MECHANICAL - LEVEL 3 - FLOOR PLAN MECHANICAL - LEVEL 4 - FLOOR PLAN
PLUMBING	MECHANICAL - LEVEL 4 - FLOOR FLAN
P-101	PLUMBING - GROUND LEVEL - FLOOR PLAN
P-102	PLUMBING - LEVEL 2 - FLOOR PLAN
P-103	PLUMBING - LEVEL 3 - FLOOR PLAN
P-104	PLUMBING - LEVEL 4 - FLOOR PLAN
P-601	PLUMBING SCHEDULES AND DETAILS
ELECTRICAL	THOUBTNO COMEDCING TIME PHINTED
DE001	ELECTRICAL DEMOLITION
E-001	ELECTRICAL SITE PLAN
E-101	ELECTRICAL - GROUND LEVEL- FLOOR PLAN
E-102	ELECTRICAL - LEVEL 2 - FLOOR PLAN
E-103	ELECTRICAL - LEVEL 3 - FLOOR PLAN
E-104	ELECTRICAL - LEVEL 4 - FLOOR PLAN
E-601	ELECTRICAL SCHEDULES & DETAILS
E-602	ELECTRICAL RISER DIAGRAM
E-603	ELECTRICAL PANEL BOARD SCHEDULES
ELECTRICAL LIGHTING	TRANSPORT OF STREET STREET STREET
EL101	LIGHTING - GROUND LEVEL - FLOOR PLAN
EL102	LIGHTING - LEVEL 2 - FLOOR PLAN
EL103	LIGHTING - LEVEL 3 - FLOOR PLAN
EL104	LIGHTING - LEVEL 4 - FLOOR PLAN

- - - E N D - - -

This page left blank intentionally.

00 01 15 - 4

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 GENERAL INTENTION	1
1.2 STATEMENT OF BID ITEM(S)	2
1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	2
1.4 CONSTRUCTION SECURITY REQUIREMENTS	2
1.5 FIRE SAFETY	5
1.6 OPERATIONS AND STORAGE AREAS	8
1.7 ALTERATIONS	11
1.8 DISPOSAL AND RETENTION	13
1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS	13
1.10 RESTORATION	15
1.11 PHYSICAL DATA	15
1.12 PROFESSIONAL SURVEYING SERVICES	16
1.13 LAYOUT OF WORK	16
1.14 AS-BUILT DRAWINGS	18
1.15 USE OF ROADWAYS	18
1.16 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	19
1.17 TEMPORARY USE OF EXISTING ELEVATORS	20
1.18 TEMPORARY USE OF NEW ELEVATORS	20
1.19 TEMPORARY TOILETS	21
1.20 AVAILABILITY AND USE OF UTILITY SERVICES	21
1.21 NEW TELEPHONE EQUIPMENT	23
1 22 TECTC	23

1.23	INSTRUCTIONS	24
1 04	CONCERNICETON CITCH	2.5
1.24	CONSTRUCTION SIGN	25
1.25	SAFETY SIGN	26
1.26	PHOTOGRAPHIC DOCUMENTATION	26
1.27	FINAL ELEVATION Digital Images	30
1.28	HISTORIC PRESERVATION	31

Patient Parking Garage 05-01-13 Kansas City VA Medical Center

Project Number: 589-370

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for a new patient parking structure located at the Kansas City VA Hospital as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. Offices of GLMV Architecture, Inc., as Architect, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the COR in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the COR.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Prior to commencing work, general contractor shall provide proof that a OSHA designated "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.

G. Training:

1. All employees of general contractor or subcontractors shall have the 10-hour or 30-hour OSHA Construction Safety course and other relevant

competency training, as determined by RE/COR with input from the facility Construction Safety Committee.

- 2. Submit training records of all such employees for approval before the start of work.
- H. VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section

1.2 STATEMENT OF BID ITEM(S)

A. Bid Item 1, Base Bid, Work includes general construction, alterations, roads, walks, grading, drainage, mechanical and electrical work, utility systems and elevators, necessary removal of existing structures, and certain other items.

Bid Item 2, Guarantee Period Services: Maintenance services for 2 elevators for 12 months.

Bid Item 3 (ALTERNATE NO. 1): All work for BID ITEM 1 and 2 except remove all Brick Veneer and Metal Panel Walls and CMU Backup Wall and replace with Pre-Cast Concrete Panels in all locations that were to receive Brick Veneer.

Bid Item 4 (ALTERNATE NO. 2): All work for BID ITEM 3 except remove one half level of the parking structure.

Bid Item 5 (ALTERNATE NO. 3): All work for BID ITEM 4 except remove one additional half level of the parking structure.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, the selected contractor is responsible for printing hard copy sets as needed. Additional sets of specifications and drawings may be available from those drawings and specifications returned by prospective bidders. All non-successful bidders are to return all documents, in all formats to the VA.
- B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from electronic documents provided by Issuing Office.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.

B. Security Procedures:

- 1. Prime Contractor is responsible for all Non-VA personnel whether employed directly by the Prime Contractor or a sub-contractor hired to perform work on project 589-370, Construct Patient Parking Garage.
 - a. All personnel hired to perform work on the project 589-370 will be scheduled by the Prime Contractor with the VA Project Manager in groups no larger than 15, for Safety and Infection Control Orientation.
 - b. Submit schedules 3 weeks in advance of need for their performance of work at the VA Medical Center. Lead-time is necessary for an adequate interval for background check, Safety Training, and Badging.
- 2. Contract personnel shall not enter the project site or perform work at the medical center without an appropriate badge issued by the VA.
- 3. Contract personnel may be subject to inspection of their personal effects when entering or leaving the project site.
- 4. For working outside the "regular hours" as defined in the contract, The Prime Contractor shall give 3-day notice to the Contracting Officer and Project Manager, to make security arrangements for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer and the Project Manager.
- 4. VA reserves the right to close down or shut down the project site and order Prime Contractor and Contract Personnel off the premises in the event of a national emergency. The Prime Contractor and Contract Personnel may return to the site only with the written approval of the Contracting Officer.

C. Key Control:

1. The General Contractor shall provide duplicate keys and lock combinations to the COR for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.

2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.

D. Document Control:

- Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
- 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).

a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.

b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.

E. Motor Vehicle Restrictions

- 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
- 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - 1. American Society for Testing and Materials (ASTM):

E84-2009.....Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

Alteration, and Demolition Operations

3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926......Safety and Health Regulations for Construction

- 4. VHA Directive 2005-007
- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to COR for review for compliance with VHA Directive 2005-007, NFPA 101 and NFPA 241. Prior to beginning work, all employees of the contractor and/or any subcontractors shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Provide documentation to the COR that all construction workers have undergone contractor's safety briefing.
- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- E. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with COR.
- F. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to COR.
- G. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- H. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.

- I. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with COR. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR.
- K. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with COR.
- L. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR. Obtain permits from COR at least 1 day in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- M. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to COR.
- N. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas, coordinate with COR.
- O. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- P. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.
- Q. If required, submit documentation to the COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.6 OPERATIONS AND STORAGE AREAS

A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.

- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for temporary buildings and storing materials shall be limited to the limits of construction described on the drawings unless otherwise determined by the COR.
- E. Construction personnel are prohibited from parking on the Medical Center property. The Contractor will need to make arrangements for parking elsewhere.
- F. Workmen are subject to rules of Medical Center applicable to their conduct.

- G. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
- H. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
- I. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. All such actions shall be coordinated with the Utility Company involved:
 - 1. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
 - J. Phasing: To insure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, COR and Contractor.
 - K. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height, around the construction area indicated on the drawings. Provide gates as required for access with necessary hardware, including hasps and padlocks. Fasten fence fabric to terminal posts with tension bands

and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade. Remove the fence when directed by COR.

- L. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.
 - 2. Contractor shall submit a request to interrupt any such services to COR, in writing, 2 weeks in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
 - 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.

5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.

- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- M. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- N. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times.
 - 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- O. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR and a representative of VA Supply Service, of areas in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both to the Contracting Officer. This report shall list by rooms and spaces:

- 1. Shall note any discrepancies between drawings and existing conditions at site.
- 2. Shall designate areas for working space, materials storage and routes of access to areas where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR and/or Supply Representative, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed,

Patient Parking Garage 05-01-13 Kansas City VA Medical Center

Project Number: 589-370

floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures above and below grade, or parts thereof, shall be disposed of as follows:
 - 1. Reserved items which are to remain property of the Government are identified by the COR as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third

Patient Parking Garage 05-01-13 Kansas City VA Medical Center

Project Number: 589-370

party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. Refer to FAR clause 52.236-7, "Permits and Responsibilities," which is included in General Conditions. A National Pollutant Discharge Elimination System (NPDES) permit is required for this project. The Contractor is considered an "operator" under the permit and has extensive responsibility for compliance with permit requirements. VA will make the permit application available at the (appropriate medical center) office. The apparent low bidder, contractor and affected subcontractors shall furnish all information and certifications that are required to comply with the permit process and permit requirements. Many of the permit requirements will be satisfied by completing construction as shown and specified. Some requirements involve the Contractor's method of operations and operations planning and the Contractor is responsible for employing best management practices. The affected activities often include, but are not limited to the following:
 - Designating areas for equipment maintenance and repair;
 - Providing waste receptacles at convenient locations and provide regular collection of wastes;
 - Locating equipment wash down areas on site, and provide appropriate control of wash-waters;
 - Providing protected storage areas for chemicals, paints, solvents, fertilizers, and other potentially toxic materials; and

- Providing adequately maintained sanitary facilities.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged.

 Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 PHYSICAL DATA

A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.

Patient Parking Garage 05-01-13 Kansas City VA Medical Center

Project Number: 589-370

 The indications of physical conditions on the drawings and in the specifications are the result of site investigations by Professional Services Industries.

(FAR 52.236-4)

- B. Subsurface conditions have been developed by core borings and test pits. Logs of subsurface exploration are shown diagrammatically on drawings.
- C. A copy of the soil report will be made available for inspection by bidders upon request to the COR at the VA Medical Center, and shall be considered part of the contract documents.
- D. Government does not guarantee that other materials will not be encountered nor that proportions, conditions or character of several materials will not vary from those indicated by explorations. Bidders are expected to examine site of work and logs of borings; and, after investigation, decide for themselves character of materials and make their bids accordingly. Upon proper application to Department of Veterans Affairs, bidders will be permitted to make subsurface explorations of their own at site.

1.12 PROFESSIONAL SURVEYING SERVICES

A registered professional land surveyor or registered civil engineer whose services are retained and paid for by the Contractor shall perform services specified herein and in other specification sections. The Contractor shall certify that the land surveyor or civil engineer is not one who is a regular employee of the Contractor, and that the land surveyor or civil engineer has no financial interest in this contract.

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them.

Patient Parking Garage 05-01-13 Kansas City VA Medical Center

Project Number: 589-370

If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

- B. Establish and plainly mark center lines for each building and such other lines and grades that are reasonably necessary to properly assure that location, orientation, and elevations established for each such structure and/or addition, roads, parking lots, are in accordance with lines and elevations shown on contract drawings.
- C. Following completion of general mass excavation and before any other permanent work is performed, establish and plainly mark (through use of appropriate batter boards or other means) sufficient additional survey control points or system of points as may be necessary to assure proper alignment, orientation, and grade of all major features of work. Survey shall include, but not be limited to, location of lines and grades of footings, exterior walls, center lines of columns in both directions, major utilities and elevations of floor slabs:
 - 1. Such additional survey control points or system of points thus established shall be checked and certified by a registered land surveyor or registered civil engineer. Furnish such certification to the COR before any work (such as footings, floor slabs, columns, walls, utilities and other major controlling features) is placed.
- D. During progress of work, and particularly as work progresses from floor to floor, Contractor shall have line grades and plumbness of all major form work checked and certified by a registered land surveyor or registered civil engineer as meeting requirements of contract drawings. Furnish such certification to the COR before any major items of concrete work are placed. In addition, Contractor shall also furnish to the COR certificates from a registered land surveyor or registered civil engineer that the following work is complete in every respect as required by contract drawings.
 - 1. Lines of each building and/or addition.
 - 2. Elevations of bottoms of footings and tops of floors of each building and/or addition.

- 3. Lines and elevations of sewers and of all outside distribution systems.
- 4. Lines of elevations of all swales and interment areas.
- 5. Lines and elevations of roads, streets and parking lots.
- E. Whenever changes from contract drawings are made in line or grading requiring certificates, record such changes on a reproducible drawing bearing the registered land surveyor or registered civil engineer seal, and forward these drawings upon completion of work to COR.
- F. Upon completion of the work, the Contractor shall furnish the COR, reproducible and electronic drawings at the scale of the contract drawings, showing the finished grade on the grid developed for constructing the work, including burial monuments and fifty foot stationing along new road centerlines. These drawings shall bear the seal of the registered land surveyor or registered civil engineer.
- G. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When

necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
- C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

1.16 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - 1. Permission to use each unit or system must be given by COR. If the equipment is not installed and maintained in accordance with the following provisions, the COR will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated.
 - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.

5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.

- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
 Boilers, pumps, feedwater heaters and auxiliary equipment must be operated as a complete system and be fully maintained by operating personnel. Boiler water must be given complete and continuous chemical treatment.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.

1.17 TEMPORARY USE OF EXISTING ELEVATORS

A. Contractor will not be allowed the use of existing elevators. Outside type hoist shall be used by Contractor for transporting materials and equipment.

1.18 TEMPORARY USE OF NEW ELEVATORS

- A. The Contractor and his personnel shall be permitted use of new elevator(s) subject to the following provisions:
 - Contractor shall make arrangements with the COR for use of elevator(s). Contractor may obtain elevator(s) for exclusive use.
 - 2. Prior to the use of elevator(s), the Contractor shall have the elevator(s) inspected and accepted by an ASME accredited, certified elevator safety inspector. The acceptance report shall be submitted to the COR.
 - 3. Submit to the COR the schedule and procedures for maintaining equipment. Indicate the day or days of the week and total hours required for maintenance. A report shall be submitted to the COR

Patient Parking Garage 05-01-13 Kansas City VA Medical Center

Project Number: 589-370

monthly indicating the type of maintenance conducted, hours used, and any repairs made to the elevator(s).

- 4. The Contractor shall be responsible for enforcing the maintenance procedures.
- 5. During temporary use of elevator(s) all repairs, equipment replacement and cost of maintenance shall be the responsibility of the Contractor.
- 6. Personnel for operating elevator(s) shall not be provided by the Department of Veterans Affairs.
- 7. Contractor shall cover and provide maximum protection of the entire elevator(s) installation.
- 8. The Contractor shall arrange for the elevator company to perform operation of the elevator(s) so that an ASME accredited, certified elevator safety inspector can evaluate the equipment. The Contractor shall be responsible for any costs of the elevator company.
- 9. All elevator(s) parts worn or damaged during temporary use shall be removed and replaced with new parts. This shall be determined by an ASME accredited certified elevator safety inspector after temporary use and before acceptance by the Government. Submit report to the COR for approval.
- 10. Elevator shall be tested as required by the testing section of the elevator(s) specifications before acceptance by the Department of Veterans Affairs.

1.19 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.20 AVAILABILITY AND USE OF UTILITY SERVICES

A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for

chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.

- B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.
 - a. Steam is available at no cost to Contractor.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - 1. Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - 1. Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.

- 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR's discretion) of use of water from Medical Center's system.
- G. Steam: Furnish steam system for testing required in various sections of specifications.
 - 1. Obtain steam for testing by connecting to the Medical Center steam distribution system. Steam is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve steam-use so none is wasted. Failure to stop leakage or other waste will be cause for revocation (at COR's discretion), of use of steam from the Medical Center's system.
- H. Fuel: Natural and LP gas and burner fuel oil required for boiler cleaning, normal initial boiler-burner setup and adjusting, and for performing the specified boiler tests will be furnished by the Government. Fuel required for prolonged boiler-burner setup, adjustments, or modifications due to improper design or operation of boiler, burner, or control devices shall be furnished by the Contractor at Contractor's expense.

1.21 NEW TELEPHONE EQUIPMENT

The contractor shall coordinate with the work of installation of telephone equipment all work is to be provided under this contract except for the actual phone (coordinate the delivery and storage of the phone with the COR) that is to be provided by the VA. This work shall be completed before the building is turned over to VA.

1.22 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.

- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.23 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All

Patient Parking Garage 05-01-13 Kansas City VA Medical Center

Project Number: 589-370

necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.24 CONSTRUCTION SIGN

- A. Provide a Construction Sign where directed by the COR. All wood members shall be of framing lumber. Cover sign frame with 0.7 mm (24 gage) galvanized sheet steel nailed securely around edges and on all bearings. Provide three 100 by 100 mm (4 inch by 4 inch) posts (or equivalent round posts) set 1200 mm (four feet) into ground. Set bottom of sign level at 900 mm (three feet) above ground and secure to posts with through bolts. Make posts full height of sign. Brace posts with 50 x 100 mm (two by four inch) material as directed.
- B. Paint all surfaces of sign and posts two coats of white gloss paint.

 Border and letters shall be of black gloss paint, except project title which shall be blue gloss paint.
- C. Maintain sign and remove it when directed by the COR.

D. Standard Detail Drawing Number SD10000-01 (Found on VA TIL) of construction sign showing required legend and other characteristics of

1.25 SAFETY SIGN

- A. Provide a Safety Sign where directed by COR. Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide two 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground.
- B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of white gloss paint. Letters and design shall be painted with gloss paint of colors noted.
- C. Maintain sign and remove it when directed by COR.

sign is made a part of this specification.

- D. Standard Detail Drawing Number SD10000-02(Found on VA TIL) of safety sign showing required legend and other characteristics of sign is made a part of this specification.
- E. Post the number of accident free days on a daily basis.

1.26 PHOTOGRAPHIC DOCUMENTATION

- A. During the construction period through completion, provide photographic documentation of construction progress and at selected milestones including electronic indexing, navigation, storage and remote access to the documentation, as per these specifications. The commercial photographer or the subcontractor used for this work shall meet the following qualifications:
 - 1. Demonstrable minimum experience of three (3) years in operation providing documentation and advanced indexing/navigation systems including a representative portfolio of construction projects of similar type, size, duration and complexity as the Project.
 - Demonstrable ability to service projects throughout North America, which shall be demonstrated by a representative portfolio of active projects of similar type, size, duration and complexity as the Project.
- B. Photographic documentation elements:

- 1. Each digital image shall be taken with a professional grade camera with minimum size of 6 megapixels (MP) capable of producing $200 \times 250 \text{mm}$ (8 x 10 inch) prints with a minimum of 2272×1704 pixels and $400 \times 500 \text{mm}$ (16 x 20 inch) prints with a minimum 2592×1944 pixels.
- 2. Indexing and navigation system shall utilize actual AUTOCAD construction drawings, making such drawings interactive on an on-line interface. For all documentation referenced herein, indexing and navigation must be organized by both time (date-stamped) and location throughout the project.
- 3. Documentation shall combine indexing and navigation system with inspection-grade digital photography designed to capture actual conditions throughout construction and at critical milestones.

 Documentation shall be accessible on-line through use of an internet connection. Documentation shall allow for secure multiple-user access, simultaneously, on-line.
- 4. Before construction, the building pad, adjacent streets, roadways, parkways, driveways, curbs, sidewalks, landscaping, adjacent utilities and adjacent structures surrounding the building pad and site shall be documented. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings. If site work or pad preparation is extensive, this documentation may be required immediately before construction and at several predetermined intervals before building work commences.
- 5. Construction progress for all trades shall be tracked at predetermined intervals, but not less than once every thirty (30) calendar days ("Progressions"). Progression documentation shall track both the exterior and interior construction of the building. Exterior Progressions shall track 360 degrees around the site and each building. Interior Progressions shall track interior improvements beginning when stud work commences and continuing until Project completion.
- 6. As-built condition of pre-slab utilities and site utilities shall be documented prior to pouring slabs, placing concrete and/or backfilling. This process shall include all underground and in-slab utilities within the building(s) envelope(s) and utility runs in the

immediate vicinity of the building(s) envelope(s). This may also include utilities enclosed in slab-on-deck in multi-story buildings. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive site utility plans.

- 7. As-built conditions of mechanical, electrical, plumbing and all other systems shall be documented post-inspection and pre-insulation, sheet rock or dry wall installation. This process shall include all finished systems located in the walls and ceilings of all buildings at the Project. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- 8. As-built conditions of exterior skin and elevations shall be documented with an increased concentration of digital photographs as directed by the COR in order to capture pre-determined focal points, such as waterproofing, window flashing, radiused steel work, architectural or Exterior Insulation and Finish Systems (EIFS) detailing. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive elevations or elevation details.
- 9. As-built finished conditions of the interior of each building including floors, ceilings and walls shall be documented at certificate of occupancy or equivalent, or just prior to occupancy, or both, as directed by the COR. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- 10. Miscellaneous events that occur during any Contractor site visit, or events captured by the Department of Veterans Affairs independently, shall be dated, labeled and inserted into a Section in the navigation structure entitled "Slideshows," allowing this information to be stored in the same "place" as the formal scope.
- 11. Customizable project-specific digital photographic documentation of other details or milestones. Indexing and navigation accomplished through interactive architectural plans.
- 12. Monthly (29 max) exterior progressions (360 degrees around the project) and slideshows (all elevations and building envelope). The

slideshows allow for the inclusion of Department of Veterans Affairs pictures, aerial photographs, and timely images which do not fit into any regular monthly photopath.

- 13. Weekly (21 Max) Site Progressions Photographic documentation capturing the project at different stages of construction. These progressions shall capture underground utilities, excavation, grading, backfill, landscaping and road construction throughout the duration of the project.
- 14. Regular (8 max) interior progressions of all walls of the entire project to begin at time of substantial framed or as directed by the COR through to completion.
- 15. Detailed Exact-Built of all Slabs for all project slab pours just prior to placing concrete or as directed by the COR.
- 16. Detailed Interior exact built overlapping photos of the entire building to include documentation of all mechanical, electrical and plumbing systems in every wall and ceiling, to be conducted after rough-ins are complete, just prior to insulation and or drywall, or as directed by COR.
- 17. Finished detailed Interior exact built overlapping photos of all walls, ceilings, and floors to be scheduled by COR prior to occupancy.
- 18. In event a greater or lesser number of images than specified above are required by the COR, adjustment in contract price will be made in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Images shall be taken by a commercial photographer and must show distinctly, at as large a scale as possible, all parts of work embraced in the picture.
- D. Coordination of photo shoots is accomplished through COR. Contractor shall also attend construction team meetings as necessary. Contractor's operations team shall provide regular updates regarding the status of the documentation, including photo shoots concluded, the availability of new Progressions or Exact-Builts viewable on-line and anticipated future shoot dates.

- E. Contractor shall provide all on-line domain/web hosting, security measures, and redundant server back-up of the documentation.
- F. Contractor shall provide technical support related to using the system or service.
- G. Upon completion of the project, final copies of the documentation (the "Permanent Record") with the indexing and navigation system embedded (and active) shall be provided in an electronic media format, typically a DVD or external hard-drive. Permanent Record shall have Building Information Modeling (BIM) interface capabilities. On-line access terminates upon delivery of the Permanent Record.

1.27 FINAL ELEVATION DIGITAL IMAGES

- A. A minimum of four (4) images of each elevation shall be taken with a minimum 6 MP camera, by a professional photographer with different settings to allow the COR to select the image to be printed. All images are provided to the RE on a CD.
- B. Photographs shall be taken upon completion, including landscaping. They shall be taken on a clear sunny day to obtain sufficient detail to show depth and to provide clear, sharp pictures. Pictures shall be 400 mm x 500 mm (16 by 20 inches), printed on regular weight paper, matte finish archival grade photographic paper and produced by a RA4 process from the digital image with a minimum 300 PPI. Identifying data shall be carried on label affixed to back of photograph without damage to photograph and shall be similar to that provided for final construction photographs.
- C. Furnish six (6) 400 mm x 500 mm (16 by 20 inch) color prints of the following buildings constructed under this project (elevations as selected by the COR from the images taken above). Photographs shall be artistically composed showing full front elevations. All images shall become property of the Government. Each of the selected six prints shall be place in a frame with a minimum of 2 inches of appropriate matting as a border. Provide a selection of a minimum of 3 different frames from which the COR will select one style to frame all six prints. Photographs with frames shall be delivered to the COR in boxes suitable for shipping.

1.28 HISTORIC PRESERVATION

Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up.

- - - E N D - - -

This page has been intentionally left blank.

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and SPECIAL NOTES (VAAR 852.236-91) in GENERAL CONDITIONS.
- 1-2. For the purposes of this Contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval all of the items specifically mentioned under the separate Sections of the Specification, with information sufficient to evidence full compliance with Contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4 Contractor shall arrange and pay for a submittal website. Use a provider with a proven system acceptable to the COR such as "The Submittal Exchange"
 - (http://www.submittalexchange.com/public/default.aspx) or approved similar website provider as the vehicle for all submittals. will be in PDF format and uploaded to the website. The website will automatically notify those parties responsible for submittal review and will provide a Schedule of Submittals to track the review process.
- 1-5 The website provider will create a schedule of submittals to be reviewed and accepted by the COR and architect prior to beginning of submissions. The website provider will also conduct online training for all users of the system
- 1-7 Upload submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of Contract-required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending Contract time for completion.

- 1-8. Submittals will be reviewed for compliance with Contract requirements by Architect-Engineer, and action thereon will be taken by COR on behalf of the Contracting Officer.
- 1-9. Assign a file number to each submittal, coordinated with the numbering provided in the submittal schedule. Contractor, in all correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-10. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this Contract. If additional submittals beyond those required by the Contract are furnished pursuant to request therefor by COR, adjustment in Contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.
- 1-11. Schedules called for in Specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect-Engineer assume no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-12. Submittals must be submitted by Contractor only and shipped prepaid.

 Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples required by, specifications and drawings, in quadruplicate. Samples shall be logged into the website and then sent via ground conveyance to the COR. Submit other samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in PDF format to the submittal website.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Include the transmittal letter in the PDF file that is uploaded to the website. Include a list of items, name of Medical Center, name of Contractor, Contract number, applicable Specification paragraph numbers, applicable Drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by Specifications for particular item being furnished. In addition,

catalogs shall be marked to indicate specific items submitted for approval.

- 1. A copy of letter must be included with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
- 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, Contract number and ASTM or Federal Specification Number as applicable and location(s) on Project.
- Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate Sections of the Specification) shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.
 - 1. Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with Specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
 - 2. Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
 - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
 - 4. Laboratory test reports shall be sent directly to COR for appropriate action.
 - 5. Laboratory reports shall list Contract Specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets Specification requirements, the laboratory shall so certify on test report.
 - 6. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.

- D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- E. Approved samples will be kept on file by the COR at the site until completion of Contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical Sections of Specifications, approved samples in good condition may be used in their proper locations in Contract work. At completion of Contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the Contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of Contract.
- F. Submittal drawings (shop, erection or setting drawings) and schedules required for work of various trades shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with Contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon proper descriptive title, including Medical Center location, Project number, manufacturer's number, reference to Contract Drawing number, detail Section Number, and Specification Section Number.
 - 4. A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-13. Samples (except laboratory samples) for approval shall be sent to Architect-Engineer, in care of COR, VA Medical Center,

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

- 1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)
 - A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
 - B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

Kansas City VA, Medical Center

Project Number: 589-370

AABC Associated Air Balance Council

http://www.aabchq.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AAN American Nursery and Landscape Association

http://www.anla.org

AASHTO American Association of State Highway and Transportation Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America

http://www.agc.org

AGMA American Gear Manufacturers Association, Inc.

http://www.agma.org

AHAM Association of Home Appliance Manufacturers

http://www.aham.org

AISC American Institute of Steel Construction

http://www.aisc.org

AISI American Iron and Steel Institute

http://www.steel.org

AITC American Institute of Timber Construction

http://www.aitc-glulam.org

AMCA Air Movement and Control Association, Inc.

http://www.amca.org

ANLA American Nursery & Landscape Association

http://www.anla.org

ANSI American National Standards Institute, Inc.

http://www.ansi.org

Kansas City VA, Medical Center

Project Number: 589-370

APA The Engineered Wood Association

http://www.apawood.org

ARI Air-Conditioning and Refrigeration Institute

http://www.ari.org

ASAE American Society of Agricultural Engineers

http://www.asae.org

ASCE American Society of Civil Engineers

http://www.asce.org

ASHRAE American Society of Heating, Refrigerating, and

Air-Conditioning Engineers

http://www.ashrae.org

ASME American Society of Mechanical Engineers

http://www.asme.org

ASSE American Society of Sanitary Engineering

http://www.asse-plumbing.org

ASTM American Society for Testing and Materials

http://www.astm.org

AWI Architectural Woodwork Institute

http://www.awinet.org

AWS American Welding Society

http://www.aws.org

AWWA American Water Works Association

http://www.awwa.org

BHMA Builders Hardware Manufacturers Association

http://www.buildershardware.com

BIA Brick Institute of America

http://www.bia.org

CAGI Compressed Air and Gas Institute

http://www.cagi.org

CGA Compressed Gas Association, Inc.

http://www.cganet.com

CI The Chlorine Institute, Inc.

http://www.chlorineinstitute.org

CISCA Ceilings and Interior Systems Construction Association

http://www.cisca.org

CISPI Cast Iron Soil Pipe Institute

http://www.cispi.org

CLFMI Chain Link Fence Manufacturers Institute

http://www.chainlinkinfo.org

Kansas City VA, Medical Center

Project Number: 589-370

CPMB Concrete Plant Manufacturers Bureau

http://www.cpmb.org

CRA California Redwood Association

http://www.calredwood.org

CRSI Concrete Reinforcing Steel Institute

http://www.crsi.org

CTI Cooling Technology Institute

http://www.cti.org

DHI Door and Hardware Institute

http://www.dhi.org

EGSA Electrical Generating Systems Association

http://www.egsa.org

EEI Edison Electric Institute

http://www.eei.org

EPA Environmental Protection Agency

http://www.epa.gov

ETL Testing Laboratories, Inc.

http://www.et1.com

FAA Federal Aviation Administration

http://www.faa.gov

FCC Federal Communications Commission

http://www.fcc.gov

FPS The Forest Products Society

http://www.forestprod.org

GANA Glass Association of North America

http://www.cssinfo.com/info/gana.html/

FM Factory Mutual Insurance

http://www.fmglobal.com

GA Gypsum Association

http://www.gypsum.org

GSA General Services Administration

http://www.gsa.gov

HI Hydraulic Institute

http://www.pumps.org

HPVA Hardwood Plywood & Veneer Association

http://www.hpva.org

ICBO International Conference of Building Officials

http://www.icbo.org

ICEA Insulated Cable Engineers Association Inc.

http://www.icea.net

Kansas City VA, Medical Center

Project Number: 589-370

ICAC Institute of Clean Air Companies

http://www.icac.com

IEEE Institute of Electrical and Electronics Engineers

http://www.ieee.org\

IMSA International Municipal Signal Association

http://www.imsasafety.org

IPCEA Insulated Power Cable Engineers Association

NBMA Metal Buildings Manufacturers Association

http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings

Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers

http://www.naamm.org

NAPHCC Plumbing-Heating-Cooling Contractors Association

http://www.phccweb.org.org

NBS National Bureau of Standards

See - NIST

NBBPVI National Board of Boiler and Pressure Vessel Inspectors

http://www.nationboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association

http://www.nema.org

NFPA National Fire Protection Association

http://www.nfpa.org

NHLA National Hardwood Lumber Association

http://www.natlhardwood.org

NIH National Institute of Health

http://www.nih.gov

NIST National Institute of Standards and Technology

http://www.nist.gov

NLMA Northeastern Lumber Manufacturers Association, Inc.

http://www.nelma.org

NPA National Particleboard Association

18928 Premiere Court Gaithersburg, MD 20879

(301) 670-0604

NSF National Sanitation Foundation

http://www.nsf.org

Kansas City VA, Medical Center

Project Number: 589-370

NWWDA Window and Door Manufacturers Association

http://www.nwwda.org

OSHA Occupational Safety and Health Administration

Department of Labor http://www.osha.gov

PCA Portland Cement Association

http://www.portcement.org

PCI Precast Prestressed Concrete Institute

http://www.pci.org

PPI The Plastic Pipe Institute

http://www.plasticpipe.org

PEI Porcelain Enamel Institute, Inc.

http://www.porcelainenamel.com

PTI Post-Tensioning Institute

http://www.post-tensioning.org

RFCI The Resilient Floor Covering Institute

http://www.rfci.com

RIS Redwood Inspection Service

See - CRA

RMA Rubber Manufacturers Association, Inc.

http://www.rma.org

SCMA Southern Cypress Manufacturers Association

http://www.cypressinfo.org

SDI Steel Door Institute

http://www.steeldoor.org

IGMA Insulating Glass Manufacturers Alliance

http://www.igmaonline.org

SJI Steel Joist Institute

http://www.steeljoist.org

SMACNA Sheet Metal and Air-Conditioning Contractors

National Association, Inc.

http://www.smacna.org

SSPC The Society for Protective Coatings

http://www.sspc.org

STI Steel Tank Institute

http://www.steeltank.com

SWI Steel Window Institute

http://www.steelwindows.com

TCA Tile Council of America, Inc.

http://www.tileusa.com

Patient Parking Garage Kansas City VA, Medical Center

Project Number: 589-370

TEMA Tubular Exchange Manufacturers Association

http://www.tema.org

TPI Truss Plate Institute, Inc.

583 D'Onofrio Drive; Suite 200

Madison, WI 53719

(608) 833-5900

UBC The Uniform Building Code

See ICBO

UL Underwriters' Laboratories Incorporated

http://www.ul.com

ULC Underwriters' Laboratories of Canada

http://www.ulc.ca

WCLIB West Coast Lumber Inspection Bureau

6980 SW Varns Road, P.O. Box 23145

Portland, OR 97223

(503) 639-0651

WRCLA Western Red Cedar Lumber Association

P.O. Box 120786

New Brighton, MN 55112

(612) 633-4334

WWPA Western Wood Products Association

http://www.wwpa.org

- - - E N D - - -

This page left blank intentionally.

SECTION 01 45 29

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by Department of Veterans.

TESTING LABORATORY SERVICES

1.2 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A325-10Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength A370-12Standard Test Methods and Definitions for Mechanical Testing of Steel Products A416/A416M-10Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete A490-12Standard Specification for Heat Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength C31/C31M-10Standard Practice for Making and Curing Concrete Test Specimens in the Field C33/C33M-11aStandard Specification for Concrete Aggregates C39/C39M-12Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens C109/C109M-11bStandard Test Method for Compressive Strength of Hydraulic Cement Mortars C136-06Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates C138/C138M-10bStandard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete

C140-12Standard Test Methods for Sampling and Testing

Concrete Masonry Units and Related Units

Project Number:	589-370
-----------------	---------

C143/C143M-10aStandard Test Method for Slump of Hydraulic
Cement Concrete
C172/C172M-10Standard Practice for Sampling Freshly Mixed
Concrete
C173/C173M-10bStandard Test Method for Air Content of freshly
Mixed Concrete by the Volumetric Method
C330/C330M-09Standard Specification for Lightweight
Aggregates for Structural Concrete
C567/C567M-11Standard Test Method for Density Structural
Lightweight Concrete
C780-11Standard Test Method for Pre-construction and
Construction Evaluation of Mortars for Plain
and Reinforced Unit Masonry
C1019-11Standard Test Method for Sampling and Testing
Grout
C1064/C1064M-11Standard Test Method for Temperature of Freshly
Mixed Portland Cement Concrete
C1077-11cStandard Practice for Agencies Testing Concrete
and Concrete Aggregates for Use in Construction
and Criteria for Testing Agency Evaluation
C1314-11aStandard Test Method for Compressive Strength
of Masonry Prisms
D422-63(2007)Standard Test Method for Particle-Size Analysis
of Soils
D698-07elStandard Test Methods for Laboratory Compaction
Characteristics of Soil Using Standard Effort
D1140-00(2006)Standard Test Methods for Amount of Material in
Soils Finer than No. 200 Sieve
D1143/D1143M-07e1Standard Test Methods for Deep Foundations
Under Static Axial Compressive Load
D1188-07elStandard Test Method for Bulk Specific Gravity
and Density of Compacted Bituminous Mixtures
Using Coated Samples
D1556-07Standard Test Method for Density and Unit
Weight of Soil in Place by the Sand-Cone Method

Project	Number:	58	9-	370	
---------	---------	----	----	-----	--

D1557-09	Standard Test Methods for Laboratory Compaction
	Characteristics of Soil Using Modified Effort
	(56,000ft lbf/ft3 (2,700 KNm/m3))
D2166-06	Standard Test Method for Unconfined Compressive
	Strength of Cohesive Soil
D2167-08)	Standard Test Method for Density and Unit
	Weight of Soil in Place by the Rubber Balloon
	Method
D2216-10	Standard Test Methods for Laboratory
	Determination of Water (Moisture) Content of
	Soil and Rock by Mass
D2974-07a	Standard Test Methods for Moisture, Ash, and
	Organic Matter of Peat and Other Organic Soils
D3666-11	Standard Specification for Minimum Requirements
	for Agencies Testing and Inspecting Road and
	Paving Materials
D3740-11	Standard Practice for Minimum Requirements for
	Agencies Engaged in Testing and/or Inspection
	of Soil and Rock as used in Engineering Design
	and Construction
D6938-10	Standard Test Method for In-Place Density and
	Water Content of Soil and Soil-Aggregate by
	Nuclear Methods (Shallow Depth)
E94-04(2010)	Standard Guide for Radiographic Examination
E164-08	Standard Practice for Contact Ultrasonic
	Testing of Weldments
E329-11c	Standard Specification for Agencies Engaged in
	Construction Inspection, Testing, or Special
	Inspection
E543-09	Standard Specification for Agencies Performing
	Non-Destructive Testing
E605-93(R2011)	Standard Test Methods for Thickness and Density
	of Sprayed Fire Resistive Material (SFRM)
	Applied to Structural Members
E709-08	Standard Guide for Magnetic Particle
	Examination

E1155-96(R2008)Determining FF Floor Flatness and FL Floor
Levelness Numbers

C. American Welding Society (AWS):

D1.D1.1M-10Structural Welding Code-Steel

1.3 REQUIREMENTS:

- A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications.

 Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office."
- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by the Engineer of Record. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of Engineer to such failure.
- C. Qualifications for Post-Tensioning Inspector The technician for the Testing Laboratory performing the field inspections required for post-tensioned concrete shall possess a currently valid Level 2 Post-Tensioning Inspector Certification issued by the Post-Tensioning Institute. A copy of such certification for each such technician shall be submitted for Engineer review and approval.
- D. Written Reports: Testing laboratory shall submit test reports to Engineer, Contractor, unless other arrangements are agreed to in writing by the Engineer. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- E. Discrepancy Log: The special inspector shall create and maintain a log of all discrepancies throughout the duration of the Project. This log shall include, but is not limited to, discrepancy date, description of discrepancy, drawing and/or detail reference, description of as-built condition, description of any remedial work performed, and status of

Project Number: 589-370

discrepancy. This log shall be submitted to the Architect/Engineer on a periodic basis for review and comment.

- F. The special inspector shall submit to the Architect/Engineer a final signed report stating whether the work requiring special inspection was, to the best of the inspector's knowledge, in conformance to the approved plans and specifications and the applicable workmanship provisions of the building code.
- G. Verbal Reports: Give verbal notification to Engineer immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EARTHWORK:

- A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following:
 - 1. Observe fill and subgrades during proof-rolling to evaluate suitability of surface material to receive fill or base course. Provide recommendations to the Engineer regarding suitability or unsuitability of areas where proof-rolling was observed. Where unsuitable results are observed, witness excavation of unsuitable material and recommend to Engineer extent of removal and replacement of unsuitable materials and observe proof-rolling of replaced areas until satisfactory results are obtained.
 - 2. Provide full time observation of fill placement and compaction and field density testing in building areas and provide full time observation of fill placement and compaction and field density testing in pavement areas to verify that earthwork compaction obtained is in accordance with contract documents.
 - 3. Provide supervised geotechnical technician to inspect excavation, subsurface preparation, and backfill for structural fill.

B. Testing Compaction:

 Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used, in compliance with ASTM D698 and/or ASTM D1557.

> 2. Make field density tests in accordance with the primary testing method following ASTM D6938 wherever possible. Field density tests utilizing ASTM D1556 or ASTM D2167 shall be utilized on a case by case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative methods, they should provide satisfactory explanation to the Engineer before the tests are conducted.

- a. Building Slab Subgrade: At least one test of subgrade for every $185~\text{m}^2$ (2000 square feet) of building slab, but in no case fewer than three tests. In each compacted fill layer, perform one test for every $185~\text{m}^2$ (2000 square feet) of overlaying building slab, but in no case fewer than three tests.
- b. Foundation Wall Backfill: One test per 30 m (100 feet) of each layer of compacted fill but in no case fewer than two tests.
- c. Pavement Subgrade: One test for each $335\ m^2$ (400 square yards), but in no case fewer than two tests.
- d. Curb, Gutter, and Sidewalk: One test for each 90 m (300 feet), but in no case fewer than two tests.
- e. Trenches: One test at maximum 30 m (100 foot) intervals per 1200 mm (4 foot) of vertical lift and at changes in required density, but in no case fewer than two tests.
- f. Footing Subgrade: At least one test for each layer of soil on which footings will be placed. Subsequent verification and approval of each footing subgrade may be based on a visual comparison of each subgrade with related tested subgrade when acceptable to Engineer. In each compacted fill layer below wall footings, perform one field density test for every 30 m (100 feet) of wall. Verify subgrade is level, all loose or disturbed soils have been removed, and correlate actual soil conditions observed with those indicated by test borings.
- C. Fill and Backfill Material Gradation: One test per 2500 cubic yards stockpiled or in-place source material. Gradation of fill and backfill material shall be determined in accordance with ASTM C136.
- D. Testing for Footing Bearing Capacity: Evaluate if suitable bearing capacity material is encountered in footing subgrade.

E. Testing Materials: Test suitability of on-site and off-site borrow as directed by Engineer.

3.3 FOUNDATION CAISSONS:

- A. Concrete Testing: Test concrete including materials for concrete as required in Article, CONCRETE of this section, except make a minimum of two test cylinders for each day's placement of concrete.
- B. Maintain a record of concrete used in each caisson. Compare records with calculated volumes.
- C. Inspect percussion hole in bottom of each caisson to determine that material is capable of supporting design load.
- D. Inspect sides and bottom of each caisson for compliance with contract documents.
- E. Submit a certified "Caisson Field Record" for each caisson, recording actual elevation at bottom of shaft; final center line location of top; variation of shaft from plumb; results of all tests performed; actual allowable bearing capacity of bottom; depth of socket into rock; levelness of bottom; seepage of water; still water level (if allowed to flood); variation of shaft (from dimensions shown); location and size of reinforcement, and evidence of seams, voids, or channels below the bottom. Verify the actual bearing capacity of the rock strata by the use of a calibrated penetrometer or other acceptable method.
- F. Caissons Bearing on Hardpan: Take undisturbed samples, suitable for tests required, from caisson bottom. Make auger probe to a depth of 2.5 meters (8 feet) below bottom and visually inspect and classify soil. Verify continuity of strata and thickness.
 - 1. Conduct the following test on each sample, and report results and evaluations to the Engineer:
 - a. Unconfined Compression Test (ASTM D2166).
 - b. Moisture Content (ASTM D2216).
 - c. Density.

3.4 LANDSCAPING:

- A. Test topsoil for organic materials, pH, phosphate, potash content, and gradation of particles.
 - 1. Test for organic material by using ASTM D2974.
 - 2. Determine percent of silt, sand, clay, and foreign materials such as rock, roots, and vegetation.
- B. Submit laboratory test report of topsoil to Engineer.

Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

3.5 ASPHALT CONCRETE PAVING:

A. Aggregate Base Course:

- 1. Determine maximum density and optimum moisture content for aggregate base material in accordance with ASTM D1557, Method D
- 2. Make a minimum of three field density tests on each day's final compaction on each aggregate course in accordance with ASTM D1556.
- 3. Sample and test aggregate as necessary to insure compliance with specification requirements for gradation, wear, and soundness as specified in the applicable state highway standards and specifications.

B. Asphalt Concrete:

- Aggregate: Sample and test aggregates in stock pile and hot-bins as necessary to insure compliance with specification requirements for gradation (AASHTO T27), wear (AASHTO T96), and soundness (AASHTO T104).
- 2. Temperature: Check temperature of each load of asphalt concrete at mixing plant and at site of paving operation.
- 3. Density: Make a minimum of two field density tests of asphalt base and surface course for each day's paving operation.
- 4. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D979.
- 5. In-place density of compacted pavement will be determined by testing core samples according to ASTM D1188.
 - a. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D2950 and correlated with ASTM D1188.
- C. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D3549.
- D. Replace and compact hot-mix asphalt where core tests were taken.
- E. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

3.6 SITE WORK CONCRETE:

Test site work concrete including materials for concrete as required in Article CONCRETE of this section.

3.7 POST-TENSIONING OF CONCRETE:

- A. Inspection Prior to Concreting: Inspect tendons, drape of tendons, and anchorage components for compliance prior to concreting.
- B. Concrete Testing: As required in Article, CONCRETE of this section except make three test cylinders representing each area to be tensioned and cylinders shall be cured in same manner as concrete they represent.

 Make compression test prior to determining minimum specified strength required for post-tensioning.
- C. Post-tensioning: Witness post-tensioning operation and record actual gauge pressures and elongations applied to each tendon.
- D. Submit reports in quadruplicate of the following:
 - 1. Inspection of placement and post-tensioning of all tendons.
 - 2. Size, number, location, and drape of tendons.
 - 3. Inspect 100% of end and intermediate anchorages and inserts required for stressing for proper size, type and placement.
 - 4. Inspect for any mild steel reinforcing bars or spirals required by the Prestress Supplier near stressing anchors.
 - 5. Perform inspection during concrete placement to observe and report any damage or misalignment of post tensioning steel and embedded anchorages.
 - 6. Calculated elongations, based upon the length, modulus of elasticity, and cross-sectional area of the tendons used.
 - 7. Actual field elongations. Check elongation of tendons within ranges established by manufacturer.
 - 8. Calculated gauge pressure and jacking force applied to each tendon.
 - 9. Actual gauge pressures and jacking force applied to each tendon.
 - 10. Required concrete strength at time of jacking.
 - 11. Actual concrete strength at time of jacking.
 - 12. Do not cut or cover the tendon ends until the Contractor receives the Engineer's written approval of the post-tensioning records.

3.8 CONCRETE:

- A. Batch Plant Inspection and Materials Testing:
 - Perform continuous batch plant inspection until concrete quality is established to satisfaction of Engineer with concurrence of Contracting Officer and perform periodic inspections thereafter as determined by Engineer.

- 2. Periodically inspect and test batch proportioning equipment for accuracy and report deficiencies to Engineer.
- 3. Sample and test mix ingredients as necessary to insure compliance with specifications.
- 4. Sample and test aggregates daily and as necessary for moisture content. Test the dry rodded weight of the coarse aggregate whenever a sieve analysis is made, and when it appears there has been a change in the aggregate.
- 5. Certify, in duplicate, ingredients and proportions and amounts of ingredients in concrete conform to approved trial mixes. When concrete is batched or mixed off immediate building site, certify (by signing, initialing or stamping thereon) on delivery slips (duplicate) that ingredients in truck-load mixes conform to proportions of aggregate weight, cement factor, and water-cement ratio of approved trial mixes.
- B. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.
 - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
 - 3. Concrete Test Cylinders: Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31.
 - a. Cylinders for strength tests shall be molded and Laboratory cured in accordance with ASTM C 31 and tested in accordance with ASTM C 39. Cylinders may be either 6" in diameter by 12" or 4" in diameter by 8", however, the diameter of the cylinder shall be at least three times the nominal maximum size of the coarse aggregate in the mix tested. All of the cylinders for each class of concrete shall be of the same dimension for all sets of that class.

Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

- b. Each set of test cylinders shall consist of a minimum of four standard test cylinders. If concrete strength for form stripping is to be determined using field-cured cylinders, one additional cylinder per set will be required for formed slab and pan-formed beam floors for the purpose of evaluating the concrete strength at the time of form stripping. This cylinder shall be stored on the floor where form removal is to occur under the same exposure conditions as the floor concrete. The cylinder shall be cured under field conditions in accordance with ASTM C 31. Field-cured test cylinders shall be molded at the same time and from the same samples as laboratory-cured test specimens.
- c. Make at least one set of cylinders for each 40 m3 (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type. Label each cylinder with an identification number. Engineer may require additional cylinders to be molded and cured under job conditions.
- d. For concrete specified on the drawings to reach the required strength at 28 days, break one cylinder of the set at seven days, two 6" by 12" cylinders or three 4" by 8" cylinders at 28 days, and keep one in reserve for testing at the Engineer's direction.
- e. For concrete specified on the drawings to reach the required strength at 56 days, break one cylinder of the set at seven days, one cylinder at 28 days, two 6" by 12" cylinders or three 4" by 8" cylinders at 56 days, and one kept in reserve for testing at the Engineer's direction.
- f. Cylinder Storage Box: The Contractor shall be responsible for providing a protected concrete cylinder wooden storage box at a point on the job site mutually agreeable with the Testing Laboratory for the purpose of storing concrete cylinders until they are transported to the Laboratory. The box shall be constructed and equipped to maintain the environment specified for initial curing in ASTM C 31.
- g. Transporting Cylinders: The Testing Laboratory shall be responsible for transporting the cylinders to the Laboratory in a protected environment such that no damage or ill effect will occur to the concrete cylinders including loss of moisture, freezing temperatures or jarring.

4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the

beginning of each day's pumping operations to determine change in

slump.

5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.

- 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 9. Verify that specified mixing has been accomplished.
- 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:
 - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
 - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.

- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- 13. Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.
- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for levelness and flatness as follows:
 - a. Perform Floor Tolerance Measurements F_F and F_L in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.
 - b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.
 - c. Provide the Contractor and the Engineer with the results of all profile tests, including a running tabulation of the overall $F_{\rm F}$ and $F_{\rm L}$ values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Post-Installed Anchors: Provide inspection of post-installed anchor installations at the frequency noted in the specifications and in accordance with the published, currently valid, Evaluation Service Report (ESR) for each anchor product. Post-installed anchors include anchors and reinforcing steel. Inspection of post-installed anchors shall include but not be limited to the following:
 - a. Periodic Inspection: Verify initial installation of postinstalled anchors in concrete for each individual installer with each individual anchor product in accordance with the

requirements stated below for each type of anchor. Periodically inspect anchor installation after the initial verification.

- b. Continuous Inspection: Verify each installation of postinstalled anchors in concrete in accordance with the requirements stated below for each type of anchor.
- c. All Post-Installed Anchors: Verify that the anchor is installed in accordance with manufacturer's printed installation instructions.
- 20. Adhesive Anchors: In addition to the requirements for All Post-Installed Anchors, verify adhesive identification and expiration date.
 - a) The installation of all adhesive anchors shall be continuously inspected when anchors are subject to sustained tension loads, such as anchors for shelf angles, or when anchors are installed in an upwardly inclined condition.

21. Other inspections:

- a. Grouting under base plates.
- b. Grouting anchor bolts and reinforcing steel in hardened concrete.

C. Laboratory Tests of Field Samples:

- 1. Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by Engineer. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.
- 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
- 3. Furnish certified compression test reports (duplicate) to Engineer.

 In test report, indicate the following information:
 - a. Cylinder identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Type of concrete, slump, and percent air.
 - d. Compressive strength of concrete in MPa (psi).
 - e. Weight of lightweight structural concrete in kg/m^3 (pounds per cubic feet).

Project Number: 589-370

- f. Weather conditions during placing.
- g. Temperature of concrete in each test cylinder when test cylinder was molded.
- h. Maximum and minimum ambient temperature during placing.
- i. Ambient temperature when concrete sample in test cylinder was
- j. Date delivered to laboratory and date tested.

3.9 REINFORCEMENT:

- A. Review mill test reports furnished by Contractor.
- B. Perform sampling at fabricating plant. Take two samples from each 23 t (25 tons) or fraction thereof of each size of reinforcing steel No. 10 thru No. 57 (No. 3 thru No. 18).
- C. Make one tensile and one bend test in accordance with ASTM A370 from each pair of samples obtained.
- D. Written report shall include, in addition to test results, heat number, manufacturer, type and grade of steel, and bar size.
- E. Perform tension tests of mechanical and welded splices in accordance with ASTM A370.

3.11 PRESTRESSED CONCRETE:

- A. Inspection at Plant: Forms, placement and concrete cover of reinforcing steel and tendons, placement and finishing of concrete, and tensioning of tendons.
- B. Concrete Testing: Test concrete including materials for concrete required in Article, CONCRETE of this section, except make two test cylinders for each day's production of each strength of concrete produced.
- C. Test tendons for conformance with ASTM A416 and furnish report to Engineer.
- D. Inspect members to insure that specification requirements for curing and finishes have been met.

3.12 ARCHITECTURAL PRECAST CONCRETE:

- A. Inspection at Plant: Forms, placement of reinforcing steel, concrete cover, and placement and finishing of concrete.
- B. Concrete Testing: Test concrete including materials for concrete as required in Article CONCRETE of this section, except make two test cylinders for each day's production of each strength of concrete produced.

C. Inspect members to insure specification requirements for curing and finishes have been met.

3.13 MASONRY:

- A. Mortar Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C780.
 - b. Obtain samples during or immediately after discharge from batch mixer.
 - c. Furnish molds with 50 mm (2 inch), 3 compartment gang cube.
 - d. Test one sample at 7 days and 2 samples at 28 days.
 - 2. Two tests during first week of operation; one test per week after initial test until masonry completion.
- B. Grout Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C1019.
 - b. Test one sample at 7 days and 2 samples at 28 days.
 - c. Perform test for each 230 m^2 (2500 square feet) of masonry.
- C. Masonry Unit Tests:
 - 1. Laboratory Compressive Strength Test:
 - a. Comply with ASTM C140.
 - b. Test 3 samples for each 460 m^2 (5000 square feet) of wall area.
- D. Prism Tests: For each type of wall construction indicated, test masonry prisms per ASTM C1314 for each $460~\text{m}^2$ (5000 square feet) of wall area. Prepare one set of prisms for testing at 7 days and one set for testing at 28 days.

3.14 STRUCTURAL STEEL:

- A. General: Provide shop and field inspection and testing services to certify structural steel work is done in accordance with contract documents. Welding shall conform to AWS D1.1 Structural Welding Code.
- B. Prefabrication Inspection:
 - 1. Review design and shop detail drawings for size, length, type and location of all welds to be made.
 - 2. Approve welding procedure qualifications either by pre-qualification or by witnessing qualifications tests.
 - 3. Approve welder qualifications by certification or retesting.
 - 4. Approve procedure for control of distortion and shrinkage stresses.

5. Approve procedures for welding in accordance with applicable sections of AWS D1.1.

C. Fabrication and Erection:

- 1. Weld Inspection:
 - a. Inspect welding equipment for capacity, maintenance and working condition.
 - b. Verify specified electrodes and handling and storage of electrodes in accordance with AWS D1.1.
 - c. Inspect preparation and assembly of materials to be welded for conformance with AWS D1.1.
 - d. Inspect preheating and interpass temperatures for conformance with AWS D1.1.
 - e. Measure 25 percent of fillet welds.
 - f. Welding Magnetic Particle Testing: Test in accordance with ASTM E709 for a minimum of:
 - 1) 20 percent of all shear plate fillet welds at random, final pass only.
 - 2) 20 percent of all continuity plate and bracing gusset plate fillet welds, at random, final pass only.
 - 3) 100 percent of tension member fillet welds (i.e., hanger connection plates and other similar connections) for root and final passes.
 - 4) 20 percent of length of built-up column member partial penetration and fillet welds at random for root and final passes.
 - 5) 100 percent of length of built-up girder member partial penetration and fillet welds for root and final passes.
 - g. Welding Ultrasonic Testing: Test in accordance with ASTM E164 and AWS D1.1 for 100 percent of all full penetration welds, braced and moment frame column splices, and a minimum of 20 percent of all other partial penetration column splices, at random.
 - h. Welding Radiographic Testing: Test in accordance with ASTM E94, and AWS D1.1 for 5 percent of all full penetration welds at random.
 - i. Verify that correction of rejected welds are made in accordance with AWS D1.1.

j. Testing and inspection do not relieve the Contractor of the responsibility for providing materials and fabrication procedures

2. Bolt Inspection:

a. Inspect high-strength bolted connections in accordance AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts.

in compliance with the specified requirements.

- b. Slip-Critical Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in each connection in accordance with AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.
- c. Fully Pre-tensioned Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in 25 percent of connections in accordance with AISC Specification for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.
- d. Bolts installed by turn-of-nut tightening may be inspected with calibrated wrench when visual inspection was not performed during tightening.
- e. Snug Tight Connections: Inspect 10 percent of connections verifying that plies of connected elements have been brought into snug contact.
- f. Inspect field erected assemblies; verify locations of structural steel for plumbness, level, and alignment.
- D. Submit inspection reports, record of welders and their certification, and identification, and instances of noncompliance to Engineer.

3.15 STEEL DECKING:

- A. Provide field inspection of welds of metal deck to the supporting steel, and testing services to insure steel decking has been installed in accordance with contract documents and manufacturer's requirements.
- B. Qualification of Field Welding: Qualify welding processes and welding operators in accordance with "Welder Qualification" procedures of AWS D1.1. Refer to the "Plug Weld Qualification Procedure" in Part 3 "Field Quality Control."
- C. Submit inspection reports, certification, and instances of noncompliance to Engineer.

Project Number: 589-370

3.17 SPRAYED-ON FIREPROOFING:

- A. Provide field inspection and testing services to certify sprayed-on fireproofing has been applied in accordance with contract documents.
- B. Obtain a copy of approved submittals from Engineer.
- C. Use approved installation in test areas as criteria for inspection of work
- D. Test sprayed-on fireproofing for thickness and density in accordance with ASTM E605.
 - 1. Thickness gauge specified in ASTM E605 may be modified for pole extension so that overhead sprayed material can be reached from floor.
- E. Location of test areas for field tests as follows:
 - 1. Thickness: Select one bay per floor, or one bay for each $930~\text{m}^2$ (10,000 square feet) of floor area, whichever provides for greater number of tests. Take thickness determinations from each of following locations: Metal deck, beam, and column.
 - 2. Density: Take density determinations from each floor, or one test from each 930 m^2 (10,000 square feet) of floor area, whichever provides for greater number of tests, from each of the following areas: Underside of metal deck, beam flanges, and beam web.
- F. Submit inspection reports, certification, and instances of noncompliance to Engineer.

- - - E N D - - -

Kansas City VA Medical Center Project Number: 589-370

THIS PAGE INTENTIONALLY LEFT BLANK

01 45 29 - 20

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

7. Sanitary Wastes:

- a. Sewage: Domestic sanitary sewage and human and animal waste.
- b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA): 33 CFR 328......Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the COR and the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's

proposed operations and the requirements imposed by those laws, regulations, and permits.

- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for

anchorage unless specifically authorized, or where special emergency use is permitted.

- 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
- Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
- 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local 100 (design year) storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.
 - b. Reuse or conserve the collected topsoil sediment as directed by the COR. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING.
 - c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.

- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- 6. Manage borrow areas on Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- 7. Manage and control spoil areas on Government property to limit spoil to areas shown and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- 8. Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the COR.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - 1. Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - 2. Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.

- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Missouri air pollution regulations and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
 - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
 - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise Sound Level in dB More than 12 minutes in any hour 70

Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA):

EARTHMOVIN	IG	MATERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	0
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the \underline{A} weighing network of a General Purpose sound level meter at slow response. To minimize the

effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.

- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

Kansas City VA, Medical Center

Project Number: 589-370

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eq, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

A. Section 02 41 00, DEMOLITION.

09-01-13

Patient Parking Garage Kansas City VA, Medical Center

Project Number: 589-370

- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Lead Paint: Section 02 83 33.13, LEAD BASED PAINT REMOVAL AND DISPOSAL.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to

Project Number: 589-370

be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.

K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.

- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:

Project Number: 589-370

- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - 1) Description of materials to be site-separated and self-hauled to designated facilities.
 - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.

09-01-13

Patient Parking Garage Kansas City VA, Medical Center

Project Number: 589-370

B. U.S. Green Building Council (USGBC):

LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.

09-01-13

Patient Parking Garage Kansas City VA, Medical Center

Project Number: 589-370

B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices.

Include the net total costs or savings for each salvaged or recycled material.

C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

This page left blank intentionally.

01 74 19 - 8

Project Number: 589-370

SECTION 01 81 11

SUSTAINABLE DESIGN REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

This Section describes general requirements and procedures to comply with the Guiding Principles for Leadership in High Performance and Sustainable Buildings Memorandum of Understanding incorporated in the Executive Orders 13423 and 13514; Energy Policy Act of 2005 (EPA 2005) and the Energy Independence and Security Act of 2007 (EISA 2007).

1.2 OBJECTIVES

- A. To maximize resource efficiency and reduce the environmental impacts of construction and operation, the Contractor during the construction phase of this project shall implement the following procedures:
 - 1. Select products that minimize consumption of energy, water and non-renewable resources, while minimizing the amounts of pollution resulting from the production and employment of building technologies. It is the intent of this project to conform with EPA's Five Guiding Principles on environmentally preferable purchasing. The five principles are:
 - a. Include environmental considerations as part of the normal purchasing process.
 - b. Emphasize pollution prevention early in the purchasing process.
 - c. Examine multiple environmental attributes throughout a product's or service's life cycle.
 - d. Compare relevant environmental impacts when selecting products and services.
 - e. Collect and base purchasing decisions on accurate and meaningful information about environmental performance.
 - Control sources for potential Indoor Air Quality (IAQ) pollutants by controlled selection of materials and processes used in project construction in order to attain superior IAQ.
 - 3. Products and processes that achieve the above objectives to the extent currently possible and practical have been selected and included in these Construction Documents. The Contractor is responsible to maintain and support these objectives in developing means and methods for performing the work of this Contract and in

Project Number: 589-370

proposing product substitutions and/or changes to specified processes.

4. Use building practices that insure construction debris and particulates do not contaminate or enter duct work prior to system startup and turn over.

1.3 RELATED DOCUMENTS

- A. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT
- B. Section 01 91 00 GENERAL COMMISSIONG REQUIREMENTS

1.4 DEFINITIONS

- A. Certificates of Chain-of-Custody: Certificates signed by manufacturers certifying that wood used to make products has been tracked through its extraction and fabrication to ensure that is was obtained from forests certified by a specified certification program
- B. Composite Wood: A product consisting of wood fiber or other plant particles bonded together by a resin or binder
- C. Construction and Demolition Waste: Includes solid wastes, such as building materials, packaging, rubbish, debris, and rubble resulting from construction, remodeling, repair and demolition operations. A construction waste management plan is to be provided by the Contractor as defined in Section 01 74 19.
- D. Third Party Certification: Certification of levels of environmental achievement by nationally recognized sustainability rating system.
- E. Light Pollution: Light that extends beyond its source such that the additional light is wasted in an unwanted area or in an area where it inhibits view of the night sky
- F. Recycled Content Materials: Products that contain pre-consumer or post-consumer materials as all or part of their feedstock
- G. Post-Consumer Recycled Content: The percentage by weight of constituent materials that have been recovered or otherwise diverted from the solid-waste stream after consumer use
- H. Pre-Consumer Recycled Content: Materials that have been recovered or otherwise diverted from the solid-waste stream during the manufacturing process. Pre-consumer content must be material that would not have otherwise entered the waste stream as per Section 5 of the FTC Act, Part 260 "Guidelines for the Use of Environmental Marketing Claims": www.ftc.gov/bcp/grnrule/guides980427
- I. Sealant: Any material that fills and seals gaps between other materials

Project Number: 589-370

- J. Type 1 Finishes: Materials and finishes which have a potential for short-term levels of off gassing from chemicals inherent in their manufacturing process, or which are applied in a form requiring vehicles or carriers for spreading which release a high level of particulate matter in the process of installation and/or curing.
- K. Type 2 Finishes: "Fuzzy" materials and finishes which are woven, fibrous, or porous in nature and tend to adsorb chemicals off gas
- L. Volatile Organic Compounds (VOCs): Any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions. Compounds that have negligible photochemical reactivity, listed in EPA 40 CFR 51.100(s), are also excluded from this regulatory definition.

1.5 SUBMITTALS

- A. Sustainable Design Submittals:
 - 1. Exterior Lighting Fixtures: Submittals must include cut sheets with manufacturer's data on initial fixture lumens above 90° from nadir for all exterior lighting fixtures, and, for parking lot lighting, verification that the fixtures are classified by the IESNA as "full cutoff" (FCO); OR provide documentation that exterior luminaires are IDA-Approved as Dark-Sky Friendly by the International Dark Sky Association (IDA) Fixture Seal of Approval Program.
 - 3. Elimination of CFCs AND HCFCs: Provide manufacturer's cut sheets for all cooling equipment with manufacturer's product data, highlighting refrigerants; provide manufacturer's cut sheets for all firesuppression equipment, highlighting fire-suppression agents; provide manufacturer's cut-sheets for all polystyrene insulation (XPS) and closed-cell spray foam polyurethane insulation, highlighting the blowing agent(s).
 - 4. Recycled Content: Submittals for all materials with recycled content (excluding MEP systems equipment and components) must include the following documentation: Manufacturer's product data, product literature, or a letter from the manufacturer verifying the percentage of post-consumer and pre-consumer recycled content (by weight) of each material or product
 - a. An electronic spreadsheet that tabulates the Project's total materials cost and combined recycled content value (defined as

Project Number: 589-370

the sum of the post-consumer recycled content value plus one-half of the pre-consumer recycled content value) expressed as a percentage of total materials cost. This spreadsheet shall be submitted every third month with the Contractor's Certificate and Application for Payment. It should indicate, on an ongoing basis, line items for each material, including cost, pre-consumer recycled content, post-consumer recycled content, and combined recycled content value.

- 5. Interior Adhesives and Sealants: Submittals for all field-applied adhesives and sealants, which have a potential impact on indoor air, must include manufacturer's MSDSs or other Product Data highlighting VOC content.
 - a. Provide manufacturers' documentation verifying all adhesives used to apply laminates, whether shop-applied or field-applied, contain no urea-formaldehyde.
- 6. Exterior Paints and Coatings: Submittals for all field-applied paints and coatings, which have a potential impact on ambient air quality, must include manufacturer's MSDSs or other manufacturer's Product Data highlighting VOC content.
- 7. Mercury in Lighting: Provide manufacturer's cut sheets or product data for all fluorescent or HID lamps highlighting mercury content.
- 8. Lighting Controls: Provide manufacturer's cut sheets and shop drawing documentation highlighting all lighting controls systems components.
- 9. Blended Cement: It is the intent of this specification to reduce CO2 emissions and other environmentally detrimental effects resulting from the production of portland cement by requiring that all concrete mixes, in aggregate, utilize blended cement mixes to displace portland cement as specified in Section 03 30 00, CONCRETE typically included in conventional construction. Provide the following submittals:
 - ${\tt a.}$ Copies of concrete design mixes for all installed concrete
 - b. Copies of typical regional baseline concrete design mixes for all compressive strengths used on the Project
 - c. Quantities in cubic yards of each installed concrete mix

- 10. Green Housekeeping: Provide documentation that all cleaning products and janitorial paper products meet the VOC limits and content requirements of this specification section.
- B. Project Materials Cost Data: Provide a spreadsheet in an electronic file indicating the total cost for the Project and the total cost of building materials used for the Project, as follows:
 - 1. Not more than 60 days after the Preconstruction Meeting, the General Contractor shall provide to the Owner and Architect a preliminary schedule of materials costs for all materials used for the Project organized by specification section. Exclude labor costs and all mechanical, electrical, and plumbing (MEP) systems materials and labor costs. Include the following:
 - a. Identify each reused or salvaged material, its cost, and its replacement value.
 - b. Identify each recycled-content material, its post-consumer and pre-consumer recycled content as a percentage the product's weight, its cost, its combined recycled content value (defined as the sum of the post-consumer recycled content value plus one-half of the pre-consumer recycled content value), and the total combined recycled content value for all materials as a percentage of total materials costs.
 - 2. Provide final versions of the above spreadsheets to the Owner and Architect not more than 14 days after Substantial Completion.
- C. Construction Waste Management: See Section 01 74 19 "Construction Waste Management" for submittal requirements.
- E. Commissioning: See Section 01 91 00 "General Commissioning Requirements" for submittal requirements.
- F. Sustainable Design Progress Reports: Concurrent with each Application for Payment, submit reports for the following:
 - Construction Waste Management: Waste reduction progress reports and logs complying with the requirements of Section 01 74 19
 "Construction Waste Management."

1.6 QUALITY ASSURANCE

A. Preconstruction Meeting: After award of Contract and prior to the commencement of the Work, schedule and conduct meeting with Owner, Architect, and all Subcontractors to discuss the Construction Waste Management Plan, and all other Sustainable Design Requirements. The

Project Number: 589-370

purpose of this meeting is to develop a mutual understanding of the Project's Sustainable Design Requirements and coordination of the Contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.

B. Construction Job Conferences: The status of compliance with the Sustainable Design Requirements of these specifications will be an agenda item at all regular job meetings conducted during the course of work at the site.

PART 2 - PRODUCTS

2.1 PRODUCT ENVIRONMENTAL REQUIREMENTS

- A. Roofing Materials: All roofing systems, must comply with the following requirements:
 - 1. Low-Sloped roofing less than or equal to 2:12 slope must have an SRI of at least 78.
 - 2. Steep-Sloped roofing greater than 2:12 slope must have an SRI of at least 29.
 - 3. Roofing Materials: Light-colored, reflective, and high-emissivity roofing helps to reduce localized heat build-up from roof surfaces that contribute to the urban heat island effect.
- B. Exterior Lighting Fixtures:
 - 1. All exterior luminaires must emit 0% of the total initial designed fixture lumens at an angle above 90° from nadir and/or meet the requirements of the Dark Sky certification program.
 - Exterior lighting cannot exceed 80% of the lighting power densities defined by ASHRAE/IESNA Standard 90.1-2004, Exterior Lighting Section, without amendments.
- E. Herbicides and Pest Control: Herbicides shall not be permitted, and pest control measures shall utilize EPA-registered biopesticides only.
- F. Elimination of CFCs AND HCFCs:
 - 1. Ozone Protection and Greenhouse Gas Reduction: Base building cooling equipment shall contain no refrigerants other than the following: HCFC-123, HFC-134a, HFC-245fa, HFC-407c, or HFC 410a.
 - 2. Fire suppression systems may not contain ozone-depleting substances such as halon 1301 and 1211.
 - 3. Extruded polystyrene insulation (XPS) and closed-cell spray foam polyurethane insulation shall not be manufactured with hydrochlorofluorocarbon (HCFC) blowing agents.

Project Number: 589-370

G. Appliances and Equipment: All materials and equipment being installed that falls under the Energy Star or FEMP programs must be Energy Star or FEMP-rated. Eligible equipment includes refrigerators, motors, laundry equipment, office equipment and more. Refer to each program's website for a complete list.

H. HVAC Distribution Efficiency:

- All duct systems shall be constructed of aluminum, stainless steel or galvanized sheet metal, as deemed appropriate based on the application requirements. No fiberglass duct board shall be permitted.
- 2. All ductwork shall be externally insulated. No interior duct liner shall be permitted.
- 3. Where possible, all air terminal connections shall be hard-connected with sheet metal ductwork. If flexible ductwork is used, no flexible duct extension shall be more than six feet in length.
- 4. All HVAC equipment shall be isolated from the ductwork system with flexible duct connectors to minimize the transmittance of vibration.
- I. Measurement and Verification: Install controls and monitoring devices as required by MEP divisions order to comply with International Performance Measurement & Verification Protocol (IPMVP), Volume III: Concepts and Options for Determining Energy Savings in New Construction, April 2003, Option D.
 - 1. The IPMVP provides guidance on situation-appropriate application of measurement and verification strategies.

L. Recycled Content of Materials:

- 1. Provide building materials with recycled content such that post-consumer recycled content value plus half the pre-consumer recycled content value constitutes a minimum of 30% of the cost of materials used for the Project, exclusive of all MEP equipment, labor, and delivery costs. The Contractor shall make all attempts to maximize the procurement of materials with recycled content.
 - a. e post-consumer recycled content value of a material shall be determined by dividing the weight of post-consumer recycled content by the total weight of the material and multiplying by the cost of the material.
 - b. Do not include mechanical and electrical components in the calculations.

Project Number: 589-370

- c. Do not include labor and delivery costs in the calculations.
- d. Recycled content of materials shall be defined according to the Federal Trade Commission's "Guide for the Use of Environmental Marketing Claims," 16 CFR 260.7 (e).
- e. Utilize all on-site existing paving materials that are scheduled for demolition as granulated fill, and include the cost of this material had it been purchased in the calculations for recycled content value.
- f. The materials in the following list must contain the minimum recycled content indicated:

Category	Minimum Recycled Content
Compost/mulch	100% post-consumer
Asphaltic Concrete Paving	25% post-consumer
Cast-in-Place Concrete	6% pre-consumer
CMU: Gray Block	20% pre-consumer
Steel Reinforcing Bars	90% combined
Structural Steel Shapes	90% combined
Steel Joists	75% combined
Steel Deck	75% combined
Steel Fabrications	60% combined
Steel Studs	30% combined
Steel Roofing	30% post-consumer
Aluminum Fabrications	35% combined
Rigid Insulation	20% pre-consumer
Batt insulation	30% combined

- - - E N D - - -

Project Number: 589-370

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup,

Project Number: 589-370

control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- 1. Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Contracting Officer Representative (COR) as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the COR.

Project Number: 589-370

- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.
- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and COR. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with

Project Number: 589-370

appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 32 16.01 ARCHITECTURAL AND ENGINEERING CPM SCHEDULES
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- D. Section 01 81 11 SUSTAINABNLE DESIGN REQUIREMENTS
- E. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.
- G. Section 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS.
- H. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. The commissioning activities have been developed to support the Green Buildings Initiative's Green Globes rating program and to support delivery of project performance in accordance with the VA requirements developed for the project.

1.5 ACRONYMS

List of Acronyms			
Acronym	Meaning		
A/E	Architect / Engineer Design Team		
AHJ	Authority Having Jurisdiction		
ASHRAE	Association Society for Heating Air Condition and Refrigeration Engineers		
BOD	Basis of Design		
BSC	Building Systems Commissioning		
CCTV	Closed Circuit Television		
CD	Construction Documents		
CMMS	Computerized Maintenance Management System		
CO	Contracting Officer (VA)		
COR	Contracting Officer's Representative (see also VA-RE)		

Patient Parking Garage

Kansas City VA, Medical Center

Project Number: 589-370

List of A	cronyms
Acronym	Meaning
COBie	Construction Operations Building Information Exchange
CPC	Construction Phase Commissioning
Cx	Commissioning
CxA	Commissioning Agent
CxM	Commissioning Manager
CxR	Commissioning Representative
DPC	Design Phase Commissioning
FPT	Functional Performance Test
GBI-GG	Green Building Initiative - Green Globes
HVAC	Heating, Ventilation, and Air Conditioning
LEED	Leadership in Energy and Environmental Design
NC	Department of Veterans Affairs National Cemetery
NCA	Department of Veterans Affairs National Cemetery Administration
NEBB	National Environmental Balancing Bureau
O&M	Operations & Maintenance
OPR	Owner's Project Requirements
PFC	Pre-Functional Checklist
PFT	Pre-Functional Test
SD	Schematic Design
SO	Site Observation
TAB	Test Adjust and Balance
VA	Department of Veterans Affairs
VAMC	VA Medical Center
VA CFM	VA Office of Construction and Facilities Management
VACO	VA Central Office
VA PM	VA Project Manager
VA-RE	VA Resident Engineer
USGBC	United States Green Building Council

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this

Project Number: 589-370

phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training.

<u>Accuracy:</u> The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines.

<u>Benchmarks:</u> Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself.. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument.

<u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>COBie:</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

Project Number: 589-370

Commissionability: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned

Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists:</u> Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation).

<u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

Project Number: 589-370

<u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

<u>Commissioning Process:</u> A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report:</u> The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

<u>Commissioning Representative (CxR)</u>: An individual appointed by a sub-contractor to manage the commissioning process on behalf of the sub-contractor.

<u>Commissioning Specifications:</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning:</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD):</u> Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC):</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Coordination Drawings:</u> Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel,

Project Number: 589-370

ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

<u>Data Logging:</u> The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

<u>Deferred System Test:</u> Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

<u>Deficiency:</u> See "Commissioning Issue".

<u>Design Criteria:</u> A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR.

<u>Design Intent:</u> The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

<u>Design Narrative:</u> A written description of the proposed design solutions that satisfy the requirements of the OPR.

<u>Design Phase Commissioning (DPC):</u> All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

<u>Functionality:</u> This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

<u>Functional Test Procedure (FTP):</u> A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted

Project Number: 589-370

on components, equipment, assemblies, systems, and interfaces among systems.

<u>Industry Accepted Best Practice:</u> A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

<u>Installation Verification:</u> Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems

Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process.

<u>Lessons Learned Workshop:</u> A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability:</u> A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment.

Maintainability also includes components that have readily obtainable repair parts or service.

<u>Manual Test:</u> Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation').

<u>Owner's Project Requirements (OPR):</u> A written document that details the project requirements and the expectations of how the building and its

systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

<u>Peer Review:</u> A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

<u>Precision:</u> The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

<u>Pre-Design Phase Commissioning:</u> Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project

<u>Pre-Functional Checklist (PFC):</u> A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.

