

DEPARTMENT OF VETERANS AFFAIRS (DVA/VA)

PALO ALTO HEALTH CARE SYSTEM (PAHCS)

VAPA BLDG 100 AND 101 CHILLER SYSTEM 3801 Miranda Avenue Palo Alto, CA 94304

SPECIFICATIONS

640-15-159

100% Construction Documents

October 04, 2016

Prepared By:

998 Park Avenue San Jose, CA 95126 P: (408) 297-1881 F: (408) 294-3186

www.adcengineers.com

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTSSection 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 01 15	List of Drawing Sheets	
	Ť	
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	
01 33 23	Shop Drawings, Product Data, and Samples	
01 35 26	Safety Requirements	
01 42 19	Reference Standards	
01 45 29	Testing Laboratory Services	
01 57 19	Temporary Environmental Controls	
01 74 19	Construction Waste Management	
01 81 13	Sustainable Construction Requirements	
01 91 00	General Commissioning Requirements	
	DIVISION 02 – EXISTING CONDITIONS	
	NOT USED	
	DIVISION 03 – CONCRETE	
03 30 53	Short Form-Cast-in-Place Concrete	
	DIVISION 04 – MASONRY	
	NOT USED	
	DIVISION 05 – METALS	
05 12 00	Structural Steel Framing	
	DIVISION 06 – WOOD, PLASTICS AND COMPOSITES	
	NOT USED	
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 01 50.19	Preparation for Re-Roofing	
07 14 21	Latex Mastic Deck Covering	
07 22 00	Roof & Deck Insulation	
07 56 00	Thermoplastic Polyolefin (TPO) Roofing	

07 60 00	Flashing and Sheet Metal	
07 84 00	Firestopping	
07 92 00	Joint Sealants	
	DIVISION 08 - OPENINGS	
	NOT USED	
	DIVISION 09 – FINISHES	
09 91 00	Painting	
	DIVISION 10 – SPECIALTIES	
	NOT USED	
	DIVISION 11 – EQUIPMENT	
	NOT USED	
	DIVISION 12 – FURNISHINGS	
	NOT USED	
	DIVISION 13 - SPECIAL CONSTRUCTION	
13 05 41	Seismic Restraint Requirements for Non-Structural	
	Components	
	DIVISION 14– CONVEYING EQUIPEMENT	
	NOT USED	
		_
	DIVISION 21- FIRE SUPPRESSION	
	NOTUSED	
00.05.44	DIVISION 22 – PLUMBING	
22 05 11	Common vvork Results for Plumbing	
22 13 00	Facility Sanitary and Vent Piping	
	DIVISION 23 – HEATING, VENTILATING, AND AIR CONDITIONING ($HV(AC)$	
22.05.11	Common Work Bogulta for HV/AC	
23 05 11	Control Motor Regulicements for HVAC and Steam	
23 05 12	Concration Equipment	
23.05.41	Noise and Vibration Control for HVAC Piping and Equipment	
23 05 41	Testing Adjusting and Balancing for HVAC	
23 03 93	HVΔC and Boiler Plant Insulation	
23 08 00	Commissioning of HVAC Systems	
23 00 00	Direct-Digital Control System for HV/AC	+
23 03 23	Hydronic Pining	
		1

23 21 23	Hydronic Pumps	
23 25 00	HVAC Water Treatment	
23 64 00	Packaged Water Chillers	
	DIVISION 25 – INTEGRATED AUTOMATION	
	NOT USED	
	DIVISION 26 – ELECTRICAL	
26 05 11	Requirements for Electrical Installations	
26 05 19	Low-Voltage Electrical Power Conductors and Cables	
26 05 26	Grounding and Bonding for Electrical Systems	
26 05 33	Raceway and Boxes for Electrical Systems	
26 08 00	Commissioning of Electrical Systems	
26 24 13	Distribution Switchboards	
26 27 26	Wiring Devices	
26 29 11	Motor Controllers	
26 29 21	Enclosed Switches and Circuit Breakers	
	DIVISION 27 – COMMUNICATIONS	
27 05 11	Requirements for Communication Installation	
27 05 26	Grounding and Bonding for Communications System	
27 05 33	Raceways and Boxes for Communications Systems	
27 10 00	Control, Communication System	
27 15 00	Communications Horizontal Cabling	
	DIVISION 28 – ELECTRONIC SAFETY AND SECURITY	
	NOT USED	
	DIVISION 31 – EARTHWORK	
	NOT USED	
	DIVISION 32 – EXTERIOR IMPROVEMENTS	
	NOT USED	
	DIVISION 33 – UTILITIES	
	NOT USED	
	DIVISION 34 – TRANSPORTATION	
	NOT USED	
	DIVISION 48 – Electrical Power Generation	
	NOT USED	

SECTION 00 01 15 LIST OF DRAWING SHEETS

DRAWING NO.