<u>Pre-Functional Test (PFT):</u> An inspection or test that is done before functional testing. PFT's include installation verification and system and component start up tests.

<u>Procedure or Protocol:</u> A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

Range: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated.

Resolution: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are

intended to provide early indication of an installation issue which will need correction or analysis.

<u>Special System Inspections:</u> Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

<u>Static Tests:</u> Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

<u>Start Up Tests:</u> Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

<u>Systems Manual:</u> A system-focused composite document that includes all information required for the owners operators to operate the systems.

<u>Test Procedure:</u> A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Testing:</u> The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC.

Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

<u>Training Plan:</u> A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Project Number: 589-370

Trending: Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

<u>Verification:</u> The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning:</u> Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

Warranty Visit: A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these

Project Number: 589-370

systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.

B. The following systems will be commissioned as part of this project:

Systems To Be Commissio	ned
System	Description
Building Exterior Closu	re
Foundations (excluding	Standard, special, slab-on-grade, vapor
structural)	barriers, air barriers
Basements	Basement walls, crawl spaces, waterproofing,
	drainage
Superstructure	Floor construction, roof construction,
	sunshades, connections to adjacent structures
Exterior Closure	Exterior walls, exterior windows, exterior
	doors, louvers, grilles and sunscreens,
Roofing	Roof system (including parapet), roof openings
	(skylights, pipe chases, ducts, equipment
	curbs, etc.)
Note:	The emphasis on commissioning the above
	building envelope systems is on control of air
	flow, heat flow, noise, infrared, ultraviolet,
	rain penetration, moisture, durability,
	security, reliability, constructability,
	maintainability, and sustainability.
Equipment	
Parking Control	Controls and Barriers
Equipment	
Conveying Equipment	
Elevators	Interface with other systems (fire alarm,
	etc.) [ASTM testing and certification by
	others]
Plumbing	
Domestic Water	Booster pumps, backflow preventers, water
Distribution	softeners, potable water storage tanks

Systems To Be Commission	oned
System	Description
HVAC	
See also Sectio	n 23 08 00 Commissioning of HVAC Systems
Noise and Vibration	Noise and vibration levels for critical
Control	equipment will be commissioned as part of the
	system commissioning
HVAC	General exhaust, toilet exhaust, laboratory
Ventilation/Exhaust	exhaust, isolation exhaust, room
Systems	pressurization control systems
Decentralized Unitary	Split-system HVAC systems, controls, interface
HVAC Systems	with facility DDC
Electrical	
See also Section 20	6 08 00, Commissioning of Electrical Systems
Medium-Voltage	Medium-Voltage Switchgear, Medium-Voltage
Electrical	Switches, Underground ductbank and
Distribution Systems	distribution, Pad-Mount Transformers, Medium-
	Voltage Load Interrupter Switches,
Grounding & Bonding	Witness 3rd party testing, review reports
Systems	
Electric Power	Metering, sub-metering, power monitoring
Monitoring Systems	systems, PLC control systems
Electrical System	Review reports, verify field settings
Protective Device	consistent with Study
Study	
Secondary Unit	Medium-voltage components, transformers, low-
Substations	voltage distribution, verify breaker testing
	results (injection current, etc)
Low-Voltage	Normal power distribution system, Life-safety
Distribution System	power distribution system, critical power
	distribution system, equipment power
	distribution system, switchboards,
	distribution panels, panelboards, verify
	breaker testing results (injection current,
	etc)

Systems To Be Commission	ned
System	Description
Lighting & Lighting	Emergency lighting, lighting control systems,
Control Systems	exterior lighting and controls
Cathodic Protection	Review 3rd party testing results.
Systems	
Lightning Protection	Witness 3rd party testing, review reports
System	
Communications	
See also Section 027	08 00 Commissioning of Communications Systems
Grounding & Bonding	Witness 3rd party testing, review reports
System	
Structured Cabling	Witness 3rd party testing, review reports
System	
Security Camera System	Witness 3rd party testing, review reports
Duress Alarm Systems	Witness 3rd party testing, review reports
Electronic Safety and S	ecurity
See also Section 28 08	00, Commissioning of Electronic Safety and
Security Systems	
Grounding & Bonding	Witness 3rd party testing, review reports
Physical Access	Witness 3rd party testing, review reports
Control Systems	
Access Control Systems	Witness 3rd party testing, review reports
Video Surveillance	Witness 3rd party testing, review reports
System	
Electronic Personal	Witness 3rd party testing, review reports
Protection System	
Fire Detection and	100% device acceptance testing, battery draw-
Alarm System	down test, verify system monitoring, verify
	interface with other systems.
Site Utilities	
Water Utilities	Water Service Entrance, Backflow Prevention,
	Pressure Control, Booster Pumps, Irrigation
	Systems

Project Number: 589-370

Systems To Be Commissioned											
System Description											
Sanitary Sewerage	City Sanitary Connection, Waste Treatment										
Utilities	Systems										
Storm Drainage	City Storm Water Connection, Site Storm Water										
Utilities	Distribution										

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - 1. Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - 2. User: Representatives of the facility user and operation and maintenance personnel.
 - 3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.

Project Number: 589-370

- 2. Training in operation and maintenance of systems, subsystems, and equipment.
- 3. Testing meetings.
- 4. Witness and assist in Systems Functional Performance Testing.
- 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - 3. Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - 6. Participate in meetings to coordinate Systems Functional Performance Testing.

Project Number: 589-370

- 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
- 8. Provide information to the Commissioning Agent for developing commissioning plan.
- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues.

 Observe systems and equipment installation for adequate accessibility

for maintenance and component replacement or repair, and for general conformance with the Construction Documents.

- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents.

 Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation

Project Number: 589-370

requirements of the commissioning process, and shall include, but is not limited, to the following:

- 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
- Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
- 3. Identification of systems and equipment to be commissioned.
- 4. Schedule of Commissioning Coordination meetings.
- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test

procedure, regardless of system, subsystem, or equipment being tested,

1. Name and identification code of tested system.

shall include, but not be limited to, the following:

- 2. Test number.
- 3. Time and date of test.
- 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
- 5. Dated signatures of the person performing test and of the witness, if applicable.
- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues

Project Number: 589-370

and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.

- 1. Creating an Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - g. Include information that may be helpful in diagnosing or evaluating the issue.
 - h. Note recommended corrective action.
 - i. Identify commissioning team member responsible for corrective action.
 - j. Identify expected date of correction.
 - k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.

Project Number: 589-370

- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents and those that do not meet requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:
 - Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
 - 2. Commissioning plan.
 - 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
 - 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
 - 5, Commissioning Issues Log.
 - 6. Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.

- 4. Updated Commissioning Issues Log, including status of unresolved issues.
- 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - 1. Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.

- 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
- 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary step-by-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.

- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.

I. Data for Commissioning:

- The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
- 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 60 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 60 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related

Project Number: 589-370

tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals.

 Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The

Project Number: 589-370

Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.

- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing.

 Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's

Project Number: 589-370

recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

01 91 00 - 30

Project Number: 589-370

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Spec Writer's Notes: Edit the following tables to describe the roles and responsibilities for each commissioning team member for each of the commissioning tasks as appropriate for the project.

Construction Phase			Commis	sionir	nt	L = Lead	
Commissioning Roles & Responsibilities			Residen Design Prime C Gov't	Arch, ontrac	P = Participate A = Approve R = Review O = Optional		
Category	Task Description	CxA	RE	A/E	PC	M&O	Notes
Meetings	Construction Commissioning Kick Off meeting	L	А	Р	Р	0	
	Commissioning Meetings	L	А	Р	P	0	
	Project Progress Meetings	Р	А	Р	L	0	
	Controls Meeting	L	A	Р	Р	0	
Coordination	dination Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.			P	P	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	A	R	R	0	
Schedules	Duration Schedule for Commissioning Activities	L	A	R	R	N/A	

Construction Phase			Commis	sioni	L = Lead		
			Resider	nt Eng	P = Participate		
		A/E =	Design	Arch,	/Engin	eer	A = Approve
Commissioning F	Commissioning Roles & Responsibilities		Prime C	Contrac	ctor		R = Review
		O&M =	Gov't	Facil	ity O&	М	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
OPR and BOD	Maintain OPR on behalf of Owner	T,	A	R	R	0	
OFR and BOD					ļ - ·	<u> </u>	
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	
Document	TAB Plan Review	L	A	R	R	0	
Reviews	Submittal and Shop Drawing Review	R	A	R	L	0	
	Review Contractor Equipment Startup Checklists	L	А	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	А	R	R	N/A	
Site	Witness Factory Testing	P	A	P	L	0	
Observations	Construction Observation Site Visits	L	А	R	R	0	
			<u> </u>				
Functional	Final Pre-Functional Checklists	L	A	R	R	0	
Test Protocols	Final Functional Performance Test Protocols	L	A	R	R	0	
manka in a	Tanana Basalahian Maria				 -		
Technical Activities	Issues Resolution Meetings	P	A	P	L	0	

Project Number: 589-370

Construction P	CxA =	Commis	sionir	nt	L = Lead		
	RE = R	esiden	t Engi	neer		P = Participate	
G	Dalas o Bassassikilikis	A/E =	Design	Arch/	Engine	eer	A = Approve
Commissioning	Commissioning Roles & Responsibilities			ontrac	ctor		R = Review
		O&M = Gov't Facility O&M				Μ	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Reports and	Status Reports	L	А	R	R	0	
Logs	Maintain Commissioning Issues Log	L	А	R	R	0	

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phase			Commi	ssion	L = Lead		
	RE = R	Reside	nt Eng		P = Participate		
		A/E =	Desig	n Arch	n/Engi:	neer	A = Approve
Commissioning F	Commissioning Roles & Responsibilities		rime	Contra	actor		R = Review
		O&M =	Gov't	Faci	M&	O = Optional	
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Commissioning Meetings	L	А	Р	Р	0	
	Project Progress Meetings	Р	А	Р	L	0	
	Pre-Test Coordination Meeting	L	А	Р	Р	0	
	Lessons Learned and Commissioning Report Review Meeting	L	А	P	Р	0	

Project Number: 589-370

Acceptance Phase			Commi	ssion	L = Lead			
	RE = Resident Engineer					P = Participate		
			Desig	ın Arcl	n/Engi	neer	A = Approve	
Commissioning R	Roles & Responsibilities	PC = F	Prime	Contra	actor		R = Review	
		O&M =	Gov't	Faci	lity O	M&	O = Optional	
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	Р	Р	0		
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	A	R	R	0		
Schedules Prepare Functional Test Schedule		L	A	R	R	0		
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0		
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0		
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0		
	Pre-Functional Checklist Verification	L	А	R	R	0		
	Review Operations & Maintenance Manuals	L	А	R	R	R		
	Training Plan Review	L	А	R	R	R		
	Warranty Review	L	А	R	R	0		
	Review TAB Report	L	А	R	R	0		
Site	Construction Observation Site Visits	L	A	R	R	0		
Observations	Witness Selected Equipment Startup	L	А	R	R	0		

Project Number: 589-370

Acceptance Phas	CxA = Commissioning Agent					L = Lead	
			eside.	nt Eng	gineer		P = Participate
		A/E =	Desig	n Arch	n/Engi	neer	A = Approve
Commissioning R	coles & Responsibilities	PC = P	rime	Contra	actor		R = Review
		O&M =	Gov't	Facil	Lity O	&M	O = Optional
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Functional	TAB Verification	L	А	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	А	Р	Р	Р	
	Retesting	L	А	Р	Р	Р	
Technical	Issues Resolution Meetings	P	A	P	L	0	
Activities	Systems Training	L	S	R	Р	P	
Reports and	Status Reports	L	А	R	R	0	
Logs	Maintain Commissioning Issues Log	L	A	R	R	0	
	Final Commissioning Report	L	А	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase			Commi	ssion	L = Lead		
			Reside	ent En		P = Participate	
		A/E =	Desig	gn Arc	h/Engi	neer	A = Approve
Commissioning F	Roles & Responsibilities	PC = 1	Prime	Contr	actor		R = Review
		O&M =	Gov't	: Faci	lity C	&M	O = Optional
Category	Task Description	CxA	RE	A/E	PC	M&O	Notes
Meetings	Post-Occupancy User Review Meeting	L	А	0	P	Р	
Site Observations	Periodic Site Visits	L	A	0	0	P	
Functional Test Protocols	Deferred and/or seasonal Testing	L	A	0	P	P	
Technical Activities	Issues Resolution Meetings	L	S	0	0	P	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	А		R	Р	
Reports and	Final Commissioning Report Amendment	L	А		R	R	
Logs	Status Reports	L	А		R	R	

Project Number: 589-370

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - 1. Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.

Project Number: 589-370

- c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.
- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.

3. Sensor and Actuator Calibration

- a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
- b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.

4. Execution of Equipment Startup

- a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
- b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
- c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
- d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.

Project Number: 589-370

- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.
- C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers Critical, Priority, and Maintenance.
 - 1. Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
 - 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The

Project Number: 589-370

generated maintenance report will be printed to a printer located within the engineer's office.

- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the COR and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the COR. Any pre-test trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the COR, prior to the execution of Systems Functional Performance Testing.
 - 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.

Project Number: 589-370

3. Graphical plotting - The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.

4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

Dual-Path Air	Dual-Path Air Handling Unit Trending and Alarms											
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
OA Temperature	AI	15 Min	24 hours	3 days	N/A							
RA Temperature	AI	15 Min	24 hours	3 days	N/A							
RA Humidity	AI	15 Min	24 hours	3 days	Р	>60% RH	10 min					
Mixed Air Temp	AI	None	None	None	N/A							
SA Temp	AI	15 Min	24 hours	3 days	С	±5°F from SP	10 min					
Supply Fan Speed	AI	15 Min	24 hours	3 days	N/A							
Return Fan Speed	AI	15 Min	24 hours	3 days	N/A							

Project Number: 589-370

Dual-Path Air Handling Unit Trending and Alarms Operationa Testing Trend Alarm Alarm Alarm Point 1 Trend Trend Type Interval Type Range Delay Duration Duration RA Pre-Filter ΑI None None None N/A OA Pre-Filter ΑI None None None N/A Status After Filter ΑI None None None N/A Status ±10% 10 15 Min SA Flow ΑI 24 hours 3 days С from SP min OA Supply ±5°F 10 15 Min 24 hours ΑI 3 days Ρ from SP Temp min RA Supply 15 Min 24 hours ΑI 3 days N/A Temp RA CHW Valve ΑI 15 Min 24 hours 3 days N/A Position OA CHW Valve ΑI 15 Min 24 hours 3 days N/A Position OA HW Valve ΑI 15 Min 24 hours 3 days N/A Position +10% 24 hours OA Flow 15 Min 3 days Ρ 5 min ΑI from SP ±10% RA Flow 15 Min 24 hours Ρ 5 min ΑI 3 days from SP Initial UVC ΑI None None None N/A Intensity (%) ±25% Duct Pressure ΑI 15 Min 24 hours 3 days С 6 min from SP 10 ±10% CO2 Level ΑI 15 Min 24 hours 3 days Ρ from SP min Status 10 Supply Fan DI COV 24 hours 3 days С Status min Command Status Return Fan 10 DI COV 24 hours 3 days С <> Min Status Command High Static DI COV 24 hours 3 days Ρ True 1 min Status Fire Alarm С DI COV 24 hours 3 days True 5 min Status Freeze Stat 10 DΙ COV 24 hours 3 days С True Level 1 min Freeze Stat COV 24 hours С 5 min DΙ 3 days True Level 2 Freeze Stat DI COV 24 hours 3 days Ρ True 1 min Level 3 Fire/Smoke COV 24 hours Р DI 3 days Closed 1 min Damper Status

Project Number: 589-370

Dual-Path Air Handling Unit Trending and Alarms Operationa Testing Trend Alarm Alarm Alarm Point Type 1 Trend Trend Interval Type Range Delay Duration Duration Emergency AHU COV 24 hours Ρ 1 min DΙ 3 days True Shutdown Status 10 Exhaust Fan COV 24 hours С DI 3 days <> #1 Status min Command Status Exhaust Fan 10 COV 24 hours DΙ 3 days С #2 Status min Command Status Exhaust Fan 10 DI COV 24 hours 3 days С <> #3 Status min Command 10 OA Alarm DI COV 24 hours 3 days С True min High Static 10 24 hours С DI COV 3 days True Alarm min UVC Emitter 10 COV 24 hours DI 3 days Ρ True Alarm min 10 CO2 Alarm COV 24 hours DI 3 days Ρ True min Power Failure DI COV 24 hours Ρ True 1 min 3 days Supply Fan 15 Min 24 hours ΑO 3 days N/A Speed Return Fan ΑO 15 Min 24 hours N/A 3 days Speed RA CHW Valve ΑO 15 Min 24 hours 3 days N/A Position OA CHW Valve ΑO 15 Min 24 hours 3 days N/A Position OA HW Valve ΑO 15 Min 24 hours 3 days N/A Position Supply Fan DO COV 24 hours 3 days N/A S/S Return Fan COV 24 hours DO 3 days N/A S/S Fire/Smoke COV 24 hours DO 3 days N/A Dampers Exhaust Fan DO COV 24 hours N/A 3 days S/S Exhaust Fan DO COV 24 hours 3 days N/A S/S Exhaust Fan DO COV 24 hours 3 days N/A S/S 1 Hour N/A AHU Energy Calc 30 day N/A

Terminal Unit (VAV, CAV, etc.) Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Space Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min			
Air Flow	AI	15 Min	12 hours	3 days	P	±5°F from SP	10 min			
SA Temperature	AI	15 Min	12 hours	3 days	P	±5°F from SP	10 min			
Local Setpoint	AI	15 Min	12 hours	3 days	М	±10°F from SP	60 min			
Space Humidity	AI	15 Min	12 hours	3 days	Р	> 60% RH	5 min			
Unoccupied Override	DI	COV	12 hours	3 days	M	N/A	12 Hours			
Refrigerator Alarm	DI	COV	12 hours	3 days	С	N/A	10 min			
Damper Position	AO	15 Minutes	12 hours	3 days	N/A					
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A					

4-Pipe Fan Coil Trending and Alarms											
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
SA Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour				
Water Sensor	DI	COV	12 hours	3 days	М	N/A	30 Min				
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						

4-Pipe Fan Coil Trending and Alarms									
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A				
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min		

2-Pipe Fan Coi	2-Pipe Fan Coil Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
SA Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour				
Water Sensor	DI	COV	12 hours	3 days	M	N/A	30 Min				
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Fan Coil ON/OFF	DO	COV	12 hours	3 days	M	Status <> Command	30 min				

Unit Heater Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min			

Unit Heater Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Heating Valve Position	AO	15 Minutes	12 hours	3 days	N/A					
Unit Heater ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min			

Steam and Condo	Steam and Condensate Pumps Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Steam Flow (LB/HR)	AI	15 Minutes	12 hours	3 days	N/A						
Condensate Pump Run Hours	AI	15 Minutes	12 hours	3 days	N/A						
Water Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A						
Electric Meter (KW/H)	AI	15 Minutes	12 hours	3 days	N/A						
Irrigation Meter (GPM)	AI	15 Minutes	12 hours	3 days	N/A						
Chilled Water Flow (TONS)	AI	15 Minutes	12 hours	3 days	N/A						
Condensate Flow (GPM)	AI	15 Minutes	12 hours	3 days	N/A						
High Water Level Alarm	DI	COV	12 hours	3 days	С	True	5 Min				
Condensate Pump Start/Stop	DO	COV	12 hours	3 days	Р	Status <> Command	10 min				

Domestic Hot Water Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Domestic HW Setpoint WH-1	AI	15 Minute	12 Hours	3 days	N/A					

Domestic Hot Wa	ater Tr	ending and	Alarms				
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Domestic HW Setpoint WH-2	AI	15 Minute	12 Hours	3 days	N/A		
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	С	> 135 oF	10 Min
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	Р	±5°F from SP	10 Min
Dom. Circ. Pump #1 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Dom. Circ. Pump #2 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Dom. Circ. Pump #1 Start/Stop	DO	COV	12 Hours	3 days	N/A		
Dom. Circ. Pump #2 Start/Stop	DO	COV	12 Hours	3 days	N/A		
Domestic HW Start/Stop	DO	COV	12 Hours	3 days	N/A		

Hydronic Hot W	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
System HWS Temperature	AI	15 min	12 hours	3 days	С	±5°F from SP	10 Min
System HWR Temperature	AI	15 min	12 hours	3 days	М	±15°F from SP	300 Min
HX-1 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Leaving Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
System Flow (GPM)	AI	15 min	12 hours	3 days	N/A		
System Differential Pressure	AI	15 min	12 hours	3 days	Р	±10% from SP	8 Min
				3 days			

Hydronic Hot W	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
HW Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 1 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
HW Pump 2 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #2 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #2 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station Bypass Valve Position	AO	15 Min	12 Hours	3 days	N/A		
HW Pump 1	D0	0011	10 11-	2 4	N / 7		
Start/Stop HW Pump 2	DO	COV	12 Hours	3 days	N/A		
Start/Stop	DO	COV	12 Hours	3 days	N/A		
HWR #1 Valve	DO	COV	12 Hours	3 days	N/A		
HWR #2 Valve	DO	COV	12 Hours	3 days	N/A		

Chilled Water System Trending and Alarms									
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		

Chilled Water	System	Trending an	nd Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 1 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min
Chiller 1 Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 1 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min
Chiller 2 Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Decoupler Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min
Secondary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A		

Chilled Water	System	Trending ar	nd Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Secondary Loop Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Primary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Secondary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Secondary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 1 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Chiller 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 2 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Detector	DI	COV	12 Hours	3 days	С	True	10 Min
Refrigerant Exhaust Fan Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min
Emergency Shutdown	DI	COV	12 Hours	3 days	Р	True	1 Min
Primary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		

Chilled Water	System	Trending an	d Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Primary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Chiller 1 Enable	DO	COV	12 Hours	3 days	N/A		
Chiller 1 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A		
Chiller 2 Enable	DO	COV	12 Hours	3 days	N/A		
Chiller 2 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A		
Refrigerant Exhaust Fan Start / Stop	DO	COV	12 Hours	3 days	N/A		

Condenser Water System Trending and Alarms								
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Chiller 1 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A			

Condenser Wate	r Syste	m Trending	and Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 1 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Condenser Entering Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Condenser Leaving Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Basin Temp	AI	15 Minutes	12 Hours	3 days	P	< 45 oF	10 Min
Cooling Tower 2 Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 2 Return Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 2 Basin Temp	AI	15 Minutes	12 Hours	3 days	P	< 45 of	10 Min
Condenser Water Supply Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Condenser Water Return Temp	AI	15 Minutes	12 Hours	3 days	N/A		
Outdoor Air Wet Bulb	AI	15 Minutes	12 Hours	3 days	N/A		
Cooling Tower 1 Fan Status	DI	COV	12 Hours	3 days	P	Status <> Command	1 min
Cooling Tower 1 Basin Heat	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 1 Heat Trace	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 2 Fan Status	DI	COV	12 Hours	3 days	P	Status <> Command	1 min
Cooling Tower 2 Basin Heat	DI	COV	12 Hours	3 days	N/A		
Cooling Tower 2 Heat Trace	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Isolation Valve	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min

Condenser Water System Trending and Alarms									
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		
Chiller 2 Isolation Valve	DI	cov	12 Hours	3 days	Р	Status <> Command	1 min		
Condenser Water Pump 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min		
Condenser Water Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	1 min		
Chiller 1 Condenser Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Chiller 2 Condenser By- Pass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 2 Bypass Valve	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 2 Fan Speed	AO	15 Minutes	12 Hours	3 days	N/A				
Cooling Tower 1 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A				
Cooling Tower 2 Fan Start / Stop	DO	COV	12 Hours	3 days	N/A				
Condenser Water Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A				
Condenser Water Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A				

Steam Boiler System Trending and Alarms								
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	

Steam Boiler S	ystem T	rending and	Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Boiler 1 Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min
Boiler 1 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min
Boiler 2 Steam Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
System Steam Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min
Boiler 1 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 1 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 1 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 1 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 1 Feed Pump	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Low Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min
Boiler 2 High Water Alarm	DI	COV	12 Hours	3 days	С	True	5 Min

Steam Boiler Sy	ystem T	rending and	Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Boiler 2 Feed Pump	DI	COV	12 Hours	3 days	N/A		
Combustion Damper Status	DI	COV	12 Hours	3 days	P	Status <> Command	5 min
Condensate Recovery Pump Status	DI	COV	12 Hours	3 days	Р	Status <> Command	5 min
Boiler 1 Feed Pump Start / Stop	DO	COV	12 Hours	3 days	N/A		
Boiler 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Combustion Damper Command	DO	COV	12 Hours	3 days	N/A		
Condensate Recovery Pump Start / Stop	DO	COV	12 Hours	3 days	N/A		

Hot Water Boile	er Syst	em Trending	and Alarms				
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Outside Air Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Entering Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Leaving Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Fire Signal	AI	15 Minutes	12 Hours	3 days	N/A		

			Onomaticas	To obi no			
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Boiler 2 Entering Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 2 Leaving Water Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Hot Water Supply Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5 oF from SP	10 Min
Hot Water Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	С	±5% from SP	10 Min
Lead Boiler	AI	15 Minutes	12 Hours	3 days	N/A		
Boiler 1 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Status	DI	COV	12 Hours	3 days	P	Status <> Command	10 min
Boiler 1 Isolation Valve	DI	COV	12 Hours	3 days	N/A		
Boiler 1 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 1 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Boiler 2 Enable	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Boiler 2 Isolation Valve	DI	COV	12 Hours	3 days	N/A		
Boiler 2 on Fuel Oil	DI	COV	12 Hours	3 days	N/A		
Boiler 2 Alarm	DI	COV	12 Hours	3 days	С	True	1 Min
Combustion Dampers Open	DI	COV	12 Hours	3 days	P	Status <> Command	10 min

Project Number: 589-370

Hot Water Boil	er Syst	em Trending	and Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Primary Pump 1 Status	DI	COV	12 Hours	3 days	P	Status <> Command	10 min
Primary Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Secondary Pump 1 Status	DI	COV	12 Hours	3 days	P	Status <> Command	10 min
Secondary Pump 2 Status	DI	COV	12 Hours	3 days	Р	Status <> Command	10 min
Primary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Primary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 VFD Speed	AO	COV	12 Hours	3 days	N/A		
Hot Water System Enable	DO	COV	12 Hours	3 days	N/A		
Combustion Dampers Command	DO	COV	12 Hours	3 days	N/A		
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Secondary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		

E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified

Project Number: 589-370

after submission shall be recorded and resubmitted to the COR and Commissioning Agent.

- 1. Point-to-Point checkout documentation;
- Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
- 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM							
Sansan	Calibration	O&M Calibration Procedure					
Sensor	Frequency	Reference					
Discharge air	Once a year	Volume I Section D.3.aa					
temperature	Once a year	volume i section b.s.aa					
Discharge static	Every 6 months	Volume II Section A.1.c					
pressure	Every o monens	Volume II Section A.I.C					

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1								
Control	Proportional	Integral	Derivative	Interval				
Reference	Constant	Constant	Constant					
Heating Valve	1000	2.0	10	2 sec.				
Output	1000	20	10	2 360.				

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.

Project Number: 589-370

- B. Objectives and Scope: The objective of Systems Functional Performance
 Testing is to demonstrate that each system is operating according to
 the Contract Documents. Systems Functional Performance Testing
 facilitates bringing the systems from a state of substantial completion
 to full dynamic operation. Additionally, during the testing process,
 areas of noncompliant performance are identified and corrected, thereby
 improving the operation and functioning of the systems. In general,
 each system shall be operated through all modes of operation (seasonal,
 occupied, unoccupied, warm-up, cool-down, part- and full-load, fire
 alarm and emergency power) where there is a specified system response.
 The Contractor shall verify each sequence in the sequences of
 operation. Proper responses to such modes and conditions as power
 failure, freeze condition, low oil pressure, no flow, equipment
 failure, etc. shall also be tested.
- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.
- D. Purpose of Test Procedures: The purpose of each specific Systems
 Functional Performance Test is to verify and document compliance with
 the stated criteria of acceptance given on the test form.
 Representative test formats and examples are found in the Commissioning
 Plan for this project. (The Commissioning Plan is issued as a separate
 document and is available for review.) The test procedure forms

Project Number: 589-370

developed by the Commissioning Agent will include, but not be limited to, the following information:

- 1. System and equipment or component name(s)
- 2. Equipment location and ID number
- 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
- 4. Date
- 5. Project name
- 6. Participating parties
- 7. A copy of the specification section describing the test requirements
- 8. A copy of the specific sequence of operations or other specified parameters being verified
- 9. Formulas used in any calculations
- 10. Required pretest field measurements
- 11. Instructions for setting up the test.
- 12. Special cautions, alarm limits, etc.
- 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
- 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
- 15. A section for comments.
- 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
 - 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
 - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading

Project Number: 589-370

in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.

- 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
- 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance

Project Number: 589-370

Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.

- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance

 Testing will be conducted only after Pre-Functional Checklists have

 been satisfactorily completed. The control system shall be sufficiently

 tested and approved by the Commissioning Agent and the VA before it is

 used to verify performance of other components or systems. The air

 balancing and water balancing shall be completed before Systems

 Functional Performance Testing of air-related or water-related

 equipment or systems are scheduled. Systems Functional Performance

 Testing will proceed from components to subsystems to systems. When the

 proper performance of all interacting individual systems has been

 achieved, the interface or coordinated responses between systems will

 be checked.
- K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

Project Number: 589-370

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
 - 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.

Project Number: 589-370

- b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:

Project Number: 589-370

- Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings.
 The findings shall be provided to the VA within two weeks of the original notice.
- 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
- 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
- 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
- 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen

Project Number: 589-370

Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.

B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.
 - Review course materials (including operation and maintenance manuals).
 - 7. Review and discuss locations and other facilities required for instruction.
 - 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.

- 9. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - 2. Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
 - e. Submit two copies within seven days of end of each training module.

Project Number: 589-370

6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.

D. Quality Assurance:

- 1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
- 2. Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
- 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.

E. Training Coordination:

- 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
- 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.

F. Instruction Program:

- 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.
 - b. Intrusion detection systems.
 - c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
 - d. Medical equipment, including medical gas equipment and piping.

- e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
- f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
- g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
- h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
- i. HVAC instrumentation and controls.
- j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
- k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
- 1. Lighting equipment and controls.
- m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.
- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - H, Performance curves.

06-01-13

Patient Parking Garage Kansas City VA, Medical Center

Project Number: 589-370

- 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.

- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

H. Training Execution:

 Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.

2. Instruction:

- a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
- b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.

Project Number: 589-370

- 2) The VA will furnish an instructor to describe VA's operational philosophy.
- 3) The VA will furnish the Contractor with names and positions of participants.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
- I. Demonstration and Training Recording:
 - 1. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - 2. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - 3. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

---- END ----

Project Number: 589-370

SECTION 02 21 00 SITE SURVEYS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the gathering of research documents, performance of a property and topographic survey and preparation of a site survey map.

1.2 DEFINITIONS

- A. Professional Land Surveyor: One who possesses a valid state license as a "Professional Land Surveyor" from the state in which they practice.
- B. Professional Civil Engineer: One who possesses a valid state license as a "Professional Civil Engineer" from the state in which they practice. For this section, the term "surveyor" shall also include Professional Civil Engineers authorized to practice Land Surveying under the laws of the state in which they practice.

PART 2 - EXECUTION

- A. The surveyor shall research available public records for all mapping, monumentation, plats, governmental surveys etc. that may pertain to the subject property. Research all applicable public utilities for substructure data such as sewers, storm drains, water lines, electrical conduits etc.
- B. The survey shall be performed on the ground in accordance with the current "Accuracy Standards for Land Title Surveys" as adopted, from time to time, by the American Congress on Surveying and Mapping, the National Society of Professional Surveyors, and the American Land Title Association.
- C. The surveyor, when applicable, shall consult with the Contracting Officer to determine scale of plat or map and size of drawings.
- D. The surveyor shall furnish two sets of prints of the plat or map of survey and the electronic CADD file for 3D software. The sheets shall be numbered, the total number of sheets indicated and the match lines shall be shown on each sheet.
- E. On the plat or map, the survey boundary shall be drawn to a scale not larger than 1 inch = 30 feet (25 mm = 9 m), with the scale clearly indicated. A graphic scale, shown in feet or meters or both, shall be included. A north arrow shall be shown and when practicable, the plat or map of survey shall be oriented so that north is at the top of the

Project Number: 589-370

drawing. Symbols or abbreviations used shall be identified on the face of the plat or map by use of a legend or other means. Supplementary or exaggerated diagrams shall be presented accurately on the plat or map where dimensional data is too small to be shown clearly at full scale. The plat or map shall be 30 by 42 inches.

- F. The survey shall contain the following applicable information:
 - The name, address, telephone number, and signature of the Professional Land Surveyor who made the survey, his or her official seal and registration number, the date the survey was completed and the dates of all revisions.
 - 2. The survey drawing(s) submitted shall bear the following certification adjacent to the Engineer's official seal:
 "I hereby certify that all information indicated on this drawing was obtained or verified by actual measurements in the field and that every effort has been made to furnish complete and accurate information."
 - 3. Vicinity map showing the property surveyed in reference to nearby highways or major street intersections.
 - 4. Flood zone designation (with proper annotation based on Federal Flood Insurance Rate Maps or the state or local equivalent, by scaled map location and graphic plotting only).
 - 5. Land area as defined by the boundaries of the legal description of the surveyed premises, including legal description of the land.
 - 6. All data necessary to indicate the mathematical dimensions and relationships of the boundary represented by bearings and distances, and the length and radius of each curve, together with elements necessary to mathematically define each curve. The point of beginning of the surveyor's description and the basis of bearings shall also be shown.
 - 7. When record bearings or angles or distances differ from measured bearings, angles or distances, both record and measured bearings, angles, and distances shall be clearly indicated. If the record description fails to form a mathematically closed figure, the surveyor shall so indicate.
 - 8. Measured and record distances from corners of parcels surveyed to the nearest right-of-way lines of streets in urban or suburban areas, together with recovered lot corners and evidence of lot

Project Number: 589-370

corners, shall be noted. The distances to the nearest intersecting street shall be indicated and verified. Names and widths of streets and highways abutting the property surveyed and widths of rights of way shall be given. Observable evidence of access (or lack thereof) to such abutting streets or highways shall be indicated. Observable evidence of private roads shall be so indicated. Streets abutting the premises, which have been described in Record Documents, but not physically opened, shall be shown and so noted.

- 9. The identifying titles of all recorded plats, filed maps, right of way maps, or similar documents which the survey represents, wholly or in part, with their appropriate recording data. The survey shall indicate platted setback or building restriction lines which have been recorded in subdivision plats or which appear in a Record Document which has been delivered to the surveyor. Contiguity, gores, and overlaps along the exterior boundaries of the survey premises, where ascertainable from field evidence or Record Documents, or interior to those exterior boundaries, shall be clearly indicated or noted. Where only a part of a recorded lot or parcel is included in the survey, the balance of the lot or parcel shall be indicated.
- 10. All evidence of found monuments shall be shown and noted. All evidence of monuments found beyond the surveyed premises on which establishment of the corners of the survey premises are dependent, and their application related to the survey shall be indicated.
- 11. The character of any and all evidence of possession shall be stated and the location of such evidence carefully given in relation to both the measured boundary lines and those established by the record. An absence of notation on the survey shall be presumptive of no observable evidence of possession.
- 12. The location of all buildings upon the plot or parcel shall be shown and their locations defined by measurements perpendicular to the boundaries. If there are no buildings, so state. Proper street numbers shall be shown where available.
- 13. All easements evidenced by a Record Document which have been delivered to the surveyor shall be shown, both those burdening and those benefiting the property surveyed, indicating recording information. If such an easement cannot be located, a note to this

Project Number: 589-370

affect shall be included. Observable evidence of easements and/or servitudes of all kinds, such as those created by roads, rights-of-ways, water courses, drains, telephone, telegraph, or electric lines, water, sewer, oil or gas pipelines on or across the surveyed property and on adjoining properties if they appear to affect the surveyed property, shall be located and noted. Surface indications, if any, or of underground easements and/or servitudes shall also be shown.

- 14. The character and location of all walls, buildings, fences, and other visible improvements within five feet of each side of the boundary lines shall be noted. Without expressing a legal opinion, physical evidence of all encroaching structural appurtenances and projections, such as fire escapes, bay windows, windows and doors that open out, flue pipes, stoops, eaves, cornices, areaways, stoops, trip, etc., by or on adjoining property or on abutting streets, on any easement or over setback lines shown by Record Documents shall be indicated with the extent of such encroachment or projection.
- 15. Driveways and alleys on or crossing the property must be shown.

 Where there is evidence of use by other than the occupants of the property, the surveyor must so indicate on the plat or map. Where driveways or alleys on adjoining properties encroach, in whole or in part, on the property being surveyed, the surveyor must so indicate on the plat or map with appropriate measurements.
- 16. Location, alignment and dimensions of all roads, curbs, walks, parking and paved areas abutting the subject land. Indicate road centerlines with true bearings and lengths by 50 foot stationing. Describe curves by designating the points of curvature and tangency by station. Include all curve data as well a location of radius and vertex points. Elevations on 50 foot (15 m) centers on centerline of roads, edges of roads and top and bottom of curbs.
- 17. As accurately as the evidence permits, the location of cemeteries and burial grounds disclosed in the process of researching title to the premises or observed in the process of performing the field work for the survey, shall be shown.
- 18. Ponds, lakes, springs, or rivers bordering on or running through the premises being surveyed shall be shown. When a property surveyed

contains a natural water boundary, the surveyor shall measure the location of the boundary according to appropriate surveying methods and note on the plat or map the date of the measurement and the caveat that the boundary is subject to change due to natural causes and that it may or may not represent the actual location of the limit of title. When the surveyor is aware of changes in such boundaries, the extent of those changes shall be identified.

- 19. Contours at a minimum interval of 1 foot (305 mm). Modify between 6 inches if not applicable to project. Base vertical control on the permanent (not assumed) National Geodetic Survey (NGS) or VA Medical Center Bench Mark. Note location, description and datum. Surveyor to establish three benchmarks on the property that are based on the NGS. Horizontal and vertical control to be provided on each control point.
- 20. Identify and show if possible, setback, height, and floor space area restrictions of record or disclosed by applicable zoning or building codes (in addition to those recorded in subdivision maps). If none, so state.
- 21. Exterior dimensions of all buildings at ground level. Show square footage of exterior footprint of all buildings at ground level and gross floor area of all buildings.
- 22. Measured height of all buildings above grade at a defined location. If no defined location is provided, the point of measurement shall be shown.
- 23. Elevations at each entrance to buildings, service docks, building corners, steps, ramps and grade slabs.
- 24. Substantial, visible improvements (in addition to buildings) such as signs, parking areas, swimming pools, etc.
- 25. Parking areas and, if striped, the striping and the type (eg. handicapped, motorcycle, regular, etc.) and number of parking spaces.
- 26. Indication of access to a public way such as curb cuts and driveways.
- 27. Location of utilities existing on or serving the surveyed property as determined by observed evidence together with plans and markings provided by utility companies, and other appropriate sources (with references as to the source of information. Locate and

Project Number: 589-370

show all fire hydrants located within 500 feet of the subject property.

- 28. Railroad tracks and sidings.
- 29. Manholes, catch basins, valve vaults or other surface indications of subterranean uses together with depths or invert elevations, sizes, and materials of all pipes.
- 30. Wires and cables (including their function) crossing the survey premises, all poles on or within ten feet of the surveyed premises, and the dimensions of all cross-wires or overhangs affecting the surveyed premises.
- 31. Utility company installations on the surveyed premises.
- 32. Names of adjoining owners of platted lands together with zoning classification.
- 33. Observable evidence of earth moving work, building construction or building additions within recent months.
- 34. Any changes in street right-of-way lines either completed or proposed, and available from the controlling jurisdiction.

 Observable evidence of recent street or sidewalk construction or repairs.
- 35. Observable evidence of site use as a solid waste dump, sump or sanitary landfill.
- 36. All trees with a minimum diameter of 6" measured at 48" above the base of the tree. Perimeter outline only of thickly wooded areas with description of predominant vegetation.

- - - E N D - - -

Project Number: 589-370

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Demolition and removal of roads, walks, curbs, and on-grade slabs outside buildings to be demolished: Section 31 20 00, EARTH MOVING.
- B. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Asbestos Removal: Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- F. Lead Paint: Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- G. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- H. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- I. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide

overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.

- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - 1. No wall or part of wall shall be permitted to fall outwardly from structures.
 - 2. Maintain at least one stairway in each structure in usable condition to highest remaining floor. Keep stairway free of obstructions and debris until that level of structure has been removed.
 - 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 4. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Contracting Officer Representative (COR). The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have COR's approval.
- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

1.4 UTILITY SERVICES:

A. Demolish and remove outside utility service lines shown to be removed.

B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - 2. To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the COR. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously.
- D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.
- E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the COR. When Utility lines are encountered that are not indicated on the drawings, the COR shall be notified prior to further work in that area.

Project Number: 589-370

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to COR. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

Project Number: 589-370

SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies cast-in-place structural concrete and materials and mixes for other concrete.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Concrete roads, walks, and similar exterior site work: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.

1.3 TESTING AGENCY FOR CONCRETE MIX DESIGN:

- A. Testing agency for the trial concrete mix design retained and reimbursed by the Contractor and approved by Engineer. For all other testing, refer to Section 01 45 29 Testing Laboratory Services.
- B. Testing agency maintaining active participation in Program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology.
- C. Testing agency shall furnish equipment and qualified technicians to establish proportions of ingredients for concrete mixes.

1.4 TOLERANCES:

- A. Formwork: ACI 117, except the elevation tolerance of formed surfaces before removal of shores is +0 mm (+0 inch) and -20 mm (-3/4 inch).
- B. Reinforcement Fabricating and Placing: ACI 117, except that fabrication tolerance for bar sizes Nos. 10, 13, and 16 (Nos. 3, 4, and 5) (Tolerance Symbol 1 in Fig. 2.1(a), ACI, 117) used as column ties or stirrups is +0 mm (+0 inch) and -13 mm (-1/2 inch) where gross bar length is less than 3600 mm (12 feet), or +0 mm (+0 inch) and -20 mm (-3/4 inch) where gross bar length is 3600 mm (12 feet) or more.
- C. Cross-Sectional Dimension: ACI 117, except tolerance for thickness of slabs 12 inches or less is +20 mm (+3/4 inch) and 6 mm (-1/4 inch). Tolerance of thickness of beams more than 300 mm (12 inch) but less than 900 mm (3 feet) is +20 mm (+3/4 inch) and -10 mm (-3/8 inch).
- D. Slab Finishes: ACI 117, Section 4.5.6, F-number method in accordance with ASTM E1155, except as follows:

Project Number: 589-370

- 1. Test entire slab surface, including those areas within 600 mm (2 feet) of construction joints and vertical elements that project through slab surface.
- 2. Maximum elevation change which may occur within 600 mm (2 feet) of any column or wall element is 6 mm (0.25 inches).
- 3. Allow sample measurement lines that are perpendicular to construction joints to extend past joint into previous placement no further than 1500 mm (5 feet).

1.5 REGULATORY REQUIREMENTS:

- A. ACI SP-66 ACI Detailing Manual.
- B. ACI 318 Building Code Requirements for Reinforced Concrete.
- C. ACI 301 Standard Specifications for Structural Concrete.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings: Reinforcing steel: Complete shop drawings
- C. Mill Test Reports:
 - 1. Reinforcing Steel.
 - 2. Cement.
- D. Manufacturer's Certificates:
 - 1. Abrasive aggregate.
 - 3. Air-entraining admixture.
 - 4. Chemical admixtures, including chloride ion content.
 - 5. Waterproof paper for curing concrete.
 - 6. Liquid membrane-forming compounds for curing concrete.
 - 7. Non-shrinking grout.
 - 8. Liquid hardener.
 - 9. Waterstops.
 - 10. Expansion joint filler.
 - 11. Adhesive binder.
- E. Testing Agency for Concrete Mix Design: Approval request including qualifications of principals and technicians and evidence of active participation in program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology.
- F. Test Report for Concrete Mix Designs: Trial mixes including water-cement fly ash ratio curves, concrete mix ingredients, and admixtures.

Project Number: 589-370

G. Shoring and Reshoring Sequence: Submit for approval a shoring and reshoring sequence, prepared by a registered Professional Engineer. As a minimum, include timing of form stripping, reshoring, number of floors to be re-shored and timing of re-shore removal to serve as an initial outline of procedures subject to modification as construction progresses. Submit revisions to sequence, whether initiated by Engineer (see FORMWORK) or Contractor.

1.7 DELIVERY, STORAGE, AND HANDLING:

- A. Conform to ACI 304. Store aggregate separately for each kind or grade, to prevent segregation of sizes and avoid inclusion of dirt and other materials.
- B. Deliver cement in original sealed containers bearing name of brand and manufacturer, and marked with net weight of contents. Store in suitable watertight building in which floor is raised at least 300 mm (1 foot) above ground. Store bulk cement and fly ash in separate suitable bins.
- C. Deliver other packaged materials for use in concrete in original sealed containers, plainly marked with manufacturer's name and brand, and protect from damage until used.

1.8 PRE-CONCRETE CONFERENCE:

- A. General: At least 15 days prior to submittal of design mixes, conduct a meeting to review proposed methods of concrete construction to achieve the required results.
- B. Agenda: Includes but is not limited to:
 - 1. Submittals.
 - 2. Coordination of work.
 - 3. Availability of material.
 - 4. Concrete mix design including admixtures.
 - 5. Methods of placing, finishing, and curing.
 - 6. Finish criteria required to obtain required flatness and levelness.
 - 7. Timing of floor finish measurements.
 - 8. Material inspection and testing.
- C. Attendees: Include but not limited to representatives of Contractor; subcontractors involved in supplying, conveying, placing, finishing, and curing concrete; admixture manufacturers; Engineer; Consulting Engineer; Department of Veterans Affairs retained testing laboratories for concrete testing and finish (F-number) verification.

D. Minutes of the meeting: Contractor shall take minutes and type and distribute the minutes to attendees within five days of the meeting.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

В.	American Concrete Institute (ACI):		
	117-10Specifications for Tolerances for Concrete		
	Construction and Materials and Commentary		
	211.1-91(R2009)Standard Practice for Selecting Proportions for		
	Normal, Heavyweight, and Mass Concrete		
	214R-11Guide to Evaluation of Strength Test Results of		
	Concrete		
	301-10Standard Practice for Structural Concrete		
	304R-00(R2009)Guide for Measuring, Mixing, Transporting, and		
	Placing Concrete		
	305.1-06Specification for Hot Weather Concreting		
	306.1-90(R2002)Standard Specification for Cold Weather		
	Concreting		
	308.1-11Specification for Curing Concrete		
	309R-05Guide for Consolidation of Concrete		
	318-11Building Code Requirements for Structural		
	Concrete and Commentary		
	347-04Guide to Formwork for Concrete		
	SP-66-04ACI Detailing Manual		
C.	American Society for Testing and Materials (ASTM):		
	A82/A82M-07Standard Specification for Steel Wire, Plain,		
	for Concrete Reinforcement		
	A185/185M-07Standard Specification for Steel Welded Wire		
	Reinforcement, Plain, for Concrete		
	A615/A615M-09Standard Specification for Deformed and Plain		
	Carbon Steel Bars for Concrete Reinforcement		
	A653/A653M-11Standard Specification for Steel Sheet, Zinc		
	Coated (Galvanized) or Zinc Iron Alloy Coated		

(Galvannealed) by the Hot Dip Process

A706/A706M-09Standard Specification for Low Alloy Steel
Deformed and Plain Bars for Concrete
Reinforcement
A767/A767M-09Standard Specification for Zinc Coated
(Galvanized) Steel Bars for Concrete
Reinforcement
A775/A775M-07Standard Specification for Epoxy Coated
Reinforcing Steel Bars
A820-11Standard Specification for Steel Fibers for
Fiber Reinforced Concrete
A996/A996M-09Standard Specification for Rail Steel and Axle
Steel Deformed Bars for Concrete Reinforcement
C31/C31M-10Standard Practice for Making and Curing
Concrete Test Specimens in the field
C33/C33M-11AStandard Specification for Concrete Aggregates
C39/C39M-12Standard Test Method for Compressive Strength
of Cylindrical Concrete Specimens
C94/C94M-12Standard Specification for Ready Mixed Concrete
C143/C143M-10Standard Test Method for Slump of Hydraulic
Cement Concrete
C150-11Standard Specification for Portland Cement
C171-07Standard Specification for Sheet Materials for
Curing Concrete
C172-10Standard Practice for Sampling Freshly Mixed
Concrete
C173-10Standard Test Method for Air Content of Freshly
Mixed Concrete by the Volumetric Method
C192/C192M-07Standard Practice for Making and Curing
Concrete Test Specimens in the Laboratory
C231-10Standard Test Method for Air Content of Freshly
Mixed Concrete by the Pressure Method
C260-10Standard Specification for Air Entraining
Admixtures for Concrete
C309-11 Standard Specification for Liquid Membrane
Forming Compounds for Curing Concrete
C330-09Standard Specification for Lightweight
Aggregates for Structural Concrete

Project	Number:	589-370
---------	---------	---------

C494/C494M-11	Standard Specification for Chemical Admixtures
	For Concrete
C618-12	Standard Specification for Coal Fly Ash and Raw
	or Calcined Natural Pozzolan for Use in
	Concrete
C666/C666M-03(R2008)S	Standard Test Method for Resistance of Concrete
t	to Rapid Freezing and Thawing
C881/C881M-10	Standard Specification for Epoxy Resin Base
E	Bonding Systems for Concrete
C1107/1107M-11	Standard Specification for Packaged Dry,
F	Hydraulic-Cement Grout (Non-shrink)
C1315-11	Standard Specification for Liquid Membrane
F	Forming Compounds Having Special Properties for
	Curing and Sealing Concrete
D6-95(R2011)	Standard Test Method for Loss on Heating of Oil
á	and Asphaltic Compounds
D297-93(R2006)S	Standard Methods for Rubber Products Chemical
P	Analysis
	Analysis Standard Test Methods for Vulcanized Rubber and
D412-06AE2	
D412-06AE2	Standard Test Methods for Vulcanized Rubber and
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types)
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types) Standard Test Method for Indicating Moisture in
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types) Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method.
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types) Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method. Standard Specification for Polyethylene
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types) Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method. Standard Specification for Polyethylene Sheeting for Construction, Industrial and
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types) Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method. Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Situminous Types) Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method. Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications Standard Test Method for Determining F_F Floor
D412-06AE2	Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types) Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method. Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications Standard Test Method for Determining F_F Floor Flatness and F_L Floor Levelness Numbers

D. American Welding Society (AWS):

D1.4/D1.4M-11.....Structural Welding Code - Reinforcing Steel

E. Concrete Reinforcing Steel Institute (CRSI): Handbook 2008

F. U. S. Department of Commerce Product Standard (PS):

PS 20.....American Softwood Lumber

 ${\tt G.\ U.\ S.\ Army\ Corps}$ of Engineers Handbook for Concrete and Cement:

CRD C513.....Rubber Waterstops

CRD C572.....Polyvinyl Chloride Waterstops

PART 2 - PRODUCTS:

2.1 FORMS:

- A. Wood: PS-2 free from loose knots and suitable to facilitate finishing concrete surface specified; tongue and grooved.
- B. Plywood: PS-1 Exterior Grade B-B (concrete-form) 16 mm (5/8 inch), or 20 mm (3/4 inch) thick for unlined contact form. B-B High Density Concrete Form Overlay optional.
- C. Metal for Concrete Rib-Type Construction: Steel (removal type) of suitable weight and form to provide required rigidity.
- D. Permanent Steel Form for Concrete Slabs: Corrugated, ASTM A653, Grade E, and Galvanized, ASTM A653, G90. Provide venting where insulating concrete fill is used.
- E. Form Lining:
 - 1. Hardboard: ANSI/AHA A135.4, Class 2 with one (S1S) smooth side
 - 2. Plywood: Grade B-B Exterior (concrete-form) not less than 6 mm (1/4 inch) thick.
 - 3. Plastic, fiberglass, or elastomeric capable of reproducing the desired pattern or texture.
- F. Form Ties: Develop a minimum working strength of 13.35 kN (3000 pounds) when fully assembled. Ties shall be adjustable in length to permit tightening of forms and not have any lugs, cones, washers to act as spreader within form, nor leave a hole larger than 20 mm (3/4 inch) diameter, or a depression in exposed concrete surface, or leave metal closer than 40 mm (1 1/2 inches) to concrete surface. Wire ties not permitted. Cutting ties back from concrete face not permitted.

2.2 MATERIALS:

A. Portland Cement: ASTM C150 Type I or II.

- B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalies, and loss on ignition (LOI) not to exceed 5 percent.
- C. Coarse Aggregate: ASTM C33.
 - 1. Size 67 or Size 467 may be used for footings and walls over 300 mm (12 inches) thick.
 - 2. Coarse aggregate for applied topping, encasement of steel columns, and metal pan stair fill shall be Size 7.
 - 3. Maximum size of coarse aggregates not more than one-fifth of narrowest dimension between sides of forms, one-third of depth of slabs, nor three-fourth of minimum clear spacing between reinforcing bars.
- D. Fine Aggregate: ASTM C33. Fine aggregate for applied concrete floor topping shall pass a 4.75 mm (No. 4) sieve, 10 percent maximum shall pass a 150 μ m (No. 100) sieve.
- E. Mixing Water: Fresh, clean, and potable.
- F. Admixtures:
 - 1. Water Reducing Admixture: ASTM C494, Type A and not contain more chloride ions than are present in municipal drinking water.
 - 2. Water Reducing, Retarding Admixture: ASTM C494, Type D and not contain more chloride ions than are present in municipal drinking water.
 - 3. High-Range Water-Reducing Admixture (Superplasticizer): ASTM C494,

 Type F or G, and not contain more chloride ions than are present in

 municipal drinking water.
 - 4. Non-Corrosive, Non-Chloride Accelerator: ASTM C494, Type C or E, and not contain more chloride ions than are present in municipal drinking water. Admixture manufacturer must have long-term non-corrosive test data from an independent testing laboratory of at least one year duration using an acceptable accelerated corrosion test method such as that using electrical potential measures.
 - 5. Air Entraining Admixture: ASTM C260.
 - 6. Microsilica: Use only with prior review and acceptance of the Engineer. Use only in conjunction with high range water reducer.
 - 7. Calcium Nitrite corrosion inhibitor: ASTM C494 Type C.
 - 8. Prohibited Admixtures: Calcium chloride, thiocyanate or admixtures containing more than 0.05 percent chloride ions are not permitted.

- 9. Certification: Written conformance to the requirements above and the chloride ion content of the admixture prior to mix design review.
- G. Vapor Retarder: ASTM E1745, 0.38 mm (15 mil) Class A material with a maximum water vapor permeance rating of 0.01 perms after mandatory conditioning as tested by ASTM E96.
- H. Reinforcing Steel: ASTM A615, or ASTM A996, deformed, grade as shown.
- I. Welded Wire Fabric: ASTM A185.
- J. Reinforcing Bars to be Welded: ASTM A706.
- K. Galvanized Reinforcing Bars: ASTM A767.
- L. Epoxy Coated Reinforcing Bars: ASTM A775.
- M. Cold Drawn Steel Wire: ASTM A82.
- N. Reinforcement for Metal Pan Stair Fill: 50 mm (2 inch) wire mesh, either hexagonal mesh at $.8 \text{Kg/m}^2$ (1.5 pounds per square yard), or square mesh at $.6 \text{Kg/m}^2$ (1.17 pounds per square yard).
- O. Supports, Spacers, and Chairs: Types which will hold reinforcement in position shown in accordance with requirements of ACI 318 except as specified.
- P. Expansion Joint Filler: ASTM D1751.
- Q. Sheet Materials for Curing Concrete: ASTM C171.
- R. Liquid Membrane-forming Compounds for Curing Concrete: ASTM C309, Type I, with fugitive dye, and shall meet the requirements of ASTM C1315.Compound shall be compatible with scheduled surface treatment, such as paint and resilient tile, and shall not discolor concrete surface.
- S. Abrasive Aggregate: Aluminum oxide grains or emery grits.
- T. Moisture Vapor Emissions & Alkalinity Control Sealer: 100% active colorless aqueous siliconate solution concrete surface.
 - 1. ASTM C1315 Type 1 Class A, and ASTM C309 Type 1 Class A, penetrating product to have no less than 40% solid content, leaving no sheen, volatile organic compound (VOC) content rating as required to suite regulatory requirements. The product shall have at least a five (5) year documented history in controlling moisture vapor emission from damaging floor covering, compatible with all finish materials.
 - 2. MVE 15-Year Warranty:
 - a. When a floor covering is installed on a below grade, on grade, or above grade concrete slab treated with Moisture Vapor Emissions & Alkalinity Control Sealer according to manufacturer's

instruction, sealer manufacturer shall warrant the floor covering system against failure due to moisture vapor migration or moisture-born contaminates for a period of fifteen (15) years from the date of original installation. The warranty shall cover all labor and materials needed to replace all floor covering that fails due to moisture vapor emission & moisture born contaminates.

U. Penetrating Sealer: For use on all parking garage ramps and decks. High penetration silane sealer with no less than 40% solid content and providing minimum 95 percent screening per National Cooperative Highway Research Program (NCHRP) No. 244 standards for chloride ion penetration resistance. Requires moist (non-membrane) curing of slab.

V. Non-Shrink Grout:

- 1. ASTM C1107, pre-mixed, produce a compressive strength of at least 18 MPa at three days and 35 MPa (5000 psi) at 28 days. Furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent bearing under a 1200 mm x 1200 mm (4 foot by 4 foot) base plate.
- 2. Where high fluidity or increased placing time is required, furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent under an 450 mm x 900 mm (18 inch by 36 inch) base plate.
- W. Adhesive Binder: ASTM C881.

X. Waterstops:

- 3. Bentonite Waterstop: Flexible strip of bentonite 25 mm x 20 mm (1 inch by 3/4 inch), weighing 8.7 kg/m (5.85 lbs. per foot) composed of Butyl Rubber Hydrocarbon (ASTM D297), Bentonite (SS-S-210-A) and Volatile Matter (ASTM D6).
- Y. Porous Backfill: Crushed stone or gravel graded from 25 mm to 20 mm (1 inch to 3/4 inch).

Z. Fibers:

- 1. Synthetic Fibers: Monofilament or fibrillated polypropylene fibers for secondary reinforcing of concrete members. Use appropriate length and 1.8 kg/m 3 (3.0 lb. per cubic yard). Product shall have a UL rating.
- AA. Epoxy Joint Filler: Two component, 100 percent solids compound, with a minimum shore D hardness of 50.

Project Number: 589-370

- BB. Bonding Admixture: Non-rewettable, polymer modified, bonding compound.
- CC. Architectural Concrete: For areas designated as architectural concrete on the Contract Documents, use colored cements and specially selected aggregates as necessary to produce a concrete of a color and finish which exactly matches the designated sample panel.

2.3 CONCRETE MIXES:

- A. Mix Designs: Proportioned in accordance with Section 5.3,

 "Proportioning on the Basis of Field Experience and/or Trial Mixtures" of ACI 318.
 - 1. If trial mixes are used, make sets of concrete cylinders and test as outlined in Specification 014529..
 - 2. Submit a report of results of each test series, include a detailed listing of the proportions of trial mix or mixes, including cement, fly ash, admixtures, weight of fine and coarse aggregate per m³ (cubic yard) measured dry rodded and damp loose, specific gravity, fineness modulus, percentage of moisture, air content, water-cement -fly ash ratio, and consistency of each cylinder in terms of slump.
 - 3. Prepare a curve showing relationship between water-cement -fly ash ratio at 7-day and 28-day compressive strengths. Plot each curve using at least three specimens.
 - 4. If the field experience method is used, submit complete standard deviation analysis.
- B. Fly Ash Testing: Submit certificate verifying conformance with ASTM 618 initially with mix design and for each truck load of fly ash delivered from source. Submit test results performed within 6 months of submittal date. Notify Engineer immediately when change in source is anticipated.
 - Testing Laboratory used for fly ash certification/testing shall participate in the Cement and Concrete Reference Laboratory (CCRL) program. Submit most recent CCRL inspection report.
- C. After approval of mixes no substitution in material or change in proportions of approval mixes may be made without additional tests and approval of Engineer or as specified. Making and testing of preliminary test cylinders may be carried on pending approval of cement and fly ash, providing Contractor and manufacturer certify that ingredients used in making test cylinders are the same. Engineer may allow Contractor to proceed with depositing concrete for certain portions of

Project Number: 589-370

work, pending final approval of cement and fly ash and approval of design mix.

D. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

TABLE II - MAXIMUM SLUMP, MM (INCHES)*

Type of Construction	Normal Weight	Lightweight Structural
	Concrete	Concrete
Reinforced Footings and Substructure Walls	75mm (3 inches)	75 mm (3 inches)
Slabs, Beams, Reinforced Walls, and Building Columns	100 mm (4 inches)	100 mm (4 inches)

- E. Slump may be increased by the use of the approved high-range water-reducing admixture (superplasticizer). Tolerances as established by ASTM C94. Concrete containing the high-range-water-reducing admixture may have a maximum slump of 225 mm (9 inches). The concrete shall arrive at the job site at a slump of 50 mm to 75 mm (2 inches to 3 inches), and 75 mm to 100 mm (3 inches to 4 inches) for lightweight concrete. This should be verified, and then the high-range-water-reducing admixture added to increase the slump to the approved level.
- F. Air-Entrainment: Air-entrainment of normal weight concrete shall conform with Table III. Determine air content by either ASTM C173 or ASTM C231.

TABLE III - TOTAL AIR CONTENT FOR VARIOUS SIZES OF COARSE AGGREGATES (NORMAL CONCRETE)

Nominal Maximum Size of Total Air Content	Coarse Aggregate, mm (Inches) Percentage by Volume
10 mm (3/8 in).6 to 10	13 mm (1/2 in).5 to 9
20 mm (3/4 in).4 to 8	25 mm (1 in).3-1/2 to 6-1/2
40 mm (1 1/2 in).3 to 6	

- G. High early strength concrete, made with Type III cement or Type I cement plus non-corrosive accelerator, shall have a 7-day compressive strength equal to specified minimum 28-day compressive strength for concrete type specified made with standard Portland cement.
- H. Concrete slabs placed at air temperatures below 10 degrees C (50 degrees Fahrenheit) use non-corrosive, non-chloride accelerator. Concrete

required to be air entrained use approved air entraining admixture. Pumped concrete, synthetic fiber concrete, architectural concrete, concrete required to be watertight, and concrete with a water/cement ratio below 0.50 use high-range water-reducing admixture (superplasticizer).

- I. Durability: Use air entrainment for exterior exposed concrete subjected to freezing and thawing and other concrete shown or specified. For air content requirements see Table III or Table IV.
- J. Enforcing Strength Requirements: Test as specified in Section 01 45 29, TESTING LABORATORY SERVICES, during the progress of the work. Seven-day tests may be used as indicators of 28-day strength. Average of any three 28-day consecutive strength tests of laboratory-cured specimens representing each type of concrete shall be equal to or greater than specified strength. No single test shall be more than 3.5 MPa (500 psi) below specified strength. Interpret field test results in accordance with ACI 214. Should strengths shown by test specimens fall below required values, Engineer may require any one or any combination of the following corrective actions, at no additional cost to the Government:
 - 1. Require changes in mix proportions by selecting one of the other appropriate trial mixes or changing proportions, including cement content, of approved trial mix.
 - 2. Require additional curing and protection.
 - 3. If five consecutive tests fall below 95 percent of minimum values given in Table I or if test results are so low as to raise a question as to the safety of the structure, Engineer may direct Contractor to take cores from portions of the structure. Use results from cores tested by the Contractor retained testing agency to analyze structure.
 - 4. If strength of core drilled specimens falls below 85 percent of minimum value given in Table I, Engineer may order load tests, made by Contractor retained testing agency, on portions of building so affected. Load tests in accordance with ACI 318 and criteria of acceptability of concrete under test as given therein.
 - 5. Concrete work, judged inadequate by structural analysis, by results of load test, or for any reason, shall be reinforced with additional construction or replaced, if directed by the Engineer.

Project Number: 589-370

2.4 BATCHING AND MIXING:

A. General: Concrete shall be "Ready-Mixed" and comply with ACI 318 and ASTM C94, except as specified. Batch mixing at the site is permitted. Mixing process and equipment must be approved by Engineer. With each batch of concrete, furnish certified delivery tickets listing information in Paragraph 16.1 and 16.2 of ASTM C94. Maximum delivery temperature of concrete is 38°C (100 degrees Fahrenheit). Minimum delivery temperature as follows:

Atmospheric Temperature	Minimum Concrete Temperature
-1. degrees to 4.4 degrees C (30 degrees to 40 degrees F)	15.6 degrees C (60 degrees F.)
-17 degrees C to -1.1 degrees C (0 degrees to 30 degrees F.)	21 degrees C (70 degrees F.)

1. Services of aggregate manufacturer's representative shall be furnished during the design of trial mixes and as requested by the Engineer for consultation during batching, mixing, and placing operations of lightweight structural concrete. Services will be required until field controls indicate that concrete of required quality is being furnished. Representative shall be thoroughly familiar with the structural lightweight aggregate, adjustment and control of mixes to produce concrete of required quality. Representative shall assist and advise Engineer.

PART 3 - EXECUTION

3.1 FORMWORK:

- A. General: Design in accordance with ACI 347 is the responsibility of the Contractor. The Contractor shall retain a registered Professional Engineer to design the formwork, shores, and reshores.
 - 1. Form boards and plywood forms may be reused for contact surfaces of exposed concrete only if thoroughly cleaned, patched, and repaired and Engineer approves their reuse.
 - 2. Provide forms for concrete footings unless Engineer determines forms are not necessary.
 - 3. Corrugated fiberboard forms: Place forms on a smooth firm bed, set tight, with no buckled cartons to prevent horizontal displacement, and in a dry condition when concrete is placed.

- B. Treating and Wetting: Treat or wet contact forms as follows:
 - 1. Coat plywood and board forms with non-staining form sealer. In hot weather, cool forms by wetting with cool water just before concrete is placed.
 - 2. Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
 - 3. Use sealer on reused plywood forms as specified for new material.
- C. Size and Spacing of Studs: Size and space studs, wales and other framing members for wall forms so as not to exceed safe working stress of kind of lumber used nor to develop deflection greater than 1/270 of free span of member.
- D. Unlined Forms: Use plywood forms to obtain a smooth finish for concrete surfaces. Tightly butt edges of sheets to prevent leakage. Back up all vertical joints solidly and nail edges of adjacent sheets to same stud with 6d box nails spaced not over 150 mm (6 inches) apart.
- E. Lined Forms: May be used in lieu of unlined plywood forms. Back up form lining solidly with square edge board lumber securely nailed to studs with all edges in close contact to prevent bulging of lining. No joints in lining and backing may coincide. Nail abutted edges of sheets to same backing board. Nail lining at not over 200 mm (8 inches) on center along edges and with at least one nail to each square foot of surface area; nails to be 3d blued shingle or similar nails with thin flatheads.
- F. Architectural Liner: Attach liner as recommended by the manufacturer with tight joints to prevent leakage.
- G. Wall Form Ties: Locate wall form ties in symmetrically level horizontal rows at each line of wales and in plumb vertical tiers. Space ties to maintain true, plumb surfaces. Provide one row of ties within 150 mm (6 inches) above each construction joint. Space through-ties adjacent to horizontal and vertical construction joints not over 450 mm (18 inches) on center.
 - 1. Tighten row of ties at bottom of form just before placing concrete and, if necessary, during placing of concrete to prevent seepage of concrete and to obtain a clean line. Ties to be entirely removed shall be loosened 24 hours after concrete is placed and shall be pulled from least important face when removed.

- 2. Coat surfaces of all metal that is to be removed with paraffin, cup grease or a suitable compound to facilitate removal.
- H. Inserts, Sleeves, and Similar Items: Flashing reglets, steel strips, masonry ties, anchors, wood blocks, nailing strips, grounds, inserts, wire hangers, sleeves, drains, guard angles, forms for floor hinge boxes, inserts or bond blocks for elevator guide rails and supports, and other items specified as furnished under this and other sections of specifications and required to be in their final position at time concrete is placed shall be properly located, accurately positioned, and built into construction, and maintained securely in place.
 - 1. Locate inserts or hanger wires for furred and suspended ceilings only in bottom of concrete joists, or similar concrete member of overhead concrete joist construction.
 - 2. Install sleeves, inserts and similar items for mechanical services in accordance with drawings prepared specially for mechanical services. Contractor is responsible for accuracy and completeness of drawings and shall coordinate requirements for mechanical services and equipment.
 - 3. Do not install sleeves in beams, joists or columns except where shown or permitted by Engineer. Install sleeves in beams, joists, or columns that are not shown, but are permitted by the Engineer, and require no structural changes, at no additional cost to the Government.
 - 4. Minimum clear distance of embedded items such as conduit and pipe is at least three times diameter of conduit or pipe, except at stub-ups and other similar locations.
 - 5. Provide recesses and blockouts in floor slabs for door closers and other hardware as necessary in accordance with manufacturer's instructions.

I. Construction Tolerances:

1. Set and maintain concrete formwork to assure erection of completed work within tolerances specified and to accommodate installation of other rough and finish materials. Accomplish remedial work necessary for correcting excessive tolerances. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government.

Project Number: 589-370

2. Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements.

3.2 PLACING REINFORCEMENT:

- A. General: Details of concrete reinforcement in accordance with ACI 318 unless otherwise shown.
- B. Placing: Place reinforcement conforming to CRSI DA4, unless otherwise shown.
 - 1. Place reinforcing bars accurately and tie securely at intersections and splices with 1.6 mm (16 gauge) black annealed wire. Use epoxycoated tie wire with epoxy-coated reinforcing. Secure reinforcing bars against displacement during the placing of concrete by spacers, chairs, or other similar supports. Portions of supports, spacers, and chairs in contact with formwork shall be made of plastic in areas that will be exposed when building is occupied. Type, number, and spacing of supports conform to ACI 318. Where concrete slabs are placed on ground, use concrete blocks or other non-corrodible material of proper height, for support of reinforcement. Use of brick or stone supports will not be permitted.
 - 2. Lap welded wire fabric at least 1 1/2 mesh panels plus end extension of wires not less than 300 mm (12 inches) in structural slabs. Lap welded wire fabric at least 1/2 mesh panels plus end extension of wires not less than 150 mm (6 inches) in slabs on grade.
 - 3. Splice column steel at no points other than at footings and floor levels unless otherwise shown.
- C. Spacing: Minimum clear distances between parallel bars, except in columns and multiple layers of bars in beams shall be equal to nominal diameter of bars. Minimum clear spacing is 25 mm (1 inch) or 1-1/3 times maximum size of coarse aggregate.
- D. Splicing: Splices of reinforcement made only as required or shown or specified. Accomplish splicing as follows:
 - 1. Lap splices: Do not use lap splices for bars larger than Number 36 (Number 11). Minimum lengths of lap as shown.
 - 3. Mechanical Splices: Develop in tension and compression at least 125 percent of the yield strength (fy) of the bars. Stresses of

transition splices between two reinforcing bar sizes based on area of smaller bar. Provide mechanical splices at locations indicated. Use approved exothermic, tapered threaded coupling, or swaged and threaded sleeve. Exposed threads and swaging in the field not permitted.

- a. Initial qualification: In the presence of Engineer, make three test mechanical splices of each bar size proposed to be spliced.

 Department of Veterans Affairs retained testing laboratory will perform load test.
- b. During installation: Furnish, at no additional cost to the Government, one companion (sister) splice for every 50 splices for load testing. Department of Veterans Affairs retained testing laboratory will perform the load test.
- E. Bending: Bend bars cold, unless otherwise approved. Do not field bend bars partially embedded in concrete, except when approved by Engineer.
- F. Cleaning: Metal reinforcement, at time concrete is placed, shall be free from loose flaky rust, mud, oil, or similar coatings that will reduce bond.
- G. Future Bonding: Protect exposed reinforcement bars intended for bonding with future work by wrapping with felt and coating felt with a bituminous compound unless otherwise shown.

3.3 VAPOR RETARDER:

- A. Except where membrane waterproofing is required, interior concrete slab on grade shall be placed on a continuous vapor retarder.
 - 1. Place 100 mm (4 inches) of fine granular fill over the vapor retarder to act as a blotter for concrete slab.
 - 2. Vapor barrier joints lapped 150 mm (6 inches) and sealed with compatible waterproof pressure-sensitive tape.
 - 3. Patch punctures and tears.

3.4 SLABS RECEIVING RESILIENT COVERING

A. Slab shall be allowed to cure for 6 weeks minimum prior to placing resilient covering. After curing, slab shall be tested by the Contractor for moisture in accordance with ASTM D4263 or ASTM F1869. Moisture content shall be less than 3 pounds per 1000 sf prior to placing covering.

Project Number: 589-370

- B. In lieu of curing for 6 weeks, Contractor has the option, at his own cost, to utilize the Moisture Vapor Emissions & Alkalinity Control Sealer as follows:
 - 1. Sealer is applied on the day of the concrete pour or as soon as harsh weather permits, prior to any other chemical treatments for concrete slabs either on grade, below grade or above grade receiving resilient flooring, such as, sheet vinyl, vinyl composition tile, rubber, wood flooring, epoxy coatings and overlays.
 - 2. Manufacturer's representative will be on the site the day of concrete pour to install or train its application and document. He shall return on every application thereafter to verify that proper procedures are followed.
 - a. Apply Sealer to concrete slabs as soon as final finishing operations are complete and the concrete has hardened sufficiently to sustain floor traffic without damage.
 - b. Spray apply Sealer at the rate of $20~\text{m}^2$ (200~square feet) per gallon. Lightly broom product evenly over the substrate and product has completely penetrated the surface.
 - c. If within two (2) hours after initial application areas are subjected to heavy rainfall and puddling occurs, reapply Sealer product to these areas as soon as weather condition permits.

3.5 CONSTRUCTION JOINTS:

- A. Unless otherwise shown, location of construction joints to limit individual placement shall not exceed 24,000 mm (80 feet) in any horizontal direction, except slabs on grade which shall have construction joints shown. Allow 48 hours to elapse between pouring adjacent sections unless this requirement is waived by Engineer.
- B. Locate construction joints in suspended floors near the quarter-point of spans for slabs, beams or girders, unless a beam intersects a girder at center, in which case joint in girder shall be offset a distance equal to twice width of beam. Provide keys and inclined dowels as shown. Provide longitudinal keys as shown.
- C. Place concrete for columns slowly and in one operation between joints. Install joints in concrete columns at underside of deepest beam or girder framing into column.
- D. Allow 2 hours to elapse after column is cast before concrete of supported beam, girder or slab is placed. Place girders, beams, grade

Project Number: 589-370

beams, column capitals, brackets, and haunches at the same time as slab unless otherwise shown.

3.6 EXPANSION JOINTS AND CONTRACTION JOINTS:

- A. Clean expansion joint surfaces before installing premolded filler and placing adjacent concrete.
- B. Provide contraction (control) joints in floor slabs as indicated on the contract drawings. Joints shall be either formed or saw cut, to the indicated depth after the surface has been finished. Complete saw joints within 4 to 12 hours after concrete placement. Protect joints from intrusion of foreign matter.

3.7 PLACING CONCRETE:

A. Preparation:

- 1. Remove hardened concrete, wood chips, shavings and other debris from forms
- 2. Remove hardened concrete and foreign materials from interior surfaces of mixing and conveying equipment.
- 3. Have forms and reinforcement inspected and approved by Engineer before depositing concrete.
- 4. Provide runways for wheeling equipment to convey concrete to point of deposit. Keep equipment on runways which are not supported by or bear on reinforcement. Provide similar runways for protection of vapor barrier on coarse fill.
- B. Bonding: Before depositing new concrete on or against concrete which has been set, thoroughly roughen and clean existing surfaces of laitance, foreign matter, and loose particles.
 - 1. Preparing surface for applied topping:
 - a. Remove laitance, mortar, oil, grease, paint, or other foreign material by sand blasting. Clean with vacuum type equipment to remove sand and other loose material.
 - b. Broom clean and keep base slab wet for at least four hours before topping is applied.
 - c. Use a thin coat of one part Portland cement, 1.5 parts fine sand, bonding admixture; and water at a 50: 50 ratio and mix to achieve the consistency of thick paint. Apply to a damp base slab by scrubbing with a stiff fiber brush. New concrete shall be placed while the bonding grout is still tacky.

- C. Conveying Concrete: Convey concrete from mixer to final place of deposit by a method which will prevent segregation. Method of conveying concrete is subject to approval of Engineer.
- D. Placing: For special requirements see Paragraphs, HOT WEATHER and COLD WEATHER.
 - Deposit concrete in forms as near as practicable in its final position. Prevent splashing of forms or reinforcement with concrete in advance of placing concrete.
 - Do not drop concrete freely more than 3000 mm (10 feet) for concrete containing the high-range water-reducing admixture (superplasticizer).
 - 3. Do not place concrete when weather conditions prevent proper placement and consolidation, or when concrete has attained its initial set, or has contained its water or cement content more than 1 1/2 or 1500 mm (5 feet) for conventional concrete. Where greater drops are required, use a tremie or flexible spout (canvas elephant trunk), attached to a suitable hopper.
 - 4. Discharge contents of tremies or flexible spouts in horizontal layers not exceeding 500 mm (20 inches) in thickness, and space tremies such as to provide a minimum of lateral movement of concrete.
 - 5. Continuously place concrete until an entire unit between construction joints is placed. Rate and method of placing concrete shall be such that no concrete between construction joints will be deposited upon or against partly set concrete, after its initial set has taken place, or after 45 minutes of elapsed time during concrete placement.
 - 6. On bottom of members with severe congestion of reinforcement, deposit 25 mm (1 inch) layer of flowing concrete containing the specified high-range water-reducing admixture (superplasticizer). Successive concrete lifts may be a continuation of this concrete or concrete with a conventional slump.
- E. Consolidation: Conform to ACI 309. Immediately after depositing, spade concrete next to forms, work around reinforcement and into angles of forms, tamp lightly by hand, and compact with mechanical vibrator applied directly into concrete at approximately 450 mm (18 inch) intervals. Mechanical vibrator shall be power driven, hand operated

type with minimum frequency of 5000 cycles per minute having an intensity sufficient to cause flow or settlement of concrete into place. Vibrate concrete to produce thorough compaction, complete embedment of reinforcement and concrete of uniform and maximum density without segregation of mix. Do not transport concrete in forms by vibration.

- 1. Use of form vibration shall be approved only when concrete sections are too thin or too inaccessible for use of internal vibration.
- 2. Carry on vibration continuously with placing of concrete. Do not insert vibrator into concrete that has begun to set.

3.8 HOT WEATHER:

Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Engineer.

3.9 COLD WEATHER:

Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Engineer.

3.10 PROTECTION AND CURING:

A. Conform to ACI 308: Initial curing shall immediately follow the finishing operation. Protect exposed surfaces of concrete from premature drying, wash by rain and running water, wind, mechanical injury, and excessively hot or cold temperatures. Keep concrete not covered with membrane or other curing material continuously wet for at least 7 days after placing, except wet curing period for high-early-strength concrete shall be not less than 3 days. Keep wood forms continuously wet to prevent moisture loss until forms are removed. Cure exposed concrete surfaces as described below. Other curing methods may be used if approved by Engineer.

Project Number: 589-370

- 1. Liquid curing and sealing compounds: Apply by power-driven spray or roller in accordance with the manufacturer's instructions. Apply immediately after finishing. Maximum coverage 10m²/L (400 square feet per gallon) on steel troweled surfaces and 7.5m²/L (300 square feet per gallon) on floated or broomed surfaces for the curing/sealing compound.
- 2. Plastic sheets: Apply as soon as concrete has hardened sufficiently to prevent surface damage. Utilize widest practical width sheet and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with tape.
- 3. Paper: Utilize widest practical width paper and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with sand, wood planks, pressure-sensitive tape, mastic or glue.

3.11 REMOVAL OF FORMS:

- A. Remove in a manner to assure complete safety of structure after the following conditions have been met.
 - 1. Where structure as a whole is supported on shores, forms for beams and girder sides, columns, and similar vertical structural members may be removed after 24 hours, provided concrete has hardened sufficiently to prevent surface damage and curing is continued without any lapse in time as specified for exposed surfaces.
 - 2. Take particular care in removing forms of architectural exposed concrete to insure surfaces are not marred or gouged, and that corners and arises are true, sharp and unbroken.
- B. Control Test: Use to determine if the concrete has attained sufficient strength and curing to permit removal of supporting forms. Cylinders required for control tests taken in accordance with ASTM C172, molded in accordance with ASTM C31, and tested in accordance with ASTM C39. Control cylinders cured and protected in the same manner as the structure they represent. Supporting forms or shoring not removed until strength of control test cylinders have attained at least 70 percent of minimum 28-day compressive strength specified. For post-tensioned systems supporting forms and shoring not removed until stressing is completed. Exercise care to assure that newly unsupported portions of structure are not subjected to heavy construction or material loading.
- C. Reshoring: Reshoring is required if superimposed load plus dead load of the floor exceeds the capacity of the floor at the time of loading.

Reshoring accomplished in accordance with ACI 347 at no additional cost to the Government.

3.12 CONCRETE SURFACE PREPARATION:

- A. Metal Removal: Unnecessary metal items cut back flush with face of concrete members.
- B. Patching: Maintain curing and start patching as soon as forms are removed. Do not apply curing compounds to concrete surfaces requiring patching until patching is completed. Use cement mortar for patching of same composition as that used in concrete. Use white or gray Portland cement as necessary to obtain finish color matching surrounding concrete. Thoroughly clean areas to be patched. Cut out honeycombed or otherwise defective areas to solid concrete to a depth of not less than 25 mm (1 inch). Cut edge perpendicular to surface of concrete. Saturate with water area to be patched, and at least 150 mm (6 inches) surrounding before placing patching mortar. Give area to be patched a brush coat of cement grout followed immediately by patching mortar. Cement grout composed of one part Portland cement, 1.5 parts fine sand, bonding admixture, and water at a 50:50 ratio, mix to achieve consistency of thick paint. Mix patching mortar approximately 1 hour before placing and remix occasionally during this period without addition of water. Compact mortar into place and screed slightly higher than surrounding surface. After initial shrinkage has occurred, finish to match color and texture of adjoining surfaces. Cure patches as specified for other concrete. Fill form tie holes which extend entirely through walls from unexposed face by means of a pressure gun or other suitable device to force mortar through wall. Wipe excess mortar off exposed face with a cloth.
- C. Upon removal of forms, clean vertical concrete surface that is to receive bonded applied cementitious application with wire brushes or by sand blasting to remove unset material, laitance, and loose particles to expose aggregates to provide a clean, firm, granular surface for bond of applied finish.

3.13 CONCRETE FINISHES:

- A. Vertical and Overhead Surface Finishes:
 - 1. Unfinished areas: Vertical and overhead concrete surfaces exposed in pipe basements, elevator and dumbwaiter shafts, pipe spaces, pipe

trenches, above suspended ceilings, manholes, and other unfinished areas will not require additional finishing.

- 2. Interior and exterior exposed areas to be painted: Remove fins, burrs and similar projections on surfaces flush, and smooth by mechanical means approved by Engineer, and by rubbing lightly with a fine abrasive stone or hone. Use ample water during rubbing without working up a lather of mortar or changing texture of concrete.
- 3. Interior and exterior exposed areas finished: Give a grout finish of uniform color and smooth finish treated as follows:
 - a. After concrete has hardened and laitance, fins and burrs removed, scrub concrete with wire brushes. Clean stained concrete surfaces by use of a hone stone.
 - b. Apply grout composed of one part of Portland cement, one part fine sand, smaller than a 600 μm (No. 30) sieve. Work grout into surface of concrete with cork floats or fiber brushes until all pits, and honeycombs are filled.
 - c. After grout has hardened slightly, but while still plastic, scrape grout off with a sponge rubber float and, about 1 hour later, rub concrete vigorously with burlap to remove any excess grout remaining on surfaces.
 - d. In hot, dry weather use a fog spray to keep grout wet during setting period. Complete finish of area in same day. Make limits of finished areas at natural breaks in wall surface. Leave no grout on concrete surface overnight.
- 4. Textured: Finish as specified. Maximum quantity of patched area 0.2 $$\rm{m}^2$ (2 square feet) in each 93 \rm{m}^2 (1000 square feet) of textured surface.

B. Slab Finishes:

1. Monitoring and Adjustment: Provide continuous cycle of placement, measurement, evaluation and adjustment of procedures to produce slabs within specified tolerances. Monitor elevations of structural steel in key locations before and after concrete placement to establish typical deflection patterns for the structural steel. Determine elevations of cast-in-place slab soffits prior to removal of shores. Provide information to Engineer and floor consultant for evaluation and recommendations for subsequent placements.

Project Number: 589-370

- 2. Set perimeter forms to serve as screed using either optical or laser instruments. For slabs on grade, wet screeds may be used to establish initial grade during strike-off, unless Engineer determines that the method is proving insufficient to meet required finish tolerances and directs use of rigid screed guides. Where wet screeds are allowed, they shall be placed using grade stakes set by optical or laser instruments. Use rigid screed guides, as opposed to wet screeds, to control strike-off elevation for all types of elevated (non slab-on-grade) slabs. Divide bays into halves or thirds by hard screeds. Adjust as necessary where monitoring of previous placements indicates unshored structural steel deflections to other than a level profile.
- 3. Place slabs monolithically. Once slab placement commences, complete finishing operations within same day. Slope finished slab to floor drains where they occur, whether shown or not.
- 4. Use straightedges specifically made for screeding, such as hollow magnesium straightedges or power strike-offs. Do not use pieces of dimensioned lumber. Strike off and screed slab to a true surface at required elevations. Use optical or laser instruments to check concrete finished surface grade after strike-off. Repeat strike-off as necessary. Complete screeding before any excess moisture or bleeding water is present on surface. Do not sprinkle dry cement on the surface.
- 5. Immediately following screeding, and before any bleed water appears, use a 3000 mm (10 foot) wide highway straightedge in a cutting and filling operation to achieve surface flatness. Do not use bull floats or darbys, except that darbying may be allowed for narrow slabs and restricted spaces.
- 6. Wait until water sheen disappears and surface stiffens before proceeding further. Do not perform subsequent operations until concrete will sustain foot pressure with maximum of 6 mm (1/4 inch) indentation.
- 7. Scratch Finish: Finish base slab to receive a bonded applied cementitious application as indicated above, except that bull floats and darbys may be used. Thoroughly coarse wire broom within two hours after placing to roughen slab surface to insure a permanent bond between base slab and applied materials.

8. Float Finish: Slabs to receive unbonded toppings, steel trowel finish, fill, mortar setting beds, or a built-up roof, and ramps, stair treads, platforms (interior and exterior), and equipment pads shall be floated to a smooth, dense uniform, sandy textured finish. During floating, while surface is still soft, check surface for flatness using a 3000 mm (10 foot) highway straightedge. Correct high spots by cutting down and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections and re-float to a uniform texture.

- 9. Steel Trowel Finish: Concrete surfaces to receive resilient floor covering or carpet, monolithic floor slabs to be exposed to view in finished work, future floor roof slabs, applied toppings, and other interior surfaces for which no other finish is indicated. Steel trowel immediately following floating. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure to compact cement paste and form a dense, smooth surface. Finished surface shall be smooth, free of trowel marks, and uniform in texture and appearance.
- 10. Broom Finish: Finish exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after surfaces have been floated. Brush in a direction transverse to main traffic. Match texture approved by Engineer from sample panel.
- 11. Finished slab flatness (FF) and levelness (FL) values comply with the following minimum requirements:
 - a. Areas covered with carpeting, or not specified otherwise in b. below:
 - 1) Slab on Grade:

a) Specified overall value F_F 25/ F_L 20 b) Minimum local value F_F 17/ F_L 15

2) Level suspended slabs (shored until after testing) and topping
 slabs:

a) Specified overall value FF 25/FL 20 b) Minimum local value FF 17/FL 15

3) Unshored suspended slabs:

a) Specified overall value FF 25b) Minimum local value FF 17

Project Number: 589-370

- 4) Level tolerance such that 80 percent of all points fall within a 20 mm (3/4 inch) envelope +10 mm, -10 mm (+3/8 inch, -3/8 inch) from the design elevation.
- b. Areas that will be exposed, receive thin-set tile or resilient flooring, or roof areas designed as future floors:
 - 1) Slab on grade:

a) Specified overall value FF 36/FL 20 b) Minimum local value FF 24/FL 15

2) Level suspended slabs (shored until after testing) and topping slabs

a) Specified overall value FF 30/FL 20 b) Minimum local value FF 24/FL 15

3) Unshored suspended slabs:

a) Specified overall value FF 30 b) Minimum local value FF 24

- 4) Level tolerance such that 80 percent of all points fall within a 20 mm (3/4 inch) envelope +10 mm, -10 mm (+3/8 inch, -3/8 inch) from the design elevation.
- c. "Specified overall value" is based on the composite of all measured values in a placement derived in accordance with ASTM E1155.
- d. "Minimum local value" (MLV) describes the flatness or levelness below which repair or replacement is required. MLV is based on the results of an individual placement and applies to a minimum local area. Minimum local area boundaries may not cross a construction joint or expansion joint. A minimum local area will be bounded by construction and/or control joints, or by column lines and/or half-column lines, whichever is smaller.

12. Measurements

a. Department of Veterans Affairs retained testing laboratory will take measurements as directed by Engineer, to verify compliance with FF, FL, and other finish requirements. Measurements will occur within 72 hours after completion of concrete placement (weekends and holidays excluded). Make measurements before shores or forms are removed to insure the "as-built" levelness is accurately assessed. Profile data for above characteristics may be collected using a laser level or any Type II apparatus (ASTM

E1155, "profileograph" or "dipstick"). Contractor's surveyor shall establish reference elevations to be used by Department of Veterans Affairs retained testing laboratory.

b. Contractor not experienced in using FF and FL criteria is encouraged to retain the services of a floor consultant to assist with recommendations concerning adjustments to slab thicknesses, finishing techniques, and procedures on measurements of the finish as it progresses in order to achieve the specific flatness and levelness numbers.

13. Acceptance/ Rejection:

- a. If individual slab section measures less than either of specified minimum local F_F/F_L numbers, that section shall be rejected and remedial measures shall be required. Sectional boundaries may be set at construction and contraction (control) joints, and not smaller than one-half bay.
- b. If composite value of entire slab installation, combination of all local results, measures less than either of specified overall $F_{\text{F}}/F_{\text{L}}$ numbers, then whole slab shall be rejected and remedial measures shall be required.
- 14. Remedial Measures for Rejected Slabs: Correct rejected slab areas by grinding, planing, surface repair with underlayment compound or repair topping, retopping, or removal and replacement of entire rejected slab areas, as directed by Engineer, until a slab finish constructed within specified tolerances is accepted.

3.14 SURFACE TREATMENTS:

- A. Use on exposed concrete floors and concrete floors to receive carpeting except those specified to receive non-slip finish.
- B. Liquid Densifier/Sealer: Apply in accordance with manufacturer's directions just prior to completion of construction.
- C. Non-Slip Finish: Except where safety nosing and tread coverings are shown, apply non-slip abrasive aggregate to treads and platforms of concrete steps and stairs, and to surfaces of exterior concrete ramps and platforms. Broadcast aggregate uniformly over concrete surface at rate of application of 8% per 1/10th m² (7.5 percent per square foot) of area. Trowel concrete surface to smooth dense finish. After curing, rub treated surface with abrasive brick and water to slightly expose abrasive aggregate.

3.15 APPLIED TOPPING:

A. Separate concrete topping on floor base slab of thickness and strength shown. Topping mix shall have a maximum slump of 200 mm (8 inches) for concrete containing a high-range water-reducing admixture (superplasticizer) and 100 mm (4 inches) for conventional mix. Neatly bevel or slope at door openings and at slabs adjoining spaces not receiving an applied finish.

B. Placing: Place continuously until entire section is complete, struck off with straightedge, leveled with a highway straightedge or highway bull float, floated and troweled by machine to a hard dense finish. Slope to floor drains as required. Do not start floating until free water has disappeared and no water sheen is visible. Allow drying of surface moisture naturally. Do not hasten by "dusting" with cement or sand.

3.16 RESURFACING FLOORS:

Remove existing flooring areas to receive resurfacing to expose existing structural slab and extend not less than 25 mm (1 inch) below new finished floor level. Prepare exposed structural slab surface by roughening, broom cleaning, and dampening. Apply specified bonding grout. Place topping while the bonding grout is still tacky.

3.17 RETAINING WALLS:

- A. Use air-entrained concrete.
- B. Expansion and contraction joints, waterstops, weep holes, reinforcement and railing sleeves installed and constructed as shown.
- C. Exposed surfaces finished to match adjacent concrete surfaces, new or existing.
- D. Place porous backfill as shown.

---END---

SECTION 03 38 00 POST-TENSIONED CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections apply to this section.
- B. Related work in other Sections related to Post-tensioned Concrete include:
 - 1. Section 014529 Structural Testing Laboratory Services.
 - 2. Section 033000 Cast-In-Place Concrete.

1.2 STANDARDS

- A. The following Standards are listed in this specification.
 - ASTM A 416, "Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete."
 - 2. ASTM C 33, "Standard Specification for Concrete Aggregate."
 - 3. ASTM C 150, "Standard Specification for Portland Cement."
 - 4. ASTM E 328, "Recommended Practice for Stress Relaxation Test for Materials and Structures."
 - 5. U.S. Corps of Engineers Method CRD-C611.

1.3 SCOPE OF WORK

- A. The post-tensioning supplier and installer shall furnish all labor, materials, services and equipment required to produce a complete post-tensioned structural system. The work shall include the following items:
 - Furnishing all post-tensioning materials including prestressing steel, anchorages, wedges, pocket formers, couplers, plates, support bars, chairs, tendon enclosures, and bursting reinforcement.
 - 2. Placing of all items listed above.
 - Performing all post-tensioning operations including stressing, anchoring, trimming, encapsulating tendon anchors, and grouting pockets.
 - 4. Cooperating with the Owner's Testing Laboratory in their function of recording and reporting tendon elongation and tension applied to the prestressing steel.
 - 5. Performing all engineering required to fully design a posttensioning system that complies with the final force and tendon

profiles as shown on the structural drawings and to prepare complete shop drawings and field placing drawings.

B. Tendons shall be unbonded as shown on the drawings.

1.4 REFERENCE STANDARDS AND CODES

- A. ACI 301.
- B. ACI 308.
- C. ACI 318.
- D. ASTM A 416.
- E. ASTM E 328.
- F. CRSI, "Manual of Standard Practice.
- G. PTI, "Specification for Unbonded Single Strand Tendons."
 - 1. PTI, "Field Procedure Manual for Unbonded Single Strand Tendons."
 - 2. PTI, "Post-Tensioning Manual", Fifth Edition.
- H. Local Building Code.

1.5 SYSTEM DESCRIPTION

A. Unbonded post-tensioning system described herein is intended to perform without long-term corrosion or other distress. Post-tensioning strand, couplers, intermediate, and end anchorages shall be completely protected with a watertight, encapsulated system. Tendon sheathing and grease shall be as specified herein.

1.6 SUBMITTALS

- A. Due to the interdependent nature of Sections "033000 Cast-In-Place Concrete" and "033800 Post-Tensioned Concrete," the Contractor shall review all supplier's shop drawings/field-placing drawings against each other and inform Architect/Engineer of any potential interferences or conflicts.
- B. Shop Drawings/Field-Placing Drawings: Submit for review and approval.

 Drawings shall include but not be limited to the following:
 - 1. Tendon layout, including dimensions, which locates the tendons in the horizontal plane. Detail horizontal curvature of tendons at block-outs, openings and anchorages, and show all openings in slabs and beams. Clearly designate each tendon.
 - Tendon profiles showing support heights and locations, and any required support steel. Show clearly the location of each tendon and the method of support.
 - 3. Details of reinforcement around stressing pockets, closures and openings, including bursting reinforcement, and any interference

with tendons. Coordinate with mild reinforcing steel drawings as required.

- 4. Details of anchorages, the positive connection between the anchorage and sheathing, pocket formers, couplers, and other related hardware.
- 5. Details of the method for sealing the anchorage recesses after the tendon stressing tails have been removed.
- 6. Clearance requirements for the hydraulic equipment and the dimensions of any stressing pockets required.
- 7. Sequence of construction, including installation, pouring and stressing sequences. Show all construction joints and related tendon details.
- 8. Samples of forms to be used for field record of stressing operations.
- 9. Type and thickness of post-tensioning sheathing.
- 10. Type and chemical analysis of post-tensioning grease.
- 11. Type, material and thickness of post-tensioning sheathing repair tape.
- 12. Shop drawings shall be signed and sealed by a qualified professional engineer, licensed in the state where the project is located, who was in responsible charge of the drawing preparation.
- C. Manufacturer's Data: Submit for review and approval.
 - Sample hardware, including but not limited to: Anchorage system, coated strand, wedges, pocket formers, and other sub-assemblies required for complete installation including all accessories required to complete the system. Submit evidence of approval by the International Conference of Buildings Officials (ICBO) or other agencies of equal stature.
 - 2. Post-tensioning system brochures.
 - 3. Complete post-tensioning procedure, including but not limited to: Stressing system, method of determining anchor force, method of determining tendon slack, and method of cutting off excess strand after anchorage.
 - 4. Mill Certificates: Submit certified mill reports of posttensioning steel immediately upon shipment indicating compliance

with specified requirements for all material that is to be delivered to the project.

- 5. Equipment Calibration: Submit certification of the calibration of all ram and gauge sets to the Architect/Engineer as specified herein.
- 6. Certifications and other data as may be further required to demonstrate compliance with other items in this section.

D. Calculations:

- 1. Submit calculations showing all engineering required to fully design the post-tensioning system, including friction loss calculations, bursting reinforcement calculations, number of prestressing tendons, anchorage and coupling systems, tendon supports, and tendon stressing procedures, as required to fully comply with the final force and tendon profiles as shown on the structural drawings. The design shall be in accordance with the requirements of ACI 318. Submit tendon manufacturer's data that documents the wobble and curvature friction coefficients used in the friction loss calculations. Clearly show on the shop drawings the values of wobble and curvature coefficients used in the design.
- 2. Post-Tensioning Supplier shall secure the services of a qualified professional engineer, licensed in the state where the project is located, to provide the design as specified above. Calculations shall be signed and sealed by the professional engineer and shall be submitted to Architect/Engineer for Owner's record only.
- 3. Review of shop drawings and calculations by the Architect/Engineer will not relieve the Post-Tensioning Supplier of responsibility for final design as specified herein.
- 4. By offering a proposal or entering into a contract for work of this Section, Post-Tensioning Supplier accepts the general design shown on the drawings as adequate for compliance with performance requirements at no additional cost to the Owner.
- 5. Post-Tensioning Supplier shall be responsible for furnishing support and bursting steel quantities to the Contractor.
- E. Stressing Records: The contractor shall provide the appropriate cooperation and access to the Owner's Testing Laboratory to allow them to measure, record, and clearly report the following information. In

Project Number: 589-370

the absence of a Testing Laboratory representative, the posttensioning installer shall measure, record, report and submit the information described below. Submit records to the Architect/Engineer for approval within 24 hours after stressing.

- Floor, pour and tendon identification numbers. For walls, indicate wall location.
- 2. Calculated elongation and actual measured elongation for each jacking point, and totals for each tendon.
- 3. Stressing ram number, initial and final gauge load reading during stressing for each tendon.
- 4. Date of stressing operation and signature of the Contractor's stressing personnel and inspector witnessing the operation.
- 5. Range of allowable elongations for jacking force or a measure of the deviation of the measured elongations from the calculated elongations. Deviations that do not comply with the specified tolerances shall be noted for the Architect/Engineer to review.
- 6. Obvious irregularities or stress loss during anchoring procedures.
- 7. Required and actual concrete strength at time of jacking.
- F. Record Drawings: The Contractor shall provide record drawings to the Owner, in care of the Architect/Engineer, of any approved changes from the contract documents. Form of record drawings may be legible marked-up prints of contract drawings, or separate drawings of same scale.

G. Review:

- 1. After review, shop drawings/field-placing drawings and data shall not be changed nor shall construction operations be deviated from, unless resubmitted under a cover letter delineating such change and reapproved.
- 2. Review of details and construction operations will not relieve the Contractor of his responsibility for completing the work successfully in accordance with the contract drawings and specifications.

1.7 QUALITY ASSURANCE

A. Qualifications: The supply and installation of post-tensioning shall be executed by organizations that have successfully performed major work of a nature similar to that involved in this project for a

minimum of five (5) years and have successfully completed a minimum of five (5) similar projects in own name, unless this requirement is waived by the Architect/Engineer prior to Contract award. The Contractor shall submit supporting evidence acceptable to the Architect/Engineer that this qualification has been met. Posttensioning shall be performed using methods and related equipment that are in conformance with generally accepted systems of post-tensioning. Experienced individuals shall control and supervise all operations.

- B. Material Quality Assurance: The post-tensioning material shall be produced by a plant that is fully PTI-certified at the time of bidding, and that shall maintain this certification throughout the duration of this project as described in the Post-Tensioning Institute's "Manual for Certification of Plants Producing Unbonded Single Strand Tendons."
- C. Installer Quality Assurance: All installers of unbonded post-tensioned tendons shall be certified under the Post-Tensioning Institute's "Post-tensioning Certification Program of Field Personnel for Unbonded Post-tensioning Installers".
- D. Inspection and Testing: Inspection and testing shall be provided in accordance with Testing Laboratory Services section of the Specification.
- E. Source Quality Control:
 - 1. If requested by the Architect/Engineer, take two (2) strand samples from one end of each coil at the fabrication plant prior to greasing and sheathing. The Post-Tensioning Supplier shall notify the Architect/Engineer when the coils are ready to be sampled.
 - 2. Submit certified mill reports indicating compliance with ASTM A 416, and if requested, the test data showing evidence of compliance with the Low Relaxation Strand requirement of ASTM A 416, to the Architect/Engineer immediately upon shipment for all material delivered to the project. The mill report shall be based upon a minimum of two (2) tests for each reel, heat or lot, and shall include as a minimum the breaking load, modulus of elasticity, elongation at rupture, load at 1% extension, diameter and area of strand, standard chemical analysis and drawing mill.

> 3. Furnish all materials and handling which testing agency requires. Submit certification by the Post-Tensioning Supplier that any submitted samples are representative of the material to be furnished.

> 4. Package the post-tensioning strands at the supplier's fabrication facility in a manner that prevents damage to strand and protects strand from moisture during transportation and storage.

F. Field Quality Control:

- The Contractor shall maintain a consistent and good standard of workmanship. Check bulkheads, position of anchorages, tendon chairing and tying, location, size and placement of reinforcement, and tendon quantity.
- 2. Prior to pouring concrete, at a frequency as established for the project, an inspection of the tendons and mild reinforcing steel shall be made by the Architect/Engineer, or Independent Testing Agency.
- 3. Inspection of stressing operations shall also be performed as directed by the Architect/Structural Engineer.
- 4. The Contractor shall cooperate with the Owner's Testing Laboratory in their efforts to record tendon elongations. The Contractor shall keep a copy of the stressing records with the shop drawings.
- 5. Submit certificates of all ram and gauge calibrations used on the project to the Architect/Engineer. Use of non-calibrated ram and gauge sets are not allowed on this project. If requested by the Architect/Engineer, Owner, or Field Inspector, the Contractor shall have the ram and gauge sets calibrated by an Independent Testing Agency, the cost of which shall be borne by the Contractor.
- 6. Manufacture and deliver tendons in sequence and quantity so as to avoid lengthy job site storage.
- 7. Satisfactorily protect all prestressing steel from all moisture and rust or other physical damage prior to placement and keep steel free from deleterious substances, such as chlorides, fluorides, sulfites and nitrates. Provide protection for exposed prestressing steel beyond ends of members to prevent deterioration by rust or corrosion.

- 8. Do not store post-tensioning strand in such a manner that it is in direct contact with soil or fresh concrete or exposed to rain, snow, de-icing salts or other corrosive elements. Protect materials stored for more than one month from exposure to sunlight.
- 9. Damage to tendon sheathing in excess of 2% of its length shall be grounds for rejection of sheathing.
- 10. Contractor shall inspect tendon sheathing for damage and to verify watertight seal between sheathing and anchor. Repair all damaged sheathing.

PART 2 - PRODUCTS

2.1 POST-TENSIONING STEEL

- A. Strand: Prestressing steel shall use strand conforming to ASTM A 416, Low-Relaxation Type, and shall have a minimum guaranteed ultimate tensile strength of 270,000 psi based on the nominal area of the strand. The strand shall additionally conform to the "Specification for Unbonded Single Strand Tendons", by PTI. The strand shall be free of dirt, corrosion or injurious marks, scratches, seams, and sharp kinks. Oil-tempered strand is prohibited. Certified mill reports giving name of drawing mill shall be submitted.
- B. Identification: All prestressing steel within every group or in the same member shall be of the same heat where practical. All tendons shall be assigned a proper heat and coil number and so identified on fabrication lists that are to be sent to the field with each shipment. Identify tendons in accordance with placing drawings. Unidentified steel shall not be allowed unless approved by the Architect/Engineer and tested.
- C. Sheathing: All post-tensioning tendons shall be coated and sheathed with an approved slippage sheathing designed to prevent the intrusion of cement paste and the loss of the coating material and be watertight and impermeable to water vapor over the entire length. Such sheathing shall enclose the prestressing steel that shall then be placed in the forms prior to placement of concrete. The sheathing shall be continuously extruded medium or high-density polyethylene or polypropylene with a minimum thickness of 50 mils and an inside diameter at least .03 inches greater than the maximum diameter of the strand. The sheathing shall not rupture due to normal temperature

changes, coiling and field handling. The sheathing material shall be chemically stable, without embrittlement or softening over the anticipated exposure temperature range and service life of the structure. It shall be non-reactive with concrete, prestressing steel, reinforcing steel, and P-T coating. Heat-sealed or plastic-wrapped sheathing is not acceptable.

- Coating: The P-T coating shall lubricate the tendon and permanently D. protect the prestressing steel against corrosion. It shall resist flow caused by gravity within the anticipated temperature range of exposure and provide non-brittle coating at the lowest anticipated temperature of exposure. It shall be chemically stable and nonreactive with prestressing steel, reinforcing steel, The P-T coating shall be applied under material, and concrete. pressure to ensure the filling of the interstices between the individual wires of the strand. There shall be no voids or pockets between the sheathing and the coated strand for water or air to The minimum amount of coating on the prestressing strand shall be 2.5 pounds of material per 100 feet of strand for a 0.5 inch diameter strand and 3.0 pounds per 100 feet for a 0.6 inch diameter strand. The P-T coating shall satisfy the requirements of table 1 of ACI 423.6, "Specification for Unbonded Single-Strand Tendons and Commentary".
- E. Repair tape: The tape used to repair damaged sections of sheathing or to wrap exposed strand shall be a minimum of 2 inches wide and shall be of a color that contrasts with the sheathing. The tape shall be self-adhesive and moisture-proof and shall be non-reactive with the sheathing, coating, prestressing steel, or concrete.

2.2 ANCHORAGES AND COUPLERS

A. Anchor:

1. Anchoring hardware shall be steel and shall meet the minimum requirements set forth in ACI 318, except as modified herein. The anchorage shall be capable of developing at least 95% of the minimum specified ultimate strength of the prestressing steel without exceeding anticipated set, and shall be capable of passing the static and dynamic tests as outlined in Chapter 3 of the PTI Post-Tensioning Manual, Fifth Edition. All anchorages, couplers, and miscellaneous hardware shall be the standard

products as manufactured by the Post-Tensioning Supplier, unless shown otherwise, and shall be approved by the International Conference of Buildings Officials, or other agencies of equal stature, and the Architect/Engineer.

- 2. Anchors and couplers used shall include design features permitting a positive mechanical and watertight connection of the sheathing to the anchorage, and watertight closing of the wedge cavity, for stressing and non-stressing (fixed) anchorages. Friction connections between the anchor and the sheathing shall not be allowed. Intermediate stressing anchorages shall be designed to permit complete watertight encapsulation of the prestressing steel.
- 3. All anchorages shall have the demonstrated ability to remain watertight when subjected to a hydrostatic pressure of 1.25 psi over a period of 24 hours.
- 4. Sleeves used to connect the sheathing to the anchorages shall meet the same requirements as the sheathing for durability during fabrication, transportation, handling, storage and installation and have a minimum thickness of 50 mils. The overlap between the end of the extruded sheathing and the end of the sleeve and seal shall be a minimum of 4 inches. The sleeve shall be translucent or have another method to verify both that the PT coating material is free of voids and the proper overlap with the sheathing.
- B. Size: Anchorages and distribution (bearing) plates shall be sized according to ACI 318 unless certified test reports are submitted proving acceptable deviation. Bursting steel shall be designed by the Post-Tensioning Supplier consistent with the anchorage to be provided.
- C. Embedment: Anchorages at slab edges or beam ends shall be recessed a minimum of 2 inches. At construction joints, all anchorages or tendon force distribution plates (bearing plates) shall be embedded in the first of the consecutive pours. Flat back castings, plates, etc. which are placed against previously cast concrete and then stressed shall not be allowed. Washer type grommets shall be used at construction joints if grout exclusion is necessary for the embedded item. Normal depth pockets at intermediate construction joints shall

Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

not be used unless adequate measures are taken to ensure that the pocket is completely filled with concrete during subsequent pours.

D. Seating loss: Maximum allowable anchor slip or seating loss shall be 1/4 inch.

2.3 CONCRETE

A. The concrete shall have a minimum 28-day strength as specified on the drawings with minimum strength at transfer of prestress force equal to 75% of the 28-day compressive strength but not less than 3000 psi unless otherwise specified on the Contract Drawings. Components or admixtures with chloride, fluoride, sulphite or nitrate ions or any other substance deleterious to prestressing steel shall not be used.

2.4 TENDON SUPPORT SYSTEM

- A. Slab Tendons: Support points shall consist of a bar support and continuous orthogonal steel as shown on the Contract Drawings. Bar supports shall be plastic, plastic tipped, epoxy coated or stainless steel.
- B. Beam Tendons: Supports shall consist of reinforcing steel tied between stirrup legs as shown on the Contract Drawings.

2.5 PRE-CONSTRUCTION CONFERENCE

- A. At least 30 days prior to post-tensioned concrete construction, the Contractor shall hold a meeting to review the detailed requirements for preparing the concrete design mixes and to determine the procedures for producing proper post-tensioned concrete construction. Also review requirements for submittals, status of coordinating work and availability of materials. Establish work progress schedule and procedures for materials inspection, testing and certifications.
- B. The Contractor shall require responsible representatives of every party who is concerned with the post-tensioned concrete work to attend the conference, including but not limited to the following:
 - 1. Contractor's Superintendent.
 - 2. Laboratory responsible for the concrete design mix.
 - 3. Laboratory responsible for field quality control.
 - 4. Concrete Subcontractor.
 - 5. Post-Tensioning Supplier.
 - 6. Post-Tensioning and Mild-Reinforcement Installer.
 - 7. Ready-Mix Concrete Producer.
 - 8. Admixture Manufacturer(s).

- 9. Concrete Pumping Equipment Manufacturer.
- 10. MEP Subcontractor.
- 11. Owner's and Architect's/Engineer's Representative.
- 12. Engineer-of-Record.
- C. Minutes of the meeting shall be recorded, typed and printed by the Contractor and distributed to all parties concerned within 5 days of the meeting. One copy of the minutes shall be transmitted to the following for information purposes:
 - 1. Owner's Representative.
 - 2. Architect.
 - 3. Engineer-of-Record.
- D. The Contractor shall coordinate the scheduled date of the conference with the Architect/Engineer.

PART 3 - EXECUTION

3.1 POST-TENSIONING STEEL PLACEMENT

- A. Profile: Post-tensioning tendons shall conform to the control points shown on the Contract Drawings and approved shop drawings and shall have a parabolic drape between supports unless noted otherwise. Harped tendons shall be straight between control points as shown on the drawings. Dimensions locating this profile apply to the center of gravity of the tendons. Low points of the tendons are at mid-span unless noted otherwise. Place the tendons normal to anchorage plates.
- B. Interference: Slight deviation in spacing of the slab tendons is permitted where required to avoid openings and inserts that are specifically located. Where interference occurs, contact the Architect/Engineer before moving any tendons. Coordinate the placement of mild steel reinforcement with placement of posttensioning tendons. Proper tendon location has priority.
- C. Tolerances: Firmly support tendons and anchorages to prevent displacement during subsequent operations. Place them with a tolerance of plus or minus 1/8 inch in concrete dimensions of 8 inches or less, plus or minus 1/4 inch in concrete dimensions over 8 inches but not over 2 feet, and plus or minus 1/2 inch in concrete dimensions over 2 feet. These tolerances apply separately to both vertical and horizontal dimensions and might be different for both directions. In no case shall tendons violate the absolute minimum cover stated in ACI 117. Horizontal sweeps to miss openings, inserts, etc. shall have

minimum radius of 25 feet and shall not exceed a maximum slope of 1:6. Maintain a minimum clearance of 6 inches at all openings. Twisting or entwining of individual tendons within a bundle is not permitted.

- D. Tendon Spacing: Maximum spacing of slab tendons shall be eight (8) times the thickness of the slab, but not greater than 60 inches, unless otherwise noted on the Contract Drawings. Bundle tendons in such a manner to allow proper concreting and the maintenance of the center of gravity of steel (C.G.S.).
- E. Supports: Provide a sufficient number of horizontal and vertical positioning supports to firmly support tendons to prevent displacement due to construction operations. Spacing of supports shall not exceed 3'-6" on center. Show all support devices on the shop drawings.
- F. Welding: Welding of cross bars or any welding in the vicinity of the tendons is not allowed. Do not use post-tensioning tendons as an electrical ground for welding operations.

G. Sheathing

- The sheathing shall be continuous from end to end of all stressing anchorages and all embedded dead ends including intermediate anchorages, unless shown otherwise on the Contract Drawings, or otherwise approved by the Architect/Engineer.
- 2. After installing the tendons and prior to concrete placement, inspect the sheathing on each tendon for its entire length to detect possible damage. Repair any detected tears or abrasions by procedures conforming to the "Field Procedures Manual for Unbonded Single Strand Tendons" by PTI. The repair of sheathing shall prevent intrusion of cement paste or loss of coating. The repair of sheathing shall also be watertight and approved by the Architect/Engineer
- H. Encapsulation: Complete the encapsulation of the post-tensioning system the same day as the tendons are installed.
- I. Couplers: Do not use tendon couplers without prior approval of the Architect and Structural Engineer.

3.2 ANCHORAGES AND BLOCK-OUTS

- A. Bursting Reinforcement:
 - Provide bursting reinforcement behind anchorages as required by calculations subject to the following minimums:

Project Number: 589-370

- a. Slab: Provide two-#4 bars, one above and one below the tendon, continuous along concrete edges behind slab anchorages. Provide a #3 hairpin with 9" long legs around continuous #4's between each anchorage. Provide two-#4 corner bars with 3'-6" legs, one each above and below the tendon C.G.S.
- b. Beam: Provide two-#4 bars, horizontal or vertical, with appropriate development length, behind all beam anchorages.

B. Block-outs:

- 1. Adequately reinforce all block-outs or pockets required for anchorages so as to not decrease the strength of the structure.
- 2. Do not coat block-out forms or pocket formers with grease, form oil, or any other substance that will decrease the bonding capacity of the patching grout to the surrounding concrete.
- Waterproof all block-outs or pockets to eliminate water leakage through or into the pocket.

3.3 CONCRETE PLACEMENT

- A. Formwork: Design of the formwork shall take into account the possibility of the slab or girder lifting off the formwork during tensioning, thereby transferring the entire load to the support areas. Construct the formwork to permit movement of the member without damage during application of the post-tensioning force. Supporting forms in post-tensioned areas are not to be removed until concrete is fully stressed. The Contractor shall submit his proposed shoring and reshoring schemes prior to commencement of forming work.
- B. Construction Joints: Locate construction joints at or near where the C.G.S. coincides with the center-of-gravity of the concrete section unless otherwise approved by the Architect/Engineer. The contractor shall submit construction joint locations in post-tensioned members to the Architect/Engineer for approval.
- C. Inserts, Anchors, and Coring: All inserts and anchors for suspended mechanical and architectural work shall be cast-in-place wherever feasible. Additional fasteners will be permitted only when it can be shown that the inserts will not spall concrete and are located so as to avoid hitting tendons or anchorages. The Contractor shall identify tendon locations on the surface of the slab if drilling or coring is to be done after concrete is placed.

D. Placement: Place the concrete in conformance with the requirements of the Specifications. Do not place the concrete until the Architect/Engineer, or Independent Testing Laboratory has inspected the placement of the mild steel reinforcement and tendons at the frequency established for the project. Place the concrete in such a manner as to ensure that alignment of post-tensioning tendons remains unchanged. Make special provisions to ensure proper vibration of the concrete around the anchorage plates. Monitor the tendon positioning during the concrete placement. All floors below the level that is to have concrete placement shall have been stressed before this concrete is placed, unless the shoring has been designed for the ensuing loads.

E. Openings: Openings shall not be cut into cast concrete without the approval of the Architect/Engineer.

3.4 STRESSING

- A. Methods: Perform post-tensioning by methods and related equipment that are in conformance with generally accepted systems of post-tensioning. Variations of such generally accepted methods and equipment will be permitted with Architect/Engineer approval, provided equal results can be obtained.
- B. Concrete Strength: Do not begin the post-tensioning operations until tests or readings have indicated that the concrete in the members has attained a compressive strength that is adequate for the requirements of the anchorages but not less than 75% of the 28 day compressive strength nor 3000 psi unless otherwise specified on the Contract Drawings. See Concrete Formwork section for acceptable methods for determining in situ concrete strengths.
- C. Equipment: Stress all tendons by means of hydraulic rams, equipped with accurate reading hydraulic pressure gauges that have been individually calibrated with a particular ram to permit the stress in the prestressing steel to be computed at any time. A certified calibration curve shall accompany each ram and gauge set. Immediately recalibrate the ram and gauge set if inconsistencies between the measured elongation and the gauge reading occur.
- D. Forces: Anchor the prestressing steel at an initial or anchor force that will result in the ultimate retention of the working or effective force shown on the plans. Jacking forces shall be those indicated on the shop drawings. The length of a tendon pull more than that shown

by the required friction calculations or more than 125 feet for a one-way pull or 250 feet for a two-way pull is not permitted unless it is justified by calculations and specifically approved by the Architect/Engineer. The Field Inspector shall verify the wobble and curvature friction coefficients during the stressing operation and shall report to the Post-Tensioning Engineer deviations greater than 10% from the values assumed in the design. Required adjustments to the stressing operation shall be recommended by the Post-Tensioning Engineer and approved by the Architect/Engineer.

- E. Elongations: Keep records of all tendon elongations as previously described in this Section. Agreement within 7% between the gauge reading and the measured elongation and between the measured and the calculated elongation after stressing will be considered satisfactory. Deviations greater than 7% will be reported to the Architect/Engineer prior to completing stressing operation. No tensioning will be permitted until it is demonstrated that the prestressing steel is reasonably free and unbonded in the enclosure. Evidence that the steel is unbonded will be considered satisfactory if inward movement of steel is observed at one end of the tendon when a nominal pull is applied to the steel at the other end. The Architect/Engineer may order a force/elongation check at any time. Do not cut off tendons until elongation records have been reviewed and approved in writing by the Architect/Engineer.
- F. Stressing Sequence: The stressing sequence shall be as shown on the approved shop drawings. Use the following general stressing sequence except as otherwise noted or approved by the Architect/Engineer.
 - 1. Banded Slab:
 - a. Step #1: Stress minimum of two tendons at slab edges that are perpendicular to the banded tendons.
 - b. Step #2: Stress 40% of the continuous banded tendons in each group.
 - c. Step #3: Stress 100% of the continuous uniform tendons.
 - d. Step #4: Stress added uniform tendons.
 - e. Step #5: Stress remaining continuous banded tendons.
 - f. Step #6: Stress added banded tendons.
 - 2. Beam and Slab:
 - a. Step #1: Stress temperature tendons, if applicable.

Project Number: 589-370

- b. Step #2: Stress continuous longitudinal slab tendons.
- c. Step #3: Stress added longitudinal slab tendons.
- d. Step #4: Stress continuous beam tendons.
- e. Step #5: Stress added beam tendons.
- f. Step #6: Stress girder tendons, if applicable.
- G. Safety: Precautions shall be taken to prevent workers from standing directly behind, above or in front of the stressing rams.

3.5 GROUTING ANCHORAGE RECESSES

- A. Cut the tendon tails within 24 hours after the stressing records have been approved. Cut off the excess strand at least 1/2 inch inside the face of the finished concrete surface, and not more than 3/4 inch from the face of the anchorage. Cutting may be done by means of oxyacetylene cutting, abrasive wheel, or hydraulic shears. Do not allow the wedges to become heated.
- B. Cover the end of tendon with approved P-T coating-filled encapsulation cap, or other approved method no more than 24 hours after the tendon tails have been cut to ensure encapsulation of the exposed tendon.
- C. Coat the anchorage recesses with an approved bonding agent and fill flush with a non-shrink, non-stain, chloride free grout compatible for use with prestressing steel or approved equal. Do not allow contamination of the anchorage recess surface that reduces the bonding capacity of the non-shrink grout.

3.6 INSTALLATION SUPERVISION

- A. The duties of the post-tensioning installer's supervisor shall include:
 - Check tendon placement before and during pouring of concrete. Be present during pours and check for tendons being moved out of position.
 - 2. Mark tendons prior to stressing and verify with the Owner's Testing Laboratory that all initial marks are accurate.
 - 3. Observe that tendon elongation measurements are made and recorded by Testing Laboratory or, in the absence of a Testing Laboratory representative, measure, record and report tendon elongations after stressing and submit copy of original to Architect/Engineer.
 - 4. Compare results of actual tendon elongations with hydraulic ram gage reading and with calculated elongation.

- 5. Require checking of tendon force and/or elongation if requested by the Architect/Engineer.
- 6. Do not allow cutting off of tendons without the Architect/Engineer's written approval.

- - - E N D - - -

SECTION 04 05 13 MASONRY MORTARING

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies mortar materials and mixes.

1.2 RELATED WORK:

- A. Mortar used in Section:
 - 1. Section 04 05 16, MASONRY GROUTING.
 - 2. Section 04 20 00, UNIT MASONRY.
- B. Mortar Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 TESTING LABORATORY-CONTRACTOR RETAINED

- A. Engage a commercial testing laboratory approved by Resident Engineer to perform tests specified below.
- B. Submit information regarding testing laboratory's facilities and qualifications of technical personnel to Contracting Officer Representative (COR).

1.4 TESTS

- A. Test mortar and materials specified.
- B. Certified test reports.
- C. Identify materials by type, brand name and manufacturer or by origin.
- D. Do not use materials until laboratory test reports are approved by COR.
- E. After tests have been made and materials approved, do not change without additional test and approval of COR.
- F. Testing:
 - 1. Test materials proposed for use for compliance with specifications in accordance with test methods contained in referenced specifications and as follows:
 - 2. Mortar:
 - a. Test for compressive strength and water retention; ASTM C270.
 - b. Mortar compressive strengths 28 days as follows:
 - Type M: Minimum 17230 kPa (2500 psi) at 28 days.
 - Type S: Minimum 12400 kPa (1800 psi) at 28 days.
 - Type N: Minimum 5170 kPa (750 psi) at 28 days.

3. Cement:

- a. Test for water soluble alkali (nonstaining) when nonstaining cement is specified.
- b. Nonstaining cement shall contain not more than 0.03 percent water soluble alkali.

4. Sand: Test for deleterious substances, organic impurities, soundness and grading.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Certificates:
 - 1. Testing laboratory's facilities and qualifications of its technical personnel.
 - 2. Indicating that following items meet specifications:
 - a. Portland cement.
 - b. Masonry cement.
 - c. Mortar cement.
 - d. Hydrated lime.
 - e. Fine aggregate (sand).
 - f. Color admixture.
- C. Laboratory Test Reports:
 - 1. Mortar, each type.
 - 2. Admixtures.
- D. Manufacturer's Literature and Data:
 - 1. Cement, each kind.
 - 2. Hydrated lime.
 - 3. Admixtures.
 - 4. Liquid acrylic resin.

1.6 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver masonry materials in original sealed containers marked with name of manufacturer and identification of contents.
- B. Store masonry materials under waterproof covers on planking clear of ground, and protect damage from handling, dirt, stain, water and wind.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

C40-04.....Organic Impurities in Fine Aggregates for Concrete

C91-05......Masonry Cement

C109-08......Compressive Strength of Hydraulic Cement Mortars
(Using 2-in. or 50-MM Cube Specimens)

C144-04......Aggregate for Masonry Mortar

PART 2 - PRODUCTS

2.1 HYDRATED LIME

ASTM C207, Type S.

2.2 AGGREGATE FOR MASONRY MORTAR

- A. ASTM C144 and as follows:
 - 1. Light colored sand for mortar for laying face brick.
 - 2. White plastering sand meeting sieve analysis for mortar joints for pointing and laying of structural facing tile units except that 100 percent passes No. 8 sieve, and not more than 5 percent retained on No. 16 sieve.
- B. Test sand for color value in accordance with ASTM C40. Sand producing color darker than specified standard is unacceptable.

2.3 BLENDED HYDRAULIC CEMENT

ASTM C595, Type IS, IP.

2.4 MASONRY CEMENT

- A. ASTM C91. Type N, S, or M.
- B. Use white masonry cement whenever white mortar is specified.

2.5 MORTAR CEMEMT

ASTM C1329, Type N, S or M.

2.6 PORTLAND CEMENT

- A. ASTM C150, Type I.
- B. Use white Portland cement wherever white mortar is specified.

2.7 LIQUID ACRYLIC RESIN

A formulation of acrylic polymers and modifiers in liquid form designed for use as an additive for mortar to improve physical properties.

2.8 WATER

Potable, free of substances that are detrimental to mortar, masonry, and metal.

2.9 POINTING MORTAR

A. For Cast Stone or Precast Concrete: Proportion by volume; One part white Portland cement, two parts white sand, and 1/5 part hydrated lime.

2.10 MASONRY MORTAR

- A. Conform to ASTM C270.
- B. Admixtures:
 - 1. Do not use mortar admixtures, unless approved by Resident Engineer.
 - 2. Submit laboratory test report showing effect of proposed admixture on strength, water retention, and water repellency of mortar.
 - 3. Do not use antifreeze compounds.
- C. Colored Mortar:
 - 1. Maintain uniform mortar color for exposed work throughout.
 - 2. Match mortar color in approved sample or mock-up.
- D. Color Admixtures:
 - 1. Proportion as specified by manufacturer.
 - 2. For color, see Section 09 06 00, SCHEDULE FOR FINISHES.

2.11 HIGH BOND MORTAR

- A. Mixture by volume, one-part Portland cement, 1/4-part hydrated lime, three-parts sand, water, and liquid acrylic resin.
- B. Mortar properties when tested in accordance with referenced specifications.
 - 1. Compressive Strength, ASTM C109: Minimum 19,305 kPa (2800 psi), using 50 mm (2 inch) cubes.
 - 2. Tensile Strength, ASTM C307: 3861 kPa Minimum (560 psi), using the 25mm (1 inch) briquettes.
 - 3. Flexural Strength, ASTM C348: Minimum 6067 kPa (880 psi), using flexural bar.
 - 4. Bond Strength, ASTM C321: Minimum 2965 kPa (430 psi), using crossed brick.

2.12 COLOR ADMIXTURE

- A. Pigments: ASTM C979.
- B. Use mineral pigments only. Organic pigments are not acceptable.
- C. Pigments inert, stable to atmospheric conditions, nonfading, alkali resistant and water insoluble.

PART 3 - EXECUTION

3.1 MIXING

- A. Mix in a mechanically operated mortar mixer.
 - 1. Mix mortar for at least three minutes but not more than five minutes.
- B. Measure ingredients by volume. Measure by the use of a container of known capacity.
- C. Mix water with dry ingredients in sufficient amount to provide a workable mixture which will adhere to vertical surfaces of masonry units.
- D. Mortar that has stiffened because of loss of water through evaporations:
 - 1. Re-tempered by adding water to restore to proper consistency and workability.
 - 2. Discard mortar that has reached its initial set or has not been used within two hours.
 - E. Pointing Mortar:
 - Mix dry ingredients with enough water to produce a damp mixture of workable consistency which will retain its shape when formed into a ball.
 - 2. Allow mortar to stand in dampened condition for one to 1-1/2 hours.
 - 3. Add water to bring mortar to a workable consistency prior to application.

3.2 MORTAR USE LOCATION

- A. Use Type M mortar for precast concrete panels, and waterproof parging below grade.
- B. Use Type S mortar for masonry containing vertical reinforcing bars (non-engineered) for masonry below grade and engineered reinforced unit masonry work.
- C. For brick veneer over frame back up walls, use Type N portland cementlime mortar or Type S masonry cement or mortar cement mortar.
- D. Use Type N mortar for other masonry work, except as otherwise specified.
- E. Use Type N mortar for tuck pointing work.
- F. Use pointing mortar for items specified.

- - - E N D - - -

This page left blank intentionally.

04 05 13- 6

SECTION 04 05 16 MASONRY GROUTING

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies grout materials and mixes.

1.2 RELATED WORK:

- A. Grout used in Section:
 - 1. Section 03 45 00, PRECAST ARCHITECTURAL CONCRETE.
 - 2. Section 04 20 00, UNIT MASONRY.
 - 3. Section 04 72 00, CAST STONE MASONRY.
- B. Grout Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 TESTS:

- A. Test grout and materials specified.
- B. Certified test reports.
- C. Identify materials by type, brand name and manufacturer or by origin.
- D. Do not use materials until laboratory test reports are approved by Contracting Officer Representative (COR).
- E. After tests have been made and materials approved, do not change without additional test and approval of COR.

F. Testing:

1. Test materials proposed for use for compliance with specifications in accordance with test methods contained in referenced specifications and as follows:

2. Grout:

- a. Test for compressive strength; ASTM C1019.
- b. Grout compressive strength of 13790 kPa (2000 psi) at 28 days.

3. Cement:

- a. Test for water soluble alkali (nonstaining) when nonstaining cement is specified.
- b. Nonstaining cement shall contain not more than 0.03 percent water soluble alkali.
- 4. Sand: Test for deleterious substances, organic impurities, soundness and grading.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Certificates:
 - 1. Indicating that following items meet specifications:

- a. Portland cement.
- b. Masonry cement.
- c. Grout.
- d. Hydrated lime.
- e. Fine aggregate (sand).
- f. Coarse aggregate for grout.
 - g. Color admixture.
- C. Laboratory Test Reports:
 - 1. Grout, each type.
 - 2. Admixtures.
- D. Manufacturer's Literature and Data:
 - 1. Cement, each kind.
 - 2. Hydrated lime.
 - 3. Admixtures.
 - 4. Liquid acrylic resin.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Deliver masonry materials in original sealed containers marked with name of manufacturer and identification of contents.
- B. Store masonry materials under waterproof covers on planking clear of ground, and protect damage from handling, dirt, stain, water and wind.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

C40-04Organic	Impurities	in	Fine	Aggregates	for
Concret	e				

C150-09.....Portland Cement

C207-06......Hydrated Lime for Masonry Purposes

C404-07......Aggregate for Masonry Grout

C476-10......Grout for Masonry

C595-10.....Blended Hydraulic Cement

C979-10......Pigments for Integrally Colored Concrete

C1019-11.....Sampling and Testing Grout

PART 2 - PRODUCTS

2.1 HYDRATED LIME:

ASTM C207, Type S.

2.2 AGGREGATE FOR MASONRY GROUT:

ASTM C404, Size 8.

2.3 BLENDED HYDRAULIC CEMENT:

ASTM C595, Type IS, IP.

2.4 MASONRY CEMENT:

- A. ASTM C91. Type N, S, or M.
- B. Use white masonry cement whenever white mortar is specified.

2.5 PORTLAND CEMENT:

- A. ASTM C150, Type I.
- B. Use white Portland cement wherever white mortar is specified.

2.6 LIQUID ACRYLIC RESIN:

A formulation of acrylic polymers and modifiers in liquid form designed for use as an additive for mortar to improve physical properties.

2.7 WATER:

Potable, free of substances that are detrimental to grout, masonry, and metal.

2.8 GROUT:

- A. Conform to ASTM C476 except as specified.
- B. Grout type proportioned by volume as follows:
 - 1. Fine Grout:
 - a. Portland cement or blended hydraulic cement: one part.
 - b. Hydrated lime: 0 to 1/10 part.
 - c. Fine aggregate: 2-1/4 to three times sum of volumes of cement and lime used.

2. Coarse Grout:

- a. Portland cement or blended hydraulic cement: one part.
- b. Hydrated lime: 0 to 1/10 part.
- c. Fine aggregate: 2-1/4 to three times sum of volumes of cement and lime used.
- d. Coarse aggregate: one to two times sum of volumes of cement and lime used.
- 3. Sum of volumes of fine and coarse aggregates: Do not exceed four times sum of volumes of cement and lime used.

2.9 COLOR ADMIXTURE:

- A. Pigments: ASTM C979.
- B. Use mineral pigments only. Organic pigments are not acceptable.
- C. Pigments inert, stable to atmospheric conditions, nonfading, alkali resistant and water insoluble.

PART 3 - EXECUTION

3.1 MIXING:

- A. Mix in a mechanically operated grout mixer.
 - 1. Mix grout for at least five minutes.
- B. Measure ingredients by volume. Measure by the use of a container of known capacity.
- C. Mix water with grout dry ingredients in sufficient amount to bring grout mixture to a pouring consistency.

3.2 GROUT USE LOCATIONS:

- A. Use fine grout for filling wall cavities and cells of concrete masonry units where the smallest dimension is 50 mm (2 inches) or less.
- B. Use either fine grout or coarse grout for filling wall cavities and cells of concrete masonry units where the smallest dimension is greater than 50 mm (2 inches).
- C. Do not use grout for filling bond beam or lintel units.

- - - E N D - - -

SECTION 04 20 00 UNIT MASONRY

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for construction of masonry unit walls.

1.2 RELATED WORK

- A. Mortars and grouts: Section 04 05 13, MASONRY MORTARING, Section 04 05 16, MASONRY GROUTING.
- B. Steel lintels and shelf angles: Section 05 50 00, METAL FABRICATIONS.
- C. Cavity insulation: Section 07 21 13, THERMAL INSULATION.
- D. Flashing: Section 07 60 00, FLASHING AND SHEET METAL.
- E. Sealants and sealant installation: Section 07 92 00, JOINT SEALANTS.
- F. Color and texture of masonry units: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

B. Samples:

- 1. Face brick, sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints.
- 2. Anchors, and ties, one each and joint reinforcing 1200 mm (48 inches) long.

C. Shop Drawings:

1. Shop Drawings: Submit shop drawings for fabrication, bending, and placement of reinforcing bars. Comply with ACI 315. Show bar schedules, diagrams of bent bars, stirrup spacing, lateral ties and other arrangements and assemblies as required for fabrication and placement of reinforcement for unit masonry work.

D. Certificates:

- Certificates signed by manufacturer, including name and address of contractor, project location, and the quantity, and date or dates of shipment of delivery to which certificate applies.
- 2. Indicating that the following items meet specification requirements:
 - a. Face brick.
 - b. Solid and load-bearing concrete masonry units, including fireresistant rated units.

- 3. Testing laboratories facilities and qualifications of its principals and key personnel to perform tests specified.
- E. Laboratory Test Reports:
 - 1. Brick for pre-built masonry panels.
- F. Manufacturer's Literature and Data:
 - 1. Anchors, ties, and reinforcement.
 - 2. Shear keys.
 - 3. Reinforcing bars.

1.4 SAMPLE PANEL

- A. Before starting masonry, lay up a sample panel in accordance with Masonry Standards Joint Committee (MSJC) and Brick Industry Association (BIA).
 - 1. Use masonry units from random cubes of units delivered on site.
 - 2. Include reinforcing, ties, and anchors.
- B. Use sample panels approved by Resident Engineer for standard of workmanship of new masonry work.
- C. Use sample panel to test cleaning methods.

1.5 WARRANTY

Warrant exterior masonry walls against moisture leaks and subject to terms of "Warranty of Construction", FAR clause 52.246-21.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A951-06		.Ste	el Wir	re for	Masonry	y Joint	Reinfo	orcement.
- 61 5 / - 61 5 4	0.0		,					6

A615/A615M-09.....Deformed and Plain Billet-Steel Bars for Concrete Reinforcement.

A675/A675M-03(R2009)....Standard Specification for Steel Bars, Carbon,
Hot-Wrought, Special Quality, Mechanical
PropertiesC34-03 Structural Clay Load-Bearing

Wall Tile

C55-09......Concrete Building Brick

C56-10.....Structural Clay Non-Load-Bearing Tile

C62-10.....Building Brick (Solid Masonry Units Made From

Clay or Shale)

C67-09.....Sampling and Testing Brick and Structural Clay

Tile

C90-11.....Load-Bearing Concrete Masonry Units

	C126-10 Ceramic Glazed Structural Clay Facing Tile,
	Facing Brick, and Solid Masonry Units
	C216-10Facing Brick (Solid Masonry Units Made From Clay
	or Shale)
	C476-10 Standard Specification for Grout for Masonry
	C612-10Mineral Fiber Block and Board Thermal Insulation
	C744-11Prefaced Concrete and Calcium Silicate Masonry
	Units.
	D1056-07Flexible Cellular Materials - Sponge or Expanded
	Rubber
	D2000-08Rubber Products in Automotive Applications
	D2240-05(R2010)Rubber Property - Durometer Hardness
	D3574-08Flexible Cellular Materials-Slab, Bonded, and
	Molded Urethane Foams
	F1667-11Fasteners: Nails, Spikes and Staples
С.	Masonry Industry Council:
	Hot and Cold Weather Masonry Construction Manual-98 (R2000).
D.	American Welding Society (AWS):
	D1.4-11 Structural Welding Code - Reinforcing Steel.
Ε.	Federal Specifications (FS):
	FF-S-107C-00Screws, Tapping and Drive
F.	Brick Industry Association - Technical Notes on Brick Construction
	(BIA):
	11-2001 Guide Specifications for Brick Masonry, Part I
	11A-1988Guide Specifications for Brick Masonry, Part II
	11B-1988Guide Specifications for Brick Masonry, Part III
	Execution
	11C-1998Guide Specification for Brick Masonry Engineered
	Brick Masonry, Part IV
	11D-1988Guide Specifications for Brick Masonry
	Engineered Brick Masonry, Part IV continued

PART 2 - PRODUCTS

2.1 BRICK

- A. Face Brick:
 - 1. ASTM C216, Grade SW, Type FBS.
 - 2. Brick when tested in accordance with ASTM C67: Classified slightly efflorescent or better.

G. Masonry Standards Joint Committee; Specifications for Masonry Structures TMS 602-08/ACI 530.1-08/ASCE 6-08 (2008 MSJC Book Version TMS-0402-08).

3. Size:

- a. Modular
- b. Thin Brick: 13 mm (1/2 inch) thick with angle shapes for corners.
- B. Building Brick: ASTM C62, Grade MW for backup and interior work; Grade SW where in contact with earth.

2.2 CONCRETE MASONRY UNITS

- A. Hollow and Solid Load-Bearing Concrete Masonry Units: ASTM C90.
 - 1. Unit Weight: Normal.
 - 2. Fire rated units for fire rated partitions.
 - 3. Sizes: Modular.
 - 4. For molded faces used as a finished surface, use concrete masonry units with uniform fine to medium surface texture unless specified otherwise.

2.4 SHEAR KEYS

- A. ASTM D2000, solid extruded cross-shaped section of rubber, neoprene, or polyvinyl chloride, with a durometer hardness of approximately 80 when tested in accordance with ASTM D2240, and a minimum shear strength of 3.5 MPa (500 psi).
- B. Shear key dimensions: Approximately 70 mm by 8 mm for long flange and 38 mm by 16 mm for short flange (2-3/4 inches by 5/16 inch for long flange), and 1-1/2 inches by 5/8 inch for short flange).

2.5 ANCHORS, TIES, AND REINFORCEMENT

- A. Steel Reinforcing Bars: ASTM A615M, deformed bars, grade as shown.
- B. Joint Reinforcement:
 - 1. Form from wire complying with ASTM A951.
 - 2. Galvanized after fabrication.
 - 3. Width of joint reinforcement 40 mm (0.16 inches) less than nominal width of masonry wall or partition.
 - 4. Cross wires welded to longitudinal wires.
 - 5. Joint reinforcement at least 3000 mm (10 feet) in length.
 - 6. Joint reinforcement in rolls is not acceptable.
 - 7. Joint reinforcement that is crimped to form drip is not acceptable.
 - 8. Maximum spacing of cross wires 400 mm (16 inch) to longitudinal wires.
 - 9. Ladder Design:
 - a. Longitudinal wires deformed 4 mm (0.16 inch) 5 mm (0.20 inch) diameter wire.
 - b. Cross wires 2.6 mm (0.10 inch) 4 mm (0.16 inch) diameter.
 - 10. Trussed Design:

- a. Longitudinal and cross wires not less than 4 mm (0.16 inch nominal) diameter.
- b. Longitudinal wires deformed.
- 11. Multiple Wythes and Cavity wall ties:
 - a. Longitudinal wires 4 mm (0.16 inch), two in each wythe with ladder truss wires 4 mm (0.16 inch) overlay, welded to each longitudinal wire.
 - b. Longitudinal wires 4 mm (0.16 inch) with U shape 4 mm (0.16 inch) rectangular ties extending into other wythe not less than 75 mm (3 inches) spaced 400 mm o.c. (16 inches). Adjustable type with U shape tie designed to receive 4 mm (0.16 inch) pintle projecting into other wythe 75 mm (3 inches min.).
- C. Adjustable Veneer Anchor for Frame Walls:
 - 1. Two piece, adjustable anchor and tie.
 - 2. Anchor and tie may be either type; use only one type throughout.
 - 3. Loop Type:
 - a. Anchor: Screw-on galvanized steel anchor strap 2.75 mm (0.11 inch) by 19 mm (3/4 inch) wide by 225 mm (9 inches) long, with 9 mm (0.35 inch) offset and 100 mm (4 inch) adjustment. Provide 5 mm (0.20 inch) hole at each end for fasteners.
 - b. Ties: Triangular tie, fabricated of 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Ties long enough to engage the anchor and be embedded not less than 50 mm (2 inches) into the bed joint of the masonry veneer.

4. Angle Type:

- a. Anchor: Minimum 2 mm (16 gage) thick galvanized steel angle shaped anchor strap. Provide hole in vertical leg for fastener. Provide hole near end of outstanding leg to suit upstanding portion of tie
- b. Tie: Fabricate from 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Form "L" shape to be embedded not less than 50 mm (2 inches) into the bed joint of the masonry veneer and provide upstanding leg to fit through hole in anchor and be long enough to allow 50 mm (2 inches) of vertical adjustment.

D. Dovetail Anchors:

1. Corrugated steel dovetail anchors formed of 1.5 mm (0.0598 inch) thick by 25 mm (1 inch) wide galvanized steel, 90 mm (3-1/2 inches) long where used to anchor 100 mm (4 inch) nominal thick masonry units, 140 mm (5-1/2 inches) long for masonry units more than 100 mm (4 inches) thick.

- 2. Triangular wire dovetail anchor 100 mm (4 inch) wide formed of 4 mm (9 gage) steel wire with galvanized steel dovetail insert. Anchor length to extend at least 75 mm (3 inches) into masonry, 25 mm (1 inch) into 40 mm (1-1/2 inch) thick units.
- 3. Form dovetail anchor slots from 0.6 mm (0.0239 inch) thick galvanized steel (with felt or fiber filler).

E. Individual ties:

- 1. Rectangular ties: Form from 5 mm (3/16 inch) diameter galvanized steel rod to a rectangular shape not less than 50 mm (2 inches) wide by sufficient length for ends of ties to extend within 25 mm (1 inch) of each face of wall. Ties that are crimped to form drip are not permitted.
- 2. Adjustable Cavity Wall Ties:
 - a. Adjustable wall ties may be used at Contractor's option.
 - b. Two piece type permitting up to 40 mm (1-1/2 inch) adjustment.
 - c. Form ties from 5 mm (3/16 inch) diameter galvanized steel wire.
 - d. Form one piece to a rectangular shape 105 mm (4-1/8 inches) wide by length required to extend into the bed joint 50 mm (2 inches).
 - e. Form the other piece to a 75 mm (3 inch) long by 75 mm (3 inch) wide shape, having a 75 mm (3 inch) long bent section for engaging the 105 mm (4-1/8 inch) wide piece to form adjustable connection.

F. Wall Ties, (Mesh or Wire):

- 1. Mesh wall ties formed of ASTM A82, W0.5, 2 mm, (16 gage) galvanized steel wire 13 mm by 13 mm (1/2 inch by 1/2 inch) mesh, 75 mm (3 inches) wide by 200 mm (8 inches) long.
- 2. Rectangular wire wall ties formed of W1.4, 3 mm, (9 gage) galvanized steel wire 50 mm (2 inches) wide by 200 mm (8 inches) long.

G. Corrugated Wall Tie:

- 1. Form from 1.5 mm (0.0598 inch) thick corrugated, galvanized steel 30 mm (1-1/4 inches) wide by lengths so as to extend at least 100 mm (4 inches) into joints of new masonry plus 38 mm (1-1/2 inch) turn-up.
- 2. Provide 5 mm (3/16 inch) hole in turn-up for fastener attachment.

H. Adjustable Steel Column Anchor:

- 1. Two piece anchor consisting of a 6 mm (1/4 inch) diameter steel rod to be welded to steel with offset ends, rod to permit 100 mm (4 inch) vertical adjustment of wire anchor.
- 2. Triangular shaped wire anchor 100 mm (4 inches) wide formed from 5 (3/16 inch) diameter galvanized wire, to extend at least 75 mm (3 inches) into joints of masonry.
- I. Adjustable Steel Beam Anchor:

- 1. Z or C type steel strap, 30 mm (1 1/4 inches) wide, 3 mm (1/8 inch)
- 2. Flange hook not less than 38 mm (1 1/2 inches) long.
- 3. Length to embed in masonry not less than 50 mm (2 inches) in 100 mm (4 inch) nominal thick masonry and 100 mm (4 inches) in thicker masonry.
- 4. Bend masonry end not less than 40 mm (1 1/2 inches).

J. Ridge Wall Anchors:

- 1. Form from galvanized steel not less than 25 mm (1 inch) wide by 5 mm (3/16 inch) thick by 600 mm (24 inches) long, plus 50 mm (2 inch) bends.
- 2. Other lengths as shown.

2.6 PREFORMED COMPRESSIBLE JOINT FILLER

- A. Thickness and depth to fill the joint as specified.
- B. Closed Cell Neoprene: ASTM D1056, Type 2, Class A, Grade 1, B2F1.
- C. Non-Combustible Type: ASTM C612, Class 5, 1800 degrees F.

2.7 ACCESSORIES

- A. Weep Hole Wicks: Glass fiber ropes, 10 mm (3/8 inch) minimum diameter, 300 mm (12 inches) long.
- B. Box Board:
 - 1. Mineral Fiber Board: ASTM C612, Class 1.
 - 2. 25 mm (1 inch) thickness.
 - 3. Other spacing material having similar characteristics may be used subject to the Resident Engineer's approval.

C. Masonry Cleaner:

- 1. Detergent type cleaner selected for each type masonry used.
- 2. Acid cleaners are not acceptable.
- 3. Use soapless type specially prepared for cleaning brick or concrete masonry as appropriate.

D. Fasteners:

- 1. Concrete Nails: ASTM F1667, Type I, Style 11, 19 mm (3/4 inch) minimum length.
- 2. Masonry Nails: ASTM F1667, Type I, Style 17, 19 mm (3/4 inch) minimum length.
- 3. Screws: FS-FF-S-107, Type A, AB, SF thread forming or cutting.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Protection:
 - 1. Cover tops of walls with nonstaining waterproof covering, when work is not in progress. Secure to prevent wind blow off.

- On new work protect base of wall from mud, dirt, mortar droppings, and other materials that will stain face, until final landscaping or other site work is completed.
- B. Cold Weather Protection:
 - 1. Masonry may be laid in freezing weather when methods of protection are utilized.
 - 2. Comply with MSJC and "Hot and Cold Weather Masonry Construction Manual".

3.2 CONSTRUCTION TOLERANCES

- A. Lay masonry units plumb, level and true to line within the tolerances as per MSJC requirements and as follows:
- B. Maximum variation from plumb:
 - 1. In 3000 mm (10 feet) 6 mm (1/4 inch).
 - 2. In 6000 mm (20 feet) 10 mm (3/8 inch).
 - 3. In 12 000 mm (40 feet) or more 13 mm (1/2 inch).
- C. Maximum variation from level:
 - 1. In any bay or up to 6000 mm (20 feet) 6 mm (1/4 inch).
 - 2. In 12 000 mm (40 feet) or more 13 mm (1/2 inch).
- D. Maximum variation from linear building lines:
 - 1. In any bay or up to 6000 mm (20 feet) 13 mm (1/2 inch).
 - 2. In 12 000 mm (40 feet) or more 19 mm (3/4 inch).
- E. Maximum variation in cross-sectional dimensions of columns and thickness of walls from dimensions shown:
 - 1. Minus 6 mm (1/4 inch).
 - 2. Plus 13 mm (1/2 inch).
- F. Maximum variation in prepared opening dimensions:
 - 1. Accurate to minus 0 mm (0 inch).
 - 2. Plus 6 mm (1/4 inch).

3.3 INSTALLATION GENERAL

- A. Keep finish work free from mortar smears or spatters, and leave neat and clean.
- B. Anchor masonry as specified in Paragraph, ANCHORAGE.
- C. Wall Openings:
 - 1. Fill hollow metal frames built into masonry walls and partitions solid with mortar as laying of masonry progresses.
 - 2. If items are not available when walls are built, prepare openings for subsequent installation.
- D. Tooling Joints:
 - 1. Do not tool until mortar has stiffened enough to retain thumb print when thumb is pressed against mortar.

- 2. Tool while mortar is soft enough to be compressed into joints and not raked out.
- 3. Finish joints in exterior face masonry work with a jointing tool, and provide smooth, water-tight concave joint unless specified otherwise.
- 4. Tool Exposed interior joints in finish work concave unless specified otherwise.

E. Partition Height:

- 1. Extend partitions at least 100 mm (four inches) above suspended ceiling or to overhead construction where no ceiling occurs.
- 2. Extend following partitions to overhead construction.
 - a. Where noted smoke partitions, FHP (full height partition), and FP (fire partition) and smoke partitions (SP) on drawings.
 - b. Both walls at expansion joints.
 - c. Corridor walls.
 - d. Walls at stairway and stair halls, elevators, dumbwaiters, trash and laundry chute shafts, and other vertical shafts.
 - e. Walls at refrigerator space.
 - f. Reinforced masonry partitions
- 3. Extend finish masonry partitions at least four-inches above suspended ceiling and continue with concrete masonry units or structural clay tile to overhead construction:

F. Lintels:

- 1. Lintels are not required for openings less than 1000 mm (3 feet 4 inches) wide that have hollow metal frames.
- 2. Openings 1025 mm (3 feet 5 inches) wide to 1600 m (5 feet 4 inches) wide with no structural steel lintel or frames, require a lintel formed of concrete masonry lintel or bond beam units filled with grout per ASTM C476 and reinforced with 1- #15m (1-#5) rod top and bottom for each 100 mm (4 inches) of nominal thickness unless shown otherwise.
- 3. Precast lintels of 25 Mpa (3000 psi) concrete, of same thickness as partition, and with one Number 5 deformed bar top and bottom for each 100 mm (4 inches) of nominal thickness, may be used in lieu of reinforced CMU masonry lintels.
- 4. Use steel lintels, for openings over 1600 m (5 feet 4 inches) wide, brick masonry, and elevator openings unless shown otherwise.
- 5. Doors having overhead concealed door closers require a steel lintel, and a pocket for closer box.
- 6. Length for minimum bearing of 100 mm (4 inches) at ends.

7. Build masonry openings or arches over wood or metal centering and supports when steel lintels are not used.

G. Wall, Furring, and Partition Units:

- 1. Lay out field units to provide for running bond of walls and partitions, with vertical joints in second course centering on first course units unless specified otherwise.
- 2. Align head joints of alternate vertical courses.
- 3. At sides of openings, balance head joints in each course on vertical center lines of openings.
- 4. Use no piece shorter than 100 mm (4 inches) long.
- 5. On interior partitions provide a 6 mm (1/4 inch) open joint for caulking between exterior walls, concrete work, and abutting masonry partitions.
- 6. Use not less than 100 mm (4 inches) nominal thick masonry for free standing furring unless shown otherwise.
- 7. Do not abut existing plastered surfaces except suspended ceilings with new masonry partitions.
- H. Use not less than 100 mm (4 inches) nominal thick masonry for fireproofing steel columns unless shown otherwise.
- I. Before connecting new masonry with previously laid, remove loosened masonry or mortar, and clean and wet work in place as specified under wetting.
- J. When new masonry partitions start on existing floors, machine cut existing floor finish material down to concrete surface.
- K. Structural Steel Encased in Masonry:
 - 1. Where structural steel is encased in masonry and the voids between the steel and masonry are filled with mortar, provide a minimum 25 mm (1 inch) mortar free expansion space between the masonry and the steel by applying a box board material to the steel before the masonry is laid.
 - 2. Do not place spacing material where steel is bearing on masonry or masonry is bearing on steel.

L. Chases:

- 1. Do not install chases in masonry walls and partitions exposed to view in finished work, including painted or coated finishes on masonry.
- 2. Masonry 100 mm (4 inch) nominal thick may have electrical conduits 25 mm (1 inch) or less in diameter when covered with soaps, or other finishes.
- 3. Full recess chases after installation of conduit, with mortar and finish flush.

- 4. When pipes or conduits, or both occur in hollow masonry unit partitions retain at least one web of the hollow masonry units.
- M. Wetting and Wetting Test:
 - 1. Test and wet brick or clay tile in accordance with BIA 11B.
 - 2. Do not wet concrete masonry units or glazed structural facing tile before laying.
- N. Temporary Formwork: Provide formwork and shores as required for temporary support of reinforced masonry elements.
- O. Construct formwork to conform to shape, line and dimensions shown. Make sufficiently tight to prevent leakage of mortar, grout, or concrete (if any). Brace, tie and support as required to maintain position and shape during construction and curing of reinforced masonry.
- P. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and all other reasonable temporary loads that may be placed on them during construction.
- Q. Allow not less than the following minimum time to elapse after completion of members before removing shores or forms, provided suitable curing conditions have been obtained during the curing period.
 - 1. 10 days for girders and beams.
 - 2. 7 days for slabs.
 - 3. 7 days for reinforced masonry soffits.