TITLE

GENERAL

G001	SITE MAP, VICINITY MAP, DRAWING INDEX, AND PROJECT DESCRIPTION
G-101	B101 HVAC ROOF PLAN
STRUCTURAL	
S-001	GENERAL INFORMATION
S-100	PARTIAL ROOF FRAMING PLANS, SECTIONS AND DETAILS
S-500	ROOF FRAMING SECTIONS AND DETAILS
MECHANICAL	MECHANICAL GENERAL NOTES ARREVIATIONS AND
M-001	SYMBOLS
M-101	MECHANICAL B100 + B101 CHILLED WATER PIPING FIRST FLOOR PLAN
M-104	MECHANICAL B100 + B101 CHILLED WATER PIPING FOURTH FLOOR DEMOLITION AND NEW WORK PLAN
M-105	MECHANICAL B101 HVAC ROOF PLAN
M-301	MECHANICAL SECTION VIEWS

M-302	MECHANICAL SECTION VIEWS
W 002	

M-303	MECHANICAL SECTION VIEWS
W-303	

- M-501 MECHANICAL DETAILS M-601 MECHANICAL CHILLED WATER FLOW DIAGRAM
- M-602 MECHANICAL CHILLED WATER FLOW DIAGRAM
- M-701 MECHANICAL SCHEDULES

ELECTRICAL

E-101	B101 & B101 CHILLED WATER PIPING FIRST FLOOR POWER PLAN
E-102	B101 MAIN ELECTRICAL ROOM SERVICE 1
E-104	B101 & B101 CHILLED WATER PIPING FOURTH FLOOR POWER PLAN
E-105	B101 EQUIPMENT LOCATION ROOF POWER PLAN

E-601 NEW NORMAL & EMERGENCY POWER ONE-LINE DIAGRAMS

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 SAFETY REQUIREMENTS	3
1.2 GENERAL INTENTION	3
1.3 STATEMENT OF BID ITEM(S)	3
1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	4
1.5 PROJECT SCHEDULE	4
1.6 CONSTRUCTION SECURITY REQUIREMENTS	4
1.7 OPERATIONS AND STORAGE AREAS	7
1.8 ALTERATIONS	10
1.9 INFECTION CONTROL	10
1.10 DISPOSAL AND RETENTION	11
1.11 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS – NOT REQUIRED	11
1.12 RESTORATION	12
1.13 PHYSICAL DATA	12
1.14 LAYOUT OF WORK	13
1.15 AS-BUILT DRAWINGS	13
1.16 USE OF ROADWAYS	13
1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	13
1.18 TEMPORARY USE OF EXISTING ELEVATORS	14
1.19 CONNECTION TO EXISTING ELECTRICAL PANLES	14
1.20 TEMPORARY TOILETS	15
1.21 AVAILABILITY AND USE OF UTILITY SERVICES	15
1.22 TESTS	16
1.23 INSTRUCTIONS	17
1.24 GOVERNMENT-FURNISHED PROPERTY	18

1.25 RELOCATED EQUIPMENT ITEMS	18
1.26 CONSTRUCTION SIGN	19
1.27 SAFETY SIGN	19
1.28 PHOTOGRAPHIC DOCUMENTATION	19
1.29 FINAL ELEVATION Digital Images	21
1.30 HISTORIC PRESERVATION	22

1.1 SAFETY REQUIREMENTS

A. Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENT

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work The Installation of a New Chilled Water System toward Enhancing Mechanical Utility Infrastructure for Building 100 and 101, Veteran Affairs Palo Alto System, Palo Alto Division as required by drawings and specifications
- B. Before placement and installation of work subject to tests by a testing laboratory, notify the COR in sufficient time to enable VA personnel to be present at the time for adequate oversight of the taking and testing of specimens and field activities. Such prior notice shall be not less than five work days unless otherwise authorized by the COR.
- C. All employees of the Contractor and subcontractors shall comply with the VA security management program.
- D. The COR will assign specific routes and allowable times of use for pathways, corridors, and elevators for transportation of personnel, materials and equipment. Continually clean-up any dust, dirt or debris caused by jobsite ingress/egress.
- E. Dust and fume control will be exercised during all construction operations. Do not operate any vehicles, gas or diesel engines, or perform any fume or dust generating process near building air intake systems. Noise shall be held to a minimum at all times. Jack-hammering, core drilling and other noisy or disturbing operations may have to be rescheduled or accomplished after hours, or as directed by the COR, to avoid interfering with surgery or patient care services.

1.3 STATEMENT OF BID ITEM(S)

- A. ITEM I, GENERAL CONSTRUCTION: Upgrade Chilled Water System work includes general construction, alterations, of existing chilled water system, installation of new rooftop air cooled chillers with ancillary electrical system, piping, plumbing and controls. Related work includes necessary removal of existing structures and construction of new equipment and piping supports and certain other items.
- B. ITEM II, Electrical Work: Work includes all labor, material, equipment and supervision to perform the required electrical construction work on this project including power feeds for new mechanical equipment, installation of new electrical distribution panels and installation of power outlets and lighting.
- C. ITEM III, Mechanical Work: Work includes all labor, material, equipment and supervision to perform the required Mechanical construction work on this project including installation of new air cooled chillers, pumping stations, chilled water piping, connection to existing chilled water systems in both building and necessary
 ADVANCE DESIGN CONSULTANTS, INC.
 01 00 00-3

UPGRADE CHILLED WATER SYSTEM FOR BUILDING 100 & 101

controls as indicated on the drawings

- 1. ALTERNATE NO.1: Not Required
- 2. ALTERNATE NO