3.4 ANCHORAGE

- A. Veneer to Frame Walls:
 - 1. Use adjustable veneer anchors.
 - 2. Fasten anchor to stud through sheathing with self drilling and tapping screw, one at each end of loop type anchor.
 - 3. Space anchors not more than 400 mm (16 inches) on center vertically at each stud.
- B. Veneer to Concrete Walls:
 - 1. Install dovetail slots in concrete vertically at 600 mm (2 feet) on centers.
 - 2. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals.
 - 3. Anchor new masonry facing to existing concrete with corrugated wall ties spaced at 400 mm, (16 inch) maximum vertical intervals, and at 600 mm (2 feet) maximum horizontal intervals. Fasten ties to concrete with power actuated fasteners or concrete nails.
- C. Masonry Facing to Backup and Cavity Wall Ties:
 - 1. Use individual ties for new work.

- 2. Stagger ties in alternate courses, and space at 400 mm (16 inches) maximum vertically, and 600 mm (2 feet) horizontally.
- 3. At openings, provide additional ties spaced not more than 900 mm (3 feet) apart vertically around perimeter of opening, and within 300 mm (12 inches) from edge of opening.
- 4. Anchor new masonry facing to existing masonry with corrugated wall ties spaced at 400 mm (16 inch) maximum vertical intervals and at every second masonry unit horizontally. Fasten ties to masonry with masonry nails.
- 5. Option: Use joint reinforcing for multiple wythes and cavity wall ties spaced not more than 400 mm (16 inches) vertically.
- 6. Tie interior and exterior wythes of reinforced masonry walls together with individual ties. Provide ties at intervals not to exceed 600 mm (24 inches) on center horizontally, and 400 mm (16 inches) on center vertically. Lay ties in the same line vertically in order to facilitate vibrating of the grout pours.

D. Anchorage of Abutting Masonry:

- Anchor interior 100 mm (4 inch) thick masonry partitions to exterior masonry walls with wall ties. Space ties at 600 mm (2 foot) maximum vertical intervals. Extend ties 100 mm (4 inches) minimum into masonry.
- 2. Anchor interior masonry bearing walls or interior masonry partitions over 100 mm (4 inches) thick to masonry walls with rigid wall anchors spaced at 400 mm (16 inch) maximum vertical intervals.
- 3. Anchor abutting masonry walls and partitions to concrete with dovetail anchors. Install dovetail slots vertically in concrete at centerline of abutting wall or partition. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals. Secure anchors to existing wall with two 9 mm (3/8 inch) by 75 mm (3 inch) expansion bolts or two power-driven fasteners.
- 4. Anchor abutting interior masonry partitions to existing concrete and existing masonry construction, with corrugated wall ties. Extend ties at least 100 mm (4 inches) into joints of new masonry. Fastened to existing concrete and masonry construction, with powder actuated drive pins, nail or other means that provides rigid anchorage. Install anchors at 400 mm (16 inch) maximum vertical intervals.

E. Masonry Furring:

 Anchor masonry furring less than 100 mm (4 inches) nominal thick to masonry walls or to concrete with corrugated wall ties or dovetail anchors.

- 2. Space not over 600 mm (2 feet) on centers in both directions.
- F. Anchorage to Steel Beams or Columns:
 - 1. Use adjustable beam anchors on each flange.
 - 2. At columns weld the 6 mm (1/4 inch) steel rod to steel columns at 300 mm (12 inch) intervals, and place wire ties in masonry courses at 400 mm (16 inches) maximum vertically.

3.5 REINFORCEMENT

A. Joint Reinforcement:

- Use as joint reinforcement in CMU wythe of combination brick and CMU, cavity walls, and single wythe concrete masonry unit walls or partitions.
- 2. Reinforcing may be used in lieu of individual ties for anchoring brick facing to CMU backup in exterior masonry walls.
- 3. Brick veneer over frame backing walls does not require joint reinforcement.
- 4. Locate joint reinforcement in mortar joints at 400 mm (16 inch) maximum vertical intervals.
- 5. Additional joint reinforcement is required in mortar joints at both 200 mm (8 inches) and 400 (16 inches) above and below windows, doors, louvers and similar openings in masonry, except where other type anchors are required for anchorage of masonry to concrete structure.
- 6. Joint reinforcement is required in every other course of stack bond CMU masonry.
- 7. Wherever brick masonry is backed up with stacked bond masonry, joint reinforcement is required in every other course of CMU backup, and in corresponding joint of facing brick.

B. Steel Reinforcing Bars:

- Install in cells of hollow masonry units where required for vertical reinforcement and in bond beam units for lintels and bond beam horizontal reinforcement. Install in wall cavities of reinforced masonry walls where shown.
- 2. Use grade 60 bars if not specified otherwise.
- 3. Bond Beams:
 - a. Form Bond beams of load-bearing concrete masonry units filled with ASTM C476 grout and reinforced with 2-#15m (#5) reinforcing steel unless shown otherwise. Do not cut reinforcement.
 - b. Brake bond beams only at expansion joints and at control joints, if shown.
- 4. Stack Bond:

- a. Locate additional joint reinforcement in vertical and horizontal joints as shown.
- b. Anchor vertical reinforcement into the foundation or wall or bond beam below and hold in place.
- c. Provide temporary bracing for walls over 8 ft. tall until permanent horizontal bracing is completed.

5. Grout openings:

- a. Leave cleanout holes in double wythe walls during construction by omitting units at the base of one side of the wall.
- b. Locate 75 mm \times 75 mm (3 in. \times 3 in.) min. clean-out holes at location of vertical reinforcement.
- c. Keep grout space clean of mortar accumulation and sand debris. Clean the grout space every day using a high pressure jet stream of water, or compressed air, or industrial vacuum, or by laying wood strips on the metal ties as the wall is built. If wood strips are used, lift strips with wires as the wall progresses and before placing each succeeding course of wall ties.

3.6 BRICK EXPANSION AND CMU CONTROL JOINTS.

- A. Provide brick expansion (BEJ) and CMU control (CJ) joints where shown on drawings.
- B. Keep joint free of mortar and other debris.
- C. Where joints occur in masonry walls.
 - 1. Install preformed compressible joint filler in brick wythe.
 - 2. Install cross shaped shear keys in concrete masonry unit wythe with preformed compressible joint filler on each side of shear key unless otherwise specified.
 - 3. Install filler, backer rod, and sealant on exposed faces.
- D. Use standard notched concrete masonry units (sash blocks) made in full and half-length units where shear keys are used to create a continuous vertical joint.
- E. Interrupt steel joint reinforcement at expansion and control joints unless otherwise shown.
- F. Fill opening in exposed face of expansion and control joints with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.7 BUILDING EXPANSION AND SEISMIC JOINTS

- A. Keep joint free of mortar. Remove mortar and other debris.
- B. Install non-combustible, compressible type joint filler to fill space completely except where sealant is shown on joints in exposed finish work.

C. Where joints are on exposed faces, provide depth for backer rod and sealant as specified in Section 07 92 00, JOINT SEALANTS, unless shown otherwise.

3.8 ISOLATION SEAL

- A. Where full height walls or partitions lie parallel or perpendicular to and under structural beams or shelf angles, provide a separation between walls or partitions and bottom of beams or shelf angles not less than the masonry joint thickness unless shown otherwise.
- B. Insert in the separation, a continuous full width strip of non-combustible type compressible joint filler.
- C. Where exposed in finish work, cut back filler material in the joint enough to allow for the joint to be filled with sealant material specified in Section 07 92 00, JOINT SEALANTS.

3.9 BRICKWORK

- A. Lay clay brick in accordance with BIA Technical Note 11 series.
- B. Laying:
 - 1. Lay brick in running bond with course of masonry bonded at corners unless shown otherwise.
 - 2. Maintain bond pattern throughout.
 - 3. Do not use brick smaller than half-brick at any angle, corner, break or jamb.
 - 4. Where length of cut brick is greater than one half but less than a whole brick, maintain the vertical joint location of such units.
 - 5. Lay exposed brickwork joints symmetrical about center lines of openings.
 - 6. Do not structural bond multi wythe brick walls unless shown.
 - 7. Before starting work, lay facing brick on foundation wall and adjust bond to openings, angles, and corners.
 - 8. Lay brick for sills with wash and drip.
 - 9. Build solid brickwork as required for anchorage of items.

C. Joints:

- 1. Exterior and interior joint widths: Lay for three equal joints in 200 mm (eight inches) vertically, unless shown otherwise.
- 2. Rake joints for pointing with colored mortar when colored mortar is not full depth.
- 3. Arches:
 - a. Flat arches (jack arches) lay with camber of 1 in 200 (1/16 inch per foot) of span.
 - b. Face radial arches with radial brick with center line of joints on radial lines.

- c. Form Radial joints of equal width.
- d. Bond arches into backing with metal ties in every other joint.

D. Weep Holes:

- 1. Install weep holes at 600 mm (24 inches) on center in bottom of vertical joints of exterior masonry veneer or cavity wall facing over foundations, bond beams, and other water stops in the wall.
- 2. Form weep holes using wicks made of mineral fiber insulation strips turned up 200 mm (8 inches) in cavity. Anchor top of strip to backup to securely hold in place.
- 3. Install sand or pea gravel in cavity approximately 75 mm (3 inches) high between weep holes.

E. Solid Exterior Walls:

- Build with 100 mm (4 inches) of nominal thick facing brick, backed up with cast-in-place concrete 100 mm (4 inches) nominal thick face brick.
- 2. Construct solid brick jambs not less than 20 mm (.8 inches) wide at exterior wall openings and at recesses, except where exposed concrete unit backup is shown.
- 3. Do not use full bonding headers.

4. Parging:

- a. For solid masonry walls, lay backup to height of six brick courses, parge backup with 13 mm (1/2 inch) of mortar troweled smooth; then lay exterior wythe to height of backup.
- b. Make parging continuous over backup, and extend 150 mm (six inches) onto adjacent concrete or masonry.
- c. Parge, with mortar, the ends and backs for recesses in exterior walls to a thickness of 13 mm (1/2 inch).
- d. Parge with mortar to true even surface the inside surface of exterior walls to receive insulation.

F. Cavity Type Exterior Walls:

- 1. Keep air space clean of mortar accumulations and debris.
 - a. Clean cavity by use of hard rubber, wood or metal channel strips having soft material on sides contacting wythes.
 - b. Lift strips with wires before placing next courses of horizontal joint reinforcement or individual ties or adjustable cavity wall ties.
- 2. For each lift lay two courses of concrete masonry units, followed by six courses of brick facing.

- 3. Lay the interior wythe of the masonry wall full height where dampproofing is required on cavity face. Coordinate to install dampproofing prior to laying outer wythe.
 - 4. Insulated Cavity Type Exterior Walls:
 - a. Install the insulation against the cavity face of inner masonry $\mbox{\em wythe.}$
 - b. Place insulation between rows of ties or joint reinforcing or bond to masonry surface with a bonding agent as recommended by the manufacturer of the insulation.
 - c. Lay the outer masonry wythe up with an air space between insulation and masonry units.
 - 5. Veneer Framed Walls:
 - a. Build with 100 mm (4 inches) of face brick over sheathed stud wall with air space.
 - b. Keep air space clean of mortar accumulations and debris.

3.10 CONCRETE MASONRY UNITS

A. Kind and Users:

- Provide special concrete masonry shapes as required, including lintel and bond beam units, sash units, and corner units. Use solid concrete masonry units, where full units cannot be used, or where needed for anchorage of accessories.
- Provide solid load-bearing concrete masonry units or grout the cell of hollow units at jambs of openings in walls, where structural members impose loads directly on concrete masonry, and where shown.
- 3. Provide rounded corner (bullnose) shapes at opening jambs in exposed work and at exterior corners.
- 4. Do not use brick jambs in exposed finish work.
- 5. Use concrete building brick only as filler in backup material where not exposed.
- 6. Masonry assemblies shall meet the required fire resistance in fire rated partitions of type and construction that will provide fire rating as shown.
- 7. Structural Clay Tile Units (Option):
 - a. Structural clay tile units load-bearing or non-load bearing as required, may be used in lieu of concrete masonry units, only, but not as an exposed surface, foundation walls or where otherwise noted.
 - b. Set units according to applicable requirements specified for concrete masonry units.

- c. Use brick or load-bearing structural clay tile units, with cores set vertically, and filled with grout where structural members impose concentrated load directly on structural clay tile masonry.
- 8. Where lead lined concrete masonry unit partitions terminate below the underside of overhead floor or roof deck, fill the remaining open space between the top of the partition and the underside of the overhead floor or roof deck, with standard concrete masonry units of same thickness as the lead lined units.

B. Laying:

- 1. Lay concrete masonry units with 10 mm (3/8 inch) joints, with a bond overlap of not less than $1/4 \text{ of the unit length, except where stack bond is required.$
- 2. Do not wet concrete masonry units before laying.
- 3. Bond external corners of partitions by overlapping alternate courses.
- 4. Lay first course in a full mortar bed.
- 5. Set anchorage items as work progress.
- 6. Where ends of anchors, bolts, and other embedded items, project into voids of units, completely fill such voids with mortar or grout.
- 7. Provide a 6 mm (1/4 inch) open joint for caulking exterior walls, concrete work, and abutting masonry partitions.
- 8. Lay concrete masonry units with full face shell mortar beds and fill head joint beds for depth equivalent to face shell thickness.
- 9. Lay concrete masonry units so that cores of units, that are to be filled with grout, are vertically continuous with joints of cross webs of such cores completely filled with mortar. Unobstructed core openings not less than 50 mm (2 inches) by 75 mm (3 inches).
- 10. Do not wedge the masonry against the steel reinforcing. Minimum 13 mm (1/2 inch) clear distance between reinforcing and masonry units.
- 11. Install deformed reinforcing bars of sizes shown.
- 12. Steel reinforcement, at time of placement, free of loose flaky rust, mud, oil, or other coatings that will destroy or reduce bond.
- 13. Steel reinforcement in place before grouting.
- 14. Minimum clear distance between parallel bars: One bar diameter.
- 15. Hold vertical steel reinforcement in place by centering clips, caging devices, tie wire, or other approved methods, vertically at spacings noted.
- 16. Support vertical bars near each end and at intermediate intervals not exceeding 192 bar diameters.
- 17. Reinforcement shall be fully encased by grout or concrete.

- 18. Splice reinforcement or attach reinforcement to dowels by placing in contact and secured or by placing the reinforcement within 1/5 of the required bar splice length.
- 19. Stagger splices in adjacent horizontal reinforcing bars. Lap reinforcing bars at splices a minimum of 40 bar diameters.
- 20. Grout cells of concrete masonry units, containing the reinforcing bars, solid as specified under grouting.
- 21. Cavity and joint horizontal reinforcement may be placed as the masonry work progresses.
- 22. Rake joints 6 to 10 mm (1/4 to 3/8 inch) deep for pointing with colored mortar when colored mortar is not full depth.

C. Waterproofing Parging:

- 1. Parge earth side of concrete masonry unit basement walls with mortar applied in two coats, each coat 6 mm (1/4 inch) thick.
- 2. Clean wall surfaces to receive parging of dirt, oil, or grease, and moisten before application of first coat.
- 3. Roughen first coat when partially set, permit to hardened for 24 hours, and moisten before application of second coat.
- 4. Keep second coat damp for at least 48 hours.
- 5. Thicken parging and round to form a cove at the junction of outside wall face and footing.

3.12 POINTING

- A. Fill joints with pointing mortar using rubber float trowel to rub mortar solidly into raked joints.
- B. Wipe off excess mortar from joints of glazed masonry units with dry cloth.
- C. Finish exposed joints in finish work with a jointing tool to provide a smooth concave joint unless specified otherwise.

3.13 GROUTING

- A. Preparation:
 - 1. Clean grout space of mortar droppings before placing grout.
 - 2. Close cleanouts.
 - 3. Install vertical solid masonry dams across grout space for full height of wall at intervals of not more than 9000 mm (30 feet). Do not bond dam units into wythes as masonry headers.
 - 4. Verify reinforcing bars are in cells of units or between wythes as shown.

B. Placing:

1. Place grout by hand bucket, concrete hopper, or grout pump.

- 2. Consolidate each lift of grout after free water has disappeared but before plasticity is lost.
- 3. Do not slush with mortar or use mortar with grout.
- 4. Interruptions:
 - a. When grouting must be stopped for more than an hour, top off grout 40 mm (1-1/2 inch) below top of last masonry course.
 - b. Grout from dam to dam on high lift method.
 - c. A longitudinal run of masonry may be stopped off only by raking back one-half a masonry unit length in each course and stopping grout 100 mm (4 inches) back of rake on low lift method.

C. Puddling Method:

- 1. Double wythe masonry constructed grouted in lifts not to exceed 300 mm (12 inches) or less than 50 mm (2 inches) wide.
- 2. Consolidate by puddling with a grout stick during and immediately after placing.
- 3. Grout the cores of concrete masonry units containing the reinforcing bars solid as the masonry work progresses.

D. Low Lift Method:

- 1. Construct masonry to a height of 1.5 m (5 ft) maximum before grouting.
- Grout in one continuous operation and consolidate grout by mechanical vibration and reconsolidate after initial water loss and settlement has occurred.

E. High Lift Method:

- 1. Do not pour grout until masonry wall has properly cured a minimum of 4 hours.
- 2. Place grout in lifts not exceeding 1.5 m (5 ft).
- 3. Exception:

Where the following conditions are met, place grout in lifts not exceeding $3.86\ \text{m}$ (12.67 ft).

- a. The masonry has cured for at least 4 hours.
- b. The grout slump is maintained between 254 and 279 mm (10 and 11 in).
- c. No intermediate reinforced bond beams are placed between the top and the bottom of the pour height.
- 4. When vibrating succeeding lifts, extend vibrator 300 to 450 mm (12 to 18 inches) into the preceding lift to close any shrinkage cracks or separation from the masonry units.

3.14 PLACING REINFORCEMENT

- A. General: Clean reinforcement of loose rust, mill scale, earth, ice or other materials which will reduce bond to mortar or grout. Do not use reinforcement bars with kinks or bends not shown on the Contract Drawings or final shop drawings, or bars with reduced cross-section due to excessive rusting or other causes.
- B. Position reinforcement accurately at the spacing indicated. Support and secure vertical bars against displacement. Horizontal reinforcement may be placed as the masonry work progresses. Where vertical bars are shown in close proximity, provide a clear distance between bars of not less than the nominal bar diameter or 25 mm (1 inch), whichever is greater.
- C. For columns, piers and pilasters, provide a clear distance between vertical bars as indicated, but not less than 1 1/2 times the nominal bar diameter or 38 mm (1-1/2 inches), whichever is greater. Provide lateral ties as indicated.
- D. Splice reinforcement bars where shown; do not splice at other places unless accepted by the Resident Engineer. Provide lapped splices, unless otherwise indicated. In splicing vertical bars or attaching to dowels, lap ends, place in contact and wire tie.
- E. Provide not less than minimum lap as indicated on shop drawings, or if not indicated, as required by governing code.
- F. Weld splices where indicated. Comply with the requirements of AWS D1.4 for welding materials and procedures.
- G. Embed metal ties in mortar joints as work progresses, with a minimum mortar cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations.
- H. Embed prefabricated horizontal joint reinforcement as the work progresses, with a minimum cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations. Lap joint reinforcement not less than 150 mm (6 inches) at ends. Use prefabricated "L" and "T" sections to provide continuity at corners and intersections. Cut and bend joint reinforcement as recommended by manufacturer for continuity at returns, offsets, column fireproofing, pipe enclosures and other special conditions.
- I. Anchoring: Anchor reinforced masonry work to supporting structure as indicated.
- J. Anchor reinforced masonry walls to non-reinforced masonry where they intersect.

3.15 INSTALLATION OF REINFORCED BRICK MASONRY

A. Mortar Jointing and Bedding:

- 1. Pattern Bond: Lay exterior wythes in the pattern bond shown, or if not shown, lay in 1/2 running bond with vertical joints in each course centered on units in courses above and below. Lay inner wythes (if any) with all units in a wythe bonded by lapping not less than 50 mm (2 inches). Bond and interlock each course of each wythe at corners and intersections. Do not use units with less than 100 mm (4 inch) nominal horizontal face dimension at corners or jambs.
- 2. Lay exterior wythes with bed (horizontal) and head (vertical) joints between units completely filled with mortar. Top of bed joint mortar may be sloped toward center of walls. Butter ends of units with sufficient mortar to completely fill head joints and shove into place. Do not furrow bed joints or slush head joints. Remove any mortar fins which protrude into grout space.
- 3. Maintain joint widths shown for head and bed joints, except for minor variations required to maintain pattern bond. If not shown, lay with 10 mm (3/8 inch) head and bed joints.
- 4. Maintain joint widths shown for head and bed joints, but adjust thickness of bed joints, if required, to allow for not less than 6 mm (1/4 inch) thickness of mortar between reinforcement and masonry units, except 6 mm (1/4 inch) bars (if any) may be laid in 13 mm (1/2 inch) thick bed joints and 4.9 mm diameter (6 gage) or smaller wire reinforcing (if any) may be laid in 10 mm (3/8 inch) thick bed joints.
- D. Limit extent of masonry construction to sections which do not exceed the maximum pour requirements specified hereafter. Provide temporary dams or barriers to control horizontal flow of grout at ends of wall sections. Build dams full height of grout pour. If masonry units are used, do not bond into permanent masonry wythes. Remove temporary dams after completion of grout pour.
- E. Low-Lift Grouting:
 - 1. Use Low-Lift grouting technique with "Fine Grout" per ASTM C476 for the following:
 - c. Columns, piers or pilasters where masonry units are shown in core areas enclosed by exterior masonry units.
 - 2. At Contractor's option, low-lift grouting technique may be used for reinforced masonry construction with grout spaces wider than 50 mm (2 inches), except use "Coarse Grout" mix per ASTM C476 and place in lifts not to exceed 200 mm (8 inches) in height.
 - 3. Construct low-lift masonry by placing reinforcement, laying masonry units and pouring grout as the work progresses.

- 4. Place vertical reinforcement bars and supports prior to laying of masonry units. Extend above elevation of maximum pour height as required to allow for splicing. Horizontal reinforcement bars may be placed progressively with laying of masonry units.
- 5. Limit grout pours as required to prevent displacement of masonry by grout pressures (blowout), but do not exceed 1220 mm (4 feet) pour height.
- 6. Lay masonry units prior to each grout pour, but do not construct more than 300 mm (12 inches) above maximum grout pour height in one exterior wythe and 100 mm (4 inches) above in other exterior wythe. Provide metal wall ties if required to prevent blowouts.
- 7. Pour grout using container with spout and consolidate immediately by rodding or puddling; do not use trowels. Place grout continuously; do not interrupt pouring of grout for more than one hour. If poured in lifts, place from center-to-center of masonry courses. Terminate pour 38 mm (1 1/2 inches) below top of highest course in pour.

F. High-Lift Grouting:

- 1. High-Lift grouting technique may be used for the following masonry construction:
 - a. Columns, piers, or pilasters when no unit masonry fill is shown to be placed in reinforced grout space.
- 2. Place reinforcement and support in proper position, prior to laying of masonry units, except if shown to be placed in mortar joints, place as masonry units are laid. Place horizontal bars in grout spaces on same side of vertical bars.
- 3. Construct high-lift masonry by laying masonry to full height and width prior to placing grout. Provide cleanout holes in first course of masonry, and use high-pressure water jet stream to remove excess mortar from grout spaces, reinforcement bars and top surface of structural members which support wall. Clean grout spaces daily during construction of masonry.
- 4. Walls: Omit every other masonry unit in first course of one wythe to provide cleanout holes. Tie wythes together with metal ties as shown or as required by code, but provide not less than 3.8 mm diameter (9 gage) wire ties spaced not more than 600 mm (24 inches) o.c. horizontally and 400 mm (16 inches) o.c. vertically for running pattern bond or 300 mm (12 inches) o.c. vertically for stack bond (if any).
- 5. Columns, Piers and Pilasters: Omit every other masonry unit around perimeter of member to provide cleanout holes. Provide reinforcing

bands placed in bed joints as the masonry work progresses. Provide bands of the size and vertical spacing show, or as required by code, but not less than 3.8 mm diameter (9 gage) wire spaced 300 mm (12 inches) o.c. vertically.

- 6. Preparation of Grout Spaces: Prior to grouting, inspect and clean grout spaces. Remove dirt, dust, mortar droppings, loose pieces of masonry and other foreign materials from grout spaces. Clean reinforcement and adjust to proper positioning. Clean top surface of structural members supporting masonry to ensure bond. After cleaning and inspection, close cleanout holes with matching masonry units and brace closures to resist grout pressures.
- 7. Do not place grout until entire height of masonry to be grouted has attained sufficient strength to resist grout pressure, but not less than 3 days curing time. Install shores and bracing, if required, before starting grouting operations.
- 8. Place grout by pumping into grout spaces, unless alternate methods are acceptable to Resident Engineer.
- 9. Use "Coarse Grout" per ASTM C476. Rod or vibrate each grout lift during placing and again after excess moisture has been absorbed, but before plasticity is lost. Do not penetrate or damage grout placed in previous lifts or pours.
- 10. Limit grout pours to sections which can be completed in one working day with not more than one hour interruption of pouring operation.

 Limit pours so as not to exceed the capacity of masonry to resist displacement or loss of mortar bond due to grout pressures.
- 11. Do not exceed 3600 mm (12 foot) pour height.
- 12. Do not exceed 7600 mm (25 foot) horizontal pour dimension.
- 13. Where pour height exceeds 1220 mm (4 feet), place grout in a series of lifts not exceeding 1220 mm (4 feet) height. Place each lift as a continuous pouring operation. Allow not less than 30 minutes, nor more that one hour between lifts of a given pour.
- 14. When more than one pour is required to complete a given section of masonry, extend reinforcement beyond masonry as required for splicing. Pour grout to within 38 mm (1-1/2 inches) of top course of first pour. After grouted masonry is cured, remove temporary dams (if any), and lay masonry units and place reinforcement for second pour section before grouting. Repeat sequence, if more pours are required.

3.16 INSTALLATION OF REINFORCED CONCRETE UNIT MASONRY

A. Do not wet concrete masonry units (CMU).

- B. Lay CMU units with full-face shell mortar beds. Fill vertical head joints (end joints between units) solidly with mortar from face of unit to a distance behind face equal to not less than the thickness of longitudinal face shells. Solidly bed cross-webs of starting courses in mortar. Maintain head and bed joint widths shown, or if not shown, provide 10 mm (3/8 inch) joints.
- C. Where solid CMU units are shown, lay with full mortar head and bed joints.

D. Walls:

- 1. Pattern Bond: Lay CMU wall units in 1/2-running bond with vertical joints in each course centered on units in courses above and below, unless otherwise indicated. Bond and interlock each course at corners and intersections. Use special-shaped units where shown, and as required for corners, jambs, sash, control joints, lintels, bond beams and other special conditions.
- 2. Maintain vertical continuity of core or cell cavities, which are to be reinforced and grouted, to provide minimum clear dimension indicated and to provide minimum clearance and grout coverage for vertical reinforcement bars. Keep cavities free of mortar. Solidly bed webs in mortar where adjacent to reinforced cores or cells.
- 3. Where horizontal reinforced beams (bond beams) are shown, use special units or modify regular units to allow for placement of continuous horizontal reinforcement bars. Place small mesh expanded metal lath or wire screening in mortar joints under bond beam courses over cores or cells of non-reinforced vertical cells, or provide units with solid bottoms.

E. Columns, Piers and Pilasters:

- 1. Use CMU units of the size, shape and number of vertical core spaces shown. If not shown, use units which provide minimum clearances and grout coverage for number and size of vertical reinforcement bars shown.
- 2. Provide pattern bond shown, or if not shown, alternate head joints in vertical alignment.
- 3. Where bonded pilaster construction is shown, lay wall and pilaster units together to maximum pour height specified.

F. Grouting:

- 1. Use "Fine Grout" per ASTM C476 for filling spaces less than 100 mm (4 inches) in one or both horizontal directions.
- 2. Use "Coarse Grout" per ASTM C476 for filling 100 mm (4 inch) spaces or larger in both horizontal directions.

3. Grouting Technique: At the Contractor's option, use either low-lift or high-lift grouting techniques subject to requirements which follow.

G. Low-Lift Grouting:

- 1. Provide minimum clear dimension of 50 mm (2 inches) and clear area of 5160 mm^2 (8 square inches) in vertical cores to be grouted.
- 2. Place vertical reinforcement prior to grouting of CMU. Extend above elevation of maximum pour height as required for splicing. Support in position at vertical intervals not exceeding 192 bar diameters nor 3 m (10 feet).
- 3. Lay CMU to maximum pour height. Do not exceed 1.5 m (5 foot) height, or if bond beam occurs below 1.5 m (5 foot) height, stop pour 38 mm (1-1/2 in) below top of bond beam.
- 4. Pour grout using chute container with spout or pump hose. Rod or vibrate grout during placing. Place grout continuously; do not interrupt pouring of grout for more than one hour. Terminate grout pours 38 mm (1-1/2 inches) below top course of pour.
- 5. Bond Beams: Stop grout in vertical cells 38 mm (1-1/2 inches) below bond beam course. Place horizontal reinforcement in bond beams; lap at corners and intersections as shown. Place grout in bond beam course before filling vertical cores above bond beam.

H. High-Lift Grouting:

- 1. Do not use high-lift grouting technique for grouting of CMU unless minimum cavity dimension and area is 75 mm (3 inches) and 6450 mm 2 (10 square inches), respectively.
- 2. Provide cleanout holes in first course at all vertical cells which are to be filled with grout.
- 3. Use units with one face shell removed and provide temporary supports for units above, or use header units with concrete brick supports, or cut openings in one face shell.
- 4. Construct masonry to full height of maximum grout pour specified, prior to placing grout.
- 5. Limit grout lifts to a maximum height of 1.5 m (5 feet) and grout pour to a maximum height of 7.3 m (24 feet), for single wythe hollow concrete masonry walls, unless otherwise indicated.
- 6. Place vertical reinforcement before grouting. Place before or after laying masonry units, as required by job conditions. Tie vertical reinforcement to dowels at base of masonry where shown and thread CMU over or around reinforcement. Support vertical reinforcement at intervals not exceeding 192 bar diameters nor 3 m (10 feet).

- 7. Where individual bars are placed after laying masonry, place wire loops extending into cells as masonry is laid and loosed before mortar sets. After insertion of reinforcement bar, pull loops and bar to proper position and tie free ends.
- 8. Where reinforcement is prefabricated into cage units before placing, fabricate units with vertical reinforcement bars and lateral ties of the size and spacing indicated.
- 9. Place horizontal beam reinforcement as the masonry units are laid.
- 10. Embed lateral tie reinforcement in mortar joints where indicated. Place as masonry units are laid, at vertical spacing shown.
- 11. Where lateral ties are shown in contact with vertical reinforcement bars, embed additional lateral tie reinforcement in mortar joints. Place as shown, or if not shown, provide as required to prevent grout blowout or rupture of CMU face shells, but provide not less than 4.1 mm diameter (8 gage) wire ties spaced 400 mm (16 inches) o.c. for members with 500 mm (20 inches) or less side dimensions, and 200 mm (8 inches) o.c. for members with side dimensions exceeding 500 mm (20 inches).
- 12. Preparation of Grout Spaces: Prior to grouting, inspect and clean grout spaces. Remove dust, dirt, mortar droppings, loose pieces of masonry and other foreign materials from grout spaces. Clean reinforcement and adjust to proper position. Clean top surface of structural members supporting masonry to ensure bond. After final cleaning and inspection, close cleanout holes and brace closures to resist grout pressures.
- 13. Do not place grout until entire height of masonry to be grouted has attained sufficient strength to resist displacement of masonry units and breaking of mortar bond. Install shores and bracing, if required, before starting grouting operations.
- 14. Place grout by pumping into grout spaces unless alternate methods are acceptable to the Resident Engineer.
- 15. Limit grout pours to sections which can be completed in one working day with not more than one hour interruption of pouring operation. Place grout in lifts which do not exceed 1.5 m (5 feet). Allow not less than 30 minutes, nor more than one hour between lifts of a given pour. Mechanically consolidate each grout lift during pouring operation.
- 16. Place grout in lintels or beams over openings in one continuous pour.

- 17. Where bond beam occurs more than one course below top of pour, fill bond beam course to within 25 mm (1 inch) of vertically reinforced cavities, during construction of masonry.
- 18. When more than one pour is required to complete a given section of masonry, extend reinforcement beyond masonry as required for splicing. Pour grout to within 38 mm (1-1/2 inches) of top course of first pour. After grouted masonry is cured, lay masonry units and place reinforcement for second pour section before grouting. Repeat sequence if more pours are required.

3.17 CLEANING AND REPAIR

A. General:

- 1. Clean exposed masonry surfaces on completion.
- 2. Protect adjoining construction materials and landscaping during cleaning operations.
- 3. Cut out defective exposed new joints to depth of approximately 19 mm (3/4 inch) and repoint.
- 4. Remove mortar droppings and other foreign substances from wall surfaces.

B. Brickwork:

- 1. First wet surfaces with clean water, then wash down with a solution of soapless detergent. Do not use muriatic acid.
- 2. Brush with stiff fiber brushes while washing, and immediately thereafter hose down with clean water.
- 3. Free clean surfaces of traces of detergent, foreign streaks, or stains of any nature.

C. Concrete Masonry Units:

- 1. Immediately following setting, brush exposed surfaces free of mortar or other foreign matter.
- 2. Allow mud to dry before brushing.
- D. Glazed Structural Facing Tile or Brick Units:
 - 1. Clean as recommended by tile or brick manufacturer. Protect light colored mortar joints from discoloration during cleaning.
 - 2. Prepare schedule of test locations.

- - - E N D - - -

SECTION 05 12 00 STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies structural steel shown and classified by Section 2, Code of Standard Practice for Steel Buildings and Bridges.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Painting: Section 09 91 00, PAINTING.
- C. Steel Joist: Section 05 21 00, STEEL JOIST FRAMING.
- D. Steel Decking: Section 05 31 00, STEEL DECKING.
- E. Fireproofing: Section 07 81 00, APPLIED FIREPROOFING.

1.3 QUALITY ASSURANCE:

- A. Fabricator and erector shall maintain a program of quality assurance in conformance with Section 8, Code of Standard Practice for Steel Buildings and Bridges. Work shall be fabricated in an AISC certified Category Std fabrication plant.
- B. Before authorizing the commencement of steel erection, the controlling contractor shall ensure that the steel erector is provided with the written notification required by 29 CFR 1926.752. Provide copy of this notification to the Engineer.

1.4 TOLERANCES:

Fabrication tolerances for structural steel shall be held within limits established by ASTM A6, by AISC 303, Sections 6 and 7, Code of Standard Practice for Buildings and Bridges, except as follows:

A. Elevation tolerance for closure plates at the building perimeter and at slab openings prior to concrete placement is 6 mm (1/4 inch).

1.5 DESIGN:

A. Connections: Design and detail all connections for each member size, steel grade and connection type to resist the loads and reactions indicated on the drawings or specified herein. Use details consistent with the details shown on the Drawings, supplementing where necessary. The details shown on the Drawings are conceptual and do not indicate the required weld sizes or number of bolts unless specifically noted. Use rational engineering design and standard practice in detailing, accounting for all loads and eccentricities in both the connection and

the members. Promptly notify the Engineer of any location where the connection design criteria is not clearly indicated. The design of all connections is subject to the review and acceptance of the Engineer. Submit structural calculations prepared and sealed by a qualified

Submit structural calculations prepared and sealed by a qualified engineer registered in the state where the project is located. Submit calculations for review before preparation of detail drawings.

1.6 REGULATORY REQUIREMENTS:

- A. AISC 360: Specification for Structural Steel Buildings
- B. AISC 303: Code of Standard Practice for Steel Buildings and Bridges.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop and Erection Drawings: Complete
- C. Certificates:
 - 1. Structural steel.
 - 2. Steel for all connections.
 - 3. Welding materials.
 - 4. Shop coat primer paint.
- D. Test Reports:
 - 1. Welders' qualifying tests.
- E. Design Calculations and Drawings:
 - 1. Connection calculations, if required.
- F. Record Surveys.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Institute of Steel Construction (AISC):
 - 1. AISC 360-10 Specification for Structural Steel Buildings
 - 2. AISC 303-10 Code of Standard Practice for Steel Buildings and Bridges
- C. American National Standards Institute (ANSI):

```
B18.22.1-65(R2008) .....Plain Washers
```

B18.22M-81(R2000)Metric Plain Washers

D. American Society for Testing and Materials (ASTM):

Project Number: 589-370

	A6/A6M-11	.Standard Specification for General Requirements			
		for Rolled Structural Steel Bars, Plates,			
		Shapes, and Sheet Piling			
	A36/A36M-08	.Standard Specification for Carbon Structural			
		Steel			
	A53/A53M-10	.Standard Specification for Pipe, Steel, Black			
		and Hot-Dipped, Zinc-Coated Welded and Seamless			
	A123/A123M-09	.Standard Specification for Zinc (Hot-Dip			
		Galvanized) Coatings on Iron and Steel Products			
	A242/A242M-04(R2009)	.Standard Specification for High-Strength Low-			
		Alloy Structural Steel			
	A283/A283M-03(R2007)	.Standard Specification for Low and Intermediate			
		Tensile Strength Carbon Steel Plates			
	A307-10	.Standard Specification for Carbon Steel Bolts			
		and Studs, 60,000 psi Tensile Strength			
	A325-10	.Standard Specification for Structural Bolts,			
		Steel, Heat Treated, 120/105 ksi Minimum			
		Tensile Strength			
	A490-12	.Standard Specification for Heat-Treated Steel			
		Structural Bolts 150 ksi Minimum Tensile			
		Strength			
	A500/A500M-10a	.Standard Specification for Cold Formed Welded			
		and Seamless Carbon Steel Structural Tubing in			
		Rounds and Shapes			
	A501-07	.Standard Specification for Hot-Formed Welded			
		and Seamless Carbon Steel Structural Tubing			
	A572/A572M-07	.Standard Specification for High-Strength			
		Low-Alloy Columbium-Vanadium Structural Steel			
	A992/A992M-11	.Standard Specification for Structural Steel			
		Shapes			
Ε.	American Welding Societ	y (AWS):			
	D1.1/D1.1M-10	.Structural Welding Code-Steel			
F.	Research Council on Structural Connections (RCSC) of The Engineering				
	Foundation:				
	Specification for Structural Joints Using ASTM A325 or A490 Bolts				

G. Military Specifications (Mil. Spec.):

MIL-P-21035Paint, High Zinc Dust Content, Galvanizing,
Repair

H. Occupational Safety and Health Administration (OSHA):
 29 CFR Part 1926-2001 ..Safety Standards for Steel Erection

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. All hot rolled steel plates, shapes, sheet piling, and bars shall be new steel conforming to ASTM A 6.
- B. Wide Flange and WT Shapes: High Strength Steel, ASTM A 992.
- C. M-Shapes, S-Shapes, Channels, and Angles: Carbon Steel, ASTM A 36.
- D. Structural Steel Plates and Bars: Carbon Steel, ASTM A 36.
- E. Round HSS: ASTM A500, Grade B (Fy = 42 KSI).
- F. Rectangular HSS: ASTM A500, Grade B (Fy = 46 KSI).
- G. Steel Pipe: ASTM A53, Grade B.
- H. Bolts, Nuts and Washers:
 - 1. High-strength bolts, including nuts and washers: ASTM A325.
 - 2. Bolts and nuts, other than high-strength: ASTM A307, Grade A.
 - 3. Plain washers, other than those in contact with high-strength bolt heads and nuts: ANSI Standard B18.22.1.
- I. Zinc Coating: ASTM A123.
- J. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035.

PART 3 - EXECUTION

3.1 CONNECTIONS (SHOP AND FIELD):

- A. Welding: Welding in accordance with AWS D1.1. Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.1 to perform type of work required.
- B. High-Strength Bolts: High-strength bolts tightened to a bolt tension not less than 70% of their minimum tensile strength. Tightening done with properly calibrated wrenches, by turn-of-nut method or by use of direct tension indicators (bolts or washers). Tighten bolts in connections identified as slip-critical using Direct Tension Indicators. Twist-off torque bolts are not an acceptable alternate fastener for slip critical connections.

3.2 FABRICATION:

Fabrication in accordance with Chapter M, AISC 360. .

Patient Parking Garage
Kansas City VA Medical Center

Project Number: 589-370

3.3 SHOP PAINTING:

- A. General: Shop paint steel with primer in accordance with AISC 303, Section 6.
- B. Shop paint for steel surfaces is specified in Section 09 91 00, PAINTING.
- C. Do not apply paint to following:
 - 1. Surfaces within 50 mm (2 inches) of joints to be welded in field.
 - 2. Surfaces which will be encased in concrete.
 - 3. Surfaces which will receive sprayed on fireproofing.
 - 4. Top flange of members which will have shear connector studs applied.
- D. Zinc Coated (Hot Dip Galvanized) per ASTM A123 (after fabrication):

 Touch-up after erection: Clean and wire brush any abraded and other
 spots worn through zinc coating, including threaded portions of bolts
 and welds and touch-up with galvanizing repair paint.

3.4 ERECTION:

A. General: Erection in accordance with AISC 303, Section 7B. Temporary Supports: Temporary support of structural steel frames during erection in accordance with AISC 303, Section 7

3.5 FIELD PAINTING:

- A. After erection, touch-up steel surfaces specified to be shop painted.

 After welding is completed, clean and prime areas not painted due to field welding.
- B. Finish painting of steel surfaces is specified in Section 09 91 00,

3.6 SURVEY:

Upon completion of finish bolting or welding on any part of the work, and prior to start of work by other trades that may be supported, attached, or applied to the structural steel work, submit a certified report of survey to Engineer for approval. Reports shall be prepared by Registered Land Surveyor or Registered Civil Engineer as specified in Section 01 00 00, GENERAL REQUIREMENTS. Report shall specify that location of structural steel is acceptable for plumbness, level and alignment within specified tolerances specified in the AISC Manual.

- - - E N D - - -

This page was intentionally left blank

05 12 00 - 6

SECTION 05 31 00 STEEL DECKING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies material and services required for installation of steel decking as shown and specified.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Finish Painting: Section 09 91 00, PAINTING.

1.3 DESIGN REQUIREMENTS:

- A. Design steel decking in accordance with AISI publication,

 "Specification for the Design of Cold-formed Steel Structural Members"

 except as otherwise shown or specified.
- B. Design all elements with the latest published version of applicable codes.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Shop and erection drawings showing decking unit layout, connections to supporting members, and similar information necessary for completing installation as shown and specified, including supplementary framing, sump pans, ridge and valley plates, cant strips, cut openings, special jointing or other accessories. Show welding, side lap, closure, deck reinforcing and closure reinforcing details. Show openings required for work of other trades, including openings not shown on structural drawings. Indicate where temporary shoring is required to satisfy design criteria.
- C. Manufacturer's Literature and Data: Showing steel decking section properties and specifying structural characteristics.
- D. Certification: For each type and gauge of metal deck supporting concrete slab or fill, furnish certification of the specified fire ratings. Certify that the units supplied are U.L. listed as a "Steel Floor and Form Unit".
- E. Insurance Certification: Assist the Government in preparation and submittal of roof installation acceptance certification as may be necessary in connection with fire and extended coverage insurance.

1.5 QUALITY ASSURANCE:

- A. Underwriters' Label: Provide metal floor deck units listed in Underwriters' Laboratories "Fire Resistance Directory", with each deck unit bearing the UL label and marking for specific system detailed.
- B. FM Listing: Provide metal roof deck units which have been evaluated by Factory Mutual Global and are listed in "Factory Mutual Research Approval Guide" for "Class 1" fire rated construction.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

 A36/A36M-08Standard Specification for Carbon Structural

 Steel
 - ASTM A1008/A1008M-12 ...Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable.
 - A653/A653M-11Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvanized) by the Hot-Dip Process
 - C423-09aStandard Test Method for Sound Absorption and

 Sound Absorption Coefficients by the

 Reverberation Room Method
- C. American Institute of Steel Construction (AISC):
 360-10Specification for Structural Steel Buildings.
- D. American Iron and Steel Institute (AISI):

 S100-07North American Specification for the Design of

 Cold-Formed Steel Structural Members, 2007

 Edition with Supplement 2.aisc
- E. American Welding Society (AWS):
 D1.3-08Structural Welding Code Sheet Steel
- F. Factory Mutual (FM Global):
 - 1. Loss Prevention Data Sheet 1-28: Wind Loads to Roof Systems and Roof Deck Securement
 - 2. Factory Mutual Research Approval Guide (2002)

G. Military Specifications (Mil. Spec.)

MIL-P-21035BPaint, High Zinc Dust Content, Galvanizing Repair

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Steel Decking: ASTM A653, Structural Quality.
- B. Galvanizing: ASTM A653, G90.
- C. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035B.
- D. Primer for Shop Painted Sheets: Manufacturer's standard primer (2 coats). When finish painting of steel decking is specified in Section 09 91 00, PAINTING primer coating shall be compatible with specified finish painting.
- E. Miscellaneous Steel Shapes: ASTM A36.
- F. Welding Electrode: E60XX minimum.
- G. Sheet Metal Accessories: ASTM A653, galvanized, unless noted otherwise. Provide accessories of every kind required to complete the installation of metal decking in the system shown. Finish sheet metal items to match deck including, but not limited to, the following items:
 - 1. Metal Cover Plates: For end-abutting deck units, to close gaps at changes in deck direction, columns, walls and openings. Same quality as deck units but not less than 1.3 mm (18 gauge) sheet steel.
 - 2. Continuous Sheet Metal Edging: At openings, concrete slab edges and roof deck edges. Same quality as deck units but not less than 1.3 mm (18 gauge) steel. Side and end closures supporting concrete and their attachment to supporting steel shall be designed by the manufacturer to safely support the wet weight of concrete and construction loads. The deflection of cantilever closures shall be limited to 3 mm (1/8 inch) maximum.
 - 3. Metal Closure Strips: For openings between decking and other construction, of not less than 1.3 mm (18 gauge) sheet steel of the same quality as the deck units. Form to the configuration required to provide tight-fitting closures at open ends of flutes and sides of decking.
 - 4. Ridge and Valley Plates: Provide 1.3 mm (18 gauge), minimum 100 mm (4 inch) wide ridge and valley plates where roof slope exceeds 40 mm per meter (1/2 inch per foot).

- 5. Cant Strips: Provide bent metal 45 degree leg cant strips where indicated on the Drawings. Fabricate cant strips from 1 mm (20 gauge) metal with a minimum 125 mm (5 inch) face width.
- 6. Seat Angles for Deck: Provide where a beam does not frame into a column.
- 7. Sump Pans for Roof Drains: Fabricated from single piece of minimum 1.9 mm (14 gauge) galvanized sheet steel with level bottoms and sloping sides to direct water flow to drain, unless otherwise shown. Provide sump pans of adequate size to receive roof drains and with bearing flanges not less than 75 mm (3 inches) wide. Recess pans not less than 38 mm (1 1/2 inches) below roof deck surface, unless otherwise shown or required by deck configuration. Holes for drains will be cut in the field.

2.2 REQUIREMENTS:

- A. Provide steel decking of the type, depth, gauge, and section properties as shown.
- B. Metal Form Deck Type 1: Single pan fluted units utilized as a permanent form for reinforced concrete slabs. Comply with the depth and gauge requirements as shown on the Contract Documents.
 - 1. Finish: Galvanized G-60.
 - 2. Finish: Phosphatized, painted.
- C. Metal Form Deck Type 2: Corrugated deck units used as a permanent form for reinforced concrete slabs. Comply with the depth and minimum gauge requirements as shown on the Contract Documents.
 - 1. Finish: Finish painted.
 - 2. Finish: Uncoated.
 - 3. Finish: Galvanized.
- D. Metal Roof Deck: Single pan fluted units with flat horizontal top surfaces utilized to act as a permanent support for all superimposed loads. Comply with the depth and minimum gage requirements as shown on the Contract Documents.
 - 1. Wide Rib (Type B) deck.
 - 2. Finish: Galvanized G-90.
 - 3. Finish: Prime painted. Apply finished coat of paint to underside of deck after installation. Color as selected by Architect.
- F. Do not use steel deck for hanging supports for any type or kind of building components including suspended ceilings, electrical light

fixtures, plumbing, heating, or air conditioning pipes or ducts or electrical conduits.

- G. Steel decking units used for interstitial levels shall include an integral system.
 - 1. System to provide a simple point of attachment for light duty hanger devices.
 - 2. System to allow for flexibility for attaching hangers for support of suspended ceilings, electrical, plumbing, heating, or air conditioning items, weight not to exceed 50 kg/m^2 (10 psf).
 - 3. System shall provide for a minimum spacing pattern of 300 mm (12 inches) on centers longitudinally and 600 mm (24 inches) on centers transversely.
 - 4. Maximum load suspended from any hanger is 23 kg (50 pounds).
 - 5. System consisting of fold-down type hanger tabs or lip hanger is acceptable.

PART 3 - EXECUTION

3.1 ERECTION:

- A. Do not start installation of metal decking until corresponding steel framework has been plumbed, aligned and completed and until temporary shoring, where required, has been installed. Remove any oil, dirt, paint, ice, water and rust from steel surfaces to which metal decking will be welded.
- B. Coordinate and cooperate with structural steel erector in locating decking bundles to prevent overloading of structural members.
- C. Do not use floor deck units for storage or working platforms until permanently secured. Do not overload deck units once placed. Replace any deck units that become damaged after erection and prior to casting concrete at no cost to the Government.
- D. Provide steel decking in sufficient lengths to extend over 3 or more spans, except for interstitial levels.
- E. Place steel decking units at right angles to supporting members. End laps of sheets of roof deck shall be a minimum of 50 mm (2 inches) and shall occur over supports.
- F. Fastening Deck Units:
 - 1. Fasten floor deck units to steel supporting members by not less than 16 mm (5/8 inch) diameter puddle welds or elongated welds of equal strength, spaced not more than 305 mm (12 inches) o.c. with a

minimum of two welds per unit at each support. Where two units abut, fasten each unit individually to the supporting steel framework.

- 2. Tack weld or use self-tapping No. 8 or larger machine screws at 915 mm (3 feet) o.c. for fastening end closures. Only use welds to attach longitudinal end closures.
- 3. Weld side laps of adjacent floor deck units that span more than 1524 mm (5 feet). Fasten at midspan or 915 mm (3 feet) o.c., whichever is smaller.
- 4. Fasten roof deck units to steel supporting members by not less than 16 mm (5/8 inch) diameter puddle welds or elongated welds of equal strength, spaced not more than 305 mm (12 inches) o.c. at every support, and at closer spacing where required for lateral force resistance by diaphragm action. Attach split or partial panels to the structure in every valley. In addition, secure deck to each supporting member in ribs where side laps occur. Power driven fasteners may be used in lieu of welding for roof deck if strength equivalent to the welding specified above is provided. Submit test data and design calculations verifying equivalent design strength.
- 5. Mechanically fasten side laps of adjacent roof deck units with spans greater than 1524 mm (5 feet) between supports, at intervals not exceeding 915 mm (3 feet) o.c., or midspan, whichever is closer, using self-tapping No. 8 or larger machine screws.
- 6. Uplift Loading: Install and anchor roof deck units to resist gross uplift loading of 2.1 kPa (45 psf) at eave overhang and 1.4 kPa (30 psf) for other roof areas.

G. Cutting and Fitting:

- 1. Cut all metal deck units to proper length in the shop prior to shipping.
- Field cutting by the metal deck erector is restricted to bevel cuts, notching to fit around columns and similar items, and cutting openings that are located and dimensioned on the Structural Drawings.
- 3. Other penetrations shown on the approved metal deck shop drawings but not shown on the Structural Drawings are to be located, cut and reinforced by the trade requiring the opening.
- 4. Make all cuts neat and trim using a metal saw, drill or punchout device; cutting with torches is expressly prohibited.

Project Number: 589-370

- 5. Do not make any cuts in the metal deck that are not shown on the approved metal deck drawings. If an additional opening not shown on the approved shop drawings is required, submit a sketch, to scale, locating the required new opening and any other openings and supports in the immediate area. Do not cut the opening until the sketch has been reviewed and accepted by the Resident Engineer. Provide any additional reinforcing or framing required for the opening at no cost to the Government. Failure to comply with these requirements is cause for rejection of the work and removal and replacement of the affected metal deck.
- 6. Reinforcement at Openings: Provide additional metal reinforcement and closure pieces as required for strength, continuity of decking, and support of other work shown.

3.2 WELDING:

Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.3.

3.3 FIELD REPAIR:

- 1. Areas scarred during erection.
- 2. Welds to be thoroughly cleaned and touched-up. Touch-up paint for zinc-coated units shall be zinc rich galvanizing repair paint. Touch-up paint for shop painted units of same type used for shop painting.

- - - E N D - - -

Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

This page was intentionally left blank

05 31 00 - 8

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.
- B. Items specified.
 - 1. Support for Wall and Ceiling Mounted Items: (12, 14A, 14C)
 - 2. Frames: (24E)
 - 3. Guards
 - 4. Loose Lintels
 - 5. Shelf Angles
 - 6. Safety Nosings
 - 7. Ladders
 - 8. Railings

1.2 RELATED WORK

- A. Railings attached to steel stairs: Section 05 51 00, METAL STAIRS.
- B. Colors, finishes, and textures: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Prime and finish painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Floor plate		

C. Shop Drawings:

- Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors
- 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
- 3. Provide templates and rough-in measurements as required.
- D. Manufacturer's Certificates:
 - 1. Anodized finish as specified.

- 2. Live load designs as specified.
- E. Design Calculations for specified live loads including dead loads.
- F. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction.

1.4 QUALITY ASSURANCE

- A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 B18.6.1-97...........Wood Screws
 B18.2.2-87(R2005)......Square and Hex Nuts
 C. American Society for Testing and Materials (ASTM):
- A36/A36M-08......Structural Steel

A47-99(R2009)......Malleable Iron Castings

A48-03(R2008)......Gray Iron Castings

A53-10......Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless

A123-09.....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

A167-99(R2009)......Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

A269-10.....Seamless and Welded Austenitic Stainless Steel

Tubing for General Service

A307-10......Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

A312/A312M-09.....Seamless, Welded, and Heavily Cold Worked

Austenitic Stainless Steel Pipes

A391/A391M-07......Grade 80 Alloy Steel Chain

A653/A653M-10	.Steel Sheet,	Zinc Coated	(Galvanized) or Zinc-
	Iron Alloy C	oated (Galva	nnealed) by	the Hot-Dip

Process

A786/A786M-09......Rolled Steel Floor Plate

B221-08......Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes

B456-03(R2009).....Electrodeposited Coatings of Copper Plus Nickel
Plus Chromium and Nickel Plus Chromium

B632-08.....Aluminum-Alloy Rolled Tread Plate

C1107-08......Packaged Dry, Hydraulic-Cement Grout (Nonshrink)

D3656-07.....Insect Screening and Louver Cloth Woven from

Vinyl-Coated Glass Yarns

F436-10.....Hardened Steel Washers

F468-10......Nonferrous Bolts, Hex Cap Screws, and Studs for General Use

F593-02(R2008)......Stainless Steel Bolts, Hex Cap Screws, and Studs F1667-11.....Driven Fasteners: Nails, Spikes and Staples

D. American Welding Society (AWS):

D1.1-10.....Structural Welding Code Steel

D1.2-08..... Structural Welding Code Aluminum

D1.3-08.....Structural Welding Code Sheet Steel

E. National Association of Architectural Metal Manufacturers (NAAMM)

AMP 521-01.....Pipe Railing Manual

AMP 500-06.....Metal Finishes Manual

MBG 531-09.....Metal Bar Grating Manual

MBG 532-09.....Heavy Duty Metal Bar Grating Manual

F. Structural Steel Painting Council (SSPC)/Society of Protective Coatings:

SP 1-04......No. 1, Solvent Cleaning

G. Federal Specifications (Fed. Spec):

RR-T-650E.....Treads, Metallic and Nonmetallic, Nonskid

PART 2 - PRODUCTS

2.1 DESIGN CRITERIA

- A. In addition to the dead loads, design fabrications to support the following live loads unless otherwise specified.
- B. Ladders and Rungs: 120 kg (250 pounds) at any point.
- C. Railings and Handrails: 900 N (200 pounds) in any direction at any point.

2.2 MATERIALS

- A. Structural Steel: ASTM A36.
- B. Stainless Steel: ASTM A167, Type 302 or 304.
- C. Aluminum, Extruded: ASTM B221, Alloy 6063-T5 unless otherwise specified. For structural shapes use alloy 6061-T6 and alloy 6061-T4511.
- D. Floor Plate:
 - 1. Steel ASTM A786.
 - 2. Aluminum: ASTM B632.
- E. Steel Pipe: ASTM A53.
 - 1. Galvanized for exterior locations.
 - 2. Type S, Grade A unless specified otherwise.
 - 3. NPS (inside diameter) as shown.
- F. Cast-Iron: ASTM A48, Class 30, commercial pattern.
- G. Malleable Iron Castings: A47.
- H. Primer Paint: As specified in Section 09 91 00, PAINTING.
- I. Stainless Steel Tubing: ASTM A269, type 302 or 304.
- J. Modular Channel Units:
 - Factory fabricated, channel shaped, cold formed sheet steel shapes, complete with fittings bolts and nuts required for assembly.
 - 2. Form channel with in turned pyramid shaped clamping ridges on each side.
 - 3. Provide case hardened steel nuts with serrated grooves in the top edges designed to be inserted in the channel at any point and be given a quarter turn so as to engage the channel clamping ridges. Provide each nut with a spring designed to hold the nut in place.
 - 4. Factory finish channels and parts with oven baked primer when exposed to view. Channels fabricated of ASTM A525, G90 galvanized steel may have primer omitted in concealed locations. Finish screws and nuts with zinc coating.
 - 5. Fabricate snap-in closure plates to fit and close exposed channel openings of not more than 0.3 mm (0.0125 inch) thick stainless steel.
- K. Grout: ASTM C1107, pourable type.
- L. Insect Screening: ASTM D3656.

2.3 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.

2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.

B. Fasteners:

- 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.
- 2. Screws: ASME B18.6.1.
- 3. Washers: ASTM F436, type to suit material and anchorage.
- 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work.

2.4 FABRICATION GENERAL

A. Material

- 1. Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.
- 2. Use material free of defects which could affect the appearance or service ability of the finished product.

B. Size:

- 1. Size and thickness of members as shown.
- 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.

C. Connections

- 1. Except as otherwise specified, connections may be made by welding, riveting or bolting.
- 2. Field riveting will not be approved.
- 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
- 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed.
- 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
- 6. Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
- Use stainless steel connectors for removable members machine screws or bolts.

D. Fasteners and Anchors

- 1. Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
- 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation.
- Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
- 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid.
- 5. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts.

E. Workmanship

1. General:

- a. Fabricate items to design shown.
- b. Furnish members in longest lengths commercially available within the limits shown and specified.
- c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
- d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
- e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
- f. Prepare members for the installation and fitting of hardware.
- g. Cut openings in gratings and floor plates for the passage of ducts, sumps, pipes, conduits and similar items. Provide reinforcement to support cut edges.
- h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.

2. Welding:

- a. Weld in accordance with AWS.
- b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.

- c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces.
- d. Finish welded joints to match finish of adjacent surface.

3. Joining:

- a. Miter or butt members at corners.
- b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.

4. Anchors:

- a. Where metal fabrications are shown to be preset in concrete, weld $32 \times 3 \text{ mm}$ (1-1/4 by 1/8 inch) steel strap anchors, 150 mm (6 inches) long with 25 mm (one inch) hooked end, to back of member at 600 mm (2 feet) on center, unless otherwise shown.
- b. Where metal fabrications are shown to be built into masonry use 32 x 3 mm (1-1/4 by 1/8 inch) steel strap anchors, 250 mm (10 inches) long with 50 mm (2 inch) hooked end, welded to back of member at 600 mm (2 feet) on center, unless otherwise shown.

5. Cutting and Fitting:

- a. Accurately cut, machine and fit joints, corners, copes, and miters.
- b. Fit removable members to be easily removed.
- c. Design and construct field connections in the most practical place for appearance and ease of installation.
- d. Fit pieces together as required.
- e. Fabricate connections for ease of assembly and disassembly without use of special tools.
- f. Joints firm when assembled.
- g. Conceal joining, fitting and welding on exposed work as far as practical.
- h. Do not show rivets and screws prominently on the exposed face.
- i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.

F. Finish:

- 1. Finish exposed surfaces in accordance with NAAMM Metal Finishes
- 2. Aluminum: NAAMM AMP 501.
 - a. Mill finish, AA-M10, as fabricated, use unless specified otherwise.

- b. Clear anodic coating, AA-C22A41, chemically etched medium matte, with Architectural Class 1, 0.7 mils or thicker.
- c. Colored anodic coating, AA-C22A42, chemically etched medium matte with Architectural Class 1, 0.7 mils or thicker.
- d. Painted: AA-C22R10.
- 3. Steel and Iron: NAAMM AMP 504.
 - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise.
 - b. Surfaces exposed in the finished work:
 - 1) Finish smooth rough surfaces and remove projections.
 - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound.
 - c. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.
 - b) Galvanized surfaces specified to have prime paint.
 - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
 - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
 - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
 - 2) Non ferrous metals: Comply with MAAMM-500 series.
- 4. Stainless Steel: NAAMM AMP-504 Finish No. 4.

G. Protection:

- Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop.
- 2. Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

2.5 SUPPORTS

- A. General:
 - 1. Fabricate ASTM A36 structural steel shapes as shown.
 - 2. Use clip angles or make provisions for welding hangers and braces to overhead construction.
 - 3. Field connections may be welded or bolted.
- C. For Wall Mounted Items:
 - 1. For items supported by metal stud partitions.

- 2. Steel strip or hat channel minimum of 1.5 mm (0.0598 inch) thick.
- 3. Steel strip minimum of 150 mm (6 inches) wide, length extending one stud space beyond end of item supported.
- 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud.
- 5. Structural steel tube or channel for grab bar at water closets floor to structure above with clip angles or end plates formed for anchors.
- 6. Use steel angles for thru wall counters. Drill angle for fasteners at ends and not over 100 mm (4 inches) on center between ends.

2.6 FRAMES

- A. Elevator Entrance Wall Opening.
 - 1. Fabricate of channel shapes, plates, and angles as shown.
 - 2. Weld or bolt head to jamb as shown.
 - 3. Weld clip angles to bottom of frame and top of jamb members extended to structure above for framed construction.
 - a. Provide holes for anchors.
 - b. Weld head to jamb members.

B. Channel Door Frames:

- 1. Fabricate of structural steel channels of size shown.
- 2. Miter and weld frames at corners.
- 3. Where anchored to masonry or embedded in concrete, weld to back of frame at each jamb, (3/16 inch) thick by (1-3/4 inch) wide steel strap anchors with ends turned (2 inches), and of sufficient length to extend at least (12 inches) into wall. Space anchors (24 inches) above bottom of frame and (24 inches) o.c. to top of jamb. Weld clip angles to bottom of jambs and provide holes for expansion bolts.
- 4. Where anchored to concrete or masonry in prepared openings, drill holes at jambs for anchoring with expansion bolts. Weld clip angles to bottom of frame and provide holes for expansion bolt anchors as shown. Drill holes starting 600 mm (24 inches) above bottom of frame and 600 mm (24 inches) o.c. to top of jamb and at top of jamb. Provide pipe spacers at holes welded to channel.
- 5. Where closure plates are shown, continuously weld them to the channel flanges.
- 6. Weld continuous 19 x 19 x 3 mm (3/4 x 3/4 x 1/8 inch) thick steel angles to the interior side of each channel leg at the head and jambs to form a caulking groove.
- 7. Prepare frame for installation of hardware specified in Section 08 71 00, DOOR HARDWARE.
 - a. Cut a slot in the lock jamb to receive the lock bolt.

b. Where shown use continuous solid steel bar stops at perimeter of frame, weld or secure with countersunk machine screws at not more than 450 mm (18 inches) on center.

2.7 GUARDS

- A. Wall Corner Guards:
 - 1. Fabricate from steel angles and furnish with anchors as shown.
 - 2. Continuously weld anchor to angle.
- D. Edge Guard Angles for Openings in slabs.
 - 1. Fabricate from steel angles of sizes and with anchorage shown.
 - 2. Where size of angle is not shown, provide $50 \times 50 \times 6$ mm $(2 \times 2 \times 1/4 \text{ inch})$ steel angle with 32×5 mm $(1-1/4 \times 3/16 \text{ inch})$ strap anchors, welded to back.
 - 3. Miter or butt angles at corners and weld.
 - 4. Use one anchor near end and three feet on centers between end anchors.

2.8 GUARD POSTS (BOLLARD/PIP GUARDS

- E. Steel Frames:
 - 1. Form frame from structural steel angles as shown. Where not shown use $(2-1/2 \times 2-1/2 \times 1/4 \text{ inch})$ angles for frame openings over (4 feet) long and (2 ix 2 x 1/4 inch) for frame openings less than (4 feet).
 - 2. Fabricate intermediate supporting members from steel "T's" or angles; located to support cover section edges.
 - 3. Where covers are required use steel border bars at frames so that top of cover will be flush with frame and finish floor.
 - 4. Weld steel strap anchors to frame. Space straps not over 600 mm (24 inches) o.c., not shown otherwise between end anchors. Use 6 x 25 x 200 mm (1/4 x 1 x 8 inches) with 50 mm (2 inch) bent ends strap anchors unless shown otherwise.
 - 5. Drill and tap frames for screw anchors where plate covers occur.

2.10 LOOSE LINTELS

- A. Furnish lintels of sizes shown. Where size of lintels is not shown, provide the sizes specified.
- B. Fabricate lintels with not less than (6 inch) bearing at each end for nonbearing masonry walls, and (8 inch) bearing at each end for bearing walls.
- C. Provide one angle lintel for each (4 inches) of masonry thickness as follows except as otherwise specified or shown.
 - 1. Openings $(2-1/2 \text{ feet to 6 feet}) (4 \times 3-1/2 \times 5/16 \text{ inch})$.

- 2. Openings (6 feet to 10 feet) (6 x 3-1/2 x 3/8 inch).
- D. For (6 inch) thick masonry openings (2-1/2 feet to 10 feet) use one angle (6 x 3-1/2 x 3/8 inch).
- E. Provide bearing plates for lintels where shown.
- F. Weld or bolt upstanding legs of double angle lintels together with (3/4 inch bolts) spaced at (12 inches) on centers.
- G. Insert spreaders at bolt points to separate the angles for insertion of metal windows, louver, and other anchorage.
- H. Where shown or specified, punch upstanding legs of single lintels to suit size and spacing of anchor bolts.
- I. Elevator Entrance:
 - 1. Fabricate lintel from plate bent to channel shape, and provide a minimum of 100 mm (4 inch) bearing each end.
 - 2. Cut away the front leg of the channel at each end to allow for concealment behind elevator hoistway entrance frame.

2.11 SHELF ANGLES

- A. Fabricate from steel angles of size shown.
- B. Fabricate angles with horizontal slotted holes for 19 mm (3/4 inch) bolts spaced at not over 900 mm (3 feet) on centers and within 300 mm (12 inches) of ends.
- C. Provide adjustable malleable iron inserts for embedded in concrete framing.

2.13 SAFETY NOSINGS

- A. Fed. Spec. RR-T-650, Type C.
 - 1. Aluminum: Class 2, Style 2.
 - 2. Cast iron: Class 4.
- B. Fabricate nosings for exterior use from cast aluminum, and nosings for interior use from either cast aluminum or cast iron. Use one Class throughout.
- C. Fabricate nosings approximately 100 mm (4 inches) wide with not more than 9 mm (3/8 inch) nose.
- D. Provide nosings with integral type anchors spaced not more than 100 mm (4 inches) from each end and intermediate anchors spaced approximately 375 mm (15 inches) on center.
- E. Fabricate nosings to extend within 100 mm (4 inches) of ends of concrete stair treads except where shown to extend full width.
- F. Fabricate nosings to extend full width between stringers of metal stairs and full width of door openings.
- G. On curved steps fabricate to terminate at point of curvature of steps having short radius curved ends.

2.14 LADDERS

A. Steel Ladders:

- 1. Fixed-rail type with steel rungs shouldered and headed into and welded to rails.
- 2. Fabricate angle brackets of (2 inch) wide by (1/2 inch) thick steel; brackets spaced maximum of (4 feet) apart and of length to hold ladder (7 inches) from wall to center of rungs. Provide turned ends or clips for anchoring.
- 3. Provide holes for anchoring with expansion bolts through turned ends and brackets.
- 4. Where shown, fabricate side rails curved, twisted and formed into a gooseneck.
- 5. Galvanize exterior ladders after fabrication, ASTM A123, G-90.

C. Ladder Rungs:

- 1. Fabricate from (one inch) diameter steel bars.
- 2. Fabricate so that rungs will extend at least (4 inches) into wall with ends turned (2 inches), project out from wall (7 inches), be (16 inches) wide and be designed so that foot cannot slide off end.
- 3. Galvanized after fabrication, ASTM A123, G-90 rungs for exterior use and for access to pits.

2.15 RAILINGS

- A. In addition to the dead load design railing assembly to support live load specified.
- B. Fabrication General:
 - 1. Provide continuous welded joints, dressed smooth and flush.
 - 2. Standard flush fittings, designed to be welded, may be used.
 - 3. Exposed threads will not be approved.
 - 4. Form handrail brackets to size and design shown.
 - 5. Exterior Post Anchors.
 - a. Fabricate tube or pipe sleeves with closed ends or plates as shown.
 - b. Where inserts interfere with reinforcing bars, provide flanged fittings welded or threaded to posts for securing to concrete with expansion bolts.
 - c. Provide heavy pattern sliding flange base plate with set screws at base of pipe or tube posts.
 - 6. Interior Post Anchors:

- a. Provide flanged fittings for securing fixed posts to floor with expansion bolts, unless shown otherwise.
- b. Weld or thread flanged fitting to posts at base.
- c. For securing removable posts to floor, provide close fitting sleeve insert or inverted flange base plate with stud bolts or rivets concrete anchor welded to the base plate.
- d. Provide sliding flange base plate on posts secured with set screws.
- e. Weld flange base plate to removable posts set in sleeves.

C. Handrails:

- 1. Close free ends of rail with flush metal caps welded in place except where flanges for securing to walls with bolts are shown.
- 2. Make provisions for attaching handrail brackets to wall, posts, and handrail as shown.

D. Steel Pipe Railings:

- 1. Fabricate of steel pipe with welded joints.
- 2. Number and space of rails as shown.
- 3. Space posts for railings not over 1800 mm (6 feet) on centers between end posts.
- 4. Form handrail brackets from malleable iron.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Items set into concrete or masonry.
 - 1. Provide temporary bracing for such items until concrete or masonry is set.
 - 2. Place in accordance with setting drawings and instructions.
 - 3. Build strap anchors, into masonry as work progresses.
- C. Set frames of gratings, covers, corner guards, trap doors and similar items flush with finish floor or wall surface and, where applicable, flush with side of opening.
- D. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.
 - 2. Use continuous weld unless specified otherwise.
- E. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.

- F. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.
- G. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion.
- H. Secure escutcheon plate with set screw.

3.2 INSTALLATION OF SUPPORTS

- A. Anchorage to structure.
 - 1. Secure angles or channels and clips to overhead structural steel by continuous welding unless bolting is shown.
 - 2. Secure supports to concrete inserts by bolting or continuous welding as shown.
 - Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise.
 - 4. Secure steel plate or hat channels to stude as detailed.

C. Supports for Wall Mounted items:

- 1. Locate center of support at anchorage point of supported item.
- 2. Locate support at top and bottom of wall hung cabinets.
- 3. Locate support at top of floor cabinets and shelving installed against walls.
- 4. Locate supports where required for items shown.

3.5 DOOR FRAMES

- A. Secure clip angles at bottom of frames to concrete slab with expansion bolts as shown.
- B. Level and plumb frame; brace in position required.
- C. At masonry, set frames in walls so anchors are built-in as the work progresses unless shown otherwise.
- D. Set frames in formwork for frames cast into concrete.
- E. Where frames are set in prepared openings, bolt to wall with spacers and expansion bolts.

3.6 OTHER FRAMES

- A. Set frame flush with surface unless shown otherwise.
- B. Anchor frames at ends and not over 450~mm (18 inches) on centers unless shown otherwise.
- C. Set in formwork before concrete is placed.

3.7 GUARDS

- A. Steel Angle Corner Guards:
 - 1. Build into masonry as the work progress.

- 2. Set into formwork before concrete is placed.
- 3. Set angles flush with edge of opening and finish floor or wall or as shown.
- 4. Install Guard Angles at Edges of Stairwell Openings in Slab where shown.
- B. Channel Guard at Top Edge of Concrete Platforms:
 - 1. Install in formwork before concrete is placed.
 - 2. Set channel flush with top of the platform.

3.9 STEEL LINTELS

- A. Use lintel sizes and combinations shown or specified.
- B. Install lintels with longest leg upstanding, except for openings in 150 mm (6 inch) masonry walls install lintels with longest leg horizontal.
- C. Install lintels to have not less than 150 mm (6 inch) bearing at each end for nonbearing walls, and 200 mm (8 inch) bearing at each end for bearing walls.

3.10 SHELF ANGLES

- A. Anchor shelf angles with 19 mm (3/4 inch) bolts unless shown otherwise in adjustable malleable iron inserts, set level at elevation shown.
- B. Provide expansion space at end of members.

3.12 SAFETY NOSINGS

- A. Except as specified and where preformed rubber treads are shown or specified install safety nosings at the following:
 - 1. Exterior concrete steps.
 - 2. Door sills of areaway entrances curbs.
 - 3. Exposed edges of curbs of door sills at transformer and service rooms
 - 4. Interior concrete steps, including concrete filled treads of metal stairs of service stairs.
- B. Install flush with horizontal and vertical surfaces.
- C. Install nosing to within 100 mm (4 inches) of ends of concrete stair treads, except where shown to extend full width.
- D. Extend nosings full width of door openings.
- E. Extend nosings, full width between stringers of metal stairs, and terminate at point of curvature of steps having short radius curved ends.

3.13 LADDERS

A. Anchor ladders to walls and floors with expansion bolts through turned lugs or angle clips or brackets.

- B. In elevator pits, set ladders to clear all elevator equipment where shown on the drawings.
 - 1. Where ladders are interrupted by division beams, anchor ladders to beams by welding, and to floors with expansion bolts.
 - 2. Where ladders are adjacent to division beams, anchor ladders to beams with bent steel plates, and to floor with expansion bolts.

C. Ladder Rungs:

- 1. Set ladder rungs into formwork before concrete is placed. Build ladder rungs into masonry as the work progresses.
- 2. Set step portion of rung 150 mm (6 inches) from wall.
- 3. Space rungs approximately 300 mm (12 inches) on centers.
- 4. Where only one rung is required, locate it 400 mm (16 inches) above the floor.

3.14 RAILINGS

A. Steel Posts:

- 1. Secure fixed posts to concrete with expansion bolts through flanged fittings except where sleeves are shown with pourable grout.
- 2. Install sleeves in concrete formwork.
- 3. Set post in sleeve and pour grout to surface. Apply beveled bead of urethane sealant at perimeter of post or under flange fitting as specified in Section 07 92 00, JOINT SEALANTS—on exterior posts.
- 4. Secure removable posts to concrete with either machine screws through flanged fittings which are secured to inverted flanges embedded in and set flush with finished floor, or set posts in close fitting pipe sleeves without grout.
- 5. Secure sliding flanged fittings to posts at base with set screws.
- 6. Secure fixed flanged fittings to concrete with expansion bolts.
- 7. Secure posts to steel with welds.

B. Anchor to Walls:

- 1. Anchor rails to concrete or solid masonry with machine screws through flanged fitting to steel plate.
 - a. Anchor steel plate to concrete or solid masonry with expansion bolts.

C. Handrails:

- 1. Anchor brackets for metal handrails as detailed.
- 2. Install brackets within 300 mm (12 inches) of return of walls, and at evenly spaced intermediate points not exceeding 1200 mm (4 feet) on centers unless shown otherwise.
- 3. Expansion bolt to concrete or solid masonry.

4. Toggle bolt to installed supporting frame wall and to hollow masonry unless shown otherwise.

3.19 CLEAN AND ADJUSTING

- A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components.
- B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

This page intentionally left blank.

SECTION 05 51 00 METAL STAIRS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Section specifies steel stairs with railings.
- B. Types:
 - 1. Closed riser stairs with concrete filled treads and platforms.

1.2 RALATED WORK

- A. Concrete fill for treads and platforms: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. Requirements for shop painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Show design, fabrication details, installation, connections, material, and size of members.

1.4 APPLICATION PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation.
- B. American Society for Testing and Materials (ASTM):

<u> </u>	· , ,
A36/A36M-08	Structural Steel
A47-99 (R2009)	Ferritic Malleable Iron Castings
A48-03(R2008)	Gray Iron Castings
A53-10	Pipe, Steel, Black and Hot-Dipped Zinc-Coated
	Welded and Seamless
A307-10	Carbon Steel Bolts and Studs, 60000 psi Tensile
	Strength
A653/653M-10	Steel Sheet, Zinc Coated (Galvanized) or Zinc
	Alloy Coated (Galvannealed) by the Hot-Dip
	Process
A563-07	.Carbon and Alloy Steel Nuts
A1008-10	Steel, Sheet, Cold-Rolled, Carbon, Structural,

- A1008-10......Steel, Sheet, Cold-Rolled, Carbon, Structural,
 High-Strength, Low-Alloy
- A786/A786M-09......Rolled Steel Floor Plates
- A1011-10......Steel, Sheet and Strip, Strip, Hot-Rolled
 Carbon, Structural, High-Strength, Low-Alloy
- C. American Welding Society (AWS):
 - D1.1-10.....Structural Welding Code-Steel

D1.3-08.....Structural Welding Code-Sheet Steel

D. The National Association of Architectural Metal Manufactures (NAAMM)
Manuals:

Metal Bar Gratings (ANSI/NAAMM MBG 531-09)

AMP521-01.....Pipe Railing Manual, Including Round Tube

E. American Iron and Steel Institute (AISI):

2001......Design of Cold-Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 DESIGN CRITERIA

- A. Design stairs to support a live load of (100 pounds per square foot).
- B. Structural design, fabrication and assembly in accordance with requirements of NAAMM Metal Stairs Manual, except as otherwise specified or shown.
- C. Design Grating treads in accordance with NAAMM Metal Bar Grating Manual.
- D. Design pipe railings in accordance with NAAMM Pipe Railing Manual for $900 \, \text{N} \, (200 \, \text{pounds})$ in any direction at any point.

2.2 MATERIALS

- A. Steel Pipe: ASTM A53, Standard Weight, zinc coated.
- B. Steel Grating: Metal bar type grating NAAMM BG.
- C. Sheet Steel: ASTM A1008.
- D. Structural Steel: ASTM A36.
- E. Steel Floor Plate: ASTM 786.
- F. Steel Decking: Form from zinc coated steel conforming to ASTM A446, with properties conforming to AISI Specification for the Design of Cold-Formed Steel Structural Members.
- G. Steel Plate: ASTM A1011.
- H. Iron Castings: ASTM A48, Class 30.
- I. Malleable Iron Castings: ASTM A47.

2.3 FABRICATION GENERAL

- A. Fasteners:
 - 1. Conceal bolts and screws wherever possible.
 - 2. Use countersunk heads on exposed bolts and screws with ends of bolts and screws dressed flush after nuts are set.
- B. Welding:
 - 1. Structural steel, AWS D1.1 and sheet steel, AWS D1.3.
 - 2. Where possible, locate welds on unexposed side.
 - 3. Grind exposed welds smooth and true to contour of welded member.
 - 4. Remove welding splatter.
- C. Remove sharp edges and burrs.

- D. Fit stringers to head channel and close ends with steel plates welded in place where shown.
- E. Fit face stringer to newel post by tenoning into newel post, or by notching and fitting face stringer to side of newel where shown.
- F. Shop Prime Painting: Prepare surface and apply primer as specified for ferrous metals in Section 09 91 00, PAINTING.

2.4 RAILINGS

- A. Fabricate railings, including handrails, from steel pipe with flush.
 - 1. Connections may be standard fittings designed for welding, or coped or mitered pipe with full welds.
- B. Return ends of handrail to wall and close free end.
- C. Provide standard terminal castings where fastened to newel.
- D. Space intermediate posts not over six feet on center between end post or newel post.
- E. Fabricate handrail brackets from cast malleable iron.
- F. Provide standard terminal fittings at ends of post and rails.

2.5 CLOSED RISER STAIRS

- A. Provide treads, risers, platforms, railings, stringers, headers and other supporting members.
- B. Fabricate pans for treads and platforms, and risers from sheet steel.
- C. Form risers with sanitary cove.
- D. Fabricate stringers, headers, and other supporting members from structural steel.
- E. Construct newel posts of steel tubing having wall thickness not less than 5 mm (3/16-inch), with forged steel caps and drops.

PART 3 - EXECUTION

3.1 STAIR INSTALLATION

- A. Provide hangers and struts required to support the loads imposed.
- B. Perform job site welding and bolting as specified for shop fabrication.
- C. Set stairs and other members in position and secure to structure as shown.
- D. Install stairs plumb, level and true to line.
- E. Provide steel closure plate to fill any gap between the stringer and surrounding shaft wall. Weld and finish with prime and paint finish of adjoining steel.

3.2 RAILING INSTALLATION

A. Install standard terminal fittings at ends of posts and rails.

- B. Secure brackets, posts and rails to steel by welds, and to masonry or concrete with expansion sleeves and bolts, except secure posts at concrete by setting in sleeves filled with commercial non-shrink grout.
- C. Set rails horizontal or parallel to rake of stairs to within 3 mm in 3650 mm (1/8-inch in 12 feet).
- D. Set posts plumb and aligned to within 3 mm in 3650 mm (1/8-inch in 12 feet).

3.3 FIELD PRIME PAINTING

- A. When installation is complete, clean field welds and surrounding areas to bright metal, and coat with same primer paint used for shop priming.
- B. Touch-up abraded areas with same primer paint used for shop priming.
- C. Touch up abraded galvanized areas with zinc rich paint as specified in section 09 91 00, PAINTING.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies wood blocking, sheathing, nailers, and rough hardware.

1.2 RELATED WORK:

- A. Milled woodwork: Section 06 20 00, FINISH CARPENTRY.
- B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.
- C. Cement board sheathing: Section 06 16 63, CEMENTITIOUS SHEATHING.

1.3 SUMBITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings showing framing connection details, fasteners, connections and dimensions.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 150 mm (6 inches) above grade and cover with well ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA):
 National Design Specification for Wood Construction
 NDS-05......Conventional Wood Frame Construction
- C. American Institute of Timber Construction (AITC):
 A190.1-07......Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME):

B18.2.1-96(R2005)......Square and Hex Bolts and Screws

B18.2.2-87.....Square and Hex Nuts

B18.6.4-98(R2005).....Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws

Ε.	American Plywood Association (APA):
	E30-07Engineered Wood Construction Guide
F.	American Society for Testing And Materials (ASTM):
	A47-99(R2009)Ferritic Malleable Iron Castings
	A48-03(R2008)Gray Iron Castings
	A653/A653M-10Steel Sheet Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy Coated (Galvannealed) by the Hot Dip
	Process
	C954-10Steel Drill Screws for the Application of Gypsum
	Board or Metal Plaster Bases to Steel Studs from
	0.033 inch (2.24 mm) to 0.112-inch (2.84 mm) in
	thickness
	C1002-07Steel Self-Piercing Tapping Screws for the
	Application of Gypsum Panel Products or Metal
	Plaster Bases to Wood Studs or Metal Studs
	D143-09Small Clear Specimens of Timber, Method of
	Testing
	D1760-01Pressure Treatment of Timber Products
	D2559-10Adhesives for Structural Laminated Wood Products
	for Use Under Exterior (Wet Use) Exposure
	Conditions
	D3498-11Adhesives for Field-Gluing Plywood to Lumber
	Framing for Floor Systems
	F844-07Washers, Steel, Plan (Flat) Unhardened for
	General Use
	F1667-08Nails, Spikes, and Staples
G.	Federal Specifications (Fed. Spec.):
	MM-L-736CLumber; Hardwood
Н.	Commercial Item Description (CID):
	A-A-55615Shield, Expansion (Wood Screw and Lag Bolt Self
	Threading Anchors)
I.	Military Specification (Mil. Spec.):
	MIL-L-19140ELumber and Plywood, Fire-Retardant Treated
J.	Truss Plate Institute (TPI):
	TPI-85Metal Plate Connected Wood Trusses
К.	U.S. Department of Commerce Product Standard (PS)
	PS 1-95Construction and Industrial Plywood
	PS 20-05American Softwood Lumber Standard

PART 2 - PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - 1. Identifying marks in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Structural Members: Species and grade as listed in the AFPA, National Design Specification for Wood Construction having design stresses as shown.
- C. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - 2. Framing lumber: Minimum extreme fiber stress in bending of 1100.
 - 3. Furring, blocking, nailers and similar items 100 mm (4 inches) and narrower Standard Grade; and, members 150 mm (6 inches) and wider, Number 2 Grade.

D. Sizes:

- 1. Conforming to Prod. Std., PS20.
- 2. Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.

E. Moisture Content:

- 1. At time of delivery and maintained at the site.
- 2. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
- 3. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- F. Fire Retardant Treatment:
 - 1. Mil Spec. MIL-L-19140 with piece of treated material bearing identification of testing agency and showing performance rating.
 - 2. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.
- G. Preservative Treatment:
 - 1. Do not treat Heart Redwood and Western Red Cedar.

- 2. Treat wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 600 mm (24 inches) from ground; nailers, edge strips, blocking, crickets, curbs, cant, vent strips and other members used in connection with roofing and flashing materials.
- 3. Treat other members specified as preservative treated (PT).
- 4. Preservative treat by the pressure method complying with ASTM D1760, except any process involving the use of Chromated Copper arsenate (CCA) for pressure treating wood is not permitted.

2.2 PLYWOOD

- A. Comply with Prod. Std., PS 1.
- B. Bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of plywood which identifies compliance by veneer grade, group number, span rating where applicable, and glue type.
- C. Sheathing:
 - 1. APA rated Exposure 1 or Exterior; panel grade CD or better.
 - 2. Roof sheathing:
 - a. Minimum 9 mm (11/32 inch) thick with span rating 24/0 or 12 mm (15/32 inch) thick with span rating for supports 400 mm (16 inches) on center unless specified otherwise.
 - b. Minimum 15 mm (19/32 inch) thick or span rating of 40/20 or 18 mm (23/32 inch) thick or span rating of 48/24 for supports 600 mm (24 inches) on center.

2.3 STRUCTURAL-USE PANELS

- A. Comply with APA.
- B. Bearing the mark of a recognized association or independent agency that maintains continuing control over quality of panel which identifies compliance by end use, Span Rating, and exposure durability classification.
- C. Wall and Roof Sheathing:
 - 1. APA Rated sheathing panels, durability classification of Exposure 1 or Exterior Span Rating of 16/0 or greater for supports 400 mm (16 inches) on center and 24/0 or greater for supports 600 mm (24 inches) on center.
- D. Underlayment:
 - 1. APA rated Exposure 1.
 - 2. Minimum 6 mm (1/4 inch) thick or greater over subfloor.

2.4 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ANSI B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - 2. Extend at least 200 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D, A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Use 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers
 - 1. ASTM F844.
 - 2. Use zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ANSI B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.
- E. Nails:
 - Size and type best suited for purpose unless noted otherwise. Use aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
 - 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.
 - f. Use special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.

F. Adhesives:

- 1. For field-gluing plywood to lumber framing floor or roof systems: ASTM D3498.
- 2. For structural laminated Wood: ASTM D2559.

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA National Design Specification for Wood Construction for timber connectors.
 - 2. APA for installation of plywood or structural use panels.

3. ASTM F 499 for wood underlayment.

B. Fasteners:

1. Bolts:

- a. Fit bolt heads and nuts bearing on wood with washers.
- b. Countersink bolt heads flush with the surface of nailers.
- c. Embed in concrete and solid masonry or use expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
- d. Use toggle bolts to hollow masonry or sheet metal.
- e. Use bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 600 mm (24 inch) intervals between end bolts. Use clips to beam flanges.
- 2. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C 954 for steel over 0.84 mm (0.033 inch) thick.
- 3. Power actuated drive pins may be used where practical to anchor to solid masonry, concrete, or steel.
- 4. Do not anchor to wood plugs or nailing blocks in masonry or concrete.

 Use metal plugs, inserts or similar fastening.
- 5. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- 6. Installation of Timber Connectors:
 - a. Conform to applicable requirements of the NFPA National Design Specification for Wood Construction.
 - b. Fit wood to connectors and drill holes for fasteners so wood is not split.
- C. Set sills or plates level in full bed of mortar on masonry or concrete walls.
 - 1. Space anchor bolts 1200 mm (4 feet) on centers between ends and within 150 mm (6 inches) of end. Stagger bolts from side to side on plates over 175 mm (7 inches) in width.
 - Use shims of slate, tile or similar approved material to level wood members resting on concrete or masonry. Do not use wood shims or wedges.
 - 3. Closely fit, and set to required lines.

- D. Cut notch, or bore in accordance with NFPA Manual for House-Framing for passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- E. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Use longest lengths practicable.
 - 3. Use fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 600 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 125 mm (5 inches) in width.

F. Bridging:

- 1. Use 25 mm by 75 mm (1 inch by 3 inch) lumber with ends beveled for slope. Option: Metal bridging may be used for wood bridging.
- 2. Install one row of bridging for joist spans over 2400 mm (8 feet), but less than 4800 mm (16 feet) long; install two rows for spans over 4800 mm (16 feet) long.
- 3. Install an extra row of bridging between trimmer and next two joists if header is more than 600 mm (2 feet) from end of trimmer or from regular row of bridging.
- 4. Secure with two nails at ends.
- 5. Leave bottom ends loose until after subflooring or roof sheathing is installed.
- 6. Install single row of bridging at centerline of span and two rows at the third points of span unless otherwise shown.

G. Rough Bucks:

- 1. Install rough wood bucks at opening in masonry or concrete where wood frames or trim occur.
- 2. Brace and maintain bucks plumb and true until masonry has been built around them or concrete cast in place.
- 3. Cut rough bucks from 50 mm (2 inch) thick stock, of same width as partitions in which they occur and of width shown in exterior walls.
- 4. Extend bucks full height of openings and across head of openings; fasten securely with anchors specified.

H. Underlayment:

1. Where finish flooring of different thickness is used in adjoining areas, use underlayment of thickness required to bring finish flooring surfaces into same plane.

- 2. Apply to dry, level, securely nailed, clean, wood subfloor without any projections.
- 3. Fasten to subfloor as specified in ASTM F499.
- 4. Plywood and particle underlayment may be glue-nailed to subfloor.
- 5. Butt underlayment panels to a light contact with a 1 mm (1/32 inch) space between plywood or hardboard underlayment panels and walls, and approximately 9 mm (3/8 inch) between particleboard underlayment panels and walls.
- 6. Stagger underlayment panel end joints with respect to each other and offset joints with respect to joints in the subfloor at least 50 mm (2 inches).
- 7. After installation, avoid traffic on underlayment and damage to its finish surface.

I. Sheathing:

- 1. Use plywood or structural-use panels for sheathing.
- 2. Lay panels with joints staggered, with edge and ends 3 mm (1/8 inch) apart and nailed over bearings as specified.
- 3. Set nails not less than 9 mm (3/8 inch) from edges.
- 4. Install 50 mm by 100 mm (2 inch by 4 inch) blocking spiked between joists, rafters and studs to support edge or end joints of panels.

- - - E N D - - -

SECTION 07 11 13 BITUMINOUS DAMPPROOFING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials and workmanship for bituminous dampproofing on concrete and masonry surfaces.

1.2 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Product description.
 - 2. Application instructions.

1.3 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

D226-09Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing

D449-03(R2008)Asphalt Used in Dampproofing and Waterproofing
D1227-95(R2007)Emulsified Asphalt Used as a Protective Coating
for Roofing

PART 2 - PRODUCTS

2.2 ASPHALT SATURATED FELT:

ASTM D226, Type I, 15 pound.

2.3 ASPHALT EMULSION (COLD APPLIED):

ASTM D1227, Type III for first coat and type IV for second coat.

PART 3 - EXECUTION

3.1 SURFACE PREPARATION:

- A. Surfaces to receive dampproofing shall be clean and smooth.
- B. Remove foreign matter, loose particles of mortar or other cementitious droppings.
- C. Clean and wash soil or dirt particles from surface.
- D. Remove free water; surfaces may remain damp.

3.2 APPLICATION:

- A. Comply with Manufacturer written instructions for methods and rates of dampproofing application, cleaning and installation of any protection course.
- B. Apply each coat at the rate of not less than 1 L/m^2 (2-1/2 gallons per 100 square feet) and allow not less than 24 hours drying time after application.

3.3 LOCATION:

- A. Apply to surfaces where shown.
- B. Apply to exterior surface of inner wythe of masonry cavity walls where shown. Coordinate application with masonry work.
- C. Dampproof exterior surfaces of exterior walls of all inhabited areas below grade that are not shown to be waterproofed.
 - Apply to outside surface from bottom of walls to 4 inches below finished grade on concrete walls extending above grade.
 - Where a ledge occurs for facing material support below grade, coat ledge and coat backing wall to 1 foot above grade when wall is concrete or masonry.
 - When concrete or masonry backing walls do not exceed 1 foot above grade, coat to top of walls.

- - - E N D - - -

SECTION 07 40 00 ROOFING AND SIDING PANELS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies insulated metal wall and roof panels as shown.

1.2 RELATED WORK

- A. Sealant: Section 07 92 00, JOINT SEALANTS.
- B. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 MANUFACTURER'S QUALIFICATIONS

Metal wall and roof panels and composite metal wall and roof systems shall be products of a manufacturer regularly engaged in the fabrication and erection of metal panels and composite metal wall and roof systems of the type and design shown and specified.

1.4 FIRE RATING

Composite metal wall and roof systems shall comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency. Indicate design designations from UL Fire Resistance or from the listings of another qualified testing agency.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples: Metal panel, 150 mm (six inch) square, showing finish, each color and texture.
- C. Shop Drawings: Wall and roof panels, showing details of construction and installation. Collateral steel framing U value thickness and kind of material, closures, flashing, fastenings and related components and accessories.
- D. Manufacturer's Literature and Data: Wall and roof panels
- E. Fire Test Report: Report of fire test by recognized testing laboratory for fire rating specified, showing details of construction.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extend referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

 A653/A653M-10......Steel Sheet, Zinc-Coated (Galvanized), or Zinc
 Iron Alloy-Coated (Galvannealed) by the Hot-Dip

 Process.

A463-10Steel Sheet, Cold-Rolled, Aluminum-Coated, by
the Hot-Dip Process
A924/A924M-10Steel Sheet, Metallic Coated by the Hot-Dip
Process
A1008/A1008M-10Steel, Sheet, Cold-Rolled, Carbon, Structural,
High Strength Low Alloy
B209/209M-07Aluminum and Aluminum Alloy Sheet and Plate
C1396-11Standard Specification for Gypsum Board
C553-08Mineral Fiber Blanket Thermal Insulation for
Commercial and Industrial Applications
C591-09Unfaced Preformed Rigid Cellular
Polyisocyanurate Thermal Insulation
C612-10Mineral Fiber Block and Board Thermal
Insulation
E119-10Fire Test of Building Construction and
Materials

PART 2 - PRODUCTS

2.1 SHEET STEEL

- A. Minimum 0.8mm thick for wall and roof panels.
- B. Steel, Sheet, Galvanized: ASTM A653/A653M, Structural.
 - 1. Grade 40, galvanized coating conforming to ASTM A924/A924M, Class Z 275 G-90.
- C. Steel, Sheet, Commercial: ASTM A1008, Type C.
- D. Steel, Sheet, Aluminized: ASTM A463. Steel shall be coated on both sides with 0.5 ounce of aluminum per square foot (0.15 Kg/sm).

2.2 ALUMINUM PLATE AND SHEET

ASTM B209/209M

2.3 FASTENERS

Fasteners for steel panels shall be galvanized or cadmium plated steel. Fasteners for aluminum panels shall be aluminum or stainless steel. Fasteners of size, type and holding strength as recommended by manufacturer.

2.4 THERMAL INSULATING MATERIALS

A. Urethane or isocyanurate Board: ASTM C591, Type I.

2.6 FABRICATION

A. Insulated metal wall and roof panels shall consist of an insulating core enclosed between two metal face sheets, of configuration shown on drawings. Construct panels by pressing members together to form a structural unit with closed ends. Furnish Wall panels in one continuous length for full height, or at least one story height with no horizontal

joints, except at openings. Overall thickness of panels is shown on drawings. Connection between panels shall be by interlocking male and female joints. Work shall include collateral steel framing metal and bituminous closures, fastenings, flashing, clip, caulking, panel reinforcements for support of mechanical and electrical work shown on drawings, and related components and accessories. Construct panels as follows:

- 1. Exterior face of wall and roof sheet:
 - a. 24 gauge thick galvanized steel.
- 2. Interior liner face of wall or roof sheet:
 - a. 24 gauge thick galvanized steel.
- 3. Insulation shall be isocyanurate. 4. Sub-girts shall be 1.0 mm (0.0396 inches) thick galvanized steel hat channels or as required by manufacturer designed to receive panel fasteners or clips.
- 4. Accessories and fastenings shall be the same material and finish as the panels. Thickness and installation of accessories and flashing shall be as recommended by panel manufacturer.

2.7 FINISH

- A. For insulated wall and roof panels, the finishes shall be as follows for steel face sheets:
- B. For steel face sheets, the finishes shall be as follows:
 - 1. Silicone polyester finish, consisting of a chemical pre-treatment of the galvanized steel, then applying an epoxy prime coat of 0.2 mil minimum dry film thickness; then a silicone polyester finish coat of 0.8 mil minimum dry film thickness on one side and polyester prime coat of 0.5 mil minimum dry film thickness applied to reverse side.
- C. Aluminum alloy used for color coating shall be as required to produce specified color. Color shall be as specified in Section 09 06 00, SCHEDULE FOR FINISHES. Color for sheet aluminum shall not deviate more than the colors of extrusion samples.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General: Install panels in accordance with the manufacturer's approved erection instructions and diagrams, except as specified otherwise. Panels shall be in full and firm contact with supports and with each other at side and end laps. Where panels are cut in the field, or where any of the factory applied coverings or coatings are abraded or damaged in handling or installation, they shall, after the necessary repairs have been made with material of the same type and color as the weather

coating, be approved before being installed. All cut ends and edges, including those at openings through the sheets shall be sealed completely. Correct defects or errors in the materials in an approved manner. Replace materials which cannot be corrected in an approved manner with nondefective material. Provide molded closure strips where indicated and whenever sheets terminate with open ends after installation.

- B. Wall Panels: Apply panels with the configuration in a vertical position. Provide panels in the longest obtainable lengths, with end laps occurring only at structural members full heights from base to eave with no horizontal joints except at the junctions of door frames, window frames, louver panels, and similar locations. Seal side and end laps with joint sealing material. Flash and seal walls at the base, at the top, around windows, door frames, framed louvers, and other similar openings. Install closure strips, flashings, and sealing material in an approved manner that will assure complete weather tightness. Flashing will not be required where approved "self-flashing" panels are used.
- C. Roof Panels: Apply roofing panels with the configurations parallel to the slope of the roof. Provide roofing panels in full length panels with no joints Lay all side laps away from the prevailing wind, and seal side and end laps with joint sealing material. Flash and seal the roof at the ridge, at eaves and rakes, at projections through the roof, and elsewhere as necessary. Install closure strips, flashing, and sealing material in an approved manner that will assure complete weather tightness.
- D. Flashing: All flashing and related closures and accessories in connection with the preformed metal panels shall be provided as indicated and as necessary to provide a watertight installation. Details of installation, which are not indicated, shall be in accordance with the panel manufacturer's printed instruction and details, or the approved shop drawings. Installation shall allow for expansion and contraction of flashing.
- E. Fasteners: Fastener spacings shall be in accordance with the manufacturer's recommendations, and as necessary to withstand the design loads indicated. Install fasteners in valleys or crowns as recommended by the manufacturer of the sheet being used. Install fasteners in straight lines within a tolerance of 13 mm (1/2-inch) in the length of a bay. Drive exposed penetrating type fasteners normal to the surface, and to a uniform depth to seat gasketed washers properly, and drive so as not to damage factory applied coating. Exercise

extreme care in drilling pilot holes for fastenings to keep drills perpendicular and centered in valleys, or crowns, as applicable. After drilling, remove metal filings and burrs from holes prior to installing fasteners and washers. Torque used in applying fasteners shall not exceed that recommended by the manufacturer. Remove panels deformed or otherwise damaged by over-torqued fastenings, and provide new panels. Remove metal shavings and filings from roofs on completion to prevent rusting and discoloration of the panels.

3.2 PROTECTION AND CLEANING

- A. Protect panels and other components from damage during and after erection, and until project is accepted by the Government.
- B. After completion of work, all exposed finished surfaces of panels shall be cleaned of soil, discoloration and disfiguration. Touch-up abraded surfaces of panels.

- - - E N D - - -

This page left blank intentionally.

07 40 00 - 6

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

Formed sheet metal work for wall and roof flashing, copings, roof edge metal and fasciae are specified in this section.

1.2 RELATED WORK

- A. Flashing components of factory finished roofing and wall systems: Division 07 roofing and wall system sections.
- B. Joint Sealants: Section 07 92 00, JOINT SEALANTS.
- C. Color of factory coated exterior architectural metal and anodized aluminum items: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Integral flashing components of manufactured roof specialties and accessories or equipment: Section 07 72 00, ROOF ACCESSORIES.
- E. Paint materials and application: Section 09 91 00, PAINTING.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. Aluminum Association (AA):
 - AA-C22A41Aluminum Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick
 - AA-C22A42Chemically etched medium matte, with integrally colored anodic coating, Class I Architectural, 0.7 mils thick
 - AA-C22A44Chemically etched medium matte with
 electrolytically deposited metallic compound,
 integrally colored coating Class I
 Architectural, 0.7-mil thick finish
- C. American National Standards Institute/Single-Ply Roofing Institute
 (ANSI/SPRI):

ANSI/SPRI ES-1-03Wind Design Standard for Edge Systems Used with

Low Slope Roofing Systems

- D. American Architectural Manufacturers Association (AAMA):
 - AAMA 620Voluntary Specification for High Performance
 Organic Coatings on Coil Coated Architectural
 Aluminum
 - AAMA 621Voluntary Specification for High Performance
 Organic Coatings on Coil Coated Architectural
 Hot Dipped Galvanized (HDG) and Zinc-Aluminum
 Coated Steel Substrates
- E. ASTM International (ASTM):
 - A167-99(R2009)Stainless and Heat-Resisting Chromium-Nickel

 Steel Plate, Sheet, and Strip
 - A653/A653M-11Steel Sheet Zinc-Coated (Galvanized) or Zinc

 Alloy Coated (Galvanized) by the Hot- Dip

 Process
 - B32-08Solder Metal
 - B209-10Aluminum and Aluminum-Alloy Sheet and Plate
 - B370-12Copper Sheet and Strip for Building Construction
 - D173-03(R2011)Bitumen-Saturated Cotton Fabrics Used in

Roofing and Waterproofing

- D412-06(R2013)Vulcanized Rubber and Thermoplastic Elastomers-Tension
- D1187-97(R2011)Asphalt Base Emulsions for Use as Protective

 Coatings for Metal
- D3656-07Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns
- D4586-07Asphalt Roof Cement, Asbestos Free
- F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual.
- G. National Association of Architectural Metal Manufacturers (NAAMM):

 AMP 500-06Metal Finishes Manual
- H. Federal Specification (Fed. Spec):

12-01-13

Patient Parking Garage Kansas City VA Medical Center Project Number: 589-370

A-A-1925AShield, Expansion; (Nail Anchors) UU-B-790ABuilding Paper, Vegetable Fiber

I. International Code Commission (ICC): International Building Code, Current Edition

1.4 PERFORMANCE REQUIREMENTS

- A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:
 - 1. Wind Zone 1: 0.48 to 0.96 kPa (10 to 20 lbf/sq. ft.): 1.92-kPa (40-lbf/sq. ft.) perimeter uplift force, 2.87-kPa (60-lbf/sq. ft.) corner uplift force, and 0.96-kPa (20-lbf/sq. ft.) outward force.
 - 2. Wind Zone 1: 1.00 to 1.44 kPa (21 to 30 lbf/sq. ft.): 2.87-kPa (60-lbf/sq. ft.) perimeter uplift force, 4.31-kPa (90-lbf/sq. ft.) corner uplift force, and 1.44-kPa (30-lbf/sq. ft.) outward force.
 - 3. Wind Zone 2: 1.48 to 2.15 kPa (31 to 45 lbf/sq. ft.): 4.31-kPa (90-lbf/sq. ft.) perimeter uplift force, 5.74-kPa (120-lbf/sq. ft.) corner uplift force, and 2.15-kPa (45-lbf/sq. ft.) outward force.
 - 4. Wind Zone 3: 2.20 to 4.98 kPa (46 to 104 lbf/sq. ft.): 9.96-kPa (208-lbf/sq. ft.) perimeter uplift force, 14.94-kPa (312-lbf/sq. ft.) corner uplift force, and 4.98-kPa (104-lbf/sq. ft.) outward force.
- B. Wind Design Standard: Fabricate and install copings, roof-edge flashings tested per ANSI/SPRI ES-1 to resist design.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Flashings
 - 2. Copings
 - 3. Gutter and Conductors
 - 4. Fascia-cant
- C. Manufacturer's Literature and Data: For all specified items, including:
 - 1. Two-piece counterflashing
 - 2. Thru wall flashing
 - 4. Nonreinforced, elastomeric sheeting
 - 5. Fascia-cant
- D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

Patient Parking Garage 12-01-13

Kansas City VA Medical Center Project Number: 589-370

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

A. Stainless Steel: ASTM A167, Type 302B, dead soft temper.

- B. Copper ASTM B370, cold-rolled temper.
- C. Bituminous Coated Copper: Minimum copper ASTM B370, weight not less than 1 kg/m² (3 oz/sf). Bituminous coating shall weigh not less than 2 kg/m² (6 oz/sf); or, copper sheets may be bonded between two layers of coarsely woven bitumen-saturated cotton fabric ASTM D173. Exposed fabric surface shall be crimped.
- D. Copper Covered Paper: Fabricated of electro-deposit pure copper sheets ASTM B 370, bonded with special asphalt compound to both sides of creped, reinforced building paper, UU-B-790, Type I, style 5, or to a three ply sheet of asphalt impregnated creped paper. Grooves running along the width of sheet.
- E. Polyethylene Coated Copper: Copper sheet ASTM B370, weighing 1 Kg/m^2 (3 oz/sf) bonded between two layers of (two mil) thick polyethylene sheet.
- F. Aluminum Sheet: ASTM B209, alloy 3003-H14, except alloy used for color anodized aluminum shall be as required to produce specified color. Alloy required to produce specified color shall have the same structural properties as alloy 3003-H14.
- G. Galvanized Sheet: ASTM, A653.
- H. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056 inch) thick. Sheeting shall have not less than 7 MPa (1,000 psi) tensile strength and not more than seven percent tension-set at 50 percent elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1 mm (1/32 inch) diameter mandrel and then bent at same point over same size mandrel in opposite direction through 360 degrees at temperature of $-30\,^{\circ}\text{C}$ ($-20\,^{\circ}\text{F}$).

2.2 FLASHING ACCESSORIES

- A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.
- B. Rosin Paper: Fed-Spec. UU-B-790, Type I, Grade D, Style 1b, Rosin-sized sheathing paper, weighing approximately 3 Kg/10 m² (6 lbs/100 sf).
- C. Bituminous Paint: ASTM D1187, Type I.

D. Fasteners:

 Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.

2. Nails:

- a. Minimum diameter for copper nails: 3 mm (0.109 inch).
- b. Minimum diameter for aluminum nails 3 mm (0.105 inch).
- c. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
- d. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
- 3. Rivets: Not less than 3 mm (1/8 inch) diameter.
- 4. Expansion Shields: Fed Spec A-A-1925A.
- E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- F. Insect Screening: ASTM D3656, 18 by 18 regular mesh.
- G. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Concealed Locations (Built into Construction):
 - 1. Copper: 30g (10 oz) minimum 0.33 mm (0.013 inch thick).
 - 2. Stainless steel: 0.25 mm (0.010 inch) thick.
 - 3. Copper clad stainless steel: 0.25 mm (0.010 inch) thick.
 - 4. Galvanized steel: 0.5 mm (0.021 inch) thick.
- C. Exposed Locations:
 - 1. Copper: 0.4 Kg (16 oz).
 - 2. Stainless steel: 0.4 mm (0.015 inch).
 - 3. Copper clad stainless steel: 0.4 mm (0.015 inch).
- D. Thickness of aluminum or galvanized steel is specified with each item.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - In general, copper, stainless steel and copper clad stainless steel joints, except expansion and contraction joints, shall be locked and soldered.

- 2. Jointing of copper over 0.5 Kg (20 oz) weight or stainless steel over 0.45 mm (0.018 inch) thick shall be done by lapping, riveting and soldering.
- 3. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
- 4. Flat and lap joints shall be made in direction of flow.
- 5. Edges of bituminous coated copper, copper covered paper, nonreinforced elastomeric sheeting and polyethylene coated copper shall be jointed by lapping not less than 100 mm (4 inches) in the direction of flow and cementing with asphalt roof cement or sealant as required by the manufacturer's printed instructions.
- 6. Soldering:
 - a. Pre tin both mating surfaces with solder for a width not less than 38 mm (1 1/2 inches) of uncoated copper, stainless steel, and copper clad stainless steel.
 - b. Wire brush to produce a bright surface before soldering lead coated copper.
 - c. Treat in accordance with metal producers recommendations other sheet metal required to be soldered.
 - d. Completely remove acid and flux after soldering is completed.
- B. Expansion and Contraction Joints:
 - Fabricate in accordance with the Architectural Sheet Metal Manual recommendations for expansion and contraction of sheet metal work in continuous runs.
 - 2. Space joints as shown or as specified.
 - 3. Space expansion and contraction joints for copper, stainless steel, and copper clad stainless steel at intervals not exceeding 7200 mm (24 feet).
 - 4. Space expansion and contraction joints for aluminum at intervals not exceeding 5400 mm (18 feet), except do not exceed 3000 mm (10 feet) for gravel stops and fascia-cant systems.

- 5. Fabricate slip-type or loose locked joints and fill with sealant unless otherwise specified.
- 6. Fabricate joint covers of same thickness material as sheet metal served.

C. Cleats:

- 1. Fabricate cleats to secure flashings and sheet metal work over 300 mm (12 inches) wide and where specified.
- 2. Provide cleats for maximum spacing of 300 mm (12 inch) centers unless specified otherwise.
- 3. Form cleats of same metal and weights or thickness as the sheet metal being installed unless specified otherwise.
- 4. Fabricate cleats from 50 mm (2 inch) wide strip. Form end with not less than 19 mm (3/4 inch) wide loose lock to item for anchorage. Form other end of length to receive nails free of item to be anchored and end edge to be folded over and cover nail heads.

D. Edge Strips or Continuous Cleats:

- 1. Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
- 2. Except as otherwise specified, fabricate edge strips or minimum 0.6 Kg (24 ounce)copper (0.024 inch) thick stainless steel (0.050 inch) thick aluminum.
- 3. Use material compatible with sheet metal to be secured by the edge strip.
- 4. Fabricate in 3000 mm (10 feet) maximum lengths with not less than 19 mm (3/4 inch) loose lock into metal secured by edge strip.
- 5. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the flashing to be hooked over the lower edge at least 19 mm (3/4-inch).
- 6. Fabricate anchor edge maximum width of 75 mm (3 inches) or of sufficient width to provide adequate bearing area to insure a rigid installation using 0.8 mm (0.031 inch) thick stainless steel.

E. Drips:

1. Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascias, gravel stops, wall copings, by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.

2. Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.

F. Edges:

- 1. Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.
- 2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.
- 3. All metal roof edges shall meet requirements of IBC, current edition.

G. Metal Options:

- 1. Where options are permitted for different metals use only one metal throughout.
- 2. Stainless steel may be used in concealed locations for fasteners of other metals exposed to view.
- 3. Where copper gravel stops, copings and flashings will carry water onto cast stone, stone, or architectural concrete, or stainless steel.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 1. Stainless Steel: Finish No. 2B or 2D.
 - 2. Aluminum:
 - a. Clear Finish: AA-C22A41 medium matte, clear anodic coating, Class 1 Architectural, 18 mm (0.7 mils) thick.
 - b. Colored Finish: AA-C22A42 (anodized) or AA-C22A44 (electrolytically deposited metallic compound) medium matte, integrally colored coating, Class 1 Architectural, 18 mm (0.7 mils) thick. Dyes will not be accepted.
 - c. Fluorocarbon Finish: AAMA 620, high performance organic coating.
 - d. Mill finish.
 - 3. Steel and Galvanized Steel:

- a. Finish painted under Section 09 91 00, PAINTING unless specified as prefinished item.
- b. Manufacturer's finish:
 - 1) Baked on prime coat over a phosphate coating.
 - 2) Baked-on prime and finish coat over a phosphate coating.
 - 3) Fluorocarbon Finish: AAMA 621, high performance organic coating.

2.6 THROUGH-WALL FLASHINGS

- A. Form through-wall flashing to provide a mechanical bond or key against lateral movement in all directions. Install a sheet having 2 mm (1/16 inch) deep transverse channels spaced four to every 25 mm (one inch), or ribbed diagonal pattern, or having other deformation unless specified otherwise.
 - 1. Fabricate in not less than 2400 mm (8 feet) lengths; 3000 mm (10 feet) maximum lengths.
 - 2. Fabricate so keying nests at overlaps.
- B. For Masonry Work When Concealed Except for Drip:
 - 1. Either copper, stainless steel, or copper clad stainless steel.
 - 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 - 3. Form exposed portions of flashing with drip, approximately 6 mm (1/4 inch) projection beyond wall face.
- C. For Masonry Work When Exposed Edge Forms a Receiver for Counter Flashing:
 - 1. Use same metal and thickness as counter flashing.
 - 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 - 3. Form exposed portion as snap lock receiver for counter flashing upper edge.
- D. For Flashing at Architectural Precast Concrete Panels or Stone Panels.
 - 1. Use plan flat sheet of stainless steel.
 - 2. Form exposed portions with drip as specified or receiver.
- E. Window Sill Flashing and Lintel Flashing:
 - 1. Use either copper, stainless steel, copper clad stainless steel plane flat sheet, or nonreinforced elastomeric sheeting, bituminous coated copper, copper covered paper, or polyethylene coated copper.
 - 2. Fabricate flashing at ends with folded corners to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening.
 - 3. Turn up back edge as shown.

4. Form exposed portion with drip as specified or receiver.

F. Door Sill Flashing:

- 1. Where concealed, use either 0.5 Kg (20 oz) copper, 0.5 mm (0.018 inch) thick stainless steel, or 0.5 mm (0.018 inch) thick copper clad stainless steel.
- 2. Where shown on drawings as combined counter flashing under threshold, sill plate, door sill, or where subject to foot traffic, use either 0.6 Kg (24 ounce) copper, 0.6 mm (0.024 inch) stainless steel, or 0.6 mm (0.024 inch) thick stainless steel.
- 3. Fabricate flashing at ends to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening with folded corners.

2.7 BASE FLASHING

- A. Use metal base flashing at vertical surfaces intersecting built-up roofing without cant strips or where shown.
 - 1. Use either copper, or stainless steel, thickness specified unless specified otherwise.
 - 2. When flashing is over 250 mm (10 inches) in vertical height or horizontal width use either 0.5 Kg (20 oz) copper or 0.5 mm (0.018 inch) stainless steel.
 - 3. Use stainless steel at aluminum roof curbs where flashing contacts the aluminum.
 - 4. Use either copper, or stainless steel at pipe flashings.
- B. Fabricate metal base flashing up vertical surfaces not less than 200 mm (8 inch) nor more than 400 mm (16 inch).
- C. Fabricate roof flange not less than 100 mm (4 inches) wide unless shown otherwise. When base flashing length exceeds 2400 mm (8 feet) form flange edge with 13 mm (1/2 inch) hem to receive cleats.
- D. Form base flashing bent from strip except pipe flashing. Fabricate ends for riveted soldered lap seam joints. Fabricate expansion joint ends as specified.
- E. Pipe Flashing: (Other than engine exhaust or flue stack)
 - 1. Fabricate roof flange not less than 100 mm (4 inches) beyond sleeve on all sides.
 - 2. Extend sleeve up and around pipe and flange out at bottom not less than 13 mm (1/2 inch) and solder to flange and sleeve seam to make watertight.
 - 3. At low pipes 200 mm (8 inch) to 450 mm (18 inch) above roof:

- a. Form top of sleeve to turn down into the pipe at least 25 mm (one inch).
- b. Allow for loose fit around and into the pipe.
- 4. At high pipes and pipes with goosenecks or other obstructions which would prevent turning the flashing down into the pipe:
 - a. Extend sleeve up not less than 300 mm (12 inch) above roofing.
 - b. Allow for loose fit around pipe.

2.8 COUNTERFLASHING (CAP FLASHING OR HOODS)

- A. Either copper or stainless steel, unless specified otherwise.
- B. Fabricate to lap base flashing a minimum of 100 mm (4 inches) with drip:
 - 1. Form lock seams for outside corners. Allow for lap joints at ends and inside corners.
 - 2. In general, form flashing in lengths not less than 2400 mm (8 feet) and not more than 3000 mm (10 feet).
 - 3. Two-piece, lock in type flashing may be used in-lieu-of one piece counter-flashing.
 - 4. Manufactured assemblies may be used.
 - 5. Where counterflashing is installed at new work use an integral flange at the top designed to be extended into the masonry joint or reglet in concrete.
- C. One-piece Counterflashing:
 - 1. Back edge turned up and fabricate to lock into reglet in concrete.
 - 2. Upper edge formed to extend full depth of masonry unit in mortar joint with back edge turned up 6 mm (1/4 inch).
- D. Two-Piece Counterflashing:
 - 1. Receiver to extend into masonry wall depth of masonry unit with back edge turned up 6 mm (1/4 inch) and exposed edge designed to receive and lock counterflashing upper edge when inserted.
 - 2. Counterflashing upper edge designed to snap lock into receiver.
- E. Surface Mounted Counterflashing; one or two piece:
 - 1. Use at existing or new surfaces where flashing can not be inserted in vertical surface.
 - 2. One piece fabricate upper edge folded double for 65 mm (2 1/2 inches) with top 19 mm (3/4 inch) bent out to form "V" joint sealant pocket with vertical surface. Perforate flat double area against

vertical surface with horizontally slotted fastener holes at 400 mm (16 inch) centers between end holes. Option: One piece surface mounted counter-flashing (cap flashing) may be used. Fabricate as detailed on Plate 51 of SMACNA Architectural Sheet Metal Manual.

3. Two pieces: Fabricate upper edge to lock into surface mounted receiver. Fabricate receiver joint sealant pocket on upper edge and lower edge to receive counterflashing, with slotted fastener holes at 400 mm (16 inch) centers between upper and lower edge.

F. Pipe Counterflashing:

- 1. Form flashing for water-tight umbrella with upper portion against pipe to receive a draw band and upper edge to form a "V" joint sealant receiver approximately 19 mm (3/4 inch) deep.
- 2. Fabricate 100 mm (4 inch) over lap at end.
- 3. Fabricate draw band of same metal as counter flashing. Use 0.6 Kg (24 oz) copper or 0.33 mm (0.013 inch) thick stainless steel or copper coated stainless steel.
- 4. Use stainless steel bolt on draw band tightening assembly.
- 5. Vent pipe counter flashing may be fabricated to omit draw band and turn down 25 mm (one inch) inside vent pipe.
- G. Where vented edge decks intersect vertical surfaces, form in one piece, shape to slope down to a point level with and in front of edge-set notched plank; then, down vertically, overlapping base flashing.

2.11 HANGING GUTTERS

- A. Fabricate gutters of not less than the following: 0.051inch) thick aluminum..
- B. Fabricate hanging gutters in sections not less than (8 feet) long, except at ends of runs where shorter lengths are required.
- C. Building side of gutter shall be not less than 38 mm (1 1/2 inches) higher than exterior side.
- D. Gutter Bead: Stiffen outer edge of gutter by folding edge over approximately 19 mm (3/4 inch) toward roof and down approximately19 mm (3/4 inch) unless shown otherwise.
- E. Gutter Spacers:
 - 1. Fabricate of same material and thickness as gutter.
 - 2. Fabricate 25 mm (one inch) wide strap and fasten to gutters not over 900 mm (36 inches) on center.

- 3. Turn back edge up 25 mm (one inch) and lap front edge over gutter bead.
- 4. Rivet and solder to gutter except rivet and seal to aluminum.

F. Outlet Tubes:

- 1. Form outlet tubes to connect gutters to conductors of same metal and thickness as gutters extend into the conductor 75 mm (3 inch). Flange upper end of outlet tube 13 mm (1/2 inch).
- Lock and solder longitudinal seam except use sealant in lieu of solder with aluminum.
- 3. Seal aluminum tube to gutter and rivet to gutter.
- 4. Fabricate basket strainers of same material as gutters.

G. Gutter Brackets:

- 1. Fabricate of same metal as gutter. Use the following:
 - a. (1/4 by 1 inch) aluminum.
- 2. Fabricate to gutter profile.
- 3. Drill two 5 mm (3/16 inch) diameter holes in anchor leg for countersunk flat head screws.

2.12 CONDUCTORS (DOWNSPOUTS)

- A. Fabricate conductors of same metal and thickness as gutters in sections approximately 3000 mm (10 feet) long [with 19 mm (3/4 inch) wide flat locked seams].
 - 1. Fabricate open face channel shape with hemmed longitudinal edges.
- B. Fabricate elbows by mitering, riveting, and soldering except seal aluminum in lieu of solder. Lap upper section to the inside of the lower piece.
- C. Fabricate conductor brackets or hangers of same material as conductor, 2 mm (1/16 inch) thick by 25 mm (one inch) minimum width. Form to support conductors 25 mm (one inch) from wall surface in accordance with Architectural Sheet Metal Manual Plate 34, Design C for rectangular shapes and E for round shapes.

D. Conductor Heads:

- 1. Fabricate of same material as conductor.
- 2. Fabricate conductor heads to not less than 250 mm (10 inch) wide by 200 mm (8 inch) deep by 200 mm (8 inches) from front to back.
- 3. Form front and side edges channel shape not less than 13 mm (1/2 inch) wide flanges with edge hemmed.

- Project Number: 589-370
 - 4. Slope bottom to sleeve to conductor or downspout at not less than 60 degree angle.
 - 5. Extend wall edge not less than 25 mm (one inch) above front edge.
 - 6. Solder joints for water tight assembly.
 - 7. Fabricate outlet tube or sleeve at bottom not less than 50 mm (2 inches) long to insert into conductor.

2.14 REGLETS

- A. Fabricate reglets of one of the following materials:
 - 1. Stainless steel, not less than 0.3 mm (0.012 inch) thick.
 - 2. Plastic coated extruded aluminum, not less than 1.4 mm (0.055 inch) thick prefilled with butyl rubber sealer and complete with plastic wedges inserted at 1000 mm (40 inches) on centers.
 - 3. Plastic, ASTM D1784, Type II, not less than 2 mm (0.075 inch) thick.
- B. Fill open-type reglets with fiberboard or other suitable separator, to prevent crushing of the slot during installation.
- C. Bend edges of reglets for setting into concrete to an angle of not less than 45 degrees, and make wide enough to provide firm anchorage in the concrete.
- D. Fabricate reglets for building into horizontal masonry mortar joints not less than 19 mm (3/4 inch) deep, nor more than 25 mm (one inch) deep.
- E. Fabricate mitered corners, fittings, and special shapes as may be required by details.
- F. Reglets for concrete may be formed to receive flashing and have a 10 mm (3/8 inch), 45 degree snap lock.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 - 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.

- 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
- 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
- 5. Coordinate with masonry work for the application of a skim coat of mortar to surfaces of unit masonry to receive flashing material before the application of flashing.
- 6. Apply a layer of 7 Kg (15 pound) saturated felt followed by a layer of rosin paper to wood surfaces to be covered with copper. Lap each ply 50 mm (2 inch) with the slope and nail with large headed copper nails.
- 7. Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.
- 8. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
- 9. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.
- 10. Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.
- 11. Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.
- 12. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.
- 13. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.

- 14. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.
- 15. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.
- 16. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.

3.2 THROUGH-WALL FLASHING

A. General:

- 1. Install continuous through-wall flashing between top of concrete foundation walls and bottom of masonry building walls; at top of concrete floors; under masonry, concrete, or stone copings and elsewhere as shown.
- 2. Where exposed portions are used as a counterflashings, lap base flashings at least 100 mm (4 inches) and use thickness of metal as specified for exposed locations.
- 3. Exposed edge of flashing may be formed as a receiver for two piece counter flashing as specified.
- 4. Terminate exterior edge beyond face of wall approximately 6 mm (1/4 inch) with drip edge where not part of counter flashing.
- 5. Turn back edge up 6 mm (1/4 inch) unless noted otherwise where flashing terminates in mortar joint or hollow masonry unit joint.
- 6. Terminate interior raised edge in masonry backup unit approximately 38 mm (1 1/2 inch) into unit unless shown otherwise.
- 7. Under copings terminate both edges beyond face of wall approximately 6 mm (1/4 inch) with drip edge.
- 8. Lap end joints at least two corrugations, but not less than 100 mm (4 inches). Seal laps with sealant.
- 9. Where dowels, reinforcing bars and fastening devices penetrate flashing, seal penetration with sealing compound. Sealing compound is specified in Section 07 92 00, JOINT SEALANTS.

- 10. Coordinate with other work to set in a bed of mortar above and below flashing so that total thickness of the two layers of mortar and flashing are same as regular mortar joint.
- 11. Where ends of flashing terminate turn ends up 25 mm (1 inch) and fold corners to form dam extending to wall face in vertical mortar or veneer joint.
- 12. Turn flashing up not less than 200 mm (8 inch) between masonry or behind exterior veneer.
- 13. When flashing terminates in reglet extend flashing full depth into reglet and secure with lead or plastic wedges spaced 150 mm (6 inch) on center.
- 14. Continue flashing around columns:
 - a. Where flashing cannot be inserted in column reglet hold flashing vertical leg against column.
 - b. Counterflash top edge with 75 mm (3 inch) wide strip of saturated cotton unless shown otherwise. Secure cotton strip with roof cement to column. Lap base flashing with cotton strip 38 mm (1 1/2 inch).
- B. Flashing at Top of Concrete Foundation Walls Where concrete is exposed.

 Turn up not less than 200 mm (8 inch) high and into masonry backup

 mortar joint or reglet in concrete backup as specified.
- C. Flashing at Top of Concrete Floors (except where shelf angles occur): Place flashing in horizontal masonry joint not less than 200 mm (8 inch) below floor slab and extend into backup masonry joint at floor slab 38 mm (1 1/2 inch).
- D. Flashing at Cavity Wall Construction: Where flashing occurs in cavity walls turn vertical portion up against backup under waterproofing, if any, into mortar joint. Turn up over insulation, if any, and horizontally through insulation into mortar joint.
- E. Flashing at Veneer Walls:
 - 1. Install near line of finish floors over shelf angles or where shown.
 - 2. Turn up against sheathing.
 - 3. At stud framing, hem top edge 19 mm (3/4 inch) and secure to each stud with stainless steel fasteners through sheathing.
 - 4. At concrete backing, extend flashing into reglet as specified.
 - 5. Coordinate with installation of waterproofing or asphalt felt for lap over top of flashing.

- F. Lintel Flashing when not part of shelf angle flashing:
 - Install flashing full length of lintel to nearest vertical joint in masonry over veneer.
 - 2. Turn ends up 25 mm (one inch) and fold corners to form dam and extend end to face of wall.
 - 3. Turn back edge up to top of lintel; terminate back edge as specified for back-up wall.
- G. Window Sill Flashing:
 - 1. Install flashing to extend not less than 100 mm (4 inch) beyond ends of sill into vertical joint of masonry or veneer.
 - 2. Turn back edge up to terminate under window frame.
 - 3. Turn ends up 25 mm (one inch) and fold corners to form dam and extend to face of wall.
- H. Door Sill Flashing:
 - 1. Install flashing under bottom of plate sills of doors over curbs opening onto roofs. Extend flashing out to form counter flashing or receiver for counter flashing over base flashing. Set in sealant.
 - 2. Extend sill flashing 200 mm (8 inch) beyond jamb opening. Turn ends up one inch in vertical masonry joint, extend end to face of wall.

 Join to counter flashing for water tight joint.
 - 3. Where doors thresholds cover over waterproof membranes install sill flashing over water proof membrane under thresholds. Extend beyond opening to cover exposed portion of waterproof membrane and not less than 150 mm (6 inch) beyond door jamb opening at ends. Turn up approximately 6 mm (1/4 inch) under threshold.
- I. Flashing at Masonry, Stone, or Precast Concrete Copings:
 - 1. Install flashing with drips on both wall faces unless shown otherwise.
 - 2. Form penetration openings to fit tight against dowel or other item with edge turned up. Seal penetrations with sealant.

3.3 BASE FLASHING

- A. Install where roof membrane type base flashing is not used and where shown.
 - 1. Install flashing at intersections of roofs with vertical surfaces or at penetrations through roofs, to provide watertight construction.

- 2. Install metal flashings and accessories having flanges extending out on top of the built-up roofing before final bituminous coat and roof aggregate is applied.
- 3. Set flanges in heavy trowel coat of roof cement and nail through flanges into wood nailers over bituminous roofing.
- 4. Secure flange by nailing through roofing into wood blocking with nails spaced 75 mm (3 inch) on centers or, when flange over 100 mm (4 inch) wide terminate in a 13 mm (1/2 inch) folded edge anchored with cleats spaced 200 mm (8 inch) on center. Secure one end of cleat over nail heads. Lock other end into the seam.
- B. For long runs of base flashings install in lengths of not less than 2400 mm (8 feet) nor more than 3000 mm (ten feet). Install a 75 mm (3 inch) wide slip type, loose lock expansion joint filled with sealant in joints of base flashing sections over 2400 mm (8 feet) in length. Lock and solder corner joints at corners.
- C. Extend base flashing up under counter flashing of roof specialties and accessories or equipment not less than 75 mm (3 inch).

3.4 COUNTERFLASHING (CAP FLASHING OR HOODS)

A. General:

- 1. Install counterflashing over and in conjunction with installation of base flashings, except as otherwise specified or shown.
- 2. Install counterflashing to lap base flashings not less than 100 mm (4 inch).
- 3. Install upper edge or top of counterflashing not less than 225 mm (9 inch) above top of the roofing.
- 4. Lap joints not less than 100 mm (4 inch). Stagger joints with relation to metal base flashing joints.
- 5. Use surface applied counterflashing on existing surfaces and new work where not possible to integrate into item.
- 6. When fastening to concrete or masonry, use screws driven in expansion shields set in concrete or masonry. Use screws to wood and sheet metal. Set fasteners in mortar joints of masonry work.

B. One Piece Counterflashing:

1. Where flashing is installed at new masonry, coordinate to insure proper height, embed in mortar, and end lap.

- 2. Where flashing is installed in reglet in concrete insert upper edge into reglet. Hold flashing in place with lead wedges spaced not more than 200 mm (8 inch) apart. Fill joint with sealant.
- 3. Where flashing is surface mounted on flat surfaces.
 - a. When top edge is double folded anchor flat portion below sealant "V" joint with fasteners spaced not over 400 mm (16 inch) on center:
 - 1) Locate fasteners in masonry mortar joints.
 - 2) Use screws to sheet metal or wood.
 - b. Fill joint at top with sealant.
- 4. Where flashing or hood is mounted on pipe.
 - a. Secure with draw band tight against pipe.
 - b. Set hood and secure to pipe with a one by 25 mm \times 3 mm (1 \times 1/8 inch) bolt on stainless steel draw band type clamp, or a stainless worm gear type clamp.
 - c. Completely fill joint at top with sealant.
- C. Two-Piece Counterflashing:
 - 1. Where receiver is installed at new masonry coordinate to insure proper height, embed in mortar, and lap.
 - 2. Surface applied type receiver:
 - a. Secure to face construction in accordance, with manufacturers instructions.
 - b. Completely fill space at the top edge of receiver with sealant.
 - 3. Insert counter flashing in receiver in accordance with fabricator or manufacturer's instructions and to fit tight against base flashing.
- D. Where vented edge occur install so lower edge of counterflashing is against base flashing.
- E. When counter flashing is a component of other flashing install as shown.

3.5 REGLETS

- A. Install reglets in a manner to provide a watertight installation.
- B. Locate reglets not less than 225 mm (9 inch) nor more than 400 mm (16 inch) above roofing, and not less than 125 mm (5 inch) nor more than 325 mm (13 inch) above cant strip.
- C. Butt and align end joints or each section of reglet and securely hold in position until concrete or mortar are hardened:

- Coordinate reglets for anchorage into concrete with formwork construction.
- 2. Coordinate reglets for masonry to locate horizontally into mortar joints.

3.7 COPINGS

A. General:

- 1. On walls topped with a wood plank, install a continuous edge strip on the front and rear edge of the plank. Lock the coping to the edge strip with a 19 mm (3/4 inch) loose lock seam.
- 2. Where shown turn down roof side of coping and extend down over base flashing as specified for counter-flashing. Secure counter-flashing to lock strip in coping at continuous cleat.

B. Aluminum Coping:

- 1. Install with 6 mm (1/4 inch) joint between ends of coping sections.
- 2. Install joint covers, centered at each joint, and securely lock in place.
- 3. At straight runs that exceed 9600 mm (32 feet) and form the leg of a corner locate the expansion joint not more than 4800 mm (16 feet) from the corner.

3.10 HANGING GUTTERS

- A. Hang gutters with high points equidistant from downspouts. Slope at not less than $1:200 \ (1/16 \ \text{inch per foot})$.
- B. Lap joints, except for expansion joints, at least 25 mm (one inch) in the direction of flow. Rivet and seal or solder lapped joints.
- C. Support gutters in brackets spaced not more than 600 mm (24 inch) on centers, brackets attached to facial or wood nailer by at least two screws or nails.
 - 1. For aluminum gutters use aluminum brackets or stainless steel brackets.
 - 2. Use brass or stainless steel screws.
- D. Secure brackets to gutters in such a manner as to allow free movement of gutter due to expansion and contraction.
- E. Gutter Expansion Joint:
 - 1. Locate expansion joints midway between outlet tubes.
 - 2. Provide at least a 25 mm (one inch) expansion joint space between end baffles of gutters.

- 3. Install a cover plate over the space at expansion joint.
- 4. Fasten cover plates to gutter section on one side of expansion joint only.
- 5. Secure loose end of cover plate to gutter section on other side of expansion joint by a loose-locked slip joint.
- F. Outlet Tubes: Set bracket strainers loosely into gutter outlet tubes.

3.11 CONDUCTORS (DOWNSPOUTS)

- A. Where scuppers discharge into downspouts install conductor head to receive discharge with back edge up behind drip edge of scupper. Fasten and seal joint. Sleeve conductors to gutter outlet tubes and fasten joint and joints between sections.
- B. Set conductors plumb and clear of wall, and anchor to wall with two anchor straps, located near top and bottom of each section of conductor. Strap at top shall be fixed to downspout, intermediate straps and strap at bottom shall be slotted to allow not less than 13 mm (1/2 inch) movement for each 3000 mm (10 feet) of downspout.
- C. Install elbows, offsets and shoes where shown and required. Slope not less than 45 degrees.

- - - E N D - - -

SECTION 07 72 00 ROOF ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies copings, fascias, and expansion joints.

1.2 RELATED WORK

- A. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES
- B. Sealant material and installation: Section 07 92 00, JOINT SEALANTS.

1.3 QUALITY CONTROL

- A. All roof accessories shall be the products of manufacturers regularly engaged in producing the kinds of products specified.
- B. Each accessory type shall be the same and be made by the same manufacturer.
- C. Each accessory shall be completely assembled to the greatest extent possible before delivery to the site.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples: Representative sample panel of color anodized aluminum not less than 100 mm X 100 mm (four by four inches), except extrusions shall be a width not less than section to be used. Sample shall show coating with integral color and texture and shall include manufacturer's identifying label.
- C. Shop Drawings: Each item specified showing design, details of construction, installation and fastenings.
- D. Manufacturer's Literature and Data: Each item specified.
- E. Certificates: Stating that aluminum has been given specified thickness of anodizing.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extend referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Material (ASTM):

B209/209M-07.....Aluminum and Aluminum Alloy-Sheet and Plate B221/221M-08.....Aluminum-Alloy Extruded Bars, Rods, Wire,

Shapes, and Tubes

C612-10.......Mineral Fiber Block and Board Thermal Insulation
D1187-97 (R2002).....Asphalt-Base Emulsions for Use as Protective
Coatings for Metal

- C. National Association of Architectural Metal Manufacturers (NAAMM):

 AMP 500-06......Metal Finishes Manual

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum, Extruded: ASTM B221/B221M.
- B. Aluminum Sheet: ASTM B209/B209M.
- C. Galvanized Sheet Steel: ASTM A526/A526M; G-90 coating.
- D. Insulation: ASTM C612, Class 1 or 2.
- E. Asphalt Coating: ASTM D 1187, Type I, quick setting.

2.2 COPINGS

- A. Fabricate of aluminum not less than 0.125 inch thick;
- B. Turn outer edges down each face of wall as shown.
- C. Maximum lengths of 3000 mm (10 feet).
- D. Shop fabricate external and internal corners as one piece assemblies with not less than 300 mm (12 inch) leg lengths.
- E. Copings shall be Category 5 FM rated
- F. Provide 100 mm (four inch) wide 0.8 mm (0.032 inch) thick watertight joint covers.
- G. Provide anchor gutter bar of 0.8 mm (0.032 inch) thick with anchor holes formed for underside of joint.
- H. Provide concealed guttered splice plate of 0.8 mm (0.032 inch) thick with butyl or other resilient seal strips anchored to splice plate for underside of joint. Use galvanized steel anchor plate providing compression spring anchoring of coping cover.
- I. Finish: Fluorocarbon as specified.

2.3 EXTRUDED ALUMINUM GRAVEL STOPS AND FASCIAS

- A. Fabricate of aluminum not less than 2 mm (0.078 inch) thick.
- B. Turn fascia down face of wall and up above roof as shown.
- C. Maximum lengths of 3000 mm (10-feet).
- D. Shop fabricate external and internal corners as one piece assemblies with not less than 300 mm (12 inch) leg lengths.
- E. Provide 100 mm (four inch) wide 2 mm (0.078 inch) thick watertight joint covers with 150 mm (six inch) wide 0.8 mm (0.030 inch) thick underside joint flashing.

2.4 EXTRUDED ALUMINUM FASCIA-CANT SYSTEM

- A. The fascia-cant system consists of three pieces, an extruded aluminum fascia, a galvanized steel cant, and an aluminum compression clamp.
- B. Furnish in stock lengths of not more than 3000 mm (10 feet) long.
- C. Form fascia from not less than 2 mm (0.070 inch) thick aluminum. Provide four inch wide 0.8 mm (0.032-inch) thick concealed sheet aluminum joint cover plates in back of fascia.
- D. Form cant strip from galvanized steel not less than 0.8 mm (0.0299 inch) thick, to profile shown and design to hold lower edge of the fascia.
- E. Form compression clamp of not less than 0.8 mm (0.032 inch) thick aluminum designed to hold the top edge of the fascia and the built-up flashing.
- F. Internal and external corners:
 - 1. Factory fabricate and fully weld mitered joints.
 - 2. Furnish corner sections in manufacturers standard sizes sizes with not less than 300 mm (12 inch) leg lengths.
- G. Factory fabricated fascia sump assemblies.
 - 1. Fabricate sump assemblies with stainless steel cores and extruded aluminum cover to match fascia-cant.
 - 2. Provide stainless steel outlet, tube sized to suit downspout and solder to core to make watertight.
 - 3. Furnish sump assembly in 500 mm (20 inch) minimum lengths.
- H. Factory fabricated scupper assemblies:
 - 1. Fabricate scupper assembly with extended plates to match fascia-cant in 500 mm (20 inch) minimum lengths.
 - 2. Extend outlet opening not less than 50 mm (two inches) with drip edge.
 - 3. Fabricate with stainless steel cores or sleeve to drain water from toe of cant and flash in to built-up roofing with 100 mm (4 inch) wide flange.
- I. Finish on aluminum: fluorocarbon as specified.

2.5 EXTRUDED ALUMINUM ROOF EXPANSION JOINT COVERS

- A. Fabricate in 3000 mm (10 foot) lengths with fastener openings slotting for expansion not over 600 mm (24 inch) centers.
- B. Provide four-way expansion, for joint widths shown.
- C. Mill finish on aluminum.
- D. Form waterstop or moisture seals of continuous sheets of neoprene, not less than 0.8 mm (0.032 inch) thick.
- E. Fabricate corners as one piece assembly with mitered and welded joint and least dimension legs not less than 300 mm (12 inches) long.

- F. Factory fabricate end caps and transitions to insure waterproof assembly.
- G. Three piece assembly:
 - 1. Roof expansion joint cover system consists of an extruded aluminum cover, extruded frame or curb vertical section, galvanized steel cant, and aluminum compression clamp counter flashing, complete with moisture seals. Form cover and vertical section from extruded aluminum, 2 mm (0.080 inch) minimum thickness with spring stainless steel tension or pivot bar.
 - 2. Form cant from galvanized steel not less than 0.8 (0.029 inch) thick formed to profile shown.
 - 3. Form splice plates of not less than 0.8 mm (0.032 inch) thick aluminum sheet.
 - 4. Form counter flashing member of 1.3 mm (0.050 inch) thick sheet aluminum, secured with screws to the top edge of the vertical section and providing compression clamp over base flashing.
 - 5. Provide compression gasket separating cover from curb bearing.
- H. Two piece assembly:
 - Roof expansion joint system consists of an extruded aluminum cover combination extruded aluminum frame or curb with integral adjustable counter flashing flange, and moisture seals.
 - 2. Form cover from extruded aluminum 2 mm (0.078 inch) minimum thickness.
 - 3. Form cover anchor system of stainless steel pivot bar.
 - 4. Form frame assembly of not less than 2 mm (0.076 inch) aluminum except for flashing portion.
 - 5. Provide compression gasket separating cover from curb at bearing.

2.6 FINISH

A. Fluorocarbon Finish: AAMA 2605.2 high performance organic coating.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof accessories where shown.
- B. Secure with fasteners in accordance with manufacture's printed installation instructions and approved shop drawings unless shown otherwise.
- C. Comply with section 07 92 00, JOINT SEALANTS to install sealants where manufactures installation instructions require sealant.
- D. Coordinate with roofing work for installation of items in sequence to prevent water infiltration.

E. Aluminum Coping:

- 1. Install sections of coping with approximately 6 mm (1/4-inch) space between ends of sections.
- 2. Center joint gutter bar and covers at joints and securely lock in place.
- 3. When snap-on system is used insure front and back edges are locked in place.

F. Fascia-Cant System:

- Install galvanized steel cant; coordinate with roofing work and after completion of roofing work install extruded aluminum fascia, concealed joint cover plate, and aluminum compression clamp, where shown.
- 2. Install system to allow for expansion and contraction with 6 mm (1/4 inch) space between extruded aluminum members and galvanized steel cant as required by manufacturer of system.
- 3. Offset joints in extruded aluminum members from galvanized steel cant joints.

3.2 PROTECTION OF ALUMINUM

- A. Provide protection for aluminum against galvanic action wherever dissimilar materials are in contact, by painting the contact surfaces of the dissimilar material with two coats of asphalt coating (complete coverage), or by separating the contact surfaces with a preformed neoprene tape having pressure sensitive adhesive coating on side.
- B. Paint aluminum in contact with wood, concrete and masonry, or other absorptive materials, that may become repeatedly wet, with two coats of asphalt coating.

3.3 ADJUSTING

Adjust expansion joints to close tightly and be watertight; insuring maximum allowance for building movement.

3.4 PROTECTION

Protect roof accessories from damage during installation and after completion of the work from subsequent construction.

- - - E N D - - -

This page was intentionally left blank

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK:

- A. Sealing of site work concrete paving: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.
- B. Masonry control and expansion joint: Section 04 20 00, UNIT MASONRY.
- C. Firestopping penetrations: Section 07 84 00, FIRESTOPPING.
- D. Glazing: Section 08 80 00, GLAZING.
- E. Glazed aluminum curtain wall: Section 08 44 13, GLAZED ALUMINUM CURTAIN WALLS.
- F. Sound rated gypsum partitions/sound sealants: Section 09 29 00, GYPSUM BOARD.
- G. Mechanical Work: Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.3 QUALITY CONTROL:

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color where required to match adjacent material.
- D. Manufacturer's Literature and Data:
 - 1. Caulking compound

- 2. Primers
- 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other.

1.5 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 $^{\circ}$ C (40 $^{\circ}$ F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.6 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F).

1.7 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Back-up Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.8 WARRANTY:

- A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years.
- B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other

provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

C509-06	Elastomeric Cellular Preformed Gasket	and
	Sealing Material.	

- C612-10Mineral Fiber Block and Board Thermal Insulation.
- C717-10Standard Terminology of Building Seals and Sealants.
- C834-10Latex Sealants.
- C920-10Elastomeric Joint Sealants.
- C1021-08Laboratories Engaged in Testing of Building Sealants.
- C1193-09Standard Guide for Use of Joint Sealants.
- C1330-02 (R2007)Cylindrical Sealant Backing for Use with Cold Liquid Applied Sealants.
- D1056-07Specification for Flexible Cellular Materials—

 Sponge or Expanded Rubber.
- E84-09Surface Burning Characteristics of Building Materials.
- C. Sealant, Waterproofing and Restoration Institute (SWRI).
 The Professionals' Guide

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. S-1:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 20-40
- B. S-2:

Patient Parking Garage
Kansas City VA Medical Center

Project Number: 589-370

- 1. ASTM C920, polyurethane or polysulfide.
- 2. Type M.
- 3. Class 25.
- 4. Grade P.
- 5. Shore A hardness of 25-40.

C. S-3:

- 1. ASTM C920, polyurethane or polysulfide.
- 2. Type S.
- 3. Class 25, joint movement range of plus or minus 50 percent.
- 4. Grade NS.
- 5. Shore A hardness of 15-25.
- 6. Minimum elongation of 700 percent.

D. S-4:

- 1. ASTM C920 polyurethane or polysulfide.
- 2. Type S.
- 3. Class 25.
- 4. Grade NS.
- 5. Shore A hardness of 25-40.

E. S-5:

- 1. ASTM C920, polyurethane or polysulfide.
- 2. Type S.
- 3. Class 25.
- 4. Grade P.
- 5. Shore hardness of 15-45.

F. S-6:

- 1. ASTM C920, silicone, neutral cure.
- 2. Type S.
- 3. Class: Joint movement range of plus 100 percent to minus 50 percent.
- 4. Grade NS.
- 5. Shore A hardness of 15-20.
- 6. Minimum elongation of 1200 percent.

G. S-7:

- 1. ASTM C920, silicone, neutral cure.
- 2. Type S.
- 3. Class 25.
- 4. Grade NS.
- 5. Shore A hardness of 25-30.

6. Structural glazing application.

H. S-8:

- 1. ASTM C920, silicone, acetoxy cure.
- 2. Type S.
- 3. Class 25.
- 4. Grade NS.
- 5. Shore A hardness of 25-30.
- 6. Structural glazing application.

I. S-9:

- 1. ASTM C920 silicone.
- 2. Type S.
- 3. Class 25.
- 4. Grade NS.
- 5. Shore A hardness of 25-30.
- 6. Non-yellowing, mildew resistant.

J. S-10:

- 1. ASTMC C920, coal tar extended fuel resistance polyurethane.
- 2. Type M/S.
- 3. Class 25.
- 4. Grade P/NS.
- 5. Shore A hardness of 15-20.

K. S-11:

- 1. ASTM C920 polyurethane.
- 2. Type M/S.
- 3. Class 25.
- 4. Grade P/NS.
- 5. Shore A hardness of 35 to 50.

L. S-12:

- 1. ASTM C920, polyurethane.
- 2. Type M/S.
- 3. Class 25, joint movement range of plus or minus 50 percent.
- 4. Grade P/NS.
- 5. Shore A hardness of 25 to 50.

2.2 CAULKING COMPOUND:

- A. C-1: ASTM C834, acrylic latex.
- B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber.

2.3 COLOR:

- A. Sealants used with exposed masonry shall match color of mortar joints.
- B. Sealants used with unpainted concrete shall match color of adjacent concrete.
- C. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise.
- D. Caulking shall be light gray or white, unless specified otherwise.

2.4 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiber board: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POUROUS SURFACES:

Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of

staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI.
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.

- 2. Do not stretch, twist, puncture, or tear sealant backings.
- 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).
 - 2. Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.

- 3. Do not use sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.
- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool joints to concave surface unless shown or specified otherwise.
- 8. Finish paving or floor joints flush unless joint is otherwise detailed.
- 9. Apply compounds with nozzle size to fit joint width.
- 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.
- C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - 1. Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

A. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.
- C. Leave adjacent surfaces in a clean and unstained condition.

3.8 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Metal to Masonry or Stone: Type S-1
 - 3. Masonry to Masonry or Stone: Type S-1
 - 4. Stone to Stone: Type S-1
 - 5. Cast Stone to Cast Stone: Type S-1
 - 6. Threshold Setting Bed: Type S-1, S-3, S-4
 - 7. Masonry Expansion and Control Joints: Type S-6
 - 8. Wood to Masonry: Type S-1
- B. Metal Reglets and Flashings:
 - 1. Flashings to Wall: Type S-6
 - 2. Metal to Metal: Type S-6
- C. Sanitary Joints:
 - 1. Walls to Plumbing Fixtures: Type S-9
 - 3. Pipe Penetrations: Type S-9
- D. Horizontal Traffic Joints:
 - 1. Concrete Paving, Unit Pavers: Type S-11 or S-12
 - 2. Garage/Parking Decks: Type S-10
- E. High Temperature Joints over 204 degrees C (400 degrees F):
 - 1. Exhaust Pipes, Flues, Breech Stacks: Type S-7 or S-8
- F. Interior Caulking:
 - 1. Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1, C-2 and C-3.
 - 2. Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1, C-2 and C-3.
 - 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1, C-2 and C-3.
 - 4. Perimeter of Lead Faced Control Windows and Plaster or Gypsum Wallboard Walls: Types C-1, C-2 and C-3.

- 5. Exposed Isolation Joints at Top of Full Height Walls: Types C-1, C-2
- 6. Exposed Acoustical Joint at Sound Rated Partitions Type C-2.
- 7. Concealed Acoustic Sealant Type S-4, C-1, C-2 and C-3.

- - - E N D - - -

This page left blank intentionally.

07 92 00 - 12

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies steel doors, steel frames and related components.
- B. Terms relating to steel doors and frames as defined in ANSI A123.1 and as specified.

1.2 RELATED WORK

- A. Frames fabricated of structural steel: Section 05 50 00, METAL FABRICATIONS.
- F. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- G. Glazing and ballistic rated glazing: Section 08 80 00, GLAZING.

1.3 TESTING

An independent testing laboratory shall perform testing.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.5 SHIPMENT

- A. Prior to shipment label each door and frame to show location, size, door swing and other pertinent information.
- B. Fasten temporary steel spreaders across the bottom of each door frame.

1.6 STORAGE AND HANDLING

- A. Store doors and frames at the site under cover.
- B. Protect from rust and damage during storage and erection until completion.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- C. Door and Hardware Institute (DHI):
 - Al15 SeriesSteel Door and Frame Preparation for Hardware,
 Series Al15.1 through Al15.17 (Dates Vary)

Approval Guide

D.	Steel Door Institute (SDI):			
	113-01 (R2006)Thermal Transmittance of Steel Door and Frame			
	Assemblies			
	128-09Acoustical Performance for Steel Door and Frame			
	Assemblies			
Ε.	American National Standard Institute:			
	A250.8-2003 (R2008) Specifications for Standard Steel Doors and			
	Frames			
F.	American Society for Testing and Materials (ASTM):			
	A167-99(R2009)Stainless and Heat-Resisting Chromium-Nickel			
	Steel Plate, Sheet, and Strip			
	A568/568-M-11Steel, Sheet, Carbon, and High-Strength, Low-			
	alloy, Hot-Rolled and Cold-Rolled			
	A1008-10Steel, sheet, Cold-Rolled, Carbon, Structural,			
	High Strength Low Alloy and High Strength Low			
	Alloy with Improved Formability			
	B209/209M-10Aluminum and Aluminum-Alloy Sheet and Plate			
	B221/221M-12Aluminum and Aluminum-Alloy Extruded Bars,			
	Rods, Wire, Profiles and Tubes			
	D1621-10Compressive Properties of Rigid Cellular			
	Plastics			
	D3656-07Insect Screening and Louver Cloth Woven from			
	Vinyl Coated Glass Yarns			
	E90-09Laboratory Measurement of Airborne Sound			
	Transmission Loss of Building Partitions			
G.	The National Association Architectural Metal Manufactures (NAAMM):			
	Metal Finishes Manual (AMP 500-06)			
Н.	National Fire Protection Association (NFPA):			
	80-13Fire Doors and Fire Windows			
I.	Underwriters Laboratories, Inc. (UL):			
	Fire Resistance Directory			
J.	Intertek Testing Services (ITS):			
	Certifications ListingsLatest Edition			
К.	Factory Mutual System (FM):			

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Sheet Steel: ASTM A1008, cold-rolled for panels (face sheets) of doors.
- B. Anchors, Fastenings and Accessories: Fastenings anchors, clips connecting members and sleeves from zinc coated steel.
- C. Aluminum Sheet: ASTM B209/209M.
- D. Aluminum, Extruded: ASTM B221/221M.
- E. Prime Paint: Paint that meets or exceeds the requirements of A250.8.

2.2 FABRICATION GENERAL

A. GENERAL:

- 1. Follow ANSI A250.8 for fabrication of standard steel doors, except as specified otherwise. Doors to receive hardware specified in Section 08 71 00, DOOR HARDWARE. Tolerances as per ANSI A250.8. Thickness, 44 mm (1-3/4 inches), unless otherwise shown.
- 2. Close top edge of exterior doors flush and seal to prevent water intrusion.
- 3. When vertical steel stiffeners are used for core construction, fill spaces between stiffeners with mineral fiber insulation.
- B. Heavy Duty Doors: ANSI A250.8, Level 2, Full flush seamless design of size and design shown. Core construction types a, d, or f, for interior doors, and, types b, c, e, or f, for exterior doors.
- C. Extra Heavy Duty Doors: ANSI A250.8, Level 3, Full flush seamless design of size and design shown. Core construction Types d or f, for interior doors, and Types b, c, e, or f, for exterior doors. Use for detention doors, stairwell doors and security doors.

Core Construction Type	Door Core Description
а	Kraft honeycomb
b	Polyurethane
С	Polystyrene
d	Unitized steel grid
е	Mineral fiberboard
	Vertical steel
f	stiffeners

2.3 METAL FRAMES

A. General:

- 1. ANSI A250.8, 1.3 mm (0.053 inch) thick sheet steel, types and styles as shown or scheduled.
- 2. Frames for exterior doors: Fabricate from 1.7 mm (0.067 inch) thick galvanized steel conforming to ASTM A525.
- 3. Knocked-down frames are not acceptable.

B. Reinforcement and Covers:

- 1. ANSI A250.8 for, minimum thickness of steel reinforcement welded to back of frames.
- 2. Provide mortar guards securely fastened to back of hardware reinforcements except on lead-lined frames.

C. Frame Anchors:

1. Floor anchors:

- a. Where floor fills occur, provide extension type floor anchors to compensate for depth of fill.
- b. At bottom of jamb use 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive two 6 mm (1/4 inch) floor bolts. Use 50 mm x 50 mm (2 inch by 2 inch) 9 mm by (3/8 inch) clip angle for lead lined frames, drilled for 9 mm (3/8 inch) floor bolts.
- c. Where mullions occur, provide 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two 6 mm (1/4 inch) floor bolts and frame anchor screws.
- d. Where sill sections occur, provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for 6 mm (1/4 inch) floor bolts and frame anchor screws. Space floor bolts at 50 mm (24 inches) on center.

2. Jamb anchors:

- a. Locate anchors on jambs near top and bottom of each frame, and at intermediate points not over 600 mm (24 inches) apart.
- b. Form jamb anchors of not less than 1 mm (0.042 inch) thick steel unless otherwise specified.
- c. Anchors set in masonry: Use adjustable anchors designed for friction fit against the frame and for extension into the masonry not less than 250 mm (10 inches). Use one of following type:
 - 1) Wire loop type of 5 mm (3/16 inch) diameter wire.
 - 2) T-shape or strap and stirrup type of corrugated or perforated sheet steel.

- d. Anchors for frames set in prepared openings:
 - 1) Steel pipe spacers with 6 mm (1/4 inch) inside diameter welded to plate reinforcing at jamb stops or hat shaped formed strap spacers, 50 mm (2 inches) wide, welded to jamb near stop.
 - 2) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass thru frame and spacers.
 - 3) Two piece frames: Subframe or rough buck drilled for 6 mm (1/4 inch) bolts.
- e. Modify frame anchors to fit special frame and wall construction and provide special anchors where shown or required.

2.6 SHOP PAINTING

ANSI A250.8.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Plumb, align and brace frames securely until permanent anchors are set.
 - 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - 2. Use wood spreaders at bottom of frame if the shipping spreader is removed.
 - 3. Protect frame from accidental abuse.
 - 4. Where construction will permit concealment, leave the shipping spreaders in place after installation, otherwise remove the spreaders after the frames are set and anchored.
 - 5. Remove wood spreaders and braces only after the walls are built and jamb anchors are secured.

B. Floor Anchors:

- 1. Anchor the bottom of door frames to floor with two 6 mm (1/4 inch) diameter expansion bolts. Use 9 mm (3/8 inch) bolts on lead lined frames
- 2. Power actuated drive pins may be used to secure frame anchors to concrete floors.

C. Jamb Anchors:

- Anchors in masonry walls: Embed anchors in mortar. Fill space between frame and masonry wall with grout or mortar as walls are built
- 2. Coat frame back with a bituminous coating prior to lining of grout filling in masonry walls.

3. Frames set in prepared openings of masonry or concrete: Expansion bolt to wall with 6 mm (1/4 inch) expansion bolts through spacers. Where subframes or rough bucks are used, 6 mm (1/4 inch) expansion bolts on 600 mm (24 inch) centers or power activated drive pins 600 mm (24 inches) on centers. Secure two piece frames to subframe or rough buck with machine screws on both faces.

3.2 INSTALLATION OF DOORS AND APPLICATION OF HARDWARE

Install doors and hardware as specified in Sections Section 08 71 00, DOOR HARDWARE.

- - - E N D - - -

SECTION 08 44 13 GLAZED ALUMINUM CURTAIN WALLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Section specifies glazed aluminum curtain wall system.
 - 1. Thermally isolated, pressure equalized on interior.
 - 2. Type: Stick system to include following:
 - a. Glass Spandrel Panels.
 - b. Integral reinforcing.
 - c. Closures, trim, subsills and flashings.
 - d. Fasteners, anchors, and related reinforcement.

1.2 RELATED WORK

- A. Structural steel: Section 05 12 00, STRUCTURAL STEEL FRAMING.
- B. Miscellaneous metal members: Section 05 50 00, METAL FABRICATIONS.
- C. Firestopping between curtain wall and structure: Section 07 84 00, FIRESTOPPING.
- D. Sheet metal flashing and trim: Section 07 60 00, FLASHING AND SHEET
 - a. Joint sealants: Section 07 92 00, JOINT SEALANTS.
 - b. Glazing: Section 08 80 00, GLAZING.
 - c. Finish Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 QUALITY ASSURANCE

- A. Qualifications:
 - Approval is required of products or service of proposed manufacturer, suppliers and installers, and will be based upon submission by Contractor of certification that:
 - a. Manufacturers Qualifications: Manufacturer with five (5) years continuous documented experience in design, fabrication, and installation of glazed aluminum curtain wall systems of type and size required for that project.
 - b. Installer: Manufacturer approved in writing. Continuously installed glazed aluminum curtain walls systems for previous five (5) years.
 - c. Manufacturer shall provide technical field representation at project site, as a minimum, at start of project, during middle, towards end of project, and during field testing of field mockup panel.
 - d. Testing Laboratory: Contractor retained. Engage an AAMA accredited commercial testing laboratory to perform tests specified. Submit

information regarding testing laboratory's facilities and qualifications of technical personnel to perform testing specified in this section.

- e. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of glazed aluminum curtain wall system. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, one another, and adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, or in-service performance.
 - 1) Do not modify intended aesthetic effects. If modifications are proposed, submit comprehensive explanatory data for review.
- f. Qualification of Welders:
 - 1) Welding shall be performed by certified welders qualified in accordance with AWS D1.2, using procedures, materials, and equipment of the type required for this work.

1.4 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Product Data:
 - 1. Manufacturer's standard details and fabrication methods.
 - 2. Data on finishing, components, and accessories.
 - 3. Instructions: Submit descriptive literature, detail specifications, available performance test data and instructions for installation, and adjustments.
 - 4. Recommendations for maintenance and cleaning of exterior surfaces.

C. Shop Drawings:

- 1. Show elevations of glazed curtain wall system at $1:50\ (1/4\ inch)$ scale, metal gages, details of construction, methods of anchorage, glazing details, and details of installation.
- 2. Submit for curtain wall system, accessories. Tentative approval of drawings shall be received before fabrication of mock-up. Final approval of drawings shall be deferred pending approval of mock-up and accessories. Drawings shall indicate in detail all system parts including elevations, full size sections, framing, jointing, panels, types and thickness of metal anchorage details, flashing and coping details, field connections, weep and drainage system, finishes,

sealing methods, glazing, glass sizes and details, firestopping insulation materials, and erection details.

- 4. Operation and Maintenance Manuals
 - a. Submit cleaning and maintenance instructions.

D. Samples:

- 1. Submit pairs of samples of each specified color and finish on 300 mm (12-inch) long section by width of each tubular, or extruded shape section or 300 mm by 300 mm (12-inch by 12-inch) wide sections of sheet shapes.
- 2. Submit corner section of framing members showing fasteners, panels, glazing methods, glazing materials, and weather-stripping. Submit one sample minimum 300 mm by 300 mm (12 inches by 12 inches). In lieu of submitting separate samples for corner section, intermediate section, and panel, one composite sample incorporating all components and features listed may be submitted.
- 3. Where normal color variations are anticipated, include 2 or more units in set indicating extreme limits of color variations.

E. Glass:

- 1. Specified in Section 08 80 00, GLAZING.
- F. Quality Control Submittals:
 - 1. Design Data:
 - a. Submit structural and thermal calculations for complete wall assembly. Structural calculations and design shop drawings shall be signed and sealed by a structural engineer registered in state in which project is to be located.

2. Factory Test Reports:

- a. Test Reports: Provide certified test reports, for each of following listed tests, from a qualified independent testing laboratory showing that glazed aluminum curtain wall system assembly has been tested in accordance with specified test procedures and complies with performance characteristics as indicated by manufacturer's testing procedures. Manufacturer shall submit appropriate testing numbers for specific tests indicated below.
 - 1) Deflection and structural tests.
 - 2) Water penetration tests.
 - 3) Air infiltration tests.
 - 4) Delamination tests.
 - 5) Thermal conductance tests.

6) Submit factory tests required except that where a curtain wall system or component of similar type, size, and design as specified for this project has been previously tested within last year, under conditions specified herein, resulting test reports may be submitted in lieu of listed testing.

G. Manufacturer's Certificates:

- 1. Submit Certificates of Compliance, with specification requirements, for the following:
 - a. Metal extrusions.
 - b. Metal accessories.
 - c. Stating that aluminum has been given specified thickness of anodizing or organic coating finish.
 - d. Indicating manufacturer's and installer's meet qualifications as specified.
 - e. Submit list of equivalent size installations, for both manufacturer and installer, which have had satisfactory and efficient operation.

H. Manufacturer's Field Reports:

1. Submit field reports of manufacturer's field representative observations of curtain wall installation indicating observations made during inspection at beginning of project, during middle of installation and at conclusion of project. Indicate results of field testing of mockup field panel, and any directions given Contractor for corrective action.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Refer to AAMA CW 10 for care and handling of architectural aluminum from shop to site.
- B. Prior to packaging for shipment from factory, mark wall components to correspond with shop and erection drawings and their placement location and erection
- C. Prior to shipment from factory, place knocked-down lineal members in cardboard containers and cover finished surfaces of members with protective covering of adhesive paper, waterproof tape, or strippable plastic. Do not cover metal surfaces that will be in contact with sealants after installation.
- D. Inspect materials delivered to site for damage; unload and store with ventilation, free from heavy dust, not subject to combustion products or sources of water, and shall permit easy access for inspection and handling. Sealing and caulking compounds, including handling, shall be in accordance with requirements of Section 07 92 00 JOINT SEALANTS.

1.6 PROJECT CONDITIONS

Field Measurements: Where glazed aluminum curtain wall systems are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying Work.

1.7 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to extent referenced. Publications are referred to in text by basic designation only.

	only.			
В.	American Architectural Manufacturers Association (AAMA):			
	MCWM-1-89Metal Curtain Wall Manual			
	CW 10-04Care and Handling of Architectural Aluminum from			
	Shop to Site			
	CW 11-85Design Windloads for Buildings and Boundary			
	Layer Wind Tunnel Testing			
	CW 13-85Structural Sealant Glazing Systems (A Design			
	Guide)			
	CWG 1-89			
	TIR A1-04Sound Control for Fenestration Products			
	TIR A8-08Structural Performance of Composite Thermal			
	Barrier Framing Systems			
	TIR A9-91Metal Curtain Wall Fasteners			
	TIR A11-04Maximum Allowable Deflection of Framing Systems			
	for Building Cladding Components of Design Wind			
	Loads			
	101/I.S.2/A440-08Windows, Doors and Unit Skylights			
	501-05Methods of Test for Exterior Walls			
	503-08Field Testing of Metal Storefronts, Curtain			
	walls and Sloped Glazing Systems			
	2605-98High Performance Organic Coatings on			
	Architectural Extrusions and Panels			
	1503-09Thermal Transmission and Condensation Resistance			
	of Windows, Doors and Glazed Wall Sections			
С.	American National Standards Institute (ANSI):			
	Z97.1-09Glazing Materials Used in Buildings, Safety			
	Performance Specifications and Methods of Test			
D.	American Society of Civil Engineers (ASCE):			
	ASCE 7-10Minimum Design Loads for Buildings and Other			
	Structures			

Ε.	American Society for Te	sting and Materials (ASTM):
	A36/A36M-08	.Structural Steel
	A123-09	.Zinc (Hot-Dip Galvanized) Coatings on Iron and
		Steel Products
	A193-10	.Alloy-Steel and Stainless Steel Bolting
		Materials for High Temperature Service
	A307-10	.Carbon Steel Bolts and Studs, 60,000 PSI Tensile
		Strength
	в209-10	.Aluminum and Aluminum Alloy Sheet and Plate
	B211-03	.Aluminum and Aluminum Alloy Bar, Rod, Wire
	B221/B221M-08	.Aluminum and Aluminum Alloy Extruded Bars, Rods,
		Wire, Shapes and Tubes
	B316/B316M-10	.Aluminum and Aluminum Alloy Rivet and Cold-
		Heading, Wire, and Rods
	C578-10	.Rigid Cellular Polystyrene Thermal Insulation
	C612-10	.Mineral Fiber Block and Board Thermal Insulation
	C920-11	.Elastomeric Joint Sealants
	C794-10	.Standard Test Method for Adhesion-In-Peel of
		Elastomeric Joint Sealants.
	C1363-05	.Thermal Performance of Building Materials and
		Envelope Assemblies by Means of a Hot Box
		Apparatus
	D1037-06	.Evaluating the Properties of Wood-Base Fibers
		and Particle Panel Materials
	E84-10	.Surface Burning Characteristics of Building
		Materials
	E90-09	.Laboratory Measurement of Airborne Sound
		Transmission Loss of Building Partitions and
		Elements
	E283-04	.Determining Rate of Air Leakage Through Exterior
		Windows, Curtain Walls, and Doors under
		Specified Pressure Difference Across this
		Specification
	E330-02(R2010)	.Structural Performance of Exterior Windows,
		Curtain Walls, and Doors by Uniform Static Air
		Pressure Difference
	E331-00(R2009)	.Water Penetration of Exterior Windows, Curtain
		Walls, and Doors By Uniform Static Air Pressure
		Difference
	E413-10	.Classification for Rating Sound Insulation

E783-02(R2010)......Test Method for Field Measurement of Air Leakage
Through Installed Exterior Windows and Doors.
E1105-00(R2008).....Field Determination of Water Penetration of
Installed Exterior Windows, Curtain Walls, and
Doors By Uniform or Cyclic Static Air Pressure
Differences

F. American Welding Society, Inc. (AWS):

D1.2-08.....Structural Welding Code-Aluminum

G. Consumer Product Safety Commission (CPSC):

16 CFR 1201.....Architectural Glazing Standards and Related Material

H. Federal Specifications (FS):

TT-P-645B-90......Primer, Paint, Zinc-Molybdate, Alkyd Type

- I. Glass Association of North America (GANA):
 - 2010 Edition...........GANA Glazing Manual
 - 2008 Edition......GANA Sealant Manual
 - 2009 Edition...........GANA Laminated Glazing Reference Manual 2008 Edition..........Tempered Glass Engineering Standard Manual
- J. Military Specifications (MIL):

MIL-C-18480..... (Rev. B) Coating Compound, Bituminous Solvent,

Coal Tar Base

- K. National Association of Architectural Metal Manufacturers (NAAMM): 500 Series (2006).....Metal Finishes Manual.
- L. Steel Structures Painting Council (SSPC)

Paint 25-97 (2004).....Red Iron Oxide Raw Linseed Oil and Alkyd Primer (Without Lead and Chromate Pigments

1.8 WARRANTY

A.Submit manufacturer's written warranty for materials, installation and weathertightness, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to five (5) years from date of final acceptance of project by Government.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Design Requirements:
 - Curtain Wall System: Tubular aluminum sections self supporting supplementary support framing, factory prefinished, vision glass, glass spandrel infill,; related flashings, anchorage and attachment devices.
 - 2. System Assembly: Site assembled.

- 3. No curtain wall framing member shall deflect, in a direction normal to plane of wall, more than 1/175 of its clear span or 20 mm (3/4 inch), whichever is less, when designed in accordance with requirements of TIR All and tested in accordance with ASTM E330, except that when a plastered gypsum wallboard surface will be affected, deflection shall not exceed 1/360 of span. No framing member shall have a permanent deformation in excess of 0.2 percent of its clear span when tested in accordance with ASTM E330 for a minimum test period of 10 seconds at 1.5 times design wind pressures indicated as part of structural drawing wind load requirements. No glass breakage, damage to fasteners, hardware or accessories shall be permitted due to deformation stated above:
 - a. Provide system complete with framing, mullions, trim, fasteners, anchors, accessories, concealed auxiliary members, and attachment devices for securing wall to structure as specified or indicated. Unless noted otherwise, comply with MCWM-1.
 - b. Curtain wall system components shall be furnished by one manufacturer or fabricator; however, all components need not be products of same manufacturer.
 - c. Fully coordinate system accessories directly incorporated, and adjacent to contiguous related work and insure materials compatibility, deflection limitations, thermal movements, and clearances and tolerances as indicated or specified.
 - d. Provide system with adequate allowances for expansion and contraction of components and fastenings to prevent buckling damage, joint seal failure, glass breakage, undue stress on fastenings or other detrimental effects. For design purposes, base provisions for thermal movement on assumed ambient temperature range of from -18 degrees C to 49 degrees C (0 degrees F to 120 degrees F).
 - e. Provide wall system to accommodate tolerances in building frame and other contiguous work as indicated or specified.
- B. Manufacturer's Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of kind indicated. Engineering services are defined as those performed for installations of curtain walls that are similar to those indicated for this Project in material, design, and extent.
 - C. Performance Requirements:
 - 1. System shall meet or exceed all performance requirements specified.

- 2. Curtain wall components shall have been tested in accordance with requirements below and shall meet performance requirements specified:
- 3. System Design: Design and size components to withstand dead loads and live loads caused by positive and negative wind loads acting normal to plane of wall as measured in accordance with ASTM E330.
- 4. Seismic Loads: Design and size components to withstand seismic loads and sway displacement as calculated in accordance with IBC code.
- 5. Water Penetration:
 - a. No water penetration shall occur when wall is tested in accordance with ASTM E331 at a differential static test pressure of 20 percent of inward acting design wind pressure as indicated on structural drawings, but not less than 479 Pa (10 psf).
 - b. Make provision in wall construction for adequate drainage to outside of water leakage or condensation that occurs within outer face of wall. Leave drainage and weep openings in members and wall open during test.
- 6. Air Infiltration: Test glazed aluminum curtain wall system according to AAMA 503, which requires testing according to ASTM E783
 - a. Static-Air-Differential: 75 Pa (1.57 lbf/sq. ft.) minimum.
 - b. Air Leakage: 0.03 L/s per sq. m (0.06 cfm/sq ft) of surface maximum.
- 7. Deflections Test: ASTM E330, Procedure B:
 - a. No member shall deflect in a direction parallel to plane of wall, when carrying its full design load, more than an amount which will reduce edge cover or glass bite below 75 percent of design dimension. No member after deflection under full design load, shall have a clearance between itself and top of panel, glass, sash, or other part immediately below it less than 3 mm (1/8 inch); clearance between member and an operable window or door shall be minimum 1.5 mm (1/16 inch).
- 8. Delamination Test:
 - a. Adhesively bonded metal-faced panels shall show no evidence of delamination, warpage or other deterioration or damage when subjected to the six "Accelerated Aging Cycles" specified in ASTM D1037.
- 9. Thermal Conductance Tests: ASTM C236.
 - a. The thermal transmittance of opaque panels shall not exceed a U-value, Btu/hr/sq ft/ degree F, as required and indicated on contract drawings for exterior wall system, when tested in accordance with ASTM C236. Average calculated thermal

transmittance of complete wall assembly including panels, windows, and all other components shall not exceed a U-value of 0.45

10. Window Tests:

a. Windows shall meet same requirements for deflection and structural adequacy as specified for framing members when tested in accordance with ASTM E330 except permanent deformation shall not exceed 0.4 percent; there shall be no glass breakage, and no permanent damage to fasteners, anchors, hardware, or operating devices. Windows shall have no water penetration when tested in accordance with requirements of ASTM E331.

2.2 MATERIALS

- A. Extruded Aluminum Framing Members: ASTM B221M; 6063-T5 extruded aluminum for non-structural components or 6063-T6 extruded aluminum for structural members; temper and alloy as recommended by manufacturer.
- B. Sheet Aluminum: ASTM B209M; 6065-T5 temper and alloy as recommended by manufacturer.
 - 1. Formed flashing and closures: Minimum 1.58 mm (0.062 inch) thick aluminum, in finish as selected.
 - 2. Extruded sill members: Minimum 1.58 mm (0.062 inch) thick aluminum, in finish as selected.
- C. Steel Sections: ASTM A36M.
- D. Primer: TS TT-P-645; red, for shop application and field touch-up.
- E. Fasteners:
 - 1. For Exterior Cap Retainers: ASTM A193 B8 300 series, stainless steel screws.
 - 2. For Framework Connections: ASTM B211M 2024-T4 aluminum, ASTM A193 B8 300 series, stainless steel, and ASTM B316 aluminum rivets, as required by connection.
 - 3. For Anchoring Glazed Aluminum Curtain Wall to Support Structure: ASTM A307 zinc plated steel fasteners.
- F. Shims: Metal or plastic.
- G. Joint Sealants and Accessories:
 - 1. In accordance with requirements specified in Section 07 92 00, JOINT SEALANTS
 - 2. Structural Flush Glazed Joints: High performance silicone sealant applied in accordance with manufacturer's recommendations.
 - 3. Non-structural Flush Glazed Joints and Weather Seal Joints: Silicone sealants applied in accordance with manufacturer's recommendations.
 - 4. Structural silicone sealant performance requirements: ASTM C920.
 - a. Hardness: Type A, 30 durometer.

- b. Ultimate Tensile Strength: 1172 kPa (170 psi).
- c. Tensile at 150% Elongation: 55 kPa (80 psi).
- d. Joint Movement Capability after 14 Day Cure: +/- 50%.
- e. Peel Strength aluminum, after 21 Day Cure: 599 g/mm (34 pounds per inch).
- 5. Structural silicone shall not be used to support dead weight of vertical glass or panels.
- 6. Comply with recommendations of sealant manufacturer for specific sealant selections.
- 7. Provide only sealants that have been tested per ASTM C794 to exhibit adequate adhesion to samples of glass and metal equivalent to those required for project.
- 8. Exposed metal to metal joints: Silicone sealant selected from manufacturer's standard colors.

H. Glazing Materials:

- 1. As specified under Section 08 80 00, GLAZING.
- 2. Glazing Gaskets:
 - a. Exterior: Continuous EPDM gaskets at each glass and spandrel panel.
 - b. Interior: Continuous, closed cell PVC foam sealant tape, sealed at corners.
- 3. Glass Sizes and Clearances:
 - a. Accommodate up to 25 mm (1 inch) glazing.
 - b. Sizes indicated are nominal. Verify actual sizes required by measuring frames. Coordinate dimensions for glass and glass holding members to meet applicable minimum clearances as recommended by glass manufacturer. Do not nip glass to remove flares or to reduce oversized dimensions. All cutting shall occur in factory.
- 4. Glass Setting Materials:
 - Provide head bead and drive wedge required for glass installation to suit curtain wall system in accordance with manufacture's recommendations.
- I. Firestopping: Refer to Section 07 84 00, FIRESTOPPING for requirements.

2.3 FABRICATION

A. Curtain wall components shall be of materials and thickness indicated or specified. Details indicated are representative of required design and profiles. Maintain sightlines indicated on drawings. Unless specifically indicated or specified otherwise, methods of fabrication and assembly shall be at discretion of curtain wall manufacturer. Perform fitting and

assembling of components in shop to maximum extent practicable. Anchorage devices shall permit adjustment in three directions. There shall be no exposed fasteners.

- B. Joints: Joints exceeding +1.5 mm (+1/16") shall be mechanically fastened.
- C. Ventilation and Drainage: Direct water leakage to exterior by means of concealed drainage system and weeps. Flashings and other materials used internally shall be nonstaining, noncorrosive, and nonbleeding.
- D. Protection and Treatment of Metals:
 - 1. Remove from metal surfaces lubricants used in fabrication and clean off other extraneous material before leaving shop.
 - 2. Provide protection against galvanic action wherever dissimilar metals are in contact, except in case of aluminum in permanent contact with galvanized steel, zinc, stainless steel, or relatively small areas of white bronze. Paint contact surfaces with one coat bituminous paint conforming to MIL-C-18480 or apply appropriate caulking material or nonabsorptive, noncorrosive, and nonstaining tape or gasket between contact surfaces.
- E. Metal sills and Closures: Fabricate accessories, spandrel panels, trim closures of sizes and shapes indicated from similar materials and finish as specified for wall system.
- F. Concealed Interior Mullion Reinforcing: ASTM A36M steel shapes as required for strength and mullion size limitations, hot dip galvanized after fabrication in accordance with ASTM A123.

2.4 PROTECTION

A. Provide protection for aluminum against galvanic action, wherever dissimilar materials are in contact, by painting contact surfaces of dissimilar material with a heavy coat of bituminous paint (complete coverage), or by separating contact surfaces with a preformed neoprene tape having pressure sensitive adhesive coating on one side.

2.5 METAL FINISHES

- A. In accordance with NAAMM AMP500 series.
- B. Anodized Aluminum:
 - 1. AA-C22A41 Chemically etched medium matte, with clear anodic coating, Class 1 Architectural, 0.7-mil thick.
- C. Apply one coat of bituminous paint to concealed aluminum and steel surfaces in contact with cementitious or dissimilar materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Prior to installation of glazed curtain wall system, arrange for representative(s) of manufacturer to examine structure and substrate to determine that they are properly prepared, and ready to receive glazed curtain wall work included herein.
- B. Verifying Conditions and Adjacent Surfaces: After establishment of lines and grades and prior to system installation examine supporting structural elements. Verify governing dimensions, including floor elevations, floor to floor heights, minimum clearances between curtain wall and structural frames, and other permissible dimensional tolerances in building frame.

3.2 PREPARATION

- A. Take field dimensions and examine condition of substrates, supports, and other conditions under which work of this section is to be performed to verify that work may properly commence. Do not proceed with installation until unsatisfactory conditions have been corrected.
- B. Contact between aluminum and dissimilar metals shall receive a protective coating of asphaltic paint for prevention of electrolytic action and corrosion.

3.3 INSTALLATION

- A. Installation and erection of glazed curtain wall system and all components shall be in accordance with written directions of curtain wall manufacturer. Match profiles, sizes, and spacing indicated on approved shop drawings.
- B. Bench Marks and Reference Points: Establish and permanently mark bench marks for elevations and building line offsets for alignment at convenient points on each floor level. Should any error or discrepancy be discovered in location of marks, stop erection work in that area until discrepancies have been corrected.
- C. Ensure that drainage system operates properly in accord with AAMA 501 procedures.
- D. Do not proceed with structural silicone work when metal temperature is below 0 degrees C (32 degrees F).
- E. Isolate between aluminum and dissimilar metals with protective coating or plastic strip to prevent electrolytic corrosion.
- F. Install glazed aluminum curtain wall system so as to maintain a virtually flat face cap, with no visible bowing.
- G. Install entire system so that fasteners are not visible.
- H. Tolerances:

- 1. Maximum variation from plane or location shown on approved shop drawings: 3 mm per 3600 mm (1/8 inch per 12 feet) of length up to not more than 13 mm (1/2 inch) in any total length.
- 2. Maximum offset from true alignment between two identical members abutting end to end in line: 0.8 mm (1/32 inch).
- 3. Sealant Space Between Curtain Wall Mullion and Adjacent Construction:

 Maximum of 19 mm (3/4 inch) and minimum of 6 mm (1/4 inch).

I. Joint Sealants:

- 1. Joint Sealants: Shall be in accordance with requirements of Section 07 92 00, JOINT SEALANTS.
- 2. Surfaces to be primed and sealed shall be clean, dry to touch, free from frost, moisture, grease, oil, wax, lacquer, paint, or other foreign matter. Enclose joints on three sides. Clean out grooves to proper depth. Joint dimensions shall conform to approved detail drawings with a tolerance of plus 3 mm (1/8 inch). Do not apply compound unless ambient temperature is between 5 and 35 degrees C (40 and 90 degrees F). Clean out loose particles and mortar just before sealing. Remove protective coatings or coverings from surfaces in contact with sealants before applying sealants or tapes. Solvents used to remove coatings shall be of type that leave no residue on metals.
- 3. Match approved sample. Force compound into grooves with sufficient pressure to fill grooves solidly. Sealing compound shall be uniformly smooth and free of wrinkles and, unless indicated otherwise, shall be tooled and left sufficiently convex to result in a flush joint when dry. Do not trim edges of sealing material after joints are tooled. Mix only amount of multi-component sealant which can be installed within four hours, but at no time shall this amount exceed 19 liters (5 gallons).
- 4. Apply primer to masonry, concrete, wood, and other surfaces as recommended by sealant manufacturer. Do not apply primer to surfaces which will be exposed after caulking is completed.
- 5. Tightly pack backing in bottom of joints which are over 13 mm (1/2 inch) in depth with specified backing material to depth indicated or specified. Roll backing material of hose or rod stock into joints to prevent lengthwise stretching.
- 6. Install bond preventive material at back or bottom of joint cavities in which no backstop material is required, covering full width and length of joint cavities.

7. Remove compound smears from surfaces of materials adjacent to sealed joints as work progresses. Use masking tape on each side of joint where texture of adjacent material will be difficult to clean. Remove masking tape immediately after filling joint. Scrape off fresh compound from adjacent surfaces immediately and rub clean with approved solvent. Upon completion of caulking and sealing, remove remaining smears, stains, and other soiling, and leave work in clean neat condition.

J. Glass:

- 1. Refer to Section 08 80 00, GLAZING, and drawing for glass types.

 Install in accordance with manufacturer's recommendations as modified herein.
- 2. Before installing glass, inspect sash and frames to receive glass for defects such as dimensional variations, glass clearances, open joints, or other conditions that will prevent satisfactory glass installation. Do not proceed with installation until defects have been corrected.
- 3. Clean sealing surfaces at perimeter of glass and sealing surfaces of rebates and stop beads before applying glazing compound, sealing compound, glazing tape, or gaskets. Use only approved solvents and cleaning agents recommended by compound or gasket manufacturer. All sashes shall be designed for outside glazing. Provide continuous snap in glazing beads to suit glass as specified.
- 4. Insulating and tempered glass, and glass of other types that exceed 100 united inches in size: Provide void space at head and jamb to allow glass to expand or move without exuding sealant. Perimeter frames and ventilator sections shall have glazing rebates providing an unobstructed glazing surface 19 mm (3/4 inch) in height. Glazing rebate surfaces must be sloped to shed water.
- 5. Provide adequate means to weep incidental water and condensation away from sealed edges of insulated glass units and out of wall system.

 Weeping of lock-strip gaskets should be in accordance with recommendation of glass manufacturer.

3.5 CLEANING

- A. Install curtain wall frame and associated metal to avoid soiling or smudging finish.
- B. Clean metal surfaces promptly after installation, exercising care to avoid damage to coatings.
- C. Remove excess glazing and sealant compounds, dirt, and other substances.

- D. Follow recommendations of manufacturer in selection of cleaning agents.

 Do not use cleaning agents containing ammonia or other compounds that might damage finished metal surfaces.
- E. Replace cracked, broken, and defective glass with new glass at no additional cost to Government. Just prior to final acceptance of curtain wall system clean glass surfaces on both sides, remove labels, paint spots, compounds, and other defacements, and clean metal fixed panels. Remove and replace components that cannot be cleaned successfully.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage an AAMA accredited commercial qualified independent testing and inspecting agency to perform field quality-control tests specified, and to prepare test reports: Submit information regarding testing laboratory's facilities and qualifications of technical personnel to Contracting Officer for approval.
- B. Conduct field check test for water leakage on designated wall areas after erection to comply with MCWM-1. Conduct test on two wall areas, two bays wide by two stories high where directed. Conduct test and take necessary remedial action as directed by Contracting Officer.

C. Test Specimen:

- 1. Test specimen shall include curtain wall assembly and construction. Test chamber shall be affixed to exterior side of test specimen and test shall be conducted using positive static air pressure.
- 2. Test specimens shall be selected by Contracting Officer after curtain wall system has been installed in accordance with contract drawings and specification.
- D. Sealant Adhesion Tests: Test installed sealant, in presence of sealant manufacturer's field representative, in a minimum of two areas and as follows:
- Test structural silicone sealant according to field adhesion test method described in AAMA CW 13, "Structural Sealant Glazing Systems (A Design Guide)."
 - 2. Test weatherseal sealant as recommended in writing by sealant manufacturer.
- E. Air Infiltration: Test glazed aluminum curtain wall system according to AAMA 503, which requires testing according to ASTM E783.
 - 1. Field air leakage testing is not required for continuous curtain wall systems.
 - 2. Static-Air-Pressure Differential: 75 Pa (1.57 lbf/sq. ft.) minimum.
 - 3. Air Leakage: 0.03 L/s per sq. m (0.06 cfm/sq. ft.) of surface maximum.

- F. Water Penetration: Test glazed aluminum curtain wall system for compliance with requirements according to AAMA 503, which requires testing according to ASTM E1105.
 - 1. Uniform Static-Air-Pressure Difference: 20 percent of positive design wind load, but not less than 479 Pa (10 psf). No uncontrolled water shall be present.

G. Retesting:

- Should system fail field test, system may be modified or repaired, and retested.
- 2. Should system fail second field test, system may be additionally modified or repaired, and retested.
- 3. All modifications and repairs made to tested areas shall be recorded, and same modifications and repairs made to all system and adjacent construction on project.
- 4. Should second test fail, Contracting Officer may require testing of additional areas of the curtain wall.

H. Rejection:

1. Failure of any of specimens to meet test requirements of third test shall be cause for rejection of wall system and adjacent construction on project.

3.8 PROTECTION

A. After installation, protect windows, and other exposed surfaces from disfiguration, contamination, contact with harmful materials, and from other construction hazards that will interfere with their operation, or damage their appearance or finish. Protection methods shall be in accordance with recommendations of product manufacturers or of respective trade association. Remove paper or tape factory applied protection immediately after installation. Clean surfaces of mortar, plaster, paint, smears of sealants, and other foreign matter to present neat appearance and prevent fouling of operation. In addition, wash with a stiff fiber brush, soap and water, and thoroughly rinse. Where surfaces become stained or discolored, clean or restore finish in accordance with recommendations of product manufacturer or respective trade association.

- - - END - - -

This page was intentionally left blank

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES
- C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Painting: Section 09 91 00, PAINTING.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- C. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- D. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.
 - 4. Exit devices.
 - 5. Floor closers.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on

all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

C. Samples and Manufacturers' Literature:

- 1. Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers

 Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.
- 2. Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.
- D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to

Contracting Officer Representative (COR) for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in COR's office until all other similar items have been installed in project, at which time the COR will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Project Engineer and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

- A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.
- B. Keying: A new Great Grandmaster key shall be established for this project. The key system shall be small format (Best size and profile) removable core type as previously described. The key blanks shall be protected by a utility patent with a minimum seven years remaining on the patent from the start of construction, and protected by contract-controlled distribution. The manufacturer shall furnish code pattern listings in both paper and electronic formats so keys may be reproduced by code.; provide electronic format in file type required by project's

key control software. The manufacturer shall design the new key system with the capacity to rekey the existing system and also provide for 25 percent expansion capability beyond this requirement. Submit a keying chart for approval showing proposed keying layout and listing expansion capacity.

- 1. Keying information will be furnished to the Contractor by the COR.
- 2. Supply information regarding key control of cylinder locks to manufacturers of equipment having cylinder type locks. Notify COR immediately when and to whom keys or keying information is supplied. Return all such keys to the COR.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- - E2180-07......Standard Test Method for Determining the

 Activity of Incorporated Antimicrobial Agent(s)

 In Polymeric or Hydrophobic Materials
- C. American National Standards Institute/Builders Hardware Manufacturers
 Association (ANSI/BHMA):
 - A156.1-06Butts and Hinges
 - A156.2-03Bored and Pre-assembled Locks and Latches
 - A156.3-08Exit Devices, Coordinators, and Auto Flush Bolts
 - A156.4-08Door Controls (Closers)
 - A156.5-01Auxiliary Locks and Associated Products
 - A156.6-05Architectural Door Trim
 - A156.8-05Door Controls-Overhead Stops and Holders
 - A156.12-05Interconnected Locks and Latches
 - A156.13-05Mortise Locks and Latches Series 1000
 - A156.14-07Sliding and Folding Door Hardware
 - A156.15-06Release Devices-Closer Holder, Electromagnetic

and Electromechanical

A156.16-08Auxiliary Hardware

	A156.17-04Self-Closing Hinges and Pivots
	A156.18-06Materials and Finishes
	A156.20-06Strap and Tee Hinges, and Hasps
	A156.21-09Thresholds
	A156.22-05Door Gasketing and Edge Seal Systems
	A156.23-04Electromagnetic Locks
	A156.24-03Delayed Egress Locking Systems
	A156.25-07Electrified Locking Devices
	A156.26-06Continuous Hinges
	A156.28-07Master Keying Systems
	A156.29-07Exit Locks and Alarms
	A156.30-03High Security Cylinders
	A156.31-07Electric Strikes and Frame Mounted Actuators
	A250.8-03Standard Steel Doors and Frames
D.	National Fire Protection Association (NFPA):
	80-10Fire Doors and Fire Windows
	101-09Life Safety Code
Ε.	Underwriters Laboratories, Inc. (UL):
	Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - 1. Exterior Doors: Type A2112/A5112 for doors (3 feet) wide or less and Type A2111/A5111 for doors over (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins. Hinges for exterior fire-rated doors shall be of stainless steel material.
 - 2. Interior Doors: Type A8112/A5112 for doors (3 feet) wide or less and Type A8111/A5111 for doors over (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc. shall be of stainless steel material.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to (4 feet) high: 2 hinges.
 - 2. Doors (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.

- 3. Doors greater than (7 feet 5 inches) high: 4 hinges.
- 4. Doors up to (3 feet) wide, standard weight: $(4-1/2 \text{ inches } \times 4-1/2 \text{ inches})$ hinges.
- 5. Doors over (3 feet) to (3 feet 6 inches) wide, standard weight: (5 inches \times 4-1/2 inches).
- 6. Doors over (3 feet 6 inches) to (4 feet), heavy weight: (5 inches \times 4-1/2 inches).
- 7. Provide heavy-weight hinges where specified.
- 8. At doors weighing (150 lbs.) or more, furnish (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer for each type specified.

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
 - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
 - 7. Closers shall have full size metal cover; plastic covers will not be accepted.
 - 8. Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.

- 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
- 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
- 11. Provide parallel arm closers with heavy duty rigid arm.
- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 ½" (38mm) minimum piston diameter.

2.6 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Provide floor stops (Type L02141 or L02161 in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.
- F. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement.

- G. Omit stops where floor mounted door holders are required and where automatic operated doors occur.
- H. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- I. Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- J. Provide overhead surface applied stop Type C02541, ANSI A156.8 on patient toilet doors in bedrooms where toilet door could come in contact with the bedroom door.
- K. Provide door stops on doors where combination closer magnetic holders are specified, except where wall stops cannot be used or where floor stops cannot be installed within 4-inches of the wall.
- L. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.7 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed hold-open on/off control at all other doors requiring overhead door stops.

2.8 FLOOR DOOR HOLDERS

A. Conform to ANSI Standard A156.16. Provide extension strikes for Types L01301 and L01311 holders where necessary.

2.9 LOCKS AND LATCHES

A. Conform to ANSI A156.2. Locks and latches for doors (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall have not less than seven pins. Cylinders for all locksets shall be removable core type. Cylinders shall be furnished with construction removable cores and construction master keys. Cylinder shall be removable by special key. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Best Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label

shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core of allow opening and closing during construction and prior to the installation of final cores.

- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets, shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching [______]. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with (7/8-inch) lip-to-center dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.
 - 2. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Provide lever design to match design selected by Architect or to match existing lever design. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool.)
 - 3. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.5.

2.13 KEYS

A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows:

Locks/Keys	Quantity
Cylinder locks	2 keys each
Cylinder lock change key blanks	100 each different key way
Master-keyed sets	6 keys each
Grand Master sets	6 keys each
Great Grand Master set	5 keys
Control key	2 keys

2.16 EXIT DEVICES

- A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging.
- B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels. Do not provide surface vertical rod panics at exterior doors.
- C. Concealed vertical rod panics shall be provided less bottom rod at interior doors, unless lockable or otherwise specified; provide fire pins as required by exit device and door fire labels. Where concealed vertical rod panics are specified at exterior doors, provide with both top and bottom rods.
- D. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature.
- E. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature.
- F. Exit devices for fire doors shall comply with Underwriters

 Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof
 of compliance.

2.17 FLUSH BOLTS (LEVER EXTENSION)

- A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
- B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
- C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
- D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.
- E. Provide extension rods for top bolt where door height exceeds 2184 mm (7 feet 2 inches).

2.19 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm (6 inches) high by 19 mm (3/4 inches) diameter with plate Type J302, 90 mm by 350 mm (3-1/2 inches by 14 inches), unless otherwise specified. Provide pull with projection of 70 mm (2 3/4 inches) and a clearance of 51 mm (2 inches). Cut plates of door pull plate for cylinders, or turn pieces where required.

2.23 THRESHOLDS

- A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be installed in a bed of sealant with 4-20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.
- B. For thresholds at elevators entrances see other sections of specifications.
- C. At exterior doors and any interior doors exposed to moisture, provide threshold with non-slip abrasive finish.
- D. Provide with miter returns where threshold extends more than $12\ \text{mm}$ (0.5 inch) from fame face.

2.25 WEATHERSTRIPS (FOR EXTERIOR DOORS)

A. Conform to ANSI A156.22. Air leakage shall not to exceed 0.50 CFM per foot of crack length $(0.000774 \,\mathrm{m}^3/\mathrm{s/m})$.

2.26 MISCELLANEOUS HARDWARE

- A. Access Doors (including Sheet Metal, Screen and Woven Wire Mesh Types):
 Except for fire-rated doors and doors to Temperature Control Cabinets,
 equip each single or double metal access door with Lock Type E76213,
 conforming to ANSI A156.5. Key locks as directed. Ship lock prepaid to
 the door manufacturer. Hinges shall be provided by door manufacturer.
- B. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame.

2.30 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626 or 630.
 - 2. Hinges --interior doors: 652 or 630.
 - 3. Pivots: Match door trim.
 - 4. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 5. Thresholds: Mill finish aluminum.
 - 6. Other primed steel hardware: 600.

2.31 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
652	Steel
626	Brass or bronze

630	Stainless steel
-----	-----------------

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For new buildings locate hardware on doors at heights specified below, with all hand-operated hardware centered within 864 mm (34 inches) to 1200 mm (48 inches), unless otherwise noted:
- B. Hardware Heights from Finished Floor:
 - 1. Exit devices centerline of strike (where applicable) (40-5/16 inches).
 - 2. Locksets and latch sets centerline of strike (40-5/16 inches).
 - 3. Deadlocks centerline of strike (48 inches).
 - 4. Hospital arm pull (46 inches) to centerline of bottom supporting bracket.
 - 5. Centerline of door pulls to be (40 inches).
 - 6. Push plates and push-pull shall be (50 inches) to top of plate.
 - 7. Push-pull latch to be (40-5/16 inches) to centerline of strike.
 - 8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

- A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors. At exterior doors, closers shall be mounted on interior side. Where closers are mounted on doors they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws.
- B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- E. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- F. After locks have been installed; show in presence of COR that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also a copy of the invoice shall be sent to the COR for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA Resident/Project Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance

Kansas City VA Medical Center

Project Number: 589-370

procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

ELECTRIC HARDWARE ABBREVIATIONS LEGEND:

ADO = Automatic Door Operator

EMCH = Electro-Mechanical Closer-Holder

MHO = Magnetic Hold-Open (wall- or floor-mounted)

EXTERIOR SINGLE DOORS

<u>HW-E1</u>

Each Door to Have: NON-RATED

3 Hinge

1 Entry Lock F11

1 Latch Protector (outswing dr)

1 Closer C02011/C02021

1 Floor Stop L02121 x 3 FASTNERS

1 Threshold J32120 x SILICONE GASKET
1 Door Sweep R0Y416

1 Set Frame Seals R0Y164

1 Set Flame Seals R01104

1 Drip R0Y976

- - - E N D - - -

This page left blank intentionally.

08 71 00-16

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies glass, plastic, related glazing materials and accessories. Glazing products specified apply to factory or field glazed items.

1.2 RELATED WORK

- A. Factory glazed by manufacturer in following units:
 - 1. Section 08 44 13, GLAZED ALUMINUM CURTAIN WALLS.

1.3 LABELS

- A. Temporary labels:
 - Provide temporary label on each light of glass identifying manufacturer or brand and glass type, quality and nominal thickness.
 - 2. Label in accordance with NFRC (National Fenestration Rating Council) label requirements.
 - 3. Temporary labels shall remain intact until glass is approved by Resident Engineer.

B. Permanent labels:

- 1. Locate in corner for each pane.
- 2. Label in accordance with ANSI Z97.1 and SGCC (Safety Glass Certification Council) label requirements.
 - a. Tempered glass.
 - b. Laminated glass or have certificate for panes without permanent label.

1.4 PERFORMANCE REQUIREMENTS

- A. Glass Thickness:
 - 1. Select thickness of exterior glass to withstand dead loads and wind loads acting normal to plane of glass at design pressures calculated in accordance with ASCE 7.
 - 2. Test in accordance with ASTM E 1300.
 - 3. Thicknesses listed are minimum. Coordinate thicknesses with framing system manufacturers.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Certificates:

- 1. Certificates stating that wire glass, meets requirements for safety glazing material as specified in ANSI Z97.1.
- 2. Certificate on shading coefficient.
- 3. Certificate on "R" value when value is specified.
- C. Warranty: Submit written guaranty, conforming to General Condition requirements, and to "Warranty of Construction" Article in this Section.
- D. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
 - 2. Insulating glass units.
 - 3. Glazing cushion.
 - 4. Sealing compound.

E. Samples:

- 1. Size: 150 mm by 150 mm (6 inches by 6 inches).
- F. Preconstruction Adhesion and Compatibility Test Report: Submit glazing sealant manufacturer's test report indicating glazing sealants were tested for adhesion to glass and glazing channel substrates and for compatibility with glass and other glazing materials.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.
- C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.

1.7 PROJECT CONDITIONS

Field Measurements: Field measure openings before ordering tempered glass products. Be responsible for proper fit of field measured products.

1.8 WARRANTY

- A. Warranty: Conform to terms of "Warranty of Construction", FAR clause 52.246-21, except extend warranty period for the following:
 - 1. Insulating glass units to remain sealed for 10 years.
 - 2. Laminated glass units to remain laminated for 5 years.

3. Polycarbonate to remain clear and ultraviolet light stabilized for 5 years.

1.9 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

C. American Society for Testing and Materials (ASTM):

C542-05Lock-Strip Gaskets

C716-06Installing Lock-Strip Gaskets and Infill Glazing Materials.

C794-10Adhesion-in-Peel of Elastomeric Joint Sealants

C864-05Dense Elastomeric Compression Seal Gaskets,

Setting Blocks, and Spacers

C920-11 Elastomeric Joint Sealants

C964-07Standard Guide for Lock-Strip Gasket Glazing

C1036-06Flat Glass

and Uncoated Glass.

C1376-10Pyrolytic and Vacuum Deposition Coatings on

Flat Glass

Burning of Self-Supporting Plastic in a

Horizontal Position

D4802-10Poly (Methyl Methacrylate) Acrylic Plastic

Sheet

E84-10Surface Burning Characteristics of Building

Materials

E119-10Standard Test Methods for Fire Test of Building

Construction and Material

E2190-10Insulating Glass Unit

D. Commercial Item Description (CID):

A-A-59502Plastic Sheet, Polycarbonate

E. Code of Federal Regulations (CFR):

10-01-12

Patient Parking Garage Kansas City VA Medical Center Project Number: 589-370

16 CFR 1201 - Safety Standard for Architectural Glazing Materials; 2010

F. National Fire Protection Association (NFPA):

80-13Fire Doors and Windows.

252-12 \dots Standard Method of Fire Test of Door Assemblies

257-12Standard on Fire Test for Window and Glass

Block Assemblies

- G. National Fenestration Rating Council (NFRC)
- H. Safety Glazing Certification Council (SGCC) 2012: Certified Products Directory (Issued Semi-Annually).

I. Underwriters Laboratories, Inc. (UL):

752-11Bullet-Resisting Equipment.

J. Unified Facilities Criteria (UFC):

4-010-01-2012DOD Minimum Antiterrorism Standards for Buildings

K. Glass Association of North America (GANA):

Glazing Manual (Latest Edition) Sealant Manual (2009)

L. American Society of Civil Engineers (ASCE):

ASCE 7-10Wind Load Provisions

PART 2 - PRODUCT

2.1 GLASS

- A. Use thickness stated unless specified otherwise in assemblies.
- B. Clear Glass:
 - 1. ASTM C1036, Type I, Class 1, Quality q3.
 - 2. Thickness, 6 mm (1/4 inch) or as indicated.

2.2 HEAT-TREATED GLASS

- A. Clear Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness, 6 mm (1/4 inch) or as indicated.

2.3 LAMINATED GLASS

- A. Two or more lites of glass bonded with an interlayer material for use in building glazing
- B. Colored Interlayer:
 - 1. Use color interlayer ultraviolet light color stabilization.

- 2. Option: Use colored interlayer with clear glass in lieu of tinted glass and clear interlayer.
- 3. Option: Use white interlayer with clear glass in lieu of obscure glass and clear interlayer.
- 4. The interlayer assembly shall have uniform color presenting same appearance as tinted glass assembly.
- C. Use 1.5 mm (0.060 inch) thick interlayer for:
 - 1. Horizontal or Sloped glazing.
 - 2. Acoustical glazing.
 - 3. Heat strengthened or fully tempered glass assembles.
- D. Use min. 0.75 mm (0.030 inch) thick interlayer for vertical glazing where 1.5 mm (0.060 inch) interlayer is not otherwise shown or required.

2.4 LAMINATED GLAZING ASSEMBLIES

- A. Clear Glazing:
 - 1. Both panes clear glass ASTM C1036, Type I, Class 1, Quality q3.
 - 2. Thickness: Each pane, 3 mm (1/8 inch) thick or as indicated.
- B. Clear Tempered Glazing:
 - 1. Both panes ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness: Each pane 4.8 mm (3/16 inch) thick or as indicated.

2.5 GLAZING ACCESSORIES

- A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work shall have a finish that will not corrode or stain while in service.
- B. Setting Blocks: ASTM C864:
 - 1. Channel shape; having 6 mm (1/4 inch) internal depth.
 - 2. Shore a hardness of 80 to 90 Durometer.
 - 3. Block lengths: 50 mm (two inches) except 100 to 150 mm (four to six inches) for insulating glass.
 - 4. Block width: Approximately 1.6 mm (1/16 inch) less than the full width of the rabbet.
 - 5. Block thickness: Minimum 4.8 mm (3/16 inch). Thickness sized for rabbet depth as required.
- C. Spacers: ASTM C864:
 - 1. Channel shape having a 6 mm (1/4 inch) internal depth.

- 2. Flanges not less 2.4 mm (3/32 inch) thick and web 3 mm (1/8 inch) thick.
- 3. Lengths: One to 25 to 76 mm (one to three inches).
- 4. Shore a hardness of 40 to 50 Durometer.
- D. Sealing Tapes:
 - 1. Semi-solid polymeric based material exhibiting pressure-sensitive adhesion and withstanding exposure to sunlight, moisture, heat, cold, and aging.
 - 2. Shape, size and degree of softness and strength suitable for use in glazing application to prevent water infiltration.
- E. Spring Steel Spacer: Galvanized steel wire or strip designed to position glazing in channel or rabbeted sash with stops.
- F. Glazing Clips: Galvanized steel spring wire designed to hold glass in position in rabbeted sash without stops.
- G. Glazing Points (Sprigs): Pure zinc stock, thin, flat, triangular or diamond shaped pieces, 6 mm (1/4 inch) minimum size.
- H. Glazing Gaskets: ASTM C864:
 - 1. Firm dense wedge shape for locking in sash.
 - 2. Soft, closed cell with locking key for sash key.
 - 3. Flanges may terminate above the glazing-beads or terminate flush with top of beads.
- I. Lock-Strip Glazing Gaskets: ASTM C542, shape, size, and mounting as indicated.
- J. Glazing Sealants: ASTM C920, silicone neutral cure:
 - 1. Type S.
 - 2. Class 25
 - 3. Grade NS.
 - 4. Shore A hardness of 25 to 30 Durometer.
- K. Structural Sealant: ASTM C920, silicone acetoxy cure:
 - 1. Type S.
 - 2. Class 25.
 - 3. Grade NS.
 - 4. Shore a hardness of 25 to 30 Durometer.
- L. Neoprene, EPDM, or Vinyl Glazing Gasket: ASTM C864.
 - 1. Channel shape; flanges may terminate above the glazing channel or flush with the top of the channel.
 - 2. Designed for dry glazing.

M. Color:

- Color of glazing compounds, gaskets, and sealants used for aluminum color frames shall match color of the finished aluminum and be nonstaining.
- 2. Color of other glazing compounds, gaskets, and sealants which will be exposed in the finished work and unpainted shall be black, gray, or neutral color.
- N. Smoke Removal Unit Targets: Adhesive targets affixed to glass to identify glass units intended for removal for smoke control. Comply with requirements of local Fire Department.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
 - 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer's approved shop drawings.
- B. Advise Contractor of conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation: Do not proceed with installation until unsatisfactory conditions have been corrected.
- C. Verify that wash down of adjacent masonry is completed prior to erection of glass and glazing units to prevent damage to glass and glazing units by cleaning materials.

3.2 PREPARATION

- A. For sealant glazing, prepare glazing surfaces in accordance with GANA-02 Sealant Manual.
- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.
- F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

- A. Install in accordance with GANA-01 Glazing Manual and GANA-02 Sealant Manual unless specified otherwise.
- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.
- D. Do not allow glass to rest on or contact any framing member.
- E. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.
- F. Laminated Glass:
 - 1. Tape edges to seal interlayer and protect from glazing sealants.
 - 2. Do not use putty or glazing compounds.

3.4 INSTALLATION - WET/DRY METHOD (PREFORMED TAPE AND SEALANT)

- A. Cut glazing tape to length and set against permanent stops, 5 mm (3/16 inch) below sight line. Seal corners by butting tape and dabbing with butyl sealant.
- B. Apply heel bead of butyl sealant along intersection of permanent stop with frame ensuring full perimeter seal between glass and frame to complete the continuity of the air and vapor seal.
- C. Place setting blocks at 1/4 or 1/3 points with edge block no more than 150 mm (6 inches) from corners.
- D. Rest glazing on setting blocks and push against tape and heel bead of sealant with sufficient pressure to achieve full contact at perimeter of pane or glass unit.
- E. Install removable stops, with spacer strips inserted between glazing and applied stops, 6 mm (1/4 inch) below sight line. Place glazing tape on glazing pane or unit with tape flush with sight line.
- F. Fill gap between glazing and stop with sealant to depth equal to bite of frame on glazing, but not more than 9 mm (3/8 inch) below sight line.
- G. Apply cap bead of sealant along void between the stop and the glazing, to uniform line, flush with sight line. Tool or wipe sealant surface smooth.

3.5 INSTALLATION - WET METHOD (SEALANT AND SEALANT)

A. Place setting blocks at 1/4 or 1/3 points and install glazing pane or unit.

- B. Install removable stops with glazing centered in space by inserting spacer shims both sides at 600 mm (24 inch) intervals, 6 mm (1/4 inch) below sight line.
- C. Fill gaps between glazing and stops with sealant to depth of bite on glazing, but not more than 9 mm (3/8 inch) below sight line to ensure full contact with glazing and continue the air and vapor seal.
- D. Apply sealant to uniform line, flush with sight line. Tool or wipe sealant surface smooth.

3.6 INSTALLATION - INTERIOR WET/DRY METHOD (TAPE AND SEALANT)

- A. Cut glazing tape to length and install against permanent stops, projecting 1.6 mm (1/16 inch) above sight line.
- B. Place setting blocks at 1/4 or 1/3 points with edge block no more than 150 mm (6 inches) from corners.
- C. Rest glazing on setting blocks and push against tape to ensure full contact at perimeter of pane or unit.
- D. Install removable stops, spacer shims inserted between glazing and applied stops at 600 mm (24 inch) intervals, 6 mm (1/4 inch) below sight line.
- E. Fill gaps between pane and applied stop with sealant to depth equal to bite on glazing, to uniform and level line.
- F. Trim protruding tape edge.

3.7 INSTALLATION - INTERIOR WET METHOD (COMPOUND AND COMPOUND)

- A. Install glazing resting on setting blocks. Install applied stop and center pane by use of spacer shims at 600 mm (24 inch) centers, kept 6 mm (1/4 inch) below sight line.
- B. Locate and secure glazing pane using glazers', spring wire or clips.
- C. Fill gaps between glazing and stops with glazing compound until flush with sight line. Tool surface to straight line.

3.8 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by Resident Engineer.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.
- C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

Patient Parking Garage
Kansas City VA Medical Center

Project Number: 589-370

3.9 PROTECTION

Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

3.10 GLAZING SCHEDULE

- A. Tempered Glass:
 - 1. Install in storefront, windows, and door sidelights adjacent to doors.
 - Use clear tempered glass on interior side lights and doors, and on exterior doors and sidelights unless otherwise indicated or specified.

B. Clear Glass:

- Interior pane of dual glazed windows not receiving tempered, laminated or organic coated glass, or other special glass indicated or specified.
- C. Laminated Glass: Install as specified in doors, observation windows and interior pane of dual glazed windows where indicated.
 - 1. If laminated glass is required for double glazed windows, provide it for interior panes only.
- D. Spandrel Glass: Install specified spandrel glazing where indicated.

- - - E N D - - -

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

SECTION 09 06 00 SCHEDULE FOR FINISHES

SECTION 09 06 00-SCHEDULE FOR FINISHES

VAMC:

Location: Kansas City, Missouri

Project no. and Name: 589-370 Construct Patient Parking Garage

Submission: For Construction

Date: June 6, 2014

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART I - GENERAL

1.1 DESCRIPTION

This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITALS

Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES—provide quadruplicate samples for color approval of materials and finishes specified in this section.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)

2001Architectural Painting Specification Manual

PART 2- PRODUCTS

2.1 DIVISON 04 - MASONRY

A. Section 04 05 13, MASONRY MORTARING

Finish Code	Manufacturer	Mfg. Color Name
М	Solomon Colors	60h

B. Section 04 20 00, UNIT MASONRY

1. FACE BRICK (FB)				
Finish Code	Size	Pattern	Manufacturer	Mfg. Color Name/No.
BR	Modular	-	-	XX BLDG. 15
BR	Modular Thin	-	-	XX BLDG. 15

2.CONCRETE MASONRY U	NIT (CMU)			
Type	Size	Pattern	Finish	Mfg. Color Name/No.
CMU Standard	8x8x16	-	Smooth	Cement Products/8" Regular

2.2 DIVISION 05 - METALS

A. SECTION 05 50 00, METAL FABRICATION

Ttem	Finish
rcem	F 1111311

Angle Frames	AA
Channel Door Frames	P2
Steel Ladders	MAT
Steel Ladder Rungs	MAT
Steel Pipe Railings (Not on Steel Stairs)	Р3

B. SECTION 05 51 00, METAL STAIRS

Component	Finish	Color
Guard Rails	Р3	MPI-9, Impervo, Alkyd High Gloss Enamel, 2125-50 Sweet Innocence
Handrails	Р3	MPI-9, Impervo, Alkyd High Gloss Enamel, 2125-50 Sweet Innocence
Stringers	С	-
Risers	Р3	MPI-9, Impervo, Alkyd High Gloss Enamel, 2125-50 Sweet Innocence
Underside	Р3	MPI-119, Regal Select, Exterior Paint High Build Soft Gloss Finish, Gray Shower 2125-30

2.3 DIVISION 07 - THERMAL AND MOISTURE PROTECTION

A. SECTION 07 40 00, ROOFING AND SIDING PANELS

Туре	Shape	Ext. Finish	Int. Finish	Manufacturer	Mfg. Color Name/No.
Siding	Rectangular	Valspar Fluropon PVDF Ascot White	Valspar Fluropon PVDF Ascot White	Kingspan	Optimo Smooth
Roofing	Rectangular	Valspar Fluropon PVDF Ascot White	Valspar Fluropon PVDF Ascot White	Kingspan	900 High Rib

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

B. SECTION 07 60 00, FLASHING AND SHEET METAL

Item	Material	Finish
	Aluminum	Kynar 500
Copings		

C. SECTION 07 71 00 / 07 72 00, ROOF SPECIALITIES AND ACCESSORIES

Item	Material	Finish	Manufacturer	Manufacturer/Color Name/Number.
Copings	Extruded Aluminum	Kynar 500	Pac-Clad	Standard Color-Slate Gray
Fascia/Integral Gutter Systems	Aluminum	Prefinished	Kingspan	XL Forte Symphony-White

D. SECTION 07 92 00, JOINT SEALANTS

Location	Color	Manufacturer	Manufacturer Color
Masonry Expansion Joints	Black	Ernest Maier	Black
CMU Control Joints	Black	Ernest Maier	Black
Precast Concrete Panels	NF	Omega	NF

2.4 DIVISION 08 - OPENINGS

A. SECTION 08 11 13, HOLLOW METAL DOORS AND FRAMES

Paint both sides of door and frames same color i	including ferrous metal louvers, and hardware attached
Component Color of Paint Type and Gloss	

Door	P2
Frame	P2

B. SECTION 08 33 00, COILING DOORS AND GRILLES

Location	Item	Material	Finish	Manufacturer	Manufacturer Color Name/No.
Ground Level	Door	Steel	Standard	Cookson	FinalCote

C. SECTION 08 71 00, BUILDERS HARDWARE

Item	Material	Finish
Hinges	MAT	652
Storeroom Lock	MAT	626
Mortise Cylinder	MAT	626
Surface Closer	MAT	689
Kick Plate	MAT	630
Floor Stop	MAT	626
Door Seals	MAT	
Door Sweep	MAT	
Saddle Threshold	MAT	719
Coiling Door Cylinder	MAT	626

D. SECTION 08 80 00, GLAZING

Glazing Type	Manufacturer	Mfg. Color Name/No.
G1	Pilkington	Optifloat

E. SECTION 08 44 13, GLAZED ALUMINUM CURTAIN WALLS

Component	Material	Finish	Manufacturer	Mfg. Color Name/No.
Frame	AA	AA	Kawneer	1600b Wall System 1
Glazing	G1	-	Pilkington	Optifloat

2.5 DIVISION 09 - FINISHES

A. SECTION 09 91 00, PAINT AND COATINGS

1. MPI Gloss and Sheen Standards

		Gloss @60	Sheen @85
Gloss Level 1	a traditional matte finish-flat	max 5 units, and	max 10 units
Gloss Level 2	a high side sheen flat-"a velvet-like"	max 10 units, and	
	finish		10-35 units
Gloss Level 3	a traditional "egg-shell like" finish	10-25 units, and	10-35 units
Gloss Level 4	a "satin-like" finish	20-35 units, and	min. 35 units
Gloss Level 5	a traditional semi-gloss	35-70 units	
Gloss Level 6	a traditional gloss	70-85 units	
Gloss level 7	a high gloss	more than 85 units	

2. Paint code	Gloss	Manufacturer	Mfg. Color Name/No.
P1	6	Benjamin Moore	MPI-119,Impervex, Latex High Gloss, Shadow Gray 2125-40
P2	5	Benjamin Moore	MPI-119, Regal Select, Exterior Paint High Build Soft Gloss Finish, Gray Shower 2125-30
Р3	7	Benjamin Moore	MPI-9, Impervo, Alkyd High Gloss Enamel, 2125-50 Sweet Innocence
P4	-	Benjamin Moore	MPI-4, Super Spec, Int/Ext High-Build Block Filler

P5	-	Benjamin Moore	MPI-79, Super Spec HP, Alkyd
			Metal Primer

2.6 DIVISION 10 - SPECIALTIES

- A. SECTION 10 14 00, EXTERIOR SIGNS: Match the Medical Center's exterior signage standards as directed by COR
- B. SECTION 10 14 00, INTERIOR SIGNS: Match the Medical Center's interior signage standards as directed by the COR

2.7 DIVISION 14 - CONVEYING SYSTEMS

A. SECTION 14 21 00, ELECTRIC TRACTION ELEVATORS

Elevator	Component	Material	Finish	Color
Passenger	Hoistway Entrance	Stainless Steel	Satin	NF
Elevator No. A/B	Hoistway Doors	Stainless Steel	Satin	NF
	Corridor Position Indicator and Call Buttons	Stainless Steel	Satin	NF
	Car Ceiling	Stainless Steel	Satin	NF
	Car Walls	Stainless Steel	Satin Brushed Light Bronze	-
	Car Glazing	Glass	Clear	Clear
	Car Handrails	Stainless Steel	Satin	NF
	Car Operating Panel	Stainless Steel	Satin	NF

2.8 DIVISION 32 - EXTERIOR IMPROVEMENTS

A. SECTION 32 17 23, PAVEMENT MARKINGS.

Color	Manufacturer	MFG. Color Name/No.
Yellow	Sherwin Williams	MPI-97, Pro-Park, Waterborne Traffic Marking Paint Yellow
White	Sherwin Williams	MPI-97, Pro-Park, Waterborne Traffic Marking Paint White

PART III EXECUTION

3.1 FINISH SCHEDULES & MISCELLANEOUS ABBREVIATIONS

FINISH SCHEDULE & MISCELLANE	EOUS ABBREVIATIONS
Term	Abbreviation
Anodized Aluminum Colored	AAC
Anodized Aluminum Natural	AA
Finish	
Baked On Enamel	BE
Brick Face	BR
Concrete	С
Concrete Masonry Unit	CMU
Exposed Divider Strips	EXP
Exterior	EXT
Exterior Finish System	EFS
Exterior Paint	EXT-P
Material	MAT
Mortar	M
Natural Finish	NF
Paint	P

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

Perforated Metal Facing	PMF
(Panel)	

3.2 FINSIH SCHEDULE SYMBOLS

Symbol Definition

** Same finish as adjoining walls

- No color required

XX To match existing

3.3 ROOM FINISH SCHEDULE

A. Match adjoining or existing similar surfaces colors, textures or patterns where disturbed or damaged by alterations or new work when not scheduled.

B. ROOM FINISH SCHEDULE

Room No.		FLOOR		BASE WALL		WAINSCOT		CEILING		REMARKS			
MECH		MAT	FC		MAT	FCC	MAT	FCC	MAT	FC	MAT	FCC	
1	N	С	NF										
	E W			N	С	P1	С	P1	_	_	С	P1	
				E	С	P1	С	P1	-	_			
				S	С	P1	С	P1	_	-			
				W	С	P1	С	P1	_	-			
ELEC/		С	NF	N	CMU	P1	CMU	P1	_	_	С	P1	
COMM	N			E	CMU	P1	CMU	P1	-	-			
2	Ε			S	CMU	P1	CMU	P1	_	-			

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

	W			W	CMU	P1	CMU	P1	-	_							
WEST	N	С	С	С	С	С	NF	N	CMU	P1	CMU	P1	_	_			
STAIR	E W			E	_	_	_	_	_	_	MP	AAC					
				S	_	_	_	_	_	_							
				W	CMU	P1	CMU	CMU	_	_							
EAST		С	NF	N	CMU	MP	CMU	MP	1	-							
STAIR	N			E	CMU	P1	CMU	P1	-	_							
	E W			S	_	_	_	_	_	_	MP	AAC					
	"			W	_	_	_	_	_	_							

This page left blank intentionally.

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

- A. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 OPENINGS, Division 10 SPECIALTIES sections.
- B. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Asphalt and concrete pavement marking: Section 32 17 23, PAVEMENT MARKINGS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

C. Sample Panels:

- 1. After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.
- 2. Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
- 3. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.

- b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- c. Product type and color.
- d. Name of project.
- D. Sample of identity markers if used.
- E. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. High temperature aluminum paint.
 - 3. Epoxy coating.
 - 4. Intumescent clear coating or fire retardant paint.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH):

 ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical

 Substances and Physical Agents and Biological

 Exposure Indices (BEIs)
 - ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)

C	American National Standards Institute (ANSI):
С.	
_	A13.1-07Scheme for the Identification of Piping Systems
р.	American Society for Testing and Materials (ASTM):
	D260-86Boiled Linseed Oil
Ε.	Commercial Item Description (CID):
	A-A-1555Water Paint, Powder (Cementitious, White and
	Colors) (WPC) (cancelled)
	A-A-3120Paint, For Swimming Pools (RF) (cancelled)
F.	Federal Specifications (Fed Spec):
	TT-P-1411APaint, Copolymer-Resin, Cementitious (For
	Waterproofing Concrete and Masonry Walls) (CEP)
G.	Master Painters Institute (MPI):
	No. 1-12Aluminum Paint (AP)
	No. 4-12Interior/ Exterior Latex Block Filler
	No. 5-12Exterior Alkyd Wood Primer
	No. 7-12Exterior Oil Wood Primer
	No. 8-12Exterior Alkyd, Flat MPI Gloss Level 1 (EO)
	No. 9-12Exterior Alkyd Enamel MPI Gloss Level 6 (EO)
	No. 10-12Exterior Latex, Flat (AE)
	No. 11-12Exterior Latex, Semi-Gloss (AE)
	No. 18-12Organic Zinc Rich Primer
	No. 22-12Aluminum Paint, High Heat (up to 590% - 1100F)
	(HR)
	No. 26-12Cementitious Galvanized Metal Primer
	No. 27-12Exterior / Interior Alkyd Floor Enamel, Gloss (FE)
	No. 31-12Polyurethane, Moisture Cured, Clear Gloss (PV)
	No. 36-12Knot Sealer
	No. 43-12Interior Satin Latex, MPI Gloss Level 4
	No. 44-12Interior Low Sheen Latex, MPI Gloss Level 2
	No. 45-12Interior Primer Sealer
	No. 46-12Interior Enamel Undercoat
	No. 47-12Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK)
	No. 48-12Interior Alkyd, Gloss, MPI Gloss Level 6 (AK)
	No. 49-12Interior Alkyd, Flat, MPI Gloss Level 1 (AK)
	No. 50-12Interior Latex Primer Sealer
	No. 51-12Interior Alkyd, Eggshell, MPI Gloss Level 3
	No. 52-12Interior Latex, MPI Gloss Level 3 (LE)
	No. 53-12Interior Latex, Flat, MPI Gloss Level 1 (LE)
	No. 54-12Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)

No.	59-12Interior/Exterior Alkyd Porch & Floor Enamel, Low
	Gloss (FE)
No.	60-12Interior/Exterior Latex Porch & Floor Paint, Low
	Gloss
No.	66-12Interior Alkyd Fire Retardant, Clear Top-Coat (ULC
	Approved) (FC)
No.	67-12 Interior Latex Fire Retardant, Top-Coat (ULC
	Approved) (FR)
No.	68-12Interior/ Exterior Latex Porch & Floor Paint,
	Gloss
No.	71-12Polyurethane, Moisture Cured, Clear, Flat (PV)
No.	74-12Interior Alkyd Varnish, Semi-Gloss
No.	77-12Epoxy Cold Cured, Gloss (EC)
No.	79-12Marine Alkyd Metal Primer
No.	90-12Interior Wood Stain, Semi-Transparent (WS)
No.	91-12Wood Filler Paste
No.	94-12Exterior Alkyd, Semi-Gloss (EO)
No.	95-12Fast Drying Metal Primer
No.	98-12High Build Epoxy Coating
No.	101-12 Epoxy Anti-Corrosive Metal Primer
No.	108-12High Build Epoxy Coating, Low Gloss (EC)
No.	114-12Interior Latex, Gloss (LE) and (LG)
No.	119-12Exterior Latex, High Gloss (acrylic) (AE)
No.	135-12Non-Cementitious Galvanized Primer
No.	138-12Interior High Performance Latex, MPI Gloss Level 2
	(LF)
No.	139-12Interior High Performance Latex, MPI Gloss Level 3
	(LL)
No.	140-12Interior High Performance Latex, MPI Gloss Level 4
No.	141-12Interior High Performance Latex (SG) MPI Gloss
	Level 5
H. Ste	el Structures Painting Council (SSPC):
SSP	C SP 1-04 (R2004)Solvent Cleaning
SSP	C SP 2-04 (R2004)Hand Tool Cleaning
SSP	C SP 3-04 (R2004)Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cementitious Paint (CEP): TT-P-1411A [Paint, Copolymer-Resin, Cementitious (CEP)], Type 1 for exterior use, Type II for interior use.

- B. Identity markers options:
 - 1. Pressure sensitive vinyl markers.
 - 2. Snap-on coil plastic markers.
- C. Aluminum Paint (AP): MPI 1.
- D. Interior/Exterior Latex Block Filler: MPI 4.
- E. Exterior Alkyd, Flat (EO): MPI 8.
- F. Exterior Alkyd Enamel (EO): MPI 9.
- G. Exterior Latex, Flat (AE): MPI 10.
- H. Exterior Latex, Semi-Gloss (AE): MPI 11.
- I. Organic Zinc rich Coating (HR): MPI 22.
- J. High Heat Resistant Coating (HR): MPI 22.
- K. Cementitious Galvanized Metal Primer: MPI 26.
- L. Exterior/ interior Alkyd Floor Enamel, Gloss (FE): MPI 27.
- M. Knot Sealer: MPI 36.
- N. Interior Satin Latex: MPI 43.
- O. Interior Low Sheen Latex: MPI 44.
- P. Interior Primer Sealer: MPI 45.
- Q. Interior Enamel Undercoat: MPI 47.
- R. Interior Alkyd, Semi-Gloss (AK): MPI 47.
- S. Interior Alkyd, Gloss (AK): MPI 49.
- T. Interior Latex Primer Sealer: MPI 50.
- U. Interior Alkyd, Eggshell: MPI 51
- V. Interior Latex, MPI Gloss Level 3 (LE): MPI 52.
- W. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53.
- X. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.
- Y. Interior / Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE): MPI 59.
- Z. Interior/ Exterior Latex Porch & Floor Paint, Low Gloss: MPI 60.
- AA. Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC): MPI 66.
- BB. Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR): MPI 67.
- CC. Interior/ Exterior Latex Porch & Floor Paint, gloss: MPI 68.
- DD. Epoxy Cold Cured, Gloss (EC): MPI 77.
- EE. Exterior Alkyd, Semi-Gloss (EO): MPI 94.
- FF. Fast Drying Metal Primer: MPI 95.
- GG. High Build Epoxy Coating: MPI 98.
- HH. Epoxy Anti-Corrosive Metal Primer: MPI 101.
- II. High Build Epoxy Marine Coating (EC): MPI 108.
- JJ. Interior latex, Gloss (LE) and (LG): MPI 114.
- KK. Exterior Latex, High Gloss (acrylic) (AE): MPI 119.
- LL. Waterborne Galvanized Primer: MPI 134.
- MM. Non-Cementitious Galvanized Primer: MPI 135.

- NN. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138.
- OO. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139.
- PP. Interior High Performance Latex, MPI Gloss Level 4: MPI 140.
- QQ. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - 1. Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.

2. Lead-Base Paint:

- a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
- b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
- c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- 3. Asbestos: Materials shall not contain asbestos.
- 4. Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
- 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints, where possible.
- 7. VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
 - 5. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:
 - 1. Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - 3. See other sections of specifications for specified surface conditions and prime coat.

4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.

C. Ferrous Metals:

- Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
- 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
- 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing heads
- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- D. Zinc-Coated (Galvanized) Metal, Aluminum, Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.

E. Masonry and Concrete:

- 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
- 2. Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.

- 3. Remove loose mortar in masonry work.
- 4. Replace mortar and fill open joints, holes, cracks and depressions with new mortar specified in Section 04 05 13, MASONRY. Do not fill weep holes. Finish to match adjacent surfaces.
- 5. Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods.
- F. Gypsum Plaster and Gypsum Board:
 - 1. Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Resident Engineer.

- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.
- G. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and for face glazing of steel.
- E. Metals:
 - Steel and iron: MPI 95 (Fast Drying Metal Primer). Use MPI 101 (Cold Curing Epoxy Primer) where MPI 77 (Epoxy Cold Cured, Gloss (EC)) MPI 98 (High Build Epoxy Coating) MPI 108 (High Build Epoxy Marine Coating (EC)) finish is specified.
 - 2. Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer) MPI 135 (Non-Cementitious Galvanized Primer).
 - 3. Machinery not factory finished: MPI 9 (Exterior Alkyd Enamel (EO)).
 - 4. Asphalt coated metal: MPI 1 (Aluminum Paint (AP)).
 - 5. Metal over 94 degrees C. (200 degrees F), Boilers, Incinerator Stacks, and Engine Exhaust Pipes: MPI 22 (High Heat Resistant Coating (HR)).
- F. Concrete Masonry Units except glazed or integrally colored and decorative units:
 - 1. MPI 4 (Block Filler) on interior surfaces.
 - 2. Prime exterior surface as specified for exterior finishes.
- G. Concrete Masonry, and Interior Surfaces of Ceilings and Walls:
 - 1. MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI

- Gloss Level 5 (LE)) MPI 114 (Interior Latex, Gloss (LE) and (LG)) except use two coats where substrate has aged less than six months.
- 2. Use MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)) MPI 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)) MPI 140 (Interior High Performance latex, MPI Gloss Level 4) MPI 141 (Interior High Performance Latex (SG) MPI Gloss Level 5) MPI 114 (Interior Latex, Gloss (LE) and (LG)) TT-P-1411A (Paint, Copolymer Resin, Cementitious (CEP)) Type II MPI 77 (Epoxy Cold Cured, Gloss (EC) MPI 98 (High Build Epoxy Coating) MPI 108 (High Build Epoxy Marine Coating (EC)) or CID-A-A-1555 (Water, Paint, Powder) as scheduled.

3.6 EXTERIOR FINISHES

- A. Apply following finish coats where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Steel and Ferrous Metal:
 - 1. Two coats of MPI 8 (Exterior Alkyd, Semi-Gloss (EO)) on exposed surfaces, except on surfaces over 94 degrees C (200 degrees F).
- D. Machinery without factory finish except for primer: One coat MPI 8 (Exterior Alkyd, Flat (EO)) MPI 9 (Exterior Alkyd Enamel (EO)) or MPI 94 (Exterior Alkyd, Semi-Gloss (EO)).
- E. Concrete Masonry Units Concrete:
 - 1. General:
 - a. Where specified in Section 09 06 00, SCHEDULE FOR FINISHES or shown.
 - b. Mix as specified in manufacturer's printed directions.
 - c. Do not mix more paint at one time than can be used within four hours after mixing. Discard paint that has started to set.
 - d. Dampen warm surfaces above 24 degrees C (75 degrees F) with fine mist of water before application of paint. Do not leave free water on surface.
 - e. Cure paint with a fine mist of water as specified in manufacturer's printed instructions.
 - 2. Use two coats of TT-P-1411 (Paint, Co-polymer-Resin, Cementitious (CEP)), unless specified otherwise.

3.7 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:

- a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
- b. Two coats of MPI 48 (Interior Alkyd Gloss (AK.
- c. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) on exposed interior surfaces of alkyd-amine enamel prime finished windows.
- d. Machinery: One coat MPI 9 (Exterior Alkyd Enamel (EO)).
- e. Asphalt Coated Metal: One coat MPI 1 (Aluminum Paint (AP)).

C. Masonry and Concrete Walls:

- 1. Over MPI 4 (Interior/Exterior Latex Block Filler) on CMU surfaces.
- 2. Two coats of MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 (LE)), MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)), MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) or MPI 114 (Interior Latex, Gloss (LE) and (LG)).
- 3. Two coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)), MPI 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)), MPI 140 (Interior High Performance Latex MPI Gloss level 4), MPI 141 (Interior High Performance Latex (SG) MPI Gloss level 5) or MPI 114 (Interior Latex, Gloss (LE) and (LG)).

D. Miscellaneous:

- 1. Apply where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- 2. Interstitial floor markings: One coat MPI 27 (Exterior/ Interior Alkyd Floor Enamel, Gloss (FE)), MPI 59 ((Interior/ Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE)), MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss) or MPI 60 (interior/ Exterior Latex Porch & Floor Paint, Low Gloss (FR)).

3.8 PAINT COLOR

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.

3.9 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B.
 - Painting and finishing of new work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.

- 2. Painting of ferrous metal and galvanized metal.
- 3. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Doors, elevator entrances and cabs, metal panels, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
 - 3. Concealed surfaces:
 - a. Inside elevator and duct shafts, interstitial spaces, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed equipment.
 - 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
 - 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
 - 6. Galvanized metal:
 - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Except where specifically specified to be painted.
 - 7. Metal safety treads and nosings.
 - 8. Gaskets.
 - 9. Concrete curbs, gutters, pavements, retaining walls, exterior exposed foundations walls and interior walls in pipe basements.
 - 10. Face brick.
 - 11. Structural steel encased in concrete, masonry, or other enclosure.
 - 12. Structural steel to receive sprayed-on fire proofing.
 - 13. Ceilings, walls, columns in interstitial spaces.

3.10 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 10 14 00 SIGNAGE

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies interior signage for a parking structure: vehicular and pedestrian directional signs, directional signs, regulatory, and room signs.

1.2 RELATED WORK

- A. Lighted EXIT signs for egress purposes are specified under Division 26, ELECTRICAL.
- B. Section 10 13 00, DIRECTORIES.
- C. Color Finish: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 MANUFACTURER'S QUALIFICATIONS

Sign manufacturer shall provide evidence that they regularly and presently manufacture signs similar to those specified in this section as one of their principal products.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 00, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.

B. Samples:

- 1. Sign panels and frames, with letters and symbols, each sign type.
- 2. Submit 2 sets. One set of samples will be retained by Resident Engineer, other returned to Contractor.
- 3. Color samples of each color and material (paint, vinyl, etc.), 150 mm \times 150 mm (6 inches \times 6 inches). Show anticipated range of color and texture
- 4. Sample of typeface, arrow, and symbols in a typical full size layout.

C. Manufacturer's Literature:

- 1. Showing the methods and procedures proposed for the concealed anchorage of the signage system to each surface type.
- Manufacturer's printed specifications, anchorage details, installation and maintenance instructions.

D. Shop Drawings:

- 1. Sign location plans, showing location, type and total number of signs required.
- Scaled for manufacture and fabrication of sign types. Identify
 materials, show joints, welds, anchorage, accessory items, mounting
 and finishes.
- E. Full size layout patterns for dimensional letters.

1.5 DELIVERY AND STORAGE

- A. Deliver materials to job in manufacturer's original sealed containers with brand name marked thereon. Protect materials from damage.
- B. Package to prevent damage or deterioration during shipment, handling, storage and installation. Maintain protective covering in place and in good repair until removal is necessary.
- C. Deliver signs only when the site and mounting services are ready for installation work to proceed.
- D. Store products in dry condition inside enclosed facilities.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-07......Aluminum and Aluminum-Alloy Sheet and Plate B221-08......Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and tubes.

1.7 MINIMUM SIGN REQUIREMENTS

- A. Permanent Rooms and Spaces:
 - 1. Tactile and Braille Characters, raised minimum 0.793 mm (1/32 in). Characters shall be accompanied by Grade 2 Braille.
 - 2. Type Styles: Characters shall be uppercase, Helvetica Medium, Helvetica Medium Condensed and Helvetica Regular.
 - 3. Character Height: Minimum 16 mm (5/8 in) high, Maximum 50 mm (2 in).
 - 4. Symbols (Pictograms): Equivalent written description shall be placed directly below symbol, outside of symbol's background field. Border dimensions of symbol background shall be minimum 150 mm (6 in) high.
 - 5. Finish and Contrast: Characters and background shall be eggshell, matte or other non-glare finish with adequate contrast with background.
 - 6. Mounting Location and Height: As shown. Mounted on wall adjacent to the latch side of the door and to avoid door swing and protruding objects.

B. Overhead Signs:

- 1. Type Styles: As shown. Characters shall have a width-to-height ratio between 3:5 and 1:1. Characters shall have a stroke width-to-height ratio of between 1:5 and 1:10.
- 2. Character Height: minimum 75 mm (3 in) high for overhead signs. As shown, for directional signs.
- 3. Finish and Contrast: Same as for signs of permanent rooms and spaces.

4. Mounting Location and Height: As shown.

1.8 COLORS AND FINISHES:

Section 09 06 00, SCHEDULE FOR FINSIHES.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Signs of type, size and design shown on the drawings and as specified.
- B. Signs complete with lettering, framing and related components for a complete installation.
- C. Provide graphics items as completed units produced by a single manufacturer, including necessary mounting accessories, fittings and fastenings.
- D. Do not scale drawings for dimensions. Contractor to verify and be responsible for all dimensions and conditions shown by these drawings. Architect, Parking Consultant and Resident Engineer to be notified of any discrepancy in drawing, in field directions or conditions, and/or of any changes required for all such construction details.
- E. The Sign Contractor, by commencing work of this section, assumes overall responsibility, as part of his warranty of work, to assure that assemblies, components and parts shown or required within the work of the section, comply with the Contract Documents. The Contractor shall further warrant: That all components, specified or required to satisfactorily complete the installation are compatible with each other and with conditions of installations.

2.2 PRODUCTS

- A. Aluminum:
 - 1. Sheet and Plate: ASTM B209.
 - 2. Extrusions and Tubing: ASTM B221.
- B. Vinyl: 0.1 mm thick machine cut, having a pressure sensitive adhesive and integral colors.
- C. Electrical Signs: Not used.
- D. Concrete Post Footings: See Section 03 30 53, MISCELLANEOUS CAST-IN-PLACE CONCRETE, Cast-in-place Concrete.
- E. Steel: See Section 05 12 00, STRUCTURAL STEEL FRAMING.

2.3 SIGN STANDARDS

- A. Typography:
 - 1. Type Style: Helvetica Medium and Helvetica Medium Condensed. Initial caps or all caps as indicated in Sign Message Schedule.
 - 2. Arrow: See graphic standards in drawings.

- 3. Letter spacing: See graphic standards on drawings.
- 4. Letter spacing: See graphic standards on drawings.
- 5. All text, arrows, and symbols to be provided in size, colors, typefaces and letter spacing shown. Text shall be a true, clean, accurate reproduction of typeface(s) shown. Text shown in drawings are for layout purposes only; final text for signs is listed in Sign Message Schedule.
- B. Project Colors and Finishes: See Section 09 06 00, SCHEDULE FOR FINISHES.

2.4 SIGN TYPES

A. General:

- The interior sign system is comprised of sign type families that are identified by a letter and number which identify a particular group of signs. An additional number identifies a specific type of sign within that family.
 - a. IN indicates a component construction based sign.
- 2. The exterior sign system shall be comprised of sign type families that are identified by a letter and number which identify a particular group of signs. An additional number identifies a specific type of sign within that family.
- B. Sign Type Family 02, 03, 08, 09 and 12.
 - 1. Sign Type Family 02: All text and graphics are to be reflective vinvl.
 - 2. Sign Type Family 03: All text and graphics are to be reflective vinyl.
 - 3. Sign Type Family 08: All text and graphics are to be Aluminum letters.
 - 4. Sign Type Family 09: All text and graphics are to be non-reflective vinyl.
 - 5. Sign Type Family 12: All text and graphics are to be reflective.
 - 6. Sign Type Family IN (small interior garage signs): All text and graphics are to be non-reflective paint.

C. Temporary Interior Signs:

1. Fabricated from 50 kg (110 pound) matte finished white paper cut to 100 mm (4 inch) wide by 300 mm (12 inch) long. Punched 3 mm (.125 inch) hole with edge of hole spaced 13 mm (.5 inch) in from edge and centered on 100 mm (4 inch) side. Reinforce hole on both sides with suitable material that prevents tie form pulling through hole. Ties

are steel wire 0.3 mm (0.120 inch) thick attached to tag with twist leaving 150 mm (6 inch) long free ends.

2. Replace any missing damaged or illegible signs.

2.5 FABRICATION

- A. Design components to allow for expansion and contraction for a minimum material temperature range of 56 °C (100 °F), without causing buckling, excessive opening of joints or over stressing of adhesives, welds and fasteners.
- B. Form work to required shapes and sizes, with true curve lines and angles. Provide necessary rebates, lugs and brackets for assembly of units. Use concealed fasteners whenever and wherever possible.
- C. Shop fabricate so far as practical. Joints fastened flush to conceal reinforcement, or welded where thickness or section permits.
- D. Contact surfaces of connected members be true. Assembled so joints will be tight and practically unnoticeable, without use of filling compound.
- E. Signs shall have fine, even texture and be flat and sound. Lines and miters sharp, arises unbroken, profiles accurate and ornament true to pattern. Plane surfaces be smooth flat and without oil-canning, free of rack and twist. Maximum variation from plane of surface plus or minus 0.3 mm (0.015 inches). Restore texture to filed or cut areas.
- F. Level or straighten wrought work. Members shall have sharp lines and angles and smooth sulrfaces.
- G. Extruded members to be free from extrusion marks. Square turns and corners sharp, curves true.
- H. Drill holes for bolts and screws. Conceal fastenings where possible. Exposed ends and edges mill smooth, with corners slightly rounded. Form joints exposed to weather to exclude water.
- I. Finish hollow signs with matching material on all faces, tops, bottoms and ends. Edge joints tightly mitered to give appearance of solid material.
- J. All painted surfaces properly primed. Finish coating of paint to have complete coverage with no light or thin applications allowing substrate or primer to show. Finished surface smooth, free of scratches, gouges, drips, bubbles, thickness variations, foreign matter and other imperfections.
- K. Movable parts, including hardware, are be cleaned and adjusted to operate as designed without binding of deformation of members. Doors and covers centered in opening or frame. All contact surfaces fit tight and even without forcing or warping components.

- L. Pre-assemble items in shop to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for re-assembly and coordinated installation.
- M. No signs are to be manufactured until final sign message schedule and location review has been completed by the Resident Engineer & forwarded to contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Protect products against damage during field handling and installation. Protect adjacent existing and newly placed construction, landscaping and finishes as necessary to prevent damage during installation. Paint and touch up any exposed fasteners and connecting hardware to match color and finish of surrounding surface.
- B. Mount signs in proper alignment, level and plumb according to the sign location plan and the dimensions given on elevation and sign location drawings. Where otherwise not dimensioned, signs shall be installed where best suited to provide a consistent appearance throughout the project. When exact position, angle, height or location is in doubt, contact Resident Engineer for clarification.
- C. Contractor shall be responsible for all signs that are damaged, lost or stolen while materials are on the job site and up until the completion and final acceptance of the job.
- D. Remove or correct signs or installation work Resident Engineer determines as unsafe or as an unsafe condition.
- E. At completion of sign installation, clean exposed sign surfaces. Clean and repair any adjoining surfaces and landscaping that became soiled or damaged as a result of installation of signs.
- F. Locate signs as shown on the Sign Location Plans.
- G. Contractor will be responsible for verifying that behind each sign location there are no utility lines that will be affected by installation of signs. Any damage during installation of signs to utilities will be the sole responsibility of the Contractor to correct and repair.
- H. Furnish inserts and anchoring devices which must be set in concrete or other material for installation of signs. Provide setting drawings, templates, instructions and directions for installation of anchorage devices which may involve other trades.

- - - END - - -

SECTION 14 21 00 ELECTRIC TRACTION ELEVATORS

PART 1 GENERAL

1.1 DESCRIPTION

- A. This section specifies the engineering, furnishing and installation of complete and ready for operation electric traction elevator systems described herein and as indicated on the contract drawings.
- B. Items listed in the singular apply to each and every elevator in this specification except where noted.
- C. Passenger Elevators shall be overhead gearless traction type; with Variable Voltage Variable Frequency (VVVF) microprocessor based control system with regenerative drive, duplex selective collective, and power operated single-speed center opening car and hoistway doors. Elevators shall have Class "A" loading.

1.2 RELATED WORK

- A. Section 01 33 23 SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- B. Section 03 30 00 CAST IN PLACE CONCRETE
- C. Section 04 20 00 UNIT MASONRY
- D. Section 05 50 00 METAL FABRICATIONS
- E. Section 23 05 11 COMMON WORK RESULTS FOR HVAC
- F. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- H. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.
- I. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low voltage transformers.
- J. Section 26 24 16, PANELBOARDS: Low voltage panel boards.
- K. Section 26 43 13, SURGE PROTECTOR DEVICE
- L. Section 26 51 00, INTERIOR LIGHTING: Fixture and ballast type for interior lighting.
- M. VA Barrier Free Design Handbook (H-18-13)

1.3 QUALIFICATIONS

A. Approval by the Contracting Officer is required for products and services of proposed manufacturers, suppliers and installers and shall be contingent upon submission by Contractor of certificates stating the following:

- 1. Elevator contractor is currently and regularly engaged in the installation of elevator equipment as one of his principal products.
- Elevator contractor shall have three years of successful experience, trained supervisory personnel, and facilities to install elevator equipment specified herein.
- 3. The installers shall be Certified Elevator Mechanics with technical qualifications of at least five years of successful experience and Apprentices actively pursuing certified mechanic status. Certificates shall be submitted for all workers employed in this capacity.
- 4. Elevator contractor shall submit a list of two or more prior hospital installations where all the elevator equipment he proposes to furnish for this project functioned satisfactorily to serve varying hospital traffic and material handling demands. Provide a list of hospitals that have the equipment in operation for two years preceding the date of this specification. Provide the names and addresses of the Medical Centers and the names and telephone numbers of the Medical Center Administrators.
- B. Approval of Elevator Contractor's equipment will be contingent upon their identifying an elevator maintenance service provider that shall render services within two hours of receipt of notification, together with certification that the quantity and quality of replacement parts stock is sufficient to warranty continued operation of the elevator installation.
- C. Approval will not be given to elevator contractors and manufacturers who have established on prior projects, either government, municipal, or commercial, a record for unsatisfactory elevator installations, have failed to complete awarded contracts within the contract period, and do not have the requisite record of satisfactorily performing elevator installations of similar type and magnitude.
- D. All electric traction elevators shall be the product of the same manufacturer.

- E. The Contractor shall provide and install only those types of safety devices that have been subjected to tests witnessed and certified by an independent professional testing laboratory that is not a subsidiary of the firm that manufactures supplies or installs the equipment.
- F. Welding at the project site shall be made by welders and welding operators who have previously qualified by test as prescribed in American Welding Society Publications AWS Dl.1 to perform the type of work required. Certificates shall be submitted for all workers employed in this capacity. A welding or hot work permit is required for each day and shall be obtained from the COR of safety department. Request permit one day in advance.
- G. Electrical work shall be performed by Licensed Electricians as requirements by NEC. Certificates shall be submitted for all workers employed in this capacity.

1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification. Elevator installation shall meet the requirements of the latest editions published and adopted by the United States Department of Veterans Affairs on the date contract is signed.

B. Federal Specifications (Fed. Spec.):

J-C-30BCable and Wire, Electrical (Power, Fixed Installation)

W-C-596FConnector, Plug, Electrical; Connector, Receptacle, Electrical

W-F-406EFittings for Cable, Power, Electrical and Conduit, Metal, Flexible

HH-I-558CInsulation, Blankets, Thermal (Mineral Fiber, Industrial Type)

W-F-408EFittings for Conduit, Metal, Rigid (Thick- Wall and Thin-wall (EMT) Type)

RR-W-410Wire Rope and Strand

TT-E-489JEnamel, Alkyd, Gloss, Low VOC Content

QQ-S-766Steel, Stainless and Heat Resisting, Alloys,
Plate, Sheet and Strip

- C. International Building Code (IBC)
- D. American Society of Mechanical Engineers (ASME):
 A17.1-07.....Safety Code for Elevators and Escalators

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

A17.2-07.....Inspectors Manual for Electric Elevators and Escalators

E. National Fire Protection Association:

NFPA 13-10.....Standard for the Installation of Sprinkler Systems

NFPA 70-11.....National Electrical Code (NEC)

NFPA 72-10......National Fire Alarm and Signaling Code

NFPA 101-09.....Life Safety Code

NFPA 252-08.....Fire Test of Door Assemblies

F. American Society for Testing and Materials (ASTM):

A1008/A1008M-10Steel, Sheet, Cold Rolled, Carbon, Structural,
High-Strength Low-Alloy and High Strength LowAlloy with Improved Farability

E1042-02(R2008)Acoustically Absorptive Materials Applied by

Trowel or Spray

G. Society of Automotive Engineers, Inc. (SAE)

H. Gauges:

For Sheet and Plate: U.S. Standard (USS)

For Wire: American Wire Gauge (AWG)

I. American Welding Society (AWS):

D1.1-10Structured Welding Code Steel

J. National Electrical Manufacturers Association (NEMA):

LD-3-05High-Pressure Decorative Laminates

K. Underwriter's Laboratories (UL):

- L. Institute of Electrical and Electronic Engineers (IEEE)
- M. Regulatory Standards:

Uniform Federal Accessibility Standards

Americans with Disabilities Act

1.5 SUBMITTALS

- A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Before execution of work, furnish information to evidence full compliance with contract requirements for proposed items. Such information shall include, as required: Manufacturer's Name, Trade Names, Model or Catalog Number, Nameplate Data (size, capacity, and rating) and corresponding specification reference (Federal or project

specification number and paragraph). All submitted drawings and related elevator material shall be forwarded to the Contracting Officer.

C. Shop Drawings:

- 1. Complete scaled and dimensioned layout in plan and section view showing the arrangement of equipment and all details of each and every elevator unit specified including:
 - a. Hoisting machines, controllers, power conversion devices, governors, and all other components located in machine room.
 - b. Car, counterweight, sheaves, supporting beams, guide rails, brackets, buffers, size of car platform, car frame members, and other components located in hoistway.
 - c. Rail bracket spacing and maximum vertical forces on guide rails in accordance with ASME A17.1 Section 2.23 and Section 8.4.8 for Seismic Risk Zone 2 or greater.
 - d. Reactions at points of supports and buffer impact loads.
 - e. Weights of principal parts.
 - f. Top and bottom clearances and over travel of car and counterweight.
 - g. Location of shunt trip circuit breaker, switchboard panel, light switch, and feeder extension points in the machine room.
- Drawings of hoistway entrances and doors showing details of construction and method of fastening to the structural members of the building.
 - a. Sill details including sill support.

D. Samples:

- 1. One each of stainless steel, $75 \text{ mm} \times 125 \text{ mm}$ (3 in. $\times 5 \text{ in.}$).
- 2. One each of baked enamel, $75 \text{ mm} \times 125 \text{ mm}$ (3 in. x 5 in.).
- 3. One each of color vinyl floor tile.
- 4. One each of protection pads, 75 mm x 125 mm (3 in. x 5 in.) if used.
- 5. One each car and hoistway Braille plate sample.
- 6. One each car and hall button sample.
- 7. One each car and hall lantern/position indicator sample.
- 8. One each wall and ceiling material finish sample.
- 9. One each car lighting sample.
- E. Name of manufacturer, type or style designation, and applicable data of the following equipment shall be shown on the elevator layouts:
 - 1. Hoisting Machine.

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

- 2. Hoisting Machine Motor, HP and RPM ratings, Voltage, Starting and Full Load Ampere, and Number of Phases.
- Controller
- 4. Starters and Overload Current Protection Devices.
- 5. Car Safety Device; maximum and minimum rated loads and rated speeds.
- 6. Governor
- 7. Electric Door Operator; HP and RPM ratings, Voltage and Ampere rating of motor.
- 8. Hoistway Door Interlocks.
- 9. Car and Counterweight Buffers; maximum and minimum rated loads, maximum rated striking speed and stroke.
- 10. Hoist and Compensation Ropes; ultimate breaking strength, allowable working load, and actual working load.
- 11. Cab Ventilation Unit; HP rating and CFM rating.
- F. Complete construction drawings of elevator car enclosure, showing dimensioned details of construction, fastenings to platform, car lighting, ventilation, ceiling framing, top exits, and location of car equipment.
- G. Complete dimensioned detail of vibration isolating foundations for traction hoisting machines.
- H. Dimensioned drawings showing details of:
 - 1. All signal and operating fixtures.
 - 2. Car and counterweight roller guides.
 - 3. Hoistway door tracks, hangers, and sills.
 - 4. Door operator, infrared curtain units.
- I. Drawings showing details of controllers and supervisory panels.
- J. Furnish certificates as required under: Paragraph "QUALIFICATIONS".

1.6 WIRING DIAGRAMS

- A. Provide three complete sets of field wiring and straight line wiring diagrams showing all electrical circuits in the hoistway, machine room and fixtures. Install one set coated with an approved plastic sealer and mounted in the elevator machine room as directed by the Resident Engineer.
- B. In the event field modifications are necessary during installation, diagrams shall be revised to include all corrections made prior to and during the final inspection. Corrected diagrams shall be delivered to the Resident Engineer within thirty (30) days of final acceptance.

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

- C. Provide the following information relating to the specific type of microprocessor controls installed:
 - 1. Owner's information manual, containing job specific data on major components, maintenance, and adjustment.
 - 2. System logic description.
 - 3. Complete wiring diagrams needed for field troubleshooting, adjustment, repair and replacement of components. Diagrams shall be base diagrams, containing all changes and additions made to the equipment during the design and construction period.
 - 4. Changes made during the warranty period shall be noted on the drawings in adequate time to have the finalized drawings reproduced for mounting in the machine room no later than six months prior to the expiration of the warranty period.

1.7 ADDITIONAL EQUIPMENT

- A. Additional equipment required to operate the specified equipment manufactured and supplied for this installation shall be furnished and installed by the contractor. The cost of the equipment shall be included in the base bid.
- B. Equipment not required by specification, which would improve the operation, may be installed in conjunction with the specified equipment by the contractor at his option at no additional cost to the Government, provided prior approval is obtained from the Contracting Officer's Technical Representative.

1.8 TOOL CABINET

A. Provide a metal parts/tool cabinet, having two shelves and hinged doors. Cabinet size shall be (48 in.) high, (30 in.) wide, and (18 in.) deep.

1.9 PERFORMANCE STANDARDS

- A. The elevators shall be capable of meeting the highest standards of the industry and specifically the following:
 - 1. Contract speed is high speed in either direction of travel with rated capacity load in the elevator. Speed variation under all load conditions, regardless of direction of travel, shall not vary more than three (3) percent.
 - 2. The controlled rate of change of acceleration and retardation of the car shall not exceed 0.1G per second and the maximum acceleration and retardation shall not exceed 0.2G per second.

- 3. Starting, stopping, and leveling shall be smooth and comfortable without appreciable steps of acceleration and deceleration.
- B. The door operator shall open the car door and hoistway door simultaneously at 2.5-feet per second and close at 1-foot per second.
- C. Elevator control system shall be capable of starting the car without noticeable "roll-back" of hoisting machine sheave, regardless of load condition in car, location of car, or direction of travel.
- D. Floor level stopping accuracy shall be within 3 mm (1/8 in.) above or below the floor, regardless of load condition.
- E. Noise and Vibration Isolation: All elevator equipment including their supports and fastenings to the building, shall be mechanically and electrically isolated from the building structure to minimize objectionable noise and vibration transmission to car, building structure, or adjacent occupied areas of building.
- F. Sound Isolation: Noise level relating to elevator equipment operation in machine room shall not exceed 80 dBA. All dBA readings shall be taken three (3) feet off the floor and three (3) feet from equipment.
- G. Airborne Noise: Measured noise level of elevator equipment during operation shall not exceed 50 dBA in elevator lobbies and 60 dBA inside car under any condition including door operation and car ventilation exhaust blower on its highest speed.

1.10 WARRANTY

- A. Submit all labor and materials furnished in connection with elevator system and installation to terms of "Warranty of Construction" articles of FAR clause 52.246-21. The one year Warranty shall commence after final inspection, completion of performance test, and upon full acceptance of the installation and shall concur with the guarantee period of service.
- B. During warranty period if a device is not functioning properly or in accordance with specification requirements, or if in the opinion of the Contracting Officer's Technical Representative, excessive maintenance and attention must be employed to keep device operational, device shall be removed and a new device meeting all requirements shall be installed as part of work until satisfactory operation of installation is obtained. Period of warranty shall start anew for such parts from date of completion of each new installation performed, in accordance with foregoing requirements.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Where stainless steel is specified, it shall be corrosion resisting steel complying with Federal Specification QQ-S-766, Class 302 or 304, Condition A with Number 4 finish on exposed surfaces. Stainless steel shall have the grain of belting in the direction of the longest dimension and surfaces shall be smooth and without waves. During installation all stainless steel surfaces shall be protected with suitable material.
- B. Where cold rolled steel is specified, it shall be low-carbon steel rolled to stretcher leveled standard flatness, complying with ASTM A109.

2.2 MANUFACTURED PRODUCTS

- A. Materials, devices, and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items. Items not meeting this requirement, but meet technical specifications which can be established through reliable test reports or physical examination of representative samples, will be considered.
- B. When two or more devices of the same class of materials or equipment are required, these units shall be products of one manufacturer.
- C. Manufacturers of equipment assemblies which include components made by others shall assume complete responsibility for the final assembled unit.
 - 1. Individual components of assembled units shall be products of the same manufacturers.
 - 2. Parts which are alike shall be the product of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
- D. Motor nameplates shall state manufacturers' name, rated horsepower, speed, volts, starting and full load amperes, and other characteristics required by NEMA Standards and shall be securely attached to the item of equipment in a conspicuous location.
- E. The elevator equipment, including controllers, door operators, and supervisory system shall be the product of manufacturers of established reputation, provided such items are capably engineered and produced under coordinated specifications to ensure compatibility with the total

operating system. Mixing of manufactures related to a single system or group of components shall be identified in the submittals.

- F. Where key operated switches are furnished in conjunction with any component of this elevator installation, furnish four (4) keys for each individual switch or lock. Provide different key tumblers for different switch and lock functions. Each and every key shall have a tag bearing a stamped or etched legend identifying its purpose. Barrel key switches are not acceptable, except where required by code.
- G. If the elevator equipment to be installed is not known to the Resident Engineer, the Contractor shall submit drawings in triplicate for approval to the Resident Engineer, Contracting Officer, and VA CFM Elevator Engineer showing all details and demonstrate that the equipment to be installed is in strict accordance with the specifications.

2.3 CAPACITY, SIZE, SPEED, AND TRAVEL

A. Each and every elevator shall have the capacity to lift and lower the live load, including the weight of the car and cables, at the speed specified in the following schedule:

ELEVATOR SCHEDULE	
Elevator Number	As indicated on drawings
Overall Platform Size	As indicated on drawings
Rated Load - (lb)	4000
Contract Speed - (fpm)	350
Total Travel - (fpm)	As indicated and field verified
Number of Stops	4
Number of Openings	1
Entrance Type and Size	Center, as indicated on drawings

2.4 POWER SUPPLY

- A. For power supply in each machine room, see Electrical specifications, and Electrical drawings.
- B. It shall be the Electrical contractor's responsibility to supply the labor and materials for the installation of the following:
 - 1. Feeders from the power source indicated on the drawings to each elevator controller.

- 2. Shunt Trip Circuit Breaker for each controller shall be located inside machine room at the strike side of the machine room door and lockable in the "Off" position.
- 3. Provide Surge Suppressors to protect the elevator equipment.
- C. Power for auxiliary operation of elevator as specified shall be available from auxiliary power generator, including wiring connection to the elevator control system.

2.5 CONDUIT AND WIREWAY

- A. Unless otherwise specified or approved, install electrical conductors, except traveling cable connections to the car, in rigid zinc-coated steel or aluminum conduit, electrical metallic tubing or metal wireways. Rigid conduit smaller than 3/4 inch or electrical metallic tubing smaller than 1/2 inch electrical trade size shall not be used. All raceways completely embedded in concrete slabs, walls, or floor fill shall be rigid steel conduit. Wireway (duct) shall be installed in the hoistway and to the controller and between similar apparatus in the elevator machine room. Fully protect self-supporting connections, where approved, from abrasion or other mechanical injury. Flexible metal conduit not less than 3/8 inch electrical trade size may be used, not exceeding 18 inches in length unsupported, for short connections between risers and limit switches, interlocks, and for other applications permitted by NEC.
- B. All conduits terminating in steel cabinets, junction boxes, wireways, switch boxes, outlet boxes and similar locations shall have approved insulation bushings. Install a steel lock nut under the bushings if they are constructed completely of insulating materials. Protect the conductors at ends of conduits not terminating in steel cabinets or boxes by terminal fittings having an insulated opening for the conductors.
- C. Rigid conduit and EMT fittings using set screws or indentations as a means of attachment shall not be used. All fittings shall be steel or malleable iron.
- D. Connect motor or other items subject to movement, vibration or removal to the conduit or EMT systems with flexible, steel conduits.

2.6 CONDUCTORS

A. Unless otherwise specified, conductors, excluding the traveling cables, shall be stranded or solid coated annealed copper in accordance with

Project Number: 589-370

Federal Specification J-C-30B for Type RHW or THW. Where 16 and 18 AWG are permitted by NEC, single conductors or multiple conductor cables in accordance with Federal Specification J-C-580 for Type TF may be used provided the insulation of single conductor cable and outer jacket of multiple conductor cable is flame retardant and moisture resistant. Multiple conductor cable shall have color or number coding for each conductor. Conductors for control boards shall be in accordance with NEC. Joints or splices are not permitted in wiring except at outlets. Tap connectors may be used in wireways provided they meet all UL requirements.

- B. Provide all conduit and wiring between machine room, hoistway and fixtures.
- C. All wiring must test free from short circuits or ground faults.

 Insulation resistance between individual external conductors and between conductors and ground shall be a minimum of one megohm.
- D. Where size of conductor is not given, voltage and amperes shall not exceed limits set by NEC.
- E. Provide equipment grounding. Ground the conduits, supports, controller enclosure, motor, platform and car frame, and all other non-current conducting metal enclosures for electrical equipment in accordance with NEC. The ground wires shall be copper, green insulated and sized as required by NEC. Bond the grounding wires to all junction boxes, cabinets, and wire raceways.
- F. Terminal connections for all conductors used for external wiring between various items of elevator equipment shall be solderless pressure wire connectors in accordance with Federal Specification W-S-610. The Elevator Contractor may, at his option, make these terminal connections on 10 gauge or smaller conductors with approved terminal eyelets set on the conductor with a special setting tool, or with an approved pressure type terminal block. Terminal blocks using piercethrough serrated washers are not acceptable.

2.7 TRAVELING CABLES

A. All conductors to the car shall consist of flexible traveling cables conforming to the requirements of NEC. Traveling cables shall run from the junction box on the car directly to the controller. Junction boxes on the car shall be equipped with terminal blocks. Terminal blocks

Project Number: 589-370

having pressure wire connectors of the clamp type that meet UL 486A requirements for stranded wire may be used in lieu of terminal eyelet connections. Terminal blocks shall have permanent indelible identifying numbers for each connection. Cables shall be securely anchored to avoid strain on individual terminal connections. Flame and moisture resistant outer covering must remain intact between junction boxes. Abrupt bending, twisting and distortion of the cables shall not be permitted.

- B. Provide spare conductors equal to 10 percent of the total number of conductors furnished, but not less than 5 spare conductors in each traveling cable.
- C. Provide shielded wires for the auto dial telephone system within the traveling cable. Add 5 pair shielded wires for card reader, 2 RG-6/U coaxial CCTV cables, and 2 pair 14 gauge wires for CCTV power as needed.
- D. If traveling cables come into contact with the hoistway or elevator due to sway or change in position, provide shields or pads to the elevator and hoistway to prevent damage to the traveling cables.
- E. Hardware cloth wide may be installed from the hoistway suspension point downward to the elevator pit to prevent traveling cables from rubbing or chafing. Hardware cloth shall be securely fastened and tensioned to prevent buckling. Hardware cloth is not required when traveling cable is hung against a flat wall.

2.8 CONTROLLER AND SUPERVISORY PANEL

- A. UL/CSA Labeled Controller: Mount all assemblies, power supplies, chassis switches, and relays on a self-supporting steel frame.

 Completely enclose the equipment and provide a mean to control the temperature. Solid state components shall be designed to operate between 32 to 104 degrees Fahrenheit, humidity non-condensing up to 85 percent.
- B. All controller switches and relays shall have contacts of design and material to ensure maximum conductivity, long life and reliable operation without overheating or excessive wear, and shall provide a wiping action to prevent sticking due to fusion. Switches carrying highly inductive currents shall be provided with arc shields or suppressors.

- C. Where time delay relays are used in the circuits, they shall be of acceptable design, adjustable, reliable, and consistent such as condenser timing or electronic timing circuits.
- D. Properly identify each device on all panels by name, letter, or standard symbol which shall be neatly stencil painted or decaled in an indelible and legible manner. Identification markings shall be coordinated with identical markings used on wiring diagrams. The ampere rating shall be marked adjacent to all fuse holders. All spare conductors to controller and supervisory panel shall be neatly formed, laced, and identified.

2.9 MICROPROCESSOR CONTROL SYSTEM

- A. Provide a microprocessor based system with absolute position/speed feedback encoded tape to control the hoisting machine and signal functions in accordance with these specifications. Complete details of the components and printed circuit boards, together with a complete operational description, shall be submitted for approval.
 - 1. All controllers shall be non-proprietary.
 - 2. Proprietary tools shall not be necessary for adjusting, maintenance, repair, and testing of equipment.
 - 3. Controller manufacturer shall provide factory training, engineering and technical support, including all manuals and wiring diagrams to the VA Medical Center's designated Elevator Maintenance Service Provider.
 - 4. Replacement parts shall be shipped overnight within 48 hours of an order being received.
- B. All controller assemblies shall provide smooth, step-less acceleration and deceleration of the elevator, automatically and irrespective of the load in the car. All control equipment shall be enclosed in metal cabinets with lockable, hinged door(s) and shall be provided with a means of ventilation. All non-conducting metal parts in the machine room shall be grounded in accordance with NEC. Cabinet shall be securely attached to the building structure.
- C. Circuit boards for the control of each and every elevator system; dispatching, signals, door operation and special operation shall be installed in a NEMA Type 1 General Purpose Enclosure. Circuit boards shall be moisture resistant, non-corrosive, non-conductive, fabricated of non-combustible material and adequate thickness to support the

- components mounted thereon. Mounting racks shall be spaced to prevent accidental contact between individual circuit boards and modules.
- D. Modules shall be the type that plug into pre-wired mounting racks.

 Field wiring or alteration shall not be necessary in order to replace defective modules.
- E. Each device, module and fuse (with voltage and ampere rating) shall be identified by name, letter or standard symbol in an approved indelible and legible manner on the device or panel. Coordinate identification markings with identical markings on wiring diagrams.
- F. The electrical connections between the printed circuit boards (modules) and the circuit connectors incorporated in the mounting racks shall be made through individual tabs which shall be an integral part of each module. The tabs shall be nickel-gold plated or other approved metal of equal electrical characteristics. Modules shall be keyed or notched to prevent insertion of the modules in the inverted position.
- G. Light emitting diodes (LED) shall be for visual monitoring of individual modules.
- H. Components shall have interlocking circuits to assure fail-safe operation and to prevent elevator movement should a component malfunction.
- I. Method of wire wrapping from point to point with connections on the mounting racks shall be submitted for approval.
- J. Field wiring changes required during construction shall be made only to the mounting rack connection points and not to the individual module circuitry or components. If it is necessary to alter individual modules they shall be returned to the factory where design changes shall be made and module design records changed so correct replacement units will be available.
- K. All logic symbols and circuitry designations shall be in accordance with ASME and NEC Standards.
- L. Solid state components shall be designed to operate within a temperature range of 32 to 104 degrees Fahrenheit, humidity non-condensing up to 85 percent.
- M. Wiring connections for operating circuits and for external control circuits shall be brought to terminal blocks mounted in an accessible location within the controller cabinet. Terminal blocks using pierce through serrated washers shall not be used.

2.10 VVVF AC MOTOR CONTROL WITH REGENERATIVE DRIVE

- A. Variable Voltage Variable Frequency Motor Control:
 - 1. Elevator control shall be affected by means of a compact solid state motor control unit for each and every elevator with electrical characteristics to suit the power supply. The system shall consist of the necessary three phase, full-wave bridge rectifiers and be equipped with regenerative drive.
 - 2. Solid state motor control unit shall operate with high efficiency and low power consumption, have the capacity to handle peak currents typical of elevator service and contain a balanced, coordinated fault protection system which shall accomplish the following:
 - a. Protect the complete power circuit and specifically the power semi-conductors from failure under short circuit (bolted fault) conditions.
 - b. Protect against limited faults arising from partial grounds, partial shorts in the motor armature or in the power unit itself.
 - c. Protect the drive motor against sustained overloads. A solid state overload circuit shall be used.
 - d. Protect motor and power unit against instantaneous peak overload.
 - e. Provide semi-conductor transient protection.
 - f. Provide phase sequence protection to ensure incoming line is phased properly.
 - g. Removable printed circuit boards shall be provided for the VVVF control. Design tabs so boards cannot be reversed.

2.11 EMERGENCY RESCUE OPERATION

A. Provide a power source to send the elevator to the nearest landing.

After the elevator has leveled at the nearest landing, provide power to open the car and hoistway doors automatically. After a predetermined time the doors shall close. Power shall stay applied to the door open button so the doors can be opened from the inside of the elevator. The elevator shall remain shut down at the landing until normal power is restored. Install a sign on the controller indicating that the power is applied to emergency rescue operator and door operator during loss of normal power.

2.12 DUPLEX SELECTIVE COLLECTIVE AUTOMATIC OPERATION

A. Provide duplex selective collective automatic operation, for passenger elevators.

B. Operate elevators from push buttons inside the cars and located at each and every floor between elevators. When cars are available, park one car at main floor (home car) and the other car at last call (free car). Respond to car calls and hall calls above main floor using the "free" car. Once a car has started, respond to registered calls in the direction of travel and in the order the floors are reached. Do not reverse the car direction until all car calls have been answered, or until all hall calls ahead of the car and corresponding to the direction of car travel have been answered.

Slow and stop elevators automatically at floors corresponding to registered calls in the order in which they are approached in each direction of travel. As slowdown is initiated, automatically cancel the hall call and car call. Hold car at arrival floor an adjustable time interval to allow passenger transfer.

When the "free" car is clearing calls, the "home" car shall respond to the following:

- 1. Calls registered on "home" car push buttons.
- 2. Up hall calls registered below "free" car.
- 3. Up or down calls registered above "free" car while "free" car is traveling down.
- 4. Hall calls when "free" car is delayed in its normal operation for a predetermined period.
- C. When both cars are clearing calls, stop only one car in response to any registered hall call. Return the first car to clear its calls to the main floor. Should last service required bring both cars to main floor, the first arriving car becomes the "free" car. Illuminate floor push button to indicate call registration. Extinguish light when call is answered.
- D. If a landing button is operated while the car and hoistway doors are closing at that floor, the call shall be registered for the next available elevator. Calls registered shall be canceled if closing doors are reopened by means of "DOOR OPEN" button or infrared curtain unit.
- E. When an elevator is delayed for a predetermined time interval or shuts down after it receives a start signal, the system shall automatically permit the remaining car in the group to respond to hall calls and to be dispatched in normal manner. When cause of delay is corrected, car

Project Number: 589-370

shall automatically resume normal operation unless it has been manually removed from the system.

- F. Auxiliary Landing Call Operation: In the event of corridor call button circuit failure, elevators are to service each floor in both directions in a predetermined pattern without registration of a call within the elevators. Provide illuminated signal in each the controller to indicate that emergency dispatch operation is in effect. Restoration of the landing call button system shall cause normal operation to resume.
- G. Car lights and fan in the elevator shall not shut off when elevator is idle. Arrange circuits so that power to lights and outlets on top and bottom of car shall not be interrupted.
- H. Answer lower floor calls with the home car unless the free car is parked at the floor where the call occurs. If no car is parked at main level, answer calls below main floor using the first available car.

2.13 MACHINE ROOM MONITOR (CCTV): GROUP OPERATION

- A. Install a monitor in the machine room located in the Group Dispatch Operation Cabinet.
- B. The CCTV shall contain indicators to provide the following information:
 - 1. The floor where each elevator is currently located.
 - 2. The direction that each elevator is currently traveling or is scheduled to travel.
 - 3. The location and direction of currently registered hall calls.
 - 4. Elevators that are currently out of service.
 - 5. Elevators that are currently bypassing hall calls.
 - 6. Elevators that are currently engaged in passenger transfers.
 - 7. Operations program under which entire group is currently operating.
 - 8. Zone divisions of the entire group.
 - 9. Door positions.
 - 10. Status indication for cars on independent service, car top inspection, stop switch activated, alarm activated, fire service, and earthquake protection activated, etc.
- C. The maintenance terminal shall be suitable for all troubleshooting procedures related to the specific type microprocessor installed on this project.

2.14 LOAD WEIGHING

A. Provide means for weighing car load for each and every elevator. When load in a car reaches an adjustable predetermined level of the rated

Project Number: 589-370

capacity, that car shall bypass registered landing calls until the load in the car drops below the predetermined level. Calls bypassed in this manner shall remain registered for the next car. The initial adjustment of the load weighting bypass setting shall be 60 to 100 percent.

2.15 ANTI-NUISANCE FEATURE

A. If weight in the car is not commensurate with the number of registered car calls, cancel car calls. Systems that employ either load weighing or door protective device for activation of this feature are acceptable.

2.16 FIREFIGHTERS' SERVICE

- A. Provide Firefighters' Service as per ASME A17.1 Section 2.27.
- B. Smoke Detectors:
 - Smoke detection devices that are designated for actuation of Elevator Phase I "FIRE SERVICE" response in each elevator lobby, top of hoistway, and machine room shall be provided by others.
 - a. Elevator lobby smoke detectors shall activate only the elevators sharing the corresponding or common lobby.
 - b. Top of hoistway smoke detectors shall activate fire recall and the top of hoistway motorized vent.
 - c. Machine room smoke detectors shall activate fire recall for each and every elevator with equipment located in that machine room.
 - d. Hoistway ventilation, provided by others, located at the top of hoistway for elevators that penetrate more than three floors and meets the requirements of ASME A17.1 Section 2.1.4 and IBC Section 3004. The vent shall stay closed under power. When the top of hoistway smoke detector is activated, the power is removed from the vent and the vent shall open. When the smoke detector is reset, the vent shall close by power.

2.17 MEDICAL EMERGENCY SERVICE

- A. Provisions shall be made for calling elevators on "Medical Emergency" operating independently from the dispatch signals and landing call signals. Provide a two-position, key-operated, momentary contact, spring return switch at all floors.
- B. Install key switch in the floor landing push button fixture above the push buttons.
- C. Landing key switches shall be momentary pressure-spring return to "OFF" position. Provide a call registered light indicator adjacent to key

switch. The landing key switch and the "Medical Emergency" key switch in the car shall not be operable by keys used for any other purpose in the hospital.

- D. When switch is activated at any floor, the call register light indicator shall illuminate at that floor only, and the elevator supervisory control system shall instantly select the nearest available elevator in service to respond to the medical emergency call.

 Immediately upon selection, all car calls within that car shall be cancelled. Transfer any landing calls which had previously been assigned that car to another car. If the selected car is traveling away from the medical emergency call, it shall slow down and stop at the nearest floor, maintain closed doors, reverse direction and proceed nonstop to the medical emergency call floor. If the selected car is traveling toward the medical emergency call floor, it shall proceed to that floor nonstop. If at the time of selection it is slowing down for a stop, the car shall stop, maintain doors closed, and start immediately toward the medical emergency floor.
- E. Arriving at the medical emergency floor, the car shall remain with doors open for 30 seconds. After this interval has expired and the car has not been placed on medical emergency operation from within the car, the car shall automatically return to normal service.
 - 1. Locate a "Medical Emergency" key switch in the upper section of each main car operating panel for selecting medical emergency service. Activation of the key switch will allow the car to accept a car call for any floor, close doors, and proceed nonstop to the floor desired. The return of the key switch to normal position will restore the car to normal service. The key shall be removable only in the off position.
- F. Any car in the group which is in group service may be selected.

 Additional medical emergency calls, as they are registered in the system, shall cause additional cars to respond as described below, always on the basis of one medical emergency call per car.
- G. Provide an LED illuminated indicator light next to the Medical Emergency key switch the same size as the Fire Service indicator. In the center of the rear cab panel provide a back lighted "MEDICAL EMERGENCY" LED illuminated display that shall flash on and off continuously when the car is assigned to this operation and until it is

restored to normal service. "MEDICAL EMERGENCY" indicator shall be a photographic negative type (72 in.) to center above the floor, (6 in.) wide X (3 in.) high, with (1/2 in.) high letters and legible only when illuminated.

- H. All of the key switches in the "Medical Emergency" system for each and every elevator shall operate from the same key. The medical emergency call service key shall not operate any other key switch in the elevator system, nor shall any other key required by the elevator system be able to operate the medical emergency call service switches.
- I. Should all the cars be operating on "Independent Service", the medical emergency service indicator lights in the car operating panel and rear wall shall be illuminated, buzzer shall sound, and the "Audio Voice" system shall direct the attendant to return the car to automatic operation.
- J. Should all the cars be out of service and unable to answer medical emergency calls, the call register light shall not illuminate.
- K. Each switch faceplate shall have legible indelible legends engraved or etched to indicate its identity and positions. All letters in faceplates shall be (1/4 in.) high, filled with black paint.
- L. When Phase I fire recall is activated it shall over-ride elevators on medical emergency service and return them to the main or alternate fire service recall floor. When the fire emergency floor has been identified the attendants may complete their medical emergency run on Phase II firefighters' operation if life safety is not affected.
- M. Provide four (4) keys for each "Medical Emergency" key cylinder furnished.

2.18 SEISMIC REQUIREMENTS

- A. Meet the requirements of ASME A17.1 Section 8.4, Elevator Safety Requirements for Seismic Risk Zone 2 or greater and VA Seismic Design Manual H-18-8.
- B. Support and maintain hoisting machines, controllers, supervisory panels, governors, pit sheaves, car and counterweight rails and brackets, conduit systems, buffers, and compensation sheaves in place to prevent any component from sliding, rotating, overturning, or jumping under conditions imposed by seismic forces not less than that required to produce an acceleration of gravity horizontally and 1/2 gravity vertically acting simultaneously. Design the total system to

- continue operation without interruption under specified seismic acceleration, as outlined in H-18-8.
- C. Support all vertical conduits or duct systems within the hoistway at points above the center of gravity of the riser. Provide lateral guides at regular intervals.
- D. Provide hoisting machines mounted on vibration isolators with separate isolated seismic restraints.
- E. Controllers and supervisory panel shall be bolted to the floor, and provided with sway braces at the top. Secure all electrical components within the panels to the panel frame. Fit cabinet doors with positive locking latches.
- F. Car and counterweight guide rail brackets and rail clip bolts shall be guarded against snagging the traveling cables on the side of the rail adjacent to the point of suspension of the traveling cables.
- G. Provide car guide rails with at least one intermediate bracket between brackets located at each floor so that bracket spacing does not exceed (8 ft). If intermediate brackets cannot be installed because of lack of structural support, reinforce rails with (9 in.) channel or approved equal backing.
- H. Guide rails shall not be less than 15 lb/ft).
- I. Provide counterweight guide rails with intermediate brackets in sufficient number so that the counterweight frame shall span no less than two brackets in its full length anywhere in the hoistway. Each pair of intermediate brackets as well as brackets located at each floor line shall have a horizontal tie of sufficient strength to contain the counterweight. Locate the horizontal tie member between the counterweight and the elevator car, and do not attach to the car guide rail or channel backing.
- J. Provide two counterweight derailment sensing wires vertically on the car side of the counterweight the entire height of travel. The counterweight frame shall be equipped with four derailment rings. Provide counterweight displacement switch. In the event the switch is activated, the corresponding elevator shall stop immediately and then proceed in the direction away from the counterweight to the next floor at a speed not exceeding (150 FPM). Upon arrival at the next floor, the elevator shall shut down with its door open. An indicator pilot light shall illuminate when the counterweight derailment detector is

activated. This pilot shall be fully identified and shall be located in the machine room indicator panel, or if no machine room indicator panel is specified, locate pilot light in a conspicuous place on the front of the elevator controller, not obstructed by controller door panels.

- K. Provide seismic switch to activate seismic operation, a minimum of one seismic switch per elevator or group of elevators.
- L. Provide an Annunciator in machine room connected to the essential electrical system. Annunciator will indicate if the seismic switch is not operative due to loss of power.
- M. Provide a sensor switch, installed on the governor rope tail sheave, to signal when the governor tail sheave is dislodged. The sensor shall prevent car movement when the governor tail sheave is dislodged from its normal position.
- N. The stresses in parts of structural members made of steel shall not exceed 88 percent of the minimum elastic strength of the material used in the fastenings.
- O. Provide car enclosure ceiling panels and fluorescent tubes with latching devices that shall restrain the panels and fluorescent tubes. Devices shall be readily removable for cleaning or replacing panels and re-lamping.
- P. Submittals are required for all equipment anchors, supports, restraints and detectors. Submittals shall include weight, dimensions, center of gravity, standard connections, calculations, manufacturer's recommendations, behavior problems (vibration, thermal, expansion, etc.) so that design can be properly reviewed.

2.19 ELEVATOR MACHINE BEAMS

- A. Overhead beams shall meet the requirements of ASME A17.1 Section 2.9 to support machines and machinery in place to prevent any part from becoming loose or displaced under the conditions imposed in service.

 Machine beams shall be designed as follows:
 - The load resting on the beams and supports shall include the complete weight of the machine, sheaves, controller, governor, and any other equipment, together with the portion of the machine room floor supported by the beams.
 - 2. Two times the sum of the tensions in all wire ropes supported by the beams with rated load in the car.

2.20 GEARLESS TRACTION MACHINE

- A. Gearless Traction Hoist Machine:
 - Machine: AC gearless machine, with permanent magnet synchronous motor, direct current electro-mechanical disc brakes and integral traction drive sheave, mounted to the car guide rail at the top of the hoistway.
 - 2. Governor: Friction type over-speed governor rated for the duty of the elevator specified.
 - 3. Buffers: Car and counterweight.
 - 4. Hoistway Operating Devices:
 - a. Emergency stop switch in the pit.
 - b. Terminal stopping switches.
 - c. Emergency stop switch on the machine.
 - 5. Positioning System: System consisting of magnets and proximity switches.
 - 6. Guide Rails and Attachments: Steel rails with brackets and fasteners.

2.21 SHEAVES

- A. Provide deflector sheaves with a metal basket type guard mounted below the sheave and a guard to prevent ropes from jumping out of grooves. Securely fasten guard to sheave beams.
- B. Two-to-one idler sheaves on car and counterweight, if used, shall be provided with metal guards that shall prevent foreign objects from falling between ropes and sheave grooves and accidental contact or injury to workers on top of the car. Fabricate sheave guards from not less than 10-gauge thick steel and install with minimum clearance between guard and cables to prevent ropes from jumping out of grooves.
- C. Securely mount overhead sheaves on overhead beams in proper alignment with basement traction sheave, car and counterweight rope hitches or sheaves. Provide necessary blocking where sheaves are installed on two or more levels.

2.22 HOIST ROPES

A. Provide elevator with the required number and size of ropes to ensure adequate traction for the range of loads with a factor of safety not less than that required by ASME A17.1 Section 2.20. Hoisting ropes shall be preformed 8 x 19 or 8 x 25 traction steel, conforming to Federal Specification RR-W-410 with minimum nominal diameter of 0.50

inch. For machines located overhead, 6×19 preformed traction steel hoisting ropes may be used in lieu of 8×19 that meet the requirements of the sheave manufacturer, at the elevator contractor's option.

- B. Securely attach a corrosion resistant metal data tag to one hoisting rope fastening on top of the elevator.
- C. Provide wedge type shackles.

2.23 HOIST ROPE COMPENSATION

- A. Provide compensation when required by controller manufacturer for elevators with travel of (50ft) or more. Compensation shall consist of a necessary number and size of encapsulated chains or whisper flex attached to the underside of car and counterweight frames. Hoist rope compensation shall meet the requirements of ASME A17.1 Rule 2.21.4.
 - 1. Provide pit guide to minimize chain sway.
 - 2. Provide take-up to compensate for hoist rope stretch.
 - 3. Pad areas where compensation may strike car or hoistway items.
- B. Compensation shall consist of a necessary number and size of iron or steel wire ropes attached to the underside of car and counterweight frames, passing under a weighted idler sheave in pit. A metal tag giving the number, diameter, type, month and year installed, and the name of manufacturer of compensating ropes shall be securely attached to one of the compensating rope fastenings.
 - 1. Provide means for equalizing tension in the compensating ropes.
 - 2. Provide idler sheave with ball or roller bearings. Mount sheave on steel guide rails.
 - 3. Provide a metal guard over compensating sheave.
 - 4. Provide a sheave contact in accordance with ASME A17.1 Rule 2.26.2.3.
 - 5. Provide take-up to compensate for future cable stretch.

2.24 GOVERNOR ROPE

- A. Governor Rope shall be 6 \times 19 or 8 \times 19 wire rope, preformed traction steel, uncoated, fiber core, conforming to Federal Specification RR-W-410 with minimum nominal diameter of 0.375 inch having a minimum safety factor of 5. Tiller rope construction is not acceptable.
- B. Under normal operation rope shall run free and clear of governor jaws, rope guards, and other stationary parts.

C. Securely attach governor rope tag to governor rope releasing carrier.

Data tag shall be corrosion-resisting metal and bear data as required by ASME A17.1 Section 2.18.

2.25 SPEED GOVERNOR

- A. Provide Centrifugal type car driven governor, in accordance with ASME A17.1 Section 2.18, to operate the car safety device and counterweight governor to operate the counterweight safety device. Governor shall be complete with weighted pit tension sheave, governor release carrier and mounting base with protected cable sleeves.
- B. Furnish overspeed switch and speed reducing switches when required.
- C. The governor rope clamping device shall be designed so that no appreciable damage to or deformation of the governor rope shall result from the stopping action of the device in operating the safety.
- D. Provide anti-friction metal bearings for the governor and pit tension sheaves. Bearing shall be either self-oiling or Zerk fitting type connections. Ball or roller bearings may be used in lieu of sleeve type.
- E. Provide metal guard over top of governor rope and sheaves.
- F. Governor, with the exception of finished surfaces, screw threads, etc., shall be factory painted and shall operate freely. Field painting of governor parts shall be permitted in accordance with ASME A17.1 Rule 2.18.3.1.
- G. Where the elevator travel does not exceed 100 feet, the weight tension sheave may be mounted on a pivoted steel arm in lieu of operating in steel guides.

2.26 CAR AND COUNTERWEIGHT SAFETY DEVICE

- A. Provide "Type B Safeties" on the elevator and counterweight that meet the requirements of ASME A17.1 Section 2.17.
- B. Field testing of car safety and governor shall be as specified in Section 3.7 PRETEST and TEST of this specification.

2.27 ASCENDING CAR OVERSPEED PROTECTION

A. Provide a device to prevent ascending over speed and unintended motion away from the landing when the doors are not locked in accordance with ASME A17.1 Section 2.19.

2.28 CAR AND COUNTERWEIGHT BUFFERS

A. Provide a minimum of two buffers for each car and one for each counterweight that meet the requirements of ASME A17.1 Section 2.22.

Securely fasten buffers and supports to the pit channels and in the alignment with striker plates on car and counterweight. Each installed buffer shall have a permanently attached metal plate indicating its stroke and load rating. Buffer anchorage shall not puncture pit waterproofing.

- B. Design and install buffers to provide minimum car runby required by ASME A17.1 Rule 2.4.2.
- C. Furnish pipe stanchions and struts as required to properly support the buffer.

2.29 COUNTERWEIGHTS

- A. Elevator shall be counterweighted with the weight of the car plus 40-50 percent of the rated capacity load as required by the controller manufacturer.
- B. Furnish two (2) tie rods with cotter pins and double nuts at top and bottom. Install counterweight retainer plates or other approved means on tie rods to prevent counterweight sub-weights from jumping and/or rattling. Both ends of tie-rods shall be visible and accessible.
- C. Provide counterweight guards in the pit in accordance with ASME A17.1 Section 2.3.

2.30 CAR AND COUNTERWEIGHT ROLLER/SLIDE GUIDES

- A. Provide car and counterweight with adjustable roller guides.
- B. Each guide shall be of an approved type consisting of not less than three (3) wheels, each with a durable, resilient oil-resistant material tire rotating on ball bearings having sealed-in lubrication. Assemble rollers on a substantial metal base and mount to provide continuous spring pressure contact of all wheels with the corresponding rail surfaces under all conditions of loading and operation. Secure the roller guides at top and bottom on each side of car frame and counterweight frame. All mounting bolts shall be fitted with nuts, flat washers, split lock washers, and if required, beveled washers.
- C. Provide sheet metal guards to protect wheels on top of car and counterweight.
- D. Minimum diameter of car rollers shall be 150 mm (6 in.) unless the six wheel roller type is used. The entire elevator car shall be properly balanced to equalize pressure on all guide rollers. Cars shall be balanced in post-wise and front-to-back directions. Test for this balanced condition shall be witnessed at time of final inspection.

- E. Minimum diameter of counterweight rollers shall not be less than (4 in.) (3 in.). Properly balance counterweight frame to equalize pressure on all guide rollers. The Contractor shall have the option of furnishing, for counterweight only, mechanically adjusted roller guide in lieu of spring loaded roller guides as specified.
- F. Equip all cars and counterweight with an auxiliary guiding device for each guide shoe which shall prevent the car or counterweight from leaving the rails in the event that the normal guides are fractured. These auxiliary guides shall not, during normal operation, touch the guiding surfaces of the rails. Fabricate the auxiliary guides from hot rolled steel plate and mount between the normal guide shoes and the car and counterweight frames. The auxiliary guides may be an extension of the normal guide shoe mounting plate if that plate is fabricated from hot rolled steel. The portion of the auxiliary guide which shall come in contact with the rail guiding surfaces in the event of loss of the normal guides shall be lined with an approved bearing material to minimize damage to the rail guiding surfaces.
- G. Alternate guide shoes for Freight Elevator: Install on car frame four flexible sliding swivel guide shoes each assembled on a substantial metal base, to permit individual self-alignment to the guide rails.
 - 1. Provide each shoe with renewable non-metallic gibs of durable material having low coefficient of friction and long-wearing qualities, when operated on guide rails receiving infrequent, light applications of rail lubricant. Gibs containing graphite or other solid lubricants are not acceptable.
 - 2. Flexible guide shoes of approved design, other than swivel type, may be used provided they are self-aligning on all three faces of the guide rails.
 - 3. Provide spring take-up in car guide shoes for side play between rails.

2.31 GUIDE RAILS, SUPPORTS AND FASTENINGS

- A. Guide rails shall conform to ASME A17.1 Section 2.23.
- B. Guide rails for car shall be planed steel T-sections and weigh per manufacturer requirements. Guide rails for counterweight shall be planed steel T-sections and weigh per manufacturer requirements.
- C. Securely fasten guide rails to the brackets or other supports by heavy duty steel rail clips.

- D. Provide necessary car and counterweight rail brackets and counterweight spreader brackets of sufficient size and design to secure substantial rigidity to prevent spreading or distortion of rails under any condition.
 - 1. Slotted or oversized holes shall be fitted with flat washers and shall conform to ASME A17.1 Rule 2.23.10.3.
 - 2. Where fastenings are over (14 ft) apart, rails shall be reinforced with (9 in.) channel or approved equal backing to secure the rigidity required.
- E. Rail joints and fishplates shall be in accordance with ASME A17.1 Rule 2.23.7. Rail joints shall not interfere with clamps and brackets.

 Design rail alignment shims to remain in place if fastenings become loose.
- F. Guide rails shall extend from channels on pit floor to within 76 mm (3 in.) of the underside of the concrete slab or grating at top of hoistway with a maximum deviation of (1/8 in.) from plumb in all directions. Provide a minimum of (3/4 in.) clearance between bottom of rails and top of pit channels.
- G. Guide rail anchorages in pit shall be made in a manner that will not reduce effectiveness of the pit waterproofing.
- H. In the event inserts or bond blocks are required for the attachment of guide rails, the Contractor shall furnish such inserts or bond blocks and shall install them in the forms before the concrete is poured. Use inserts or bond blocks only in concrete or block work where steel framing is not available for support of guide rails. Expansion-type bolting for guide rail brackets will not be permitted.
- I. Guide rails shall be clean and free of any signs of rust, grease, or abrasion before final inspection. Paint the shank and base of the T-section with two field coats of manufacturer's standard enamel.
- J. After completion of car safety testing during final inspection, all marks left on rails by application of car safety shall be filed smooth.

2.32 NORMAL AND FINAL TERMINAL STOPPING DEVICES

- A. Normal and final terminal stopping devices shall conform to ASME A17.1 Section 2.25.
- B. Mount terminal slowdown switches and direction limit switches on the elevator or in hoistway to reduce speed and bring car to an automatic stop at the terminal landings.

- 1. Switches shall function with any load up to and including 125 percent of rated elevator capacity at any speed obtained in normal operation.
- 2. Switches, when opened, shall permit operation of elevator in reverse direction of travel.
- C. Mount final terminal stopping switches in the hoistway.
 - 1. Switches shall be positively opened should the car travel beyond the terminal direction limit switches.
 - 2. Switches shall be independent of other stopping devices.
 - 3. Switches, when opened, shall remove power from hoist motor, apply hoist machine brake, and prevent operation of car in either direction.
- D. After final stopping switches have been adjusted, through bolt switches to guide rail.

2.33 CROSSHEAD DATA PLATE AND CODE DATA PLATE

- A. Permanently attach a non-corrosive metal Data Plate to car crosshead.

 Data plate shall bear information required by ASME A17.1 Section 2.16.3

 and 2.20.2.1.
- B. Permanently attach a Code Data Plate, in plain view, to the controller, ASME A17.1 Section 8.9.

2.34 WORKMAN'S LIGHTS AND OUTLETS

A. Provide duplex GFCI protected type receptacles and lamps with guards on top of each elevator car and beneath the platform. The receptacles shall be in accordance with Fed. Spec. W-C-596 for Type D7, 2-pole, 3-wire grounded type, rated for 15 amperes and 125 volts.

2.35 TOP-OF-THE CAR OPERATING DEVICE

- A. Provide a cartop operating device that meets the requirements of ASME A17.1 Section 2.26.
- B. The device shall be activated by a toggle switch mounted in the device. The switch shall be clearly marked "INSPECTION" and "NORMAL" on the faceplate, with (1/4 in.) letters.
- C. Movement of the elevator shall be accomplished by the continuous pressure on a direction button and a safety button.
- D. Provide an emergency stop toggle type switch.
- E. Provide permanent identification for the operation of all components in the device.

F. The device shall be permanently attached to the elevator crosshead on the side of the elevator nearest to the hoistway doors used for accessing the top of the car.

2.36 CAR LEVELING DEVICE

- A. Car shall be equipped with a two-way leveling device to automatically bring the car to within (1/8 in.) of exact level with the landing for which a stop is initiated regardless of load in car or direction.
- B. If the car stops short or travels beyond the floor, the leveling device, within its zone shall automatically correct this condition and maintain the car within (1/8 in.) of level with the floor landing regardless of the load carried.
- C. Provide encoded steel tape, steel tape with magnets or steel vanes with magnetic switches. Submit design for approval.

2.37 EMERGENCY STOP SWITCHES

- A. Provide an emergency stop switch for each top-of-car device, pit, machine spaces, service panel and firefighters' control panel inside the elevator. Mount stop switches in the pit adjacent to pit access door, at top of the pit ladder (48 in.) above the bottom landing sill and (48 in.) above the pit floor adjacent to the pit ladder.
- B. Each stop switch shall be red in color and shall have "STOP" and "RUN" positions legibly and indelibly identified.

2.38 MAIN CAR OPERATING PANEL

- A. Locate the main car operating panel in the car enclosure on the front return panel for passenger/service elevators and the front of the side wall for freight elevators. The top floor car call push button shall not be more than (48 in.) above the finished floor. Car call push buttons and indicator lights shall be round with a minimum diameter of (1 in.), LED white light illuminated.
- B. One piece front faceplate, with edges beveled 15 degrees, shall have the firefighters' service panel recessed into the upper section and the service operation panel recessed into the lower section, fitted with hinged doors. Doors shall have concealed hinges, be in the same front plane as the faceplate and fitted with cylinder type key operated locks. Secure the faceplate with stainless steel tamperproof screws.
- C. All terminology on the main car operating panel shall be raised or engraved. Use (1/4 in.) letters to identify all devices in upper section of the main car operating panel. The handicapped markings with

contrasting background shall be recessed .030 inch in the faceplate, square or rectangular in shape, with the finished face of the (1/2 in.) numerals and markings flush with the faceplates. Surface mounted plates are not acceptable.

- D. The upper section shall contain the following items in order listed from top to bottom:
 - 1. Engrave elevator number, (1 in.) high with black paint for contrast.
 - 2. Engrave capacity plate information with black paint for contrast with freight loading class and number of passengers allowed.
 - 3. Emergency car lighting system consisting of a rechargeable battery, charger, controls, and LED illuminated light fixture. The system shall automatically provide emergency light in the car upon failure or interruption of the normal car lighting service, and function irrespective of the position of the light control switch in the car. The system shall be capable of maintaining a minimum illumination of 1.0 foot-candle when measured (48 in.) above the car floor and approximately (12 in.) in front of the car operating panel, for not less than four (4) hours.
 - 4. LED illuminated digital car position indicator with direction arrows. Digital display floor numbers and direction arrows shall be a minimum of (2 in.) high.
 - 5. Firefighters' Emergency Operation Panel shall conform to the requirements of ASME A17.1 Section 2.27. Firefighters' Panel shall be (66 in.) minimum to (72 in.) maximum to the top of the panel above finished floor.
 - 6. Firefighters' Emergency Indicator Light shall be round with a minimum diameter of (1 in.).
 - 7. Medical Emergency switch marked "MEDICAL EMERGENCY" with two positions labeled "ON" and "OFF" and Medical Emergency Indicator Light located next to the key switch shall be round with a minimum diameter of (1 in.). Instruction for Medical Emergency operation shall be engraved below the key switch and light.
 - 8. Key operated Independent Service; see Section 2.39 for detailed description.
 - 9. Provide a Door Hold button on the faceplate next to the independent service key switch. It shall have "DOOR HOLD" indelibly marked on the button. Button shall light when activated. When activated, the

door shall stay open for a maximum of one minute. To override door hold timer, push a car call button or door close button. Door Hold button is not ADA required and Braille is not needed.

- 10. Complete set of round car call push buttons, minimum diameter of (1 in.), and LED white light illuminated, corresponding to the floors served. Car call buttons shall be legibly and indelibly identified by a floor number and/or letter not less than (1/2 in.) high in the face of the call button. Stack buttons in a single vertical column for low rise buildings up to six floors with front openings only.
- 11. Door Open and Door Close buttons shall be located below the car call buttons. They shall have "OPEN" and "CLOSE" legibly and indelibly identified by letters in the face of the respective button. The Door Open button shall be located closest to the door jamb as required by ADA.
- 12. Red Emergency Alarm button that shall be located below the car operating buttons. Mount the emergency alarm button not lower than (35 in.) above the finished floor. It shall be connected to audible signaling devices as required by Al7.1 Rule 2.27.1.2. Provide audible signaling devices including the necessary wiring.
- 13. Emergency Help push button shall activate two way communications by Auto Dial telephone system as required by ASME A17.1 Rule 2.27.1.1.3. Help button shall be LED white light illuminated and flash when call is acknowledged. Legibly and indelibly label the button "HELP" in the face of the button with (1/2 in.) high letters.
- 14. Provide a corresponding Braille plate on the left side of each button. The handicapped markings with contrasting background shall be recessed .030 inch in the faceplate, square or rectangular in shape, with the finished face of the (1/2 in.) numerals and markings flush with the faceplates. Surface mounted plates are not acceptable.
- E. The service operation panel, in the lower section shall contain the following items:
 - 1. Light switch labeled "LIGHTS" for controlling interior car lighting with its two positions marked "ON" and "OFF".
 - 2. Inspection switch that will disconnect normal operation and activate hoistway access switches at terminal landings. Switch shall be labeled "INSPECTION" with its two positions marked "ON" and "OFF".

- 3. Three position switch labeled "FAN" with its positions marked "HIGH", "LOW" and "OFF" for controlling car ventilating blower.
- 4. Two position, spring return, toggle switch or push button to test the emergency light and alarm device. It shall be labeled "TEST EMERGENCY LIGHT AND ALARM".
- 5. Two position emergency stop switch, when operated, shall interrupt power supply and stop the elevator independently of regular operating devices. Emergency stop switch shall be marked "PULL TO STOP" and "PUSH TO RUN".

2.39 AUXILIARY CAR OPERATING PANEL

- A. Provide an auxiliary car operating panel in the front return panel opposite the main car operating panel. The auxiliary car operating panel shall contain only those controls essential to passenger (public) operation. The auxiliary car operating panel faceplate shall match the main car operating panel faceplate in material and general design. Secure the faceplate with stainless steel tamperproof screws.
 - 1. Mount door "OPEN" and door "CLOSE" buttons closest to the door jamb and mount the alarm button no lower than (35 in.) above the finished floor. The Door Open button shall be located closest to the door as required by ADA.
 - 2. Complete set of round car call push buttons, minimum diameter (1 in.), and LED white light illuminated, corresponding to the floors served. Car call button shall be legibly and indelibly identified by a floor number and/or letter not less than (1/2 in.) high in the face of the call button corresponding to the numbers of the main car operating buttons. Install buttons in a vertical stack on front mounted panel up to six floors and horizontally for side mounted panel.
 - 3. Cross-connect all buttons in the auxiliary car operating panels to their corresponding buttons in the main car operating panel. Registration of a car call shall cause the corresponding button to illuminate in the main and auxiliary car operating panel.
 - 4. Emergency Help push button shall activate two way communications by Auto Dial telephone system as required by ASME A17.1 Rule 2.27.1.1.3. Help button shall be LED white light illuminated and flash when call is acknowledged. Legibly and indelibly label the button "HELP" in the face of the button with (1/2 in.) high letters.

Install emergency telephone system in the auxiliary car operating panel.

5. Provide a corresponding Braille plate on the left side of each button. The handicapped markings with contrasting background shall be recessed .030 inch in the faceplate, square or rectangular in shape, with the finished face of the (1/2 in.) numerals and markings flush with the faceplates. Surface mounted plates are not acceptable.

2.40 INDEPENDENT SERVICE

A. Provide a legibly and indelibly labeled "INDEPENDENT SERVICE", two-position key operated switch on the face of the main car operating panel that shall have its positions marked "ON" and "OFF". When the switch is in the "ON" position, the car shall respond only to calls registered on its car dispatch buttons and shall bypass all calls registered on landing push buttons. The car shall start when a car call is registered, car call button or door close button is pressed, car and hoistway doors are closed, and interlock circuits are made. When switch is returned to "OFF" position, normal service shall be resumed.

2.41 CAR POSITION INDICATOR

A. Provide an alpha-numeric digital car position indicator in the main car operating panel, consisting of numerals and arrows not less than (2 in.) high, to indicate position of car and direction of car travel.

Locate position indicator at the top of the main car operating panel, illuminated by light emitting diodes.

2.42 AUDIO VOICE SYSTEM

A. Provide digitized audio voice system activated by stopping at a floor. Audio voice shall announce floor designations, direction of travel, and special announcements. The voice announcement system shall be a natural sounding human voice that receives messages and shall comply with ADA requirements for audible car position indicators. The voice announcer shall have two separate volume controls, one for the floor designations and direction of travel, and another for special announcements. The voice announcer shall have a full range loud speaker, located on top of the cab. The audio voice unit shall contain the number of ports necessary to accommodate the number of floors, direction messages, and special announcements. Install voice announcer per manufacturer's recommendations and instructions. The voice system shall be the product

Construct Patient Parking Garage Kansas City VA Medical Center

Project Number: 589-370

of a manufacturer of established reputation. Provide manufacturer literature and list of voice messages.

- 1. Fire Service Message
- 2. Medical Emergency Service Message
- 3. "Please do not block doors"
- 4. Provide special messages as directed by Resident Engineer.

2.43 AUTO DIAL TELEPHONE SYSTEM

- A. Furnish and install a complete ADA compliant intercommunication system.
- B. Provide a two-way communication device in the car with automatic dialing, tracking and recall features with shielded wiring to car controller in machine room. Provide dialer with automatic rollover capability with minimum two numbers.
- C. "HELP" button shall illuminate and flash when call is acknowledged. Button shall match floor push button design.
- D. Provide "HELP" button tactile symbol engraved signage and Braille adjacent to button mounted integral with car operating panels.
- E. The auto dial system shall be located in the auxiliary car operating panel. The speaker and unit shall be mounted on the backside of the perforated stainless steel plate cover.
- F. Each elevator shall have individual phone numbers.
- G. If the operator ends the call, the phone shall be able to redial immediately.

2.44 CORRIDOR OPERATING DEVICE FACEPLATES

- A. Fabricate faceplates for elevator operating and signal devices from not less than (1/8 in.) thick flat stainless steel with all edges beveled 15 degrees. Install all faceplates flush with surface on which they are mounted.
- B. Corridor push button faceplates shall be at least (5 in.) wide by (12 in.) high. The centerline of the landing push buttons shall be (42 in.) above the corridor floor.
- C. Elevator Corridor Call Station Pictograph shall be engraved in the faceplate.
- D. Fasten all car and corridor operating device and signal device faceplates with stainless steel tamperproof screws.
- E. Design corridor push button faceplates so that pressure on push buttons shall be independent of pressure on push button contacts.

- F. Engraved legends in faceplates shall have lettering (1/4 in.) high filled with black paint.
- G. Provide a corresponding Braille plate on the left side of each button. The handicapped markings with contrasting background shall be recessed .030 inch in the faceplate, square or rectangular in shape, with the finished face of the (1/2 in.) numerals and markings flush with the faceplates. Surface mounted plates are not acceptable.

2.45 CORRIDOR OPERATING DEVICES FOR PASSENGER/SERVICE ELEVETORS

- A. Provide one risers of landing call buttons located as shown on contract drawings.
- B. Fixtures for intermediate landings shall contain "UP" and "DOWN" buttons. Fixtures for terminal landings shall contain a single "UP" or "DOWN" button.
- C. Each button shall contain an integral registration LED white light which shall illuminate upon registration of a call and shall extinguish when that call is answered.
- D. The direction of each button shall be legibly and indelibly identified by arrows not less than (1/2 in.) high in the face of each button.
- E. Two or more risers of landing call buttons, if specified, shall be cross-connected so that either "UP" or "DOWN" buttons at a floor shall be capable of registering a call to that floor for the entire elevator group. Registration of a landing call shall illuminate "UP" or "DOWN" buttons simultaneously, and upon satisfaction of that call, both buttons shall be extinguished simultaneously.
- F. Landing push buttons shall not re-open the doors while the car and hoistway doors are closing at that floor, the call shall be registered for the next available elevator. Calls registered shall be canceled if closing doors are re-opened by means of "DOOR OPEN" button or infrared curtain unit.

2.46 DIGITAL CORRIDOR LANTERN/POSITION INDICATOR

A. Provide each car with combination corridor lantern/position indicator digital display mounted over the hoistway entrances at each and every floor. Provide each terminal landing with "UP" or "DOWN", minimum(2 1/2 in.) high digital arrow lanterns and each intermediate landing with "UP" and "DOWN" digital arrow lanterns. Each lens shall be LED illuminated of proper intensity, so shielded to illuminate individual lens only. The lenses in each lantern shall be illuminated green to

indicate "UP" travel and red to indicate "DOWN" travel. Lanterns shall signal in advance of car arrival at the landing indicating the direction of travel whether or not corridor button has been operated at that floor. Hall calls shall receive immediate assignment to individual cars and hall lantern shall sound and illuminate. Corridor lanterns shall not be illuminated when a car passes a floor without stopping. Each lantern shall be equipped with a clearly audible electronic chime which shall sound once for "UPWARD" bound car and twice for "DOWNWARD" bound car. Audible signal shall not sound when a car passes the floor without stopping. Provide adjustable sound level on audible signal. Car riding lanterns are not acceptable.

- B. Provide alpha-numeric digital position indicators directly over hoistway landing entranceways between the arrival lanterns at each and every floor. Indicator faceplate shall be stainless steel. Numerals shall be not less than (2 in.) high with direction arrows. Cover plates shall be readily removable for re-lamping. The appropriate direction arrow shall be illuminated during entire travel of car in corresponding direction.
- C. Provide LED illumination in each compartment to indicate the position and direction the car is traveling by illuminating the proper alphanumeric symbol. When the car is standing at a landing without direction established, arrows shall not be illuminated.

2.47 HOISTWAY ACCESS SWITCHES

A. Provide hoistway access switches for elevator at top terminal landing to permit access to top of car, and at bottom terminal landing to permit access to pit. Elevators with center opening doors, mount the access key switch (6 ft) above the corridor floor next to the hoistway entrance jamb. Exposed portion of each access switch or its faceplate shall have legible, indelible legends to indicate "UP", "DOWN", and "OFF" positions. Submit design and location of access switches for approval. Each access switch shall be a constant pressure cylinder type lock having not less than five pins or five stainless steel disc combination with key removable only when switch is in the "OFF" position. Lock shall not be operable by any other key which will operate any other lock or device used for any other purpose at the VA Medical Center. Arrange the hoistway switch to initiate and maintain movement of the car. When the elevator is operated in the down

direction from the top terminal landing, limit the zone of travel to a distance not greater than the top of the car crosshead level with the top floor.

B. Provide emergency access for all hoistway entrances, keyways for passenger and service elevators and locked door release system (key access) for freight elevators.

2.48 HOISTWAY ENTRANCES: PASSENGER ELEVATORS

- A. Provide entrances of metal construction using cold rolled steel. Door frames shall be constructed of stainless steel. Complete entrances with sills, hanger supports, hangers, tracks, angle struts, unit frames, door panels, fascia plates, toe guards, hardware, bumpers, sight guards, and wall anchors.
- B. Provide one piece extruded stainless steel sills with non-slip wearing surface, grooved for door guides and recessed for fascia plates. Sills shall have overall height of not less than (3/4 in.), set true, straight, and level, with hoistway edges plumb over each other, and top surfaces flush with finished floor. Grout sills full length after installation.
- C. Construct hanger supports of not less than (3/16 in.) thick steel plate, and bolted to strut angles.
- D. Structural steel angles as required by the manufacturer shall extend from top of sill to bottom of floor beam above, and shall be securely fastened at maximum (18 in.) on center and at each end with two bolts.
- E. Provide jambs and head soffits, of not less than 14-gauge stainless steel, for entrances. Jambs and head soffits shall be bolted or welded construction, and provided with three anchors each side. Side jambs shall be curved type. Radius of curvature shall be (3 1/2 in.). Head jamb shall be square type, and shall overhang corridor face of side jambs by (1/4 in.). Rigidly fasten jambs and head soffits to building structure. Provide jambs with protective covering. After installation, protect jambs and head soffits with wood framing to prevent damage to finish during construction. Solidly grout jambs.
- F. Provide 14-gauge sheet steel fascia plates in hoistway to extend vertically from head of hanger support housing to sill above. Plates shall be the same width as the door opening of elevator and adequately reinforced to prevent waves and buckles. Below bottom terminal landing

- and over upper terminal landing provide shear guards beveled back to and fastened to the wall.
- G. Provide hoistway entrance with flush center opening hoistway doors for Elevators. Door panels shall be not less than 16-gauge stainless steel, flush type construction, and not less than $(1 \ 1/4 \ \text{in.})$ thick. Wrap stainless steel around the leading and trailing edges of the door panel. Top and bottom of door panels shall have continuous stiffener channels welded in place. Reinforcement of the door panels shall be approximately (0.04 in.) in thickness and of the hat section type. At bottom of each and every panel, provide two removable laminated phenolic gibs or other approved material guides and a separate fire gib. Reinforce each door panel for hangers, interlock mechanism, drive assembly, and closer. One door panel for each entrance shall bear a BOCA label, Underwriters' label, or in lieu of this, labels from other accredited test laboratories may be furnished provided they are based on fire test reports and factory inspection procedures acceptable to the COR. Fasten sight guard of 14-gauge stainless steel, extending full height of panel, to leading edge of each panel of center opening doors.
- H. Provide hangers for hoistway door panels and provide relating devices to transmit motion from one door panel to the other. Fasten the hangers to the door sections. Provide reinforcements at the point of attachment. The hanger shall have provisions for vertical and lateral adjustments. Hang doors on two-point suspension hangers having sealed ball-bearing sheaves not less than (3 in.) in diameter, with rubber or non-metallic sound-reducing tires mounted on a malleable iron or steel bracket. The hanger sheaves shall operate at a relatively low rotational speed, and shall roll on a high-carbon, cold-rolled or drawn steel track shaped to permit free movement of sheaves without regard to vertical adjustment of sheave, bracket or housing. Beneath the track and each hanger sheave, provide a hardened steel up-thrust roller capable of withstanding a vertical thrust equal to the carrying capacity of adjacent upper sheave. The up-thrust shall have fine vertical adjustments, and the face of the roller shaped so as to permit free movement of the hanger sheave. The up-thrust roller shall have ball or roller bearings. Provide the hanger sheaves with steel fire stops to prevent disengagement from tracks.

- I. Do not use hangers that are constructed integrally with the door panels.
- J. Provide raised numerals on cast, rear mounted plates for all openings. Numerals shall be a minimum of (2 in.) high, located on each side of entrance frame, with centerline of (5 ft) above the landing sill. The number plates shall contain Braille.
- K. Provide unique car number on every elevator entrance at designated main fire service floor level, minimum (3 in.) in height.

2.49 ELECTRIC INTERLOCKS

- A. Equip each hoistway door with an interlock, functioning as hoistway unit system, to prevent operation of car until all hoistway doors are locked in closed position. Hoistway door interlocks shall not be accepted unless they meet the requirements of ASME A17.1 Section 2.12.
- B. Equip car doors with electric contact that prevents operation of car until doors are closed unless car is operating in leveling zone or hoistway access switch is used. Locate door contact to prevent its being tampered with from inside of car. Car door contact shall not be accepted unless it meets the requirements of ASME A17.1 Section 2.12.
- C. Wiring installed from the hoistway riser to each door interlock shall be NEC type SF-2 or equivalent.
 - 1. Type SF-2 cable terminations in the interlock housing shall be sleeved with glass braid fillers or equivalent.
- D. Provide devices, either mechanical or electrical, that shall prevent operation of the elevator in event of damaged or defective door equipment that has permitted an independent car or hoistway door panel to remain in the "unclosed" and "unlocked" position.

2.50 CAR FRAME: PASSENGER ELEVATORS

A. Car frame shall conform to the requirements of ASME A17.1 Section 2.15, constructed of steel plates and structural shapes securely riveted, bolted, or welded together. Iron casting shall not be permitted. The entire assembly shall be rugged construction, and amply braced to withstand unequal loading of platform. Car frame members shall be constructed to relieve the car enclosure of all strains. Balance car front to back and side to side. Provide balancing weights and frames, properly located, to achieve the required true balance.

2.51 CAR PLATFORM: PASSENGER ELEVATORS

- A. Construct the car platform to comply with all the requirements of ASME A17.1 Section 2.15.5. The platform shall be designed to withstand the forces developed under the loading conditions specified. Provide car entrances with extruded aluminum sill or better with machined or extruded guide grooves. Cover underside and all exposed edges of wood filled platform with sheet metal of not less than 27-gauge, with all exposed joints and edges folded under. Fire resistant paint is not acceptable. Platform shall have flexible composition flooring not less than (1/8 in.) thick. Adhesive material shall be type recommended by manufacturer of flooring. Lay flooring flush with threshold plate and base.
- B. Provide a platform guard (toe guard) that meets the requirements of ASME A17.1 Section 2.15.9, of not less than 12-guage sheet-steel on the entrance side, extend (3 in.) beyond each side of entrance jamb. Securely brace platform guard to car platform, and bevel bottom edge at a 60-75 degree angle from horizontal. Install platform in the hoistway, so that the clearance between front edge and landing threshold shall not exceed (1 1/4 in.).
- C. Isolate the platform from the car frame by approved rubber pads or other equally effective means.
- D. Provide adjustable diagonal brace rods to hold platform firmly within car suspension frame.
- E. Provide a bonding wire between frame and platform.

2.52 CAR ENCLOSURE: PASSENGER ELEVATORS

- A. Car enclosure shall have a dome height inside the cab of (8 ft).
- B. Securely fasten car enclosure to platform by through bolts located at intervals of not more than (18 in.) running through an angle at the base of panels to underside of platform. Provide (1/4 in.) bolts with nuts and lock washers.
- C. Car enclosure base shall be of 14-gauge stainless steel, (6 in.) high. Provide straight type base at front return sides. Vertical face of base at sides and rear shall be flush with or recessed behind the wainscot directly above the base. There shall be no exposed fastenings in base. Provide natural ventilation openings divided equally between the bottom and top of the car enclosure that shall provide a minimum 3.5 percent of the inside car floor area.

- D. Construct canopy of not less than 12-gauge steel.
- E. Car top railings that meet the requirement of ASME A17.1 Rules 2.14.1.7 and 2.10.2.
- F. Front return wall panel, entrance columns, rear corner columns, entrance head-jamb and transom shall be 14-gauge stainless steel full height of car. Side and rear walls from top of base to top of panel shall be constructed of 14-gauge cold rolled steel. Side and rear walls up to (48 in.) above finished floor shall be covered with stainless steel. Side and rear walls from (48 in.) to the ceiling shall be covered with stainless steel. Apply directly to the cab walls or to (1/2 in.) plywood/particle board that meets requirements of ASTM E 84, UL 723, and CAN/ULC-S102.2, whichever is applicable. Submit a method of fastening plywood/particle board to steel walls. It shall be flush with the face of the bottom section of the stainless steel. Plastic laminate shall comply with Federal Specification L-P-508, Style Type 1, and Class 1. Color is specified in Section 09 06 00, SCHEDULE FOR FINISHES, Interior shall be flush panel construction with angles welded on exterior to ensure adequate rigidity. Coat exterior of panels with mastic sound insulation material approximately (3/32 in.) thick followed by a prime coat of paint. Mastic material shall conform to ASTM E1042.
 - 1. Smooth and flush all joints with no ragged or broken edges. Plastic laminate shall comply with NEMA LD-3, textured finish, general purpose type, grade designation GP 50, and 0.050 in. thickness, except with a minimum wear resistance of 1200 cycles, and backer sheet, grade designation BK 20, and 0.020 in. thickness.
- G. Provide a hinged top emergency exit cover. Exit shall be unobstructed when open and shall have mechanical stops on the cover. Provide a code approved exit switch to prevent operation of the elevator when the emergency exit is open.
- H. Provide duplex, GFCI protected type receptacle in car. Locate flush-mounted receptacle on the centerline of the main car operating panel, (6 in.) above the car floor.
- I. Lighting for passenger elevators:
 - 1. Provide stainless steel hanging ceiling frame. Construct frame of 1/8 in. x 1 1/2 in. x 1 1/2 in. "T" and "L" sections, divide ceiling into six panels.

- 2. Provide fluorescent or LED illuminated car light fixtures above the ceiling panels. See Specification 265100, Interior Lighting for fixture and ballast type. Maintain a minimum light level of 50-foot candles at (36 in.) above the finished floor.
- J. Provide a blower unit arranged to exhaust through an opening in the canopy. Provide a stainless or chrome plated fan grill around the opening. Provide 2-speed fan, capable of rated free delivery air displacement of approximately 380 and 700 cfm at respective speeds. Mount fan on top of car with rubber isolation to prevent transmission of vibration to car structure. Provide screening over intake and exhaust end of blower. Provide a 3-position switch to control the unit in the service panel.
- K. Provide car enclosure with two sets of stainless steel handrails.
 - 1. (3 in.) wide x (3/8 in.) thick flatstock located with centerlines (30 in. and 42 in.) above the car floor.
 - 2. Locate handrails (1 1/2 in.) from cab wall. Install handrails on two sides. Curve ends of handrails to walls. Conceal all handrail fastenings. Handrails shall be removable from inside the car enclosure.
- L. Provide car entrance with single speed center opening horizontal sliding car doors, of same type as hoistway doors for Elevators. Construct door panels to be flush hollow metal construction, not less than (1 1/4 in.) thick, consisting of one continuous piece 16-gauge stainless steel on car side face wrapped around the leading and trailing edges. Separate two plates by a sound-deadening material, and reinforce by steel shapes welded to the plates at frequent intervals. Reinforce panels as required for installation of hangers, poweroperating and door-opening devices. Hang doors on two-point suspension hangers having sealed ball-bearing sheaves not less than (3 in.) in diameter, with rubber or non-metallic sound-reducing tires. Equip hangers with adjustable ball-bearing rollers to take upward thrust of panels. Upthrust rollers shall be capable of being locked in position after adjustment to a maximum of (1/64 in.) clearance. Provide two laminated phenolic gibs on each door panel. Gibs shall be replaceable without removal of door panel. Provide door drive assembly, restrictor, gate switch, header, track, arms, and all related door hardware.

2.53 POWER DOOR OPERATORS: PASSENGER ELEVATORS

- A. Provide a high-speed heavy duty door operator to automatically open the car and hoistway doors simultaneously when the car is level with the floor, and automatically close the doors simultaneously at the expiration of the door-open time. Provide solid-state door control with closed loop circuitry to constantly monitor and automatically adjust door operation based upon velocity, position, and motor current. Motor shall be of the high-internal resistance type, capable of withstanding high currents resulting from stall without damage to the motor. The door operator shall be capable of opening a car door and hoistway door simultaneously, at a speed of (2.5 ft) per second. The closing speed of the doors shall be (1 ft) per second. A reversal of direction of the doors from the closing to opening operation, whether initiated by obstruction of the infrared curtain or the door "OPEN" button, shall be accomplished within (1.5 in.) maximum of door movement. Emphasis is placed on obtaining quiet interlock and door operation; smooth, fast, dynamic braking for door reversals, stopping of the door reversal, and stopping of the doors at extremes of travel. Construct all levers and drive arms operating the doors, of heavy steel members, and all pivot points shall have ball or roller bearings. Auxiliary automatic door closers required under ASME A17.1 Section 2.11.3 shall be torsion spring type or spring loaded sill mounted type.
- B. Hoistway doors and car gates shall be manually operable in an emergency without disconnecting the power door operating equipment unless the car is outside the unlocking zone.
 - 1. It shall not be possible for the doors to open by power unless the elevator is within the leveling zone.
 - 2. Provide infrared curtain unit. The device shall cause the car and hoistway doors to reverse automatically to the fully-open position should the unit be actuated while the doors are closing. Unit shall function at all times when the doors are not closed, irrespective of all other operating features. The leading edge of the unit shall have an approved black finish.
- C. Should the doors be prevented from closing for more than a predetermined adjustable interval of 20 to 60 seconds by operation of the curtain unit, the doors shall stay open, the audio voice message

and a buzzer located on the car shall sound only on automatic operation. Do not provide door nudging.

- 1. If an obstruction of the doors should not activate the photoelectric door control device and prevent the doors from closing for more than a predetermined adjustable interval of 15 to 30 seconds, the doors shall reverse to the fully open position and remain open until the "Door Close" button re-establishes the closing cycle.
- D. Provide door "OPEN" and "CLOSE" buttons. When the door "OPEN" button is pressed and held, the doors, if in the open position, shall remain open and if the doors are closing, they shall stop, reverse and re-open.

 Momentary pressure of the door "CLOSE" button shall initiate the closing of the doors prior to the expiration of the normal door open time.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine work of other trades on which the work of this Section depends.

 Report defects to the Resident Engineer in writing that may affect the work of this trade or equipment operation dimensions from site for preparation of shop drawings.
- B. Ensure that shafts and openings for moving equipment are plumb, level and in line, and that pit is to proper depth, waterproofed and drained with necessary access doors, ladder and guard.
- C. Ensure that machine room is properly illuminated, heated and ventilated, and equipment, foundations, beams correctly located complete with floor and access stairs and door.
- D. Before fabrication, take necessary job site measurements, and verify where work is governed by other trades. Check measurement of space for equipment, and means of access for installation and operation. Obtain dimensions from site for preparation of shop drawings.
- E. Ensure the following preparatory work, provided under other sections of the specification has been provided. If the Elevator Contractor requires changes in size or location of trolley beams or their supports and trap doors, etc., to accomplish their work, he must make arrangements, subject to approval of the Contracting officer, and include additional cost in their bid. Where applicable, locate controller near and visible to its respective hoisting machinery. Work required prior to the completion of the elevator installation:

- 1. Supply of electric feeder wires to the terminals of the elevator control panel, including circuit breaker.
- 2. Provide light and GFCI outlets in the elevator pit and machine room.
- 3. Furnish electric power for testing and adjusting elevator equipment.
- 4. Furnish circuit breaker panel in machine room for car and hoistway lights and receptacles.
- 5. Supply power for cab lighting and ventilation from an emergency power panel specified in Division 26, ELECTRICAL.
- 6. Machine room enclosed and protected from moisture, with self closing, self locking door.
- 7. Provide fire extinguisher in machine room.
- F. Supply for installation, inserts, anchors, bearing plates, brackets, supports and bracing including all setting templates and diagrams for placement.

3.2 SPACE CONDITIONS

- A. Attention is called to overhead clearance, pit clearances, overall space in machine room, and construction conditions at building site in connection with elevator work. Addition or revision of space requirements, or construction changes that may be required for the complete installation of the elevators must be arranged for and obtained by the Contractor, subject to approval by Resident Engineer. Include cost of changes in bid that become a part of the contract. Provide proper, code legal installation of equipment, including all construction, accessories and devices in connecting with elevator, mechanical and electrical work specified.
- B. Where concrete beams, floor slabs, or other building construction protrude more than (2 in.) into hoistway, bevel all top surfaces of projections to an angle of at 75 degrees with the horizontal.

3.3 INSTALLATION

- A. Perform work with competent Certified Elevator Mechanics and Apprentices skilled in this work and under the direct supervision of the Elevator Contractor's experienced foreman.
- B. Set hoistway entrances in alignment with car openings, and true with plumb sill lines.
- C. Erect hoistway sills, headers and frames prior to erection of rough walls and doors. Erect fascias and toe guards after rough walls are finished.

- D. Install machinery, guides, controls, car and all equipment and accessories in accordance with manufacturer's instructions, applicable codes and standards.
- E. Isolate and dampen machine vibration with properly sized sound-reducing anti-vibration pads.
- F. Grout sills and hoistway entrance frames.

3.4 ARRANGEMENT OF EQUIPMENT

A. Clearance around elevator, mechanical and electrical equipment shall comply with applicable provisions of NEC. Arrange equipment in machine room so that major equipment components can be removed for repair or replacement without dismantling or removing other equipment in the same machine room. Locate controller near and visible to its respective hoisting machine.

3.5 WORKMANSHIP AND PROTECTION

- A. Installations shall be performed by Certified Elevator Mechanics and Apprentices to best possible industry standards. Details of the installation shall be mechanically and electrically correct. Materials and equipment shall be new and without imperfections.
- B. Recesses, cutouts, slots, holes, patching, grouting, refinishing to accommodate installation of equipment shall be included in the Contractor's work. All new holes in concrete shall be core drilled.
- C. Structural members shall not be cut or altered. Work in place that is damaged or defaced shall be restored equal to original new condition.
- D. Finished work shall be straight, plumb, level, and square with smooth surfaces and lines. All machinery and equipment shall be protected against dirt, water, or mechanical injury. At final completion, all work shall be thoroughly cleaned and delivered in perfect unblemished condition.
- E. Beams, slabs, or other building construction protruding more than four inches into the hoistway, all top surfaces shall be beveled at an angle of at least 75 degrees to the horizontal.
- F. Sleeves for conduit and other small holes shall project (2 in.) above concrete slabs.
- G. Hoist cables that are exposed to accidental contact in the machine room and pit shall be completely enclosed with 16-gauge sheet metal or expanded metal or guards.

H. Exposed gears, sprockets, and sheaves shall be guarded from accidental contact in accordance with ASME A17.1 Section 2.10.

3.6 CLEANING

- A. Clean machine room and equipment.
- B. Perform hoistway clean down.
- C. Prior to final acceptance; remove protective coverings from finished or ornamental surfaces. Clean and polish surfaces with regard to type of material.

3.7 PAINTING AND FINISHING

- A. Hoist machine, motor, shall be factory painted with manufacturer's standard finish and color.
- B. Controller, sheave, car frame and platform, counterweight, beams, rails and buffers, except their machined surfaces, cams, brackets and all other uncoated ferrous metal items shall be painted one factory priming coat or approved equal.
- C. Upon completion of installation and prior to final inspection, all equipment shall be thoroughly cleaned of grease, oil, cement, plaster and other debris. All equipment, except that otherwise specified as to architectural finish, shall then be given two coats of paint of approved color, conforming to manufacturer's standard.
- D. Field painting of governors shall be in accordance with ASME A17.1 Rule 2.18.3.1.
- E. Stencil or apply decal floor designations not less than 4 in.) high on hoistway doors, fascias or walls within door restrictor areas as required by ASME A17.1 Rule 2.29.2. The color of paint used shall contrast with the color of the surfaces to which it is applied.
- F. Elevator hoisting machine, controller, governor, main line shunt trip circuit breaker, safety plank, and cross head of car shall be identified by (4 in.) high numerals and letters located as directed.

 Numerals shall contrast with surrounding color and shall be stenciled or decaled.
- G. Hoistway Entrances of Passenger, and Service Elevators:
 - 1. Door panels shall be parkerized or given equivalent rust resistant treatment and a factory finish of one coat of baked-on primer and one factory finish coat of baked-on enamel.
 - 2. Fascia plates, top and bottom shear guards, dust covers, hanger covers, and other metalwork, including built-in or hidden work and

structural metal, (except stainless steel entrance frames and surfaces to receive baked enamel finish) shall be given one approved prime coat in the shop, and one field coat of paint of approved color.

H. Elevator Cabs for Passenger Elevators:

- 1. Interior and exterior steel surfaces shall be parkerized or given equivalent rust resistant treatment before finish is applied.
- Interior steel surfaces shall be factory finished with one coat of baked on enamel or proxylin lacquer. For color, see Section 09 06 00, SCHEDULE FOR FINISHES.
- 3. Give exterior faces of car doors one finish coat of paint of medium gray color.

3.8 PRE-TESTS AND TESTS

- A. Pre-test the elevators and related equipment in the presence of the Resident Engineer or his authorized representative for proper operation before requesting final inspection. Conduct final inspection at other than normal working hours, if required by Resident Engineer.
 - 1. Procedure outlined in the Inspectors Manual for Electric Elevators, ASME A17.2 shall apply.
 - a. Final test shall be conducted in the presence of and witnessed by an ASME QEI-1 Certified Elevator Inspector.
 - b. Government shall furnish electric power including necessary current for starting, testing, and operating machinery of each elevator.
 - 2. Contractor shall furnish the following test instruments and materials on-site and at the designated time of inspection: properly marked test weights, voltmeter, amp probe, thermometers, direct reading tachometer, megohm meter, vibration meter, sound meter, light meter, stop watch, and a means of two-way communication.
- B. Inspect workmanship, equipment furnished, and installation for compliance with specification.
- C. Balance Tests: The percent of counterbalance shall be checked by placing test weights in car until the car and counterweight are equal in weight when located at the mid-point of travel. If the actual percent of counter balance does not conform to the specification, the amount of counterweight shall be adjusted until conformance is reached.

- D. Full-Load Run Test: Elevators shall be tested for a period of one hour continuous run with full contract load in the car. The test run shall consist of the elevator stopping at all floors, in either direction of travel, for not less than five or more than ten seconds per floor.
- E. Speed Test: The actual speed of the elevator shall be determined in both directions of travel with full contract load, balanced load and no load in the elevator. Speed shall be determined by applying a certified tachometer to the car hoisting ropes or governor rope. The actual measured speed of the elevator with all loads in either direction shall be within three (3) percent of specified rated speed. Full speed runs shall be quiet and free from vibration and sway.
- F. Temperature Rise Test: The temperature rise of the hoisting motor shall be determined during the full load test run. Temperatures shall be measured by the use of thermometers. Under these conditions, the temperature rise of the equipment shall not exceed 50 degrees Centigrade above ambient temperature. Test shall start when all machine room equipment is within five (5) degrees Centigrade of the ambient temperature. Other tests for heat runs on motors shall be performed as prescribed by the Institute of Electrical and Electronic Engineers.
- G. Car Leveling Test: Elevator car leveling devices shall be tested for accuracy of leveling at all floors with no load in car, balanced load in car, and with contract load in car, in both directions of travel. Accuracy of floor level shall be within plus or minus (1/8 in.) of level with any landing floor for which the stop has been initiated regardless of load in car or direction of travel. The car leveling device shall automatically correct over travel as well as under travel and shall maintain the car floor within plus or minus (1/8 in.) of level with the landing floor regardless of change in load.
- H. Brake Test: The action of the brake shall be prompt and a smooth stop shall result in the up and down directions of travel with no load and rated load in the elevator. Down stopping shall be tested with 125 percent of rated load in the elevator.
- I. Insulation Resistance Test: The elevator's complete wiring system shall be free from short circuits and ground faults and the insulation resistance of the system shall be determined by use of megohm meter, at the discretion of the Elevator Inspector conducting the test.

- J. Safety Devices and Governor Tests: The safety devices and governor shall be tested as required by ASME A17.1 Section 8.10.
- K. Overload Devices: Test all overload current protection devices in the system at final inspection.

L. Limit Stops:

- The position of the car when stopped by each of the normal limit stops with no load and with contract load in the car shall be accurately measured.
- 2. Final position of the elevator relative to the terminal landings shall be determined when the elevator has been stopped by the final limits. The lower limit stop shall be made with contract load in the elevator. Elevator shall be operated at inspection speed for both tests. Normal limit stopping devices shall be inoperative for the tests.
- M. Oil Buffer Tests: These tests shall be conducted with operating device and limit stops inoperative and with contract load in the elevator for the car buffer and with no load in the elevator for the counterweight buffer. Preliminary test shall be made at the lowest (leveling) speed. Final tests shall be conducted at contract speed. Buffers shall compress and return to the fully extended position without oil leakage.
- N. Setting of Car Door Contacts: The position of the car door at which the elevator may be started shall be measured. The distance from full closure shall not exceed that required by ASME A17.1. The test shall be made with the hoistway doors closed or the hoistway door contact inoperative.
- O. Setting of Interlocks: The position of the hoistway door at which the elevator may be started shall be measured and shall not exceed ASME A17.1 requirements.
- P. Operating and Signal System: The elevator shall be operated by the operating devices provided and the operation signals and automatic floor leveling shall function in accordance with requirements specified. Starting, stopping and leveling shall be smooth and comfortable without appreciable steps of acceleration or deceleration.
- Q. Performance of the Elevator supervisory system shall be witnessed and approved by the representative of the Resident Engineer.

- R. Evidence of malfunction in any tested system or parts of equipment that occurs during the testing shall be corrected, repaired, or replaced at no additional cost to the Government, and the test repeated.
- S. If equipment fails test requirements and a re-inspection is required, the Contractor shall be responsible for the cost of re-inspection; salaries, transportation expenses, and per-diem expenses incurred by the representative of the Resident Engineer.

3.9 INSTRUCTION OF VA PERSONNEL

- A. Provide competent instruction to VA personnel regarding the operation of equipment and accessories installed under this contract, for a period equal to one eight hour day. Instruction shall commence after completion of all work and at the time and place directed by the Resident Engineer.
- B. Written instructions in triplicate relative to care, adjustments and operation of all equipment and accessories shall be furnished and delivered to the Resident Engineer in independently bound folders. DVD recordings will also be acceptable. Written instructions shall include correct and legible wiring diagrams, nomenclature sheet of all electrical apparatus including location of each device, complete and comprehensive sequence of operation, complete replacement parts list with descriptive literature, and identification and diagrammatic cuts of equipment and parts. Information shall also include electrical operation characteristics of all circuits, relays, timers, and electronic devices, as well as R.P.M. values and related characteristics for all rotating equipment.
- C. Provide supplementary instruction for any new equipment that may become necessary because of changes, modifications or replacement of equipment or operation under requirements of paragraph entitled "Warranty of Construction".

3.10 INSPECTIONS AND SERVICE: GUARANTEE PERIOD OF SERVICE

A. Furnish complete inspection and maintenance service on entire elevator installation for a period of one (1) year after completion and acceptance of all the elevators in this specification by the Resident Engineer. This maintenance service shall run concurrently with the warranty. Maintenance work shall be performed by Certified Elevator Mechanics and Apprentices employed and supervised by the company that

is providing guaranteed period of service on the elevator equipment specified herein.

- B. This contract will cover full maintenance including emergency call back service, inspections, and servicing the elevators listed in the schedule of elevators. The Elevator Contractor shall perform the following:
 - 1. Bi-weekly systematic examination of equipment.
 - 2. During each maintenance visit the Elevator Contractor shall clean, lubricate, adjust, repair and replace all parts as necessary to keep the equipment in first class condition and proper working order.
 - 3. Furnishing all lubricant, cleaning materials, parts and tools necessary to perform the work required. Lubricants shall be only those products recommended by the manufacturer of the equipment.
 - 4. Equalizing tension, shorten or renew hoisting ropes where necessary to maintain the safety factor.
 - 5. As required, motors, controllers, selectors, leveling devices, operating devices, switches on cars and in hoistways, hoistway doors and car doors or gate operating device, interlock contacts, guide shoes, guide rails, car door sills, hangers for doors, car doors or gates, signal system, car safety device, governors, tension and sheaves in pit shall be cleaned, lubricated and adjusted.
 - 6. Guide rails, overhead sheaves and beams, counterweight frames, and bottom of platforms shall be cleaned every three months. Car tops and machine room floors shall be cleaned monthly. Accumulated rubbish shall be removed from the pits monthly. A general cleaning of the entire installation including all machine room equipment and hoistway equipment shall be accomplished quarterly. Cleaning supplies and vacuum cleaner shall be furnished by the Contractor.
 - 7. Maintain the performance standards set forth in this specification.
 - 8. The operational system shall be maintained to the standards specified hereinafter including any changes or adjustments required to meet varying conditions of hospital occupancy.
 - 9. Maintain smooth starting and stopping and accurate leveling at all times.
- C. Maintenance service shall not include the performance of work required as a result of improper use, accidents, and negligence for which the Elevator Contractor is not directly responsible.

- D. Provide 24 hour emergency call-back service that shall consist of promptly responding to calls within two hours for emergency service should a shutdown or emergency develop between regular examinations. Overtime emergency call-back service shall be limited to minor adjustments and repairs required to protect the immediate safety of the equipment and persons in and about the elevator.
- E. Service and emergency personnel shall report to the Resident Engineer or his authorized representative upon arrival at the hospital and again upon completion of the required work. A copy of the work ticket containing a complete description of the work performed shall be given to the Resident Engineer or his authorized representative.
- F. The Elevator Contractor shall maintain a log book in the machine room.

 The log shall list the date and time of all weekly examinations and all trouble calls. Each trouble call shall be fully described including the nature of the call, necessary correction performed or parts replaced.
- G. Written "Maintenance Control Program" shall be in place to maintain the equipment in compliance with ASME A17.1 Section 8.6.

- - - E N D - - -

This page left blank intentionally.

SECTION 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Excavation and Backfill: Section 31 20 00, EARTH MOVING.
- D. Concrete and Grout: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- E. Section 05 50 00, METAL FABRICATIONS.
- F. Section 07 84 00, FIRESTOPPING.
- G. Flashing for Wall and Roof Penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- H. Section 07 92 00, JOINT SEALANTS.
- I. Section 09 91 00, PAINTING.
- J. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- K. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- L. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.
 - 2. Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site.
 - 3. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
 - 4. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.

- 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 6. Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- C. Guaranty: In GENERAL CONDITIONS.
- D. Supports for sprinkler piping shall be in conformance with NFPA 13.
- E. Supports for standpipe shall be in conformance with NFPA 14.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire-stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- C. Coordination Drawings: Provide details of the following.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- D. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A36/A36M-2001......Carbon Structural Steel

A575-96......Steel Bars, Carbon, Merchant Quality, M-Grades R (2002)

E84-2003......Standard Test Method for Burning Characteristics of Building Materials

E119-2000......Standard Test Method for Fire Tests of Building Construction and Materials

C. National Fire Protection Association (NFPA):

90A-96.....Installation of Air Conditioning and Ventilating Systems

101-97.....Life Safety Code

PART 2 - PRODUCTS

2.1 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.2 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Valve Tags and Lists:
 - 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.

- 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.3 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.4 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.5 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.

- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.6 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.

2.7 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Protection and Cleaning:

- 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment.
- C. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- E. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- F. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.3 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

21 05 11 - 8

SECTION 21 12 00 FIRE-SUPPRESSION STANDPIPES

PART 1 - GENERAL

1.1 DESCRIPTION

Fire-suppression manual dry standpipes.

1.2 SCOPE OF WORK

- A. Design, materials, equipment and installation, inspection and testing of a complete and ready for operation fire-suppression manual dry standpipe system as required by NFPA 14.
- B. Painting of exposed piping and supports to match surrounding background in stairways and red in unfinished areas.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING, Treatment of penetrations through rated enclosures.
- D. Section 08 31 13, ACCESS DOORS AND FRAMES: for access panels for plaster or gypsum finishes.
- E. Section 09 91 00, PAINTING.
- F. Section 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION for general mechanical requirements and items, which are common to more than one section.

1.4 QUALITY ASSURANCE

- A. Designer's Qualifications: Design work and shop drawings shall be prepared by a licensed engineer practicing in the field of Fire Protection Engineering.
- B. Installer Reliability: The installer shall possess a valid State of Missouri contractor's license. The installer shall provide documentation of having successfully completed three projects of similar size and scope.
- C. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL and approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA.
- D. Testing: Materials and Testing Certificate as per NFPA 14. Provide certificates for all parts of the system.

1.5 DESIGN CRITERIA

A. The design, materials, equipment, installation, and testing of the system shall be in accordance with NFPA 14 the latest edition.

- B. Water Supply: Base water supply on a fire pumper truck being able to provide $3785\ 1/m\ (1000\ gpm)$ at $1035\ kPa\ (150\ psig)$ and $2650\ 1/m\ (700\ gpm)$ at $1380\ kPa\ (200\ psig)$ at the fire department connection.
- C. Size standpipes to provide 690 kPa (100 psig) at the most remote connections.

1.6 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering. As Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide index referencing the appropriate specification section. Submittals shall include, but not be limited to, the following:

1. Certificates:

- a. Installer's qualifications and documentation of previous work.
- b. Materials and Testing certificates as specified.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to NFPA 14. Include a site plan showing the fire hydrant nearest the fire department connection.
- 3. Manufacturers Literature and Data Sheets: All pertinent literature and data for the materials and equipment proposed for the project. Include listing information and installation instructions in data sheets. Clearly identify the item to be used.
 - a. Provide for materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheet describes items in addition to that item being submitted, clearly identify proposed item on the sheet.
- 4. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

 Submittals shall include, but not be limited to, the following:
 - a. One complete set of reproducible as-built drawings showing the installed system with the specific interconnections between the waterflow switch or pressure switch and the fire alarm equipment.

One copy of final CADD drawing files shall be provided on diskettes that are compatible with the VAMC CADD system.

- b. Four sets of complete, simple, understandable, step-by-step, testing instructions giving recommended and required testing frequency of all equipment, methods for testing all equipment, and a complete trouble shooting manual. Provide maintenance instructions on replacing any components of the system including internal parts, periodic cleaning and adjustment of the equipment and components with information as to the address and telephone number of both the manufacturer and the local supplier of each item.
- c. Certificates shall document all parts of the installation.
 - 1. Installer's qualifications and documentation of previous work.
 - 2. Materials and Testing certificates as specified.
- d. Instruction Manual: Provide one copy of the instruction manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 B16.3-99......Malleable Iron Threaded Fittings

Fire Protection Equipment Directory - Latest Edition

- C. Factory Mutual Engineering Corporation (FM):
 Approval Guide Latest Edition
- D. National Fire Protection Association (NFPA):
 - 14-2013......Installation of Standpipe, Private Hydrant and Hose Systems
 - 101-2013......Safety to Life from Fire in Buildings and Structures (Life Safety Code)
 - 170-2012......Fire Safety Symbols
- E. Underwriters Laboratories, Inc. (UL):
- F. Uniform Building Code Latest Edition

PART 2 PRODUCTS

2.1 GENERAL

All devises and equipment shall be Underwriters Laboratories listed for their intended purpose.

2.2 PIPING & FITTINGS

A. Shall be in accordance with NFPA 14.

- B. Threaded or flanged fittings shall be ANSI B 16.3 cast iron, class 125 minimum. Threaded fitting are not permitted on pipe with wall thickness less than Schedule 40.
- C. Clamp-on fittings with rubber gaskets shall be listed for the piping application.
- D. Plain end pipe, fittings with locking lugs or shear bolts are not permitted. Use nonferrous piping in MRI Scanning Rooms.

2.3 VALVES

- A. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain
- B. Standpipe Hose Valves: 65 mm (2-1/2 inch) screwed, brass hose angle valve, male hose threads same as local fire protection service, 65 mm (2-1/2 inch) by 40 mm (1-1/2 inch) reducer, and with permanently attached polished brass cap and chain.
- C. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.4 FIRE DEPARTMENT SUPPLY CONNECTION

A. Brass, exterior fire department connection with brass escutcheon plate, and a minimum of two 65 mm (2-1/2 inch) connections, or a configuration acceptable to the responding fire department. Connections shall be threaded to match those on the local fire protection service, with polished brass caps and chains. Provide escutcheon with integral raised letters "Dry Standpipe System". Install an automatic ball drip between fire department connection and check valve with drain piping routed to the exterior of the building or a floor drain.

2.5 IDENTIFICATION PLACARDS

- A Provide for all new and sectional valves, riser control valves, drain valves and alarm devises. The signs shall be in accordance with NFPA 14 and attached securely to each item.
- B Plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Enter pertinent data for each system on the hydraulic placard.

2.6 STANDPIPE HOSE VALVE CABINETS

White glossy polyester coated 1 mm (20 gauge) steel box, 1 mm (20 gauge) tubular steel door and 1.3 mm (18 gauge) frame with continuous steel hinge with brass pin, welded and ground smooth steel corner seams, recess type, 600 mm by 600 mm by 250 mm deep (24-inches by 24-inches by 10-inches deep). Finish door and frame with white prime polyester coating.

2.7 PIPE HANGERS AND SUPPORTS

Supports, hangers, etc., of an approved pattern placement to conform to NFPA 14. System piping shall be substantially supported to the building structure. Materials used in the installation or construction of hangers and supports shall be listed and approved for such application. Hangers or supports not specifically listed for service shall be designed and bear the seal of a professional engineer.

2.8 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates for exposed piping passing though walls, floors or ceilings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Install concealed piping in spaces that have finished ceilings. Sidewall heads may need to be utilized. Locate piping in stairways as near to the ceiling as possible to prevent tampering by unauthorized personnel, and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). To prevent an obstruction to egress, provide piping clearances in accordance with NFPA 101.
- C. Face fire department connections in valve cabinets outward in a manner which prevents crimping of the hose.
- D. Welding: Conform to the requirements and recommendations of NFPA 14.
- E. Drains: Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 14.
- F. For each fire department connection, provide the symbolic sign given in NFPA 170 and locate 2400 to 3000 mm (8 to 10 feet) above each connection location. Size the sign to 450 by 450 mm (18 by 18 inches) with the symbol being at least 350 by 350 mm (14 by 14 inches).
- G. Penetrations: Sleeve or core drill concrete and masonry. Provide clearance between pipe and openings as required by NFPA 14. Seal penetrations and clearances in fire rated wall and floor assemblies with

listed through-penetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.

- H. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve in occupied spaces. Request in writing at least one (1) week prior to the planned interruption. Any interruption shall be limited to 4 hours for final connections or repairs.
- I. Welding: All welding shall conform to the requirements and recommendations of NFPA 14 latest editions.

3.2 INSPECTION AND TEST

- A. Flushing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed.
- B. Hydrostatic Testing: Hydrostatically test the system including the fire department connections, as specified in NFPA 14, NFPA-25 and NFPA 13 latest edition, in the presence of the Authority Having Jurisdiction or his designated representative.
- C. Final Inspection and Testing: Test the system in accordance with NFPA 14, NFPA 25 and NFPA 13 latest editions after all necessary corrections have been accomplished. Advise the Authority Having Jurisdiction who will then schedule the final inspection and test. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct any deficiencies found and retest the system. Include the operation of all features of the systems under normal conditions in the test.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR/Resident Engineer.

3.3 WARRANTY

- A. All work performed and materials and equipment furnished under this contract shall be free from defects for a period of one year from date of acceptance by the government.
- B. All new piping and equipment incorporated into the new system shall be hydrostatically tested and warranted as new.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

21 12 00 - 8

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 31 20 00, EARTH MOVING: Excavation and Backfill.
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- F. Section 05 50 00, METAL FABRICATIONS.
- G. Section 07 84 00, FIRESTOPPING.
- H. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- I. Section 07 92 00, JOINT SEALANTS.
- J. Section 09 91 00, PAINTING.
- K. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- L. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- M. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- N. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- O. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.

- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Resident Engineer (RE)/Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.

- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the RE/COR for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the RE/COR at least two weeks prior to commencing installation of any item.
 - 2. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code.

1.4 SUBMITTALS

A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMNON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- H. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an

access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.

- 1. Mechanical equipment rooms.
- 2. Interstitial space.
- 3. Hangers, inserts, supports, and bracing.
- 4. Pipe sleeves.
- 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- I. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided.
 - 3. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Damaged equipment shall be replaced with an identical unit as determined and directed by the RE/COR. Such replacement shall be at no additional cost to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:

- 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
- 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
- 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. American Society for Testing and Materials (ASTM): A36/A36M-2008Standard Specification for Carbon Structural Steel
 - A575-96 (R 2007)Standard Specification for Steel Bars, Carbon,

 Merchant Quality, M-Grades R (2002)

 E84-2005Standard Test Method for Surface Burning
 - Characteristics of Building Materials

 Standard Test Methods for Fire Tests of
 - E119-2008aStandard Test Methods for Fire Tests of
 Building Construction and Materials
- D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:
 - SP-58-02Pipe Hangers and Supports-Materials, Design and Manufacture
 - SP 69-2003 (R 2004) \dots Pipe Hangers and Supports-Selection and Application
- E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007 ..Motors and Generators

F. International Code Council, (ICC):

IBC-12, (R 2012)International Building Code IPC-12, (R 2012)International Plumbing Code

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

Project Number: 589-370

2.4 LIFTING ATTACHMENTS

Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.

B. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
- 2. Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Other wiring and to control panels shall be NFPA 70 designation THWN.
 - b. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.
- 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on

driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act of 1992 (EPACT). Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.

- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC).
- E. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- F. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.6 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:

- 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
- 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage, 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.
- 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling.

2.7 FIRE STOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for pipe insulation.

2.8 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.9 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC), latest edition, and SECTION 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Submittals based on the International Building Code (IBC), latest edition, SECTION 13 05 41 requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in a state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the Resident Engineer in all cases. See these specifications for lateral force design requirements.

- B. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8-inch) outside diameter.
- E. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- G. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield

or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.

- 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - 1) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
 - j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- J. Pre-insulated Calcium Silicate Shields:

- 1. Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
- 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.
- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of one inch past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- K. Seismic Restraint of Piping: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.10 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.

- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel Sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.11 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.12 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3 inch) pipe, 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.13 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
 - Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.

D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:

- 1. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by RE/COR where working area space is limited.
- 2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by RE/COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to RE/COR for approval.
- 3. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.

H. Protection and Cleaning:

- 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. shall be used for all pad or floor mounted equipment. Gages,

thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

- J. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- K. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and section 23 09 23 DIRECT DIGITAL CONTROLS FOR HVAC
- L. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- M. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury

can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 shall apply.

C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the Resident Engineer.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications.

E. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

F. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized

to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to RE/COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material And Equipment shall NOT be painted::

- a. Motors, controllers, control switches, and safety switches.
- b. Control and interlock devices.
- c. Regulators.
- d. Pressure reducing valves.
- e. Control valves and thermostatic elements.
- f. Lubrication devices and grease fittings.
- q. Copper, brass, aluminum, stainless steel and bronze surfaces.
- h. Valve stems and rotating shafts.
- i. Pressure gages and thermometers.
- j. Glass.
- k. Name plates.
- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 STARTUP AND TEMPORARY OPERATION

A. Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified

Trojece Namber. 305 370

prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.9 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work.

3.10 OPERATION AND MAINTENANCE MANUALS

- A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to RE/COR not less than 30 days prior to completion of a phase or final inspection.
- B. All new and temporary equipment and all elements of each assembly shall be included.
- C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- E. Lubrication instructions, type and quantity of lubricant shall be included.
- F. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- G. Set points of all interlock devices shall be listed.
- H. Trouble-shooting guide for the control system troubleshooting guide shall be inserted into the Operations and Maintenance Manual.

- I. The combustion control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- J. Emergency procedures.

3.11 INSTRUCTIONS TO VA PERSONNEL

Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 22 05 12 GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section describes the general motor requirements for plumbing equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one section of Division 26.
- B. 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection of motors: Section
- C. Section 26 24 19, MOTOR-CONTROL CENTERS: Motor Control Centers.

1.3 SUBMITTALS:

A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

B. Shop Drawings:

- 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
- 2. Motor nameplate information shall be submitted including electrical ratings, dimensions, mounting details, materials, horsepower, power factor, current as a function of speed, current efficiency, speed as a function of load, RPM, enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- 3. Motor parameters required for the determination of the Reed Critical Frequency of vertical hollow shaft motors shall be submitted.

C. Manuals:

- 1. Companion copies of complete maintenance and operating manuals, including technical data sheets and application data shall be submitted simultaneously with the shop drawings.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, four copies of the following certification shall be submitted to the Resident Engineer:
 - 1. Certification shall be submitted stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) shall form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA):

C. National Fire Protection Association (NFPA):
70-11National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems: Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- C. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.

- b. Motors for equipment assemblies, less than $746~\mathrm{W}$ (1 HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- D. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- E. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.

F. Motor Enclosures:

- 1. Shall be the NEMA types shown on the drawings for the motors.
- 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- 4. All motors in hazardous locations shall be approved for the application and meet the Class and Group as required by the area classification.

G. Electrical Design Requirements

- 1. Motors shall be continuous duty.
- 2. The insulation system shall be rated minimum of class B, 130 $^{\circ}$ C (266 $^{\circ}$ F).
- 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80° C $(176^{\circ}$ F).
- 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
- 5. Motors shall be suitable for full voltage starting, unless otherwise noted.
- 6. Motors for variable frequency drive applications shall adhere to NEMA standards publication MG 1, Part 30, Application considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable voltage or Adjustable frequency controls, or both, or Part 31, Definite Purpose Inverter Fed Polyphase Motors.

H. Mechanical Design Requirements

- 1. Bearings shall be rated for a minimum of 26,280 hours L-10 life at full load direct coupled, except vertical high thrust motors.
- 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30% of normal down thrust.
- 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
- 4. Grease fittings, if provided, shall be Alemite type or equivalent.
- 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- 6. Vibration shall not exceed 0.15 inch per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- 10. Condensation heaters, when specified, shall keep motor windings at least 5° C (41° F) above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- I. Additional requirements for specific motors, as indicated in other sections, shall also apply.
- J. NEMA Premium Efficiency Electric Motors, Motor Efficiencies: All permanently wired polyphase motors of 746 Watts (1 Horsepower) or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 Watts (one horsepower) or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Project Number: 589-370

Mir	nimum Eff	iciencie	es	Minimum Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

K. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. Power factor correction capacitors shall be installed unless the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

Kansas City VA Medical Center

Project Number: 589-370

3.2 FIELD TESTS

Megger all motors after installation, before start-up. All shall test free from grounds.

- - - E N D - - -

22 05 12 - 6

SECTION 22 13 23 SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 DESCRIPTION

This section pertains to the scope of work associated with sanitary waster interceptors.

1.2 RELATED WORK

Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - For each type of interceptor indicated, the submittal shall include materials of fabrication, dimensions, rated capacities, retention capacities, operating characteristics, size and location of each pipe connection, furnished specialties, and accessories.
- C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain shall be submitted.

1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

Element ANSI/ASME

B. International Code Council (ICC)

IPCInternational Plumbing Code

PART 2 - PRODUCTS

2.1 GREASE/OIL REMOVAL UNIT:

- A. The grease/oil removal unit shall be welded stainless steel, automatic self-cleaning interceptor with a rotating gear wheel assembly for automatic grease/oil removal.
- B. The grease/oil removal unit shall have a flow control device.
- C. The grease/oil removal unit shall have quick release, stainless steel lid clamps, a gasketed and fully removable stainless steel lid, a separate grease/oil collection container and an internal stainless steel strainer basket for collection of solids and sediment.

D. the grease oil removal unit shall have a high level alarm probe and light. The Alarm probe shall be constructed of stainless and utilize 120 VAC radio frequency balanced impedance bridge circuit and shall be provided fully calibrated and ready to use. The alarm light shall operate on 120 VAC and shall be actuated by the output relay on the alarm probe. The alarm light shall be located as shown on drawing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Pre-cast concrete interceptors shall be installed according to ASTM C891.
- B. Manhole risers from top of underground concrete interceptors to manhole and gratings at finished grade shall be installed.
- C. Tops of manhole frames and covers shall be set flush with finish surface in pavements. The tops shall be set 80 mm (3 inches) above finish surface elsewhere unless otherwise indicated.
- D. Tops of grating frames shall be set flush with the finish surface.
- E. Interceptors shall be set level and plumb.
- F. Metal interceptors covers shall be set flush with finished surface in pavements. The tops shall be set 80 mm (3 inches) above finish surface elsewhere unless otherwise indicated.

3.2 CONNECTIONS

- A. Pipe installation requirements are specified in other plumbing sections.
- B. Piping connections shall be made between interceptors and piping systems.

3.3 CONNECTIONS

- A. Warning tape shall be place over ferrous piping.
- B. Detectable warning tape shall be used over nonferrous pipe and over the edges of underground structures.

- - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Cleanouts.
 - 3. All items listed in Part 2 Products.
- C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI).
- C. American Society of Mechanical Engineers (ASME): (Copyrighted Society)
 A112.21.2m-83Roof Drains

 - B16.11-05Forged Steel Fittings, Socket-Welding and
 Threaded B16.12-98 (R 2006) Cast Iron
 Threaded Drainage Fittings

B16.15-06)Cast Bronze Threaded Fittings, Class 125 and
250
B16.18-01 (R 2005)Cast Copper Alloy Solder-Joint Pressure
Fittings
B16.22-01 (R 2005)Wrought Copper and Copper Alloy Solder Joint
Pressure Fittings
American Society for Testing and Materials (ASTM):
A47-99 (R 2004)Standard Specification for Steel Sheet,
Aluminum Coated, by the Hot-Dip Process
A53-07Standard Specification for Pipe, Steel, Black
And Hot-Dipped, Zinc-coated Welded and Seamless
A74-06Standard Specification for Cast Iron Soil Pipe
and Fittings
A183-03)Standard Specification for Carbon Steel Track
Bolts and Nuts

D. S A312-03Standard Specification for Seamless and Welded Austenitic Stainless Steel Pipe A536-84(R 2004)Standard Specification for Ductile Iron Castings A733-03Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-04Standard Specification for Solder Metal B61-08Standard Specification for Steam or Bronze Castings B62-02Standard Specification for Composition Bronze or Ounce Metal Castings B75-02Standard Specification for Seamless Copper Tube B88-03Standard Specification for Seamless Copper Water Tube B306-02Standard Specification for Copper Drainage Tube (DWV) B584-08Standard Specification for Copper Alloy Sand Castings for General Applications B687-99Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples

	C564-06a	.Standard Specification for Rubber Gaskets for
		Cast Iron Soil Pipe and Fittings
	D2000-08	.Standard Classification System for Rubber
		Products in Automotive Applications
	D4101-07	.Standard Specification for Propylene Plastic
		Injection and Extrusion Materials
	D2447-03	.Standard Specification for Polyethylene (PE)
		Plastic Pipe, Schedule 40 and 80, Based on
		Outside Diameter
	D2564-04e1	.Standard Specification for Solvent Cements for
		Poly (Vinyl Chloride) (PVC) Plastic Pipe and
		Fittings
	D2665-07	.Standard Specification for Poly (Vinyl
		Chloride) (PVC) Plastic Drain, Waste, and Vent
		Pipe and Fittings
Ε.	American Welding Societ	y (AWS):
	A5.8-04	.Specification for Filler Metals for Brazing and
		Braze Welding
F.	International Code Coun	cil (ICC):
	IPC-12	.International Plumbing Code
G.	Cast Iron Soil Pipe Ins	titute (CISPI):
	301-05	.Hubless Cast Iron Soil and Fittings for
		Sanitary and Storm Drain, Waste, and Vent
		Piping Applications
	310-04	.Couplings for Use in Connection with Hubless
		Cast Iron Soil and Fittings for Sanitary and
		Storm Drain, Waste, and Vent Piping
TT		Applications
п.	Manufacturers Standardi	Applications zation Society of the Valve and Fittings
п.	<pre>Industry, Inc. (MSS):</pre>	zation Society of the Valve and Fittings
п.	<pre>Industry, Inc. (MSS):</pre>	
п.	Industry, Inc. (MSS): SP-72-99	zation Society of the Valve and Fittings .Standard for Ball Valves with Flanged or Butt Welding For General Purpose
п,	Industry, Inc. (MSS): SP-72-99	zation Society of the Valve and Fittings .Standard for Ball Valves with Flanged or Butt

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

A. Cast Iron Storm Pipe and Fittings:

- 1. Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.
 - c. Interior storm piping above grade.
 - d. All mechanical equipment rooms or other areas containing mechanical air handling equipment.
- 2. The cast iron storm Pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
- 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM Standard C-564 or be installed with leak and oakum.
- B. Copper Tube, (DWV): May be used for piping above ground.
 - 1. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 2. The Copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 3. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

C. Polyvinyl Chloride (PVC)

- Polyvinyl chloride storm sewer pipe and fittings are permitted for single story structures except for mechanical equipment rooms and other areas containing air handling equipment or hot water generation equipment.
- 2. Polyvinyl chloride storm sewer pipe and fittings shall be schedule 40 solid core sewer piping conforming to ASTM D1785 and D 2665, Sewer and Drain Series, with ends for solvent cemented joints.
- 3. Polyvinyl chloride joints shall be solvent welded socket type using solvent cement conforming to ASTM D2564.

D. Roof drain piping in locations where the outdoor conditions are subject to freezing shall be insulated.

2.2 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear erring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - 2. For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F 477 or ASTM D5926.
 - 3. For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 860 kPa (125 psig) at a minimum temperature of 82°C (180°F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The dielectric nipples shall be electroplated steel nipple comply with ASTM F 1545 with a pressure ratings of 2070 kPa (300 psig) at 107°C (225°F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.3 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.

- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts where shall be provided where indicated on the drawings and at each building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.4 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

B. Walls: See detail shown on drawings.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International code and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 1.22 m (4 feet) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep 4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried storm drainage piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- K. Caste iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to CDA's "Copper Tube Handbook".

M. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.
- F. for PVC piping, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendixes.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

A. All piping shall be supported according to the International plumbing code, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.

- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 13 mm (1/2 inch) rod.
 - 3. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 16 mm (5/8 inch) rod.
 - 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 19 mm (3/4 inch) rod.
 - 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 22 mm (7/8 inch) rod.
- E. The maximum support spacing for horizontal plastic shall be $1.22 \ \mathrm{m}$ (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than $4.57 \, \mathrm{m}$ (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.
 - 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in

length and be 16 gage steel. The shield shall be sized for the insulation.

- H. Miscellaneous Materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

J. Penetrations:

- 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Piping shall conform to the following:
 - 1. Storm Water Drain and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
80 mm (3 inches) and smaller	2%
100 mm (4 inches) (4 inches) and larger	1%

3.5 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to

point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- 2. For an air test, an air pressure of 35 kPa (5 psi) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
- 3. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1.3 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

22 14 00 - 12

SECTION 22 14 29 SUMP PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Sump pumps. See schedule on Drawings for pump capacity and head.

1.2 RELATED WORK

- A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- C. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Requirements for commissioning, systems readiness checklist, and training.
- D. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pump:
 - a. Manufacturer and model.
 - b. Operating speed.
 - c. Capacity.
 - d. Characteristic performance curves.
 - 2. Motor:
 - a. Manufacturer.
 - b. Speed.
 - c. Current Characteristics and W (HP).
 - d. Efficiency.
- C. Certified copies of all the factory and construction site test data sheets and reports.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list which indicates all components of the system.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- E. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

 ICS6-93 (2006)......Industrial Control and Systems Enclosures

 250-2008.....Enclosures for Electrical Equipment (1000 Volts

 Maximum)
- C. Underwriters' Laboratories, Inc. (UL):
 508-99 (R2008)......Standards For Industrial Control Equipment

PART 2 - PRODUCTS

2.1 SUMP PUMP

- A. Centrifugal, vertical, submersible pump and motor, designed for 60 degrees C (140 degrees F) maximum water service. Driver shall be electric motor. Support shall be rigid type. Provide perforated, suction strainer. Pump shall be capable of continuous duty cycle.
 - Pump housings may be cast iron, bronze, aluminum, or stainless steel.
 Cast iron and aluminum housings for submersible pumps shall be epoxy coated.
- B. Impeller: Brass, bronze or cast iron.
- C. Shaft: Stainless steel or other approved corrosion-resisting metal.
- D. Bearings: As required to hold shaft alignment, anti-friction type for thrust permanently lubricated.
- E. Motor: Maximum 40 degrees C (104 degrees F) ambient temperature rise above the maximum fluid temperature being pumped, drip-proof, voltage and phase as shown on drawings conforming to NEMA 250 -Type 4. Size the motor capacity to operate pump without overloading the motor at any point on the pump curve. Refer to Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- F. Starting Switch: Manually-operated, tumbler type, as specified in Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- G. Automatic Control and Level Alarm: Furnish a control panel in a Nema 1 enclosure for indoors or in a Nema 4X enclosure for outdoors. The controls shall be suitable for operation with the electrical characteristics listed on the drawings. The control panel shall have a level control system with switches to start and stop pumps automatically, and to activate a high water alarm. The level control system will include sensors in the sump that detect the level of the liquid. The sensors may be float type switches, ultrasonic level sensors, transducers, or other appropriate equipment. The high water

alarm shall have a red beacon light at the control panel and a buzzer, horn, or bell. The alarm shall have a silencing switch. Provide auxiliary contacts for remote alarming to the Energy Control Center and BAC net compatible open-protocol type interface to DDC Controls System.

1. The circuitry of the control panel shall include:

- a. power switch to turn on/off the automatic control mechanism
- b. HOA switches to manually override automatic control mechanism
- c. run lights to indicate when pumps are powered up
- d. level status lights to indicate when water in sump has reached the predetermined on/off and alarm levels
- e. magnetic motor contactors
- f. disconnect/breaker for each pump
- g. automatic motor overload protection
- 2. Sensors that detect the level of water in the sump shall be so arranged as to allow the accumulation of enough volume of liquid below the normal on level that the pump will run for a minimum cycle time as recommended by the pump manufacturer. Sensors shall be located to activate the alarm adequately before the water level rises to the inlet pipe.
- 3. Wiring from the sump to the control panel shall have separate conduits for the pump power and for the sensor switches. All conduits are to be sealed at the basin and at the control panel to prevent the intrusion of moisture and of flammable and/or corrosive gases.
- H. Sump: Furnish cast iron or fiberglass basin with gas tight covers. Cover shall have 280 mm by 380 mm (11-inch by 15-inch) manhole with bolted cover, vent connection, openings for pumps and controls. Sump shall be sized to allow an adequate volume of water to accumulate for a minimum one minute cycle of pump operation.
- I. Provide a check and ball valve in the discharge of each pump.
- J. Removal/Disconnect System: In a system utilizing a submersible pump, where sump depth, pump size, or other conditions make removal of the pump unusually difficult or unsafe, a removal/disconnect system shall be provided. The system will consist of a discharge fitting mounted on vertical guide rails attached to the sump. The pump shall be fitted with an adapter fitting that easily connects to/disconnects from the discharge fitting as the pump is raised from or lowered into the sump. The discharge piping will connect to the discharge fitting so that it is not necessary to disconnect any piping in order to remove the pump. Where the sump depth is greater than five feet or other conditions exist to make the removal of the pump difficult or hazardous, the system shall

include a rail guided quick disconnect apparatus to allow the pump to be pulled up out of the sump without workers entering the sump and without disconnecting the piping.

PART 3 - EXECUTION

3.1 STARTUP AND TESTING

- A. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. The tests shall include system capacity and all control and alarm functions.
- C. When any defects are detected, correct defects and repeat test.
- D. The commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior to notice.

3.2 COMMISSIONING

- A. Provide commissioning documentation accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS for all inspection, startup, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.3 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COR: Contracting Officer's Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 31 20 00, EARTH MOVING: Excavation and Backfill
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout
- F. Section 05 50 00, METAL FABRICATIONS
- G. Section 07 84 00, FIRESTOPPING
- H. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations
- I. Section 07 92 00, JOINT SEALANTS
- J. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- K. Section 23 23 00, REFRIGERANT PIPING
- L. Section 23 34 00, HVAC FANS
- M. Section 23 37 00, AIR OUTLETS and INLETS
- N. Section 23 81 00, DECENTRALIZED UNITARY HVAC EQUIPMENT
- O. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- P. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

C. Equipment Vibration Tolerance:

- 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
- 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 3. Conform to codes and standards as required by the specifications.

 Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.
- 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:

- 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and

associated systems, including accessibility, are equivalent to that required by the contract.

- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- G. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- H. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009......Central Station Air-Handling Units

C.	American National Standard Institute (ANSI):
	B31.1-2007Power Piping
D.	Rubber Manufacturers Association (ANSI/RMA):
	IP-20-2007Specifications for Drives Using Classical
	V-Belts and Sheaves
	IP-21-2009Specifications for Drives Using Double-V
	(Hexagonal) Belts
	IP-22-2007Specifications for Drives Using Narrow V-Belts
	and Sheaves
Ε.	Air Movement and Control Association (AMCA):
	410-96Recommended Safety Practices for Air Moving
	Devices
F.	American Society of Mechanical Engineers (ASME):
	Boiler and Pressure Vessel Code (BPVC):
	Section I-2007Power Boilers
	Section IX-2007Welding and Brazing Qualifications
	Code for Pressure Piping:
	B31.1-2007Power Piping
G.	American Society for Testing and Materials (ASTM):
	A36/A36M-08Standard Specification for Carbon Structural
	Steel
	A575-96(2007)Standard Specification for Steel Bars, Carbon,
	Merchant Quality, M-Grades
	E84-10Standard Test Method for Surface Burning
	Characteristics of Building Materials
	E119-09cStandard Test Methods for Fire Tests of Building
	Construction and Materials
н.	Manufacturers Standardization Society (MSS) of the Valve and Fittings
	Industry, Inc: SP-58-2009Pipe Hangers and Supports-Materials, Design and
	Manufacture, Selection, Application, and
	Installation
	SP 69-2003Pipe Hangers and Supports-Selection and
	Application
	SP 127-2001Bracing for Piping Systems, Seismic - Wind -
	Dynamic, Design, Selection, Application
I.	National Electrical Manufacturers Association (NEMA):
	MG-1-2009Motors and Generators
J.	National Fire Protection Association (NFPA):
	70-11National Electrical Code

90A-13.....Standard for the Installation of Air
Conditioning and Ventilating Systems

101-13.....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.

- 2. Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.3 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.

- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.5 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.6 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.7 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof/Ceiling Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.

- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
- E. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- G. Supports for Piping Systems:
 - 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.

h. Copper Tube:

- Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
- 2) For vertical runs use epoxy painted or plastic coated riser clamps.
- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.

2.8 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms

above basement. Except in mechanical rooms, connect sleeve with floor plate.

- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.9 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.10 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.11 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to

pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.12 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:

- 1. Cut holes through concrete and masonry by rotary core drill.

 Pneumatic hammer, impact electric, and hand or manual hammer type
 drill will not be allowed, except as permitted by Resident Engineer
 where working area space is limited.
- 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling

done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.

- 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
- L. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance,

equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.

2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.
- B. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- C. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- D. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.

3.3 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks.
 Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.

- g. Copper, brass, aluminum, stainless steel and bronze surfaces.
- h. Pressure gauges and thermometers.
- i. Glass.
- j. Name plates.
- Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.4 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.5 MOTOR AND DRIVE ALIGNMENT

A. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.6 LUBRICATION

A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.

- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.8 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.9 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.10 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS, and Section 23 08 11, DEMONSTRATIONS AND TESTS FOR BOILER PLANT.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

23 05 11 - 18

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - 6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- 6. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION: General Mechanical Requirements.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- D. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Piping and Equipment Insulation.

- E. Section 23 34 00, HVAC FANS
- F. Section 23 37 00, AIR OUTLETS AND INLETS
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training

1.3 QUALITY ASSURANCE

A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

B. Qualifications:

- TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
- 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any

duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. Tab Criteria:

- One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
- Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance

during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
- b. Exhaust Fans: 0 percent to plus 10 percent.
- c. Minimum outside air: 0 percent to plus 10 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.

- 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
- C. Associated Air Balance Council (AABC):
 - 2002AABC National Standards for Total System
 Balance
- D. National Environmental Balancing Bureau (NEBB):
 - 7th Edition 2005Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
 - 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
 - $3^{\rm rd}$ Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

A. Refer to TAB Criteria in Article, Quality Assurance.

B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- B. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project.
- D. Allow 10 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include exhaust fans.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - 2. Adjust fan speeds to provide design air flow.
 - 3. Test and balance systems in all specified modes of operation, verify that dampers and other controls function properly.

3.7 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.8 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.9 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.10 PHASING

A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists,

Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Resident Engineer. The Contractor shall review and comment on the
tests prior to approval. The Contractor shall provide the required
labor, materials, and test equipment identified in the test procedure
to perform the tests. The Commissioning Agent will witness and
document the testing. The Contractor shall sign the test reports to
verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent.

Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01

 $91\ 00$ GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

---- END ----

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.

B. Definitions:

- 1. Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
- 2. Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION:

General mechanical requirements and items, which are common to more than
one section of Division 23.

1.3 QUALITY ASSURANCE

- A. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.
- B. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- C. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:

- 1. Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Flexible metal hose
 - g. Liquid-suction interchanges
 - h. Oil separators (when specified)
 - i. Gages
 - j. Pipe and equipment supports
 - k. Refrigerant and oil
 - 1. Pipe/conduit roof penetration cover
 - m. Soldering and brazing materials
- 2. Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002)......Standard for Refrigerant Liquid Receivers 730-2005......Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers 750-2007......Thermostatic Refrigerant Expansion Valves 760-2007......Performance Rating of Solenoid Valves for Use
- with Volatile Refrigerants

 2. American Society of Heating Refrigerating and Air Conditioning Engineer
- C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE):

ANSI/ASHRAE 15-2007.....Safety Standard for Refrigeration Systems (ANSI)

ANSI/ASHRAE 17-2008.....Method of Testing Capacity of Thermostatic

Refrigerant Expansion Valves (ANSI)

63.1-95 (RA 01)......Method of Testing Liquid Line Refrigerant Driers (ANSI)

D. American National Standards Institute (ANSI):

ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems Z535.1-2006......Safety Color Code

E. American Society of Mechanical Engineers (ASME):

ANSI/ASME B16.22-2001 (R2005)

Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI)

ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer Components (ANSI)

ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments
ANSI/ASME B40.200-2008..Thermometers, Direct Reading and Remote Reading

F. American Society for Testing and Materials (ASTM)

B280-08......Standard Specification for Seamless Copper Tube

for Air Conditioning and Refrigeration Field

Service

G. American Welding Society, Inc. (AWS):

Brazing Handbook

A5.8/A5.8M-04......Standard Specification for Filler Metals for Brazing and Braze Welding

H. Federal Specifications (Fed. Spec.)

Fed. Spec. GG

I. Underwriters Laboratories (U.L.):

U.L.207-2009......Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.

- a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5.
- b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).

2. Refrigeration Valves:

- a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
- b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
- c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, two-position, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location and normally open holding coil.
- d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
- e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 3. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- 4. Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating

means of indicating refrigerant charge and moisture indication. Provide screwed brass seal caps.

- 5. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.
- 6. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.
- 7. Oil Separators: Provide for condensing units, as shown. All welded steel construction with capacity to eliminate a minimum of 95 percent of the oil from the hot gas flowing through it. Provide manufacturer's published ratings for minimum and maximum refrigeration tonnage corresponding to this oil separating efficiency. Separator shall be equipped with a float valve to prevent return of the hot gas to crankcase, and shall have isolating stop valves so it can be opened and services without pumping out any other part of the system. ASME construction or UL listed.

2.2 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.4 PIPE INSULATION FOR DX HVAC SYSTEMS

Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - 1. Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through

walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.

- 3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- 4. Use copper tubing in protective conduit when installed below ground.
- 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.

B. Joint Construction:

- 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
 - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
 - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
 - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
 - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

3.2 PIPE AND TUBING INSULATION

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer,

the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.

- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - 1. Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
 - 2. Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.

- A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of Resident Engineer. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
 - 1. Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
 - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group A1 refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.
- B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure

relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
 - 1. Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
 - 2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
 - 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- E. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Performance Criteria:
 - 1. The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- F. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- G. Corrosion Protection:
 - 1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - 3. Prefabricated roof curbs.
 - 4. Power roof and wall ventilators.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. American Society for Testing and Materials (ASTM):
 - B117-07a......Standard Practice for Operating Salt Spray (Fog)
 Apparatus
 - D1735-08......Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus

 - G152-06......Standard Practice for Operating Open Flame

 Carbon Arc Light Apparatus for Exposure of Non
 Metallic Materials

G153-04.....Standard Practice for Operating Enclosed Carbon

Arc Light Apparatus for Exposure of Non-Metallic

Materials

D. National Fire Protection Association (NFPA):

NFPA 96-08.....Standard for Ventilation Control and Fire

Protection of Commercial Cooking Operations

E. National Sanitation Foundation (NSF):

37-07......Air Curtains for Entrance Ways in Food and Food Service Establishments

F. Underwriters Laboratories, Inc. (UL):

181-2005......Factory Made Air Ducts and Air Connectors

PART 2 - PRODUCTS

2.1 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- C. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required.

Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance

in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

23 34 00 - 6

SECTION 23 81 00 DECENTRALIZED UNITARY HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies split-systems.
- B. Definitions:
 - 1. Energy Efficiency Ratio (EER): The ratio of net cooling capacity is Btu/h to total rate of electricity input in watts under designated operating conditions (Btu hour/Watt).
 - 2. Seasonal Energy Efficiency Ratio (EER): The ratio of the total cooling output of an air conditioner during its normal annual usage period for cooling in Btu/h divided by total electric energy input in watts during the same period (Btu hour/Watt).
 - 3. Unitary: A Unitary Air Conditioner consists of one or more factory—made assemblies which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well.
 - 4. Where such equipment is provided in more than one assembly the separated assemblies are to be designed to be used together and the requirements of rating are based upon use of matched assemblies.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant pipes and fittings.
- C. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Requirements for testing and adjusting air balance.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Safety Standards: ASHRAE Standard 15, Safety Code for Mechanical Refrigeration.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Manufacturer's literature and data:

- Sufficient information, including capacities, pressure drops and piping connections clearly presented, shall be included to determine compliance with drawings and specifications for units noted below:
 - a. Unitary air conditioners:
 - 1) Split systems
- 2. Unit Dimensions required clearances, operating weights accessories and start-up instructions.
- 3. Electrical requirements, wiring diagrams, interlocking and control wiring showing factory installed and portions to be field installed.
- C. Certification: Submit proof of specified ARI Certification.
- D. Performance Rating: Submit catalog selection data showing equipment ratings and compliance with required sensible-to-heat-ratio, energy efficiency ratio (EER), and coefficient of performance (COP).
- E. Operating and Maintenance Manual: Submit three copies of Operating and Maintenance manual to Resident Engineer three weeks prior to final inspection.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. Military Specifications (Mil. Specs.):
 MIL-PRF-26915D-06......Primer Coating, for Steel Surfaces
- D. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 520-04......Performance Rating of Positive Displacement Condensing Units
- E. Air Movement and Control Association (AMCA):
 - 210-07......Laboratory Methods of Testing Fans for
 Aerodynamic Performance Rating (ANSI)
 410-96.....Recommended Safety Practices for Users and
- F. American National Standards Institute (ANSI):
 - S12.51-02(R2007).....Acoustics Determination of Sound Power Levels
 of Noise Sources Using Sound Pressure -

Installers of Industrial and Commercial Fans

Precision Method for Reverberation Rooms (same as ISO 3741:1999)

- G. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):
 - 2008 Handbook......HVAC Systems and Equipment
 - 15-10......Safety Standard for Refrigeration Systems (ANSI)
- H. American Society of Civil Engineers (ASCE)
 - ASCE 7-10......Minimum Design Loads for Buildings and Other Structures
- I. National Electrical Manufacturer's Association (NEMA):
 - MG 1-09 (R2010)......Motors and Generators (ANSI)

ICS 1-00 (R2005, R2008).Industrial Controls and Systems: General Requirements

J. National Fire Protection Association (NFPA) Publications: 90A-09......Standard for the Installation of Air-Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 SPLIT-SYSTEM AIR CONDITIONERS

- A. Description: Factory assembled and tested, wall-mounted unit, with an air-cooled remote condensing unit, and field-installed refrigeration piping. Unit shall include aN electric-resistance heating coil.
- B. Concealed Evaporator Components:
 - 1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 2. Insulation: Factory-applied duct liner.
 - 3. Drain Pans: Galvanized steel, with connection for drain; insulated and complying with ASHRAE 62.1-2007.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
 - 5. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
 - 6. Electric-Resistance Heating Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection. Provide heating coils as indicated.
 - 7. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.

- 8. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multitapped, multi-speed motors with internal thermal protection and permanent lubrication.
- 9. Disposable Filters: 25 mm (1 inch) thick, in fiberboard frames with MERV rating of 7 or higher according to ASHRAE 52.2.
- 10. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- C. Wall-Mounting, Evaporator-Fan Components:
 - Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
 - 3. Drain Pan and Drain Connection: Comply with ASHRAE 62.1-2007.
 - 4. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
 - 5. Electric-Resistance Heating Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
 - 6. Fan: Direct drive, centrifugal fan.
 - 7. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multitapped, multi-speed motors with internal thermal protection and permanent lubrication.
 - 8. Filters: Disposable, with MERV rating of 7 or higher according to ASHRAE 52.2.
- D. Air-Cooled, Compressor-Condenser Components:
 - Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Service valves, fittings, and gage ports shall be brass and located outside of the casing.
 - Compressor: Hermetically sealed scroll with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermaland current-sensitive overload devices, start capacitor, relay, and contactor.

- 3. Compressor motor with manual-reset, high-pressure switch and automatic-reset, low-pressure switch.
- 4. Refrigerant: R-410A unless otherwise indicated.
- 5. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with liquid subcooler.
- 6. Fan: Aluminum, propeller type, directly connected to motor.
- 7. Motor: Permanently lubricated, with integral thermal-overload protection.
- 8. Low Ambient Kit: Permit operation down to minus 18 deg C (0 deg F).
- 9. Mounting Base: Polyethylene.
- 10. Minimum Energy Efficiency: Comply with ASHRAE/IESNA 90.1-2004, "Energy Standard for Buildings except Low-Rise Residential Buildings."

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install wind restraints according to manufacturer's written instructions. Wind restrained vibration isolation roof-curb rails are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.]
- B. Install units level and plumb maintaining manufacturer's recommended clearances and tolerances.
- C. Install ground-mounting, compressor-condenser components on 100 mm (4-inch) thick, reinforced concrete base; 100 mm (4 inches) larger on each side than unit. Concrete, reinforcement, and formwork are specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. Coordinate anchor installation with concrete base.
- D. Install and connect precharged refrigerant tubing to component's quickconnect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Verify condensate drainage requirements.
- B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- C. Install piping adjacent to units to allow service and maintenance.
- D. Ground equipment and install power wiring, switches, and controls for self-contained and split systems.
- E. Connect refrigerant piping to coils with shutoff valves on the suction and liquid lines at the coil and a union or flange at each connection at the coil and condenser.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections: After installing units and after electrical circuitry has been energized, test units for compliance with requirements. Inspect for and remove shipping bolts, blocks, and tiedown straps. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Remove and replace malfunctioning units and retest as specified above.

3.4 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

3.5 STARTUP AND TESTING

The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

---END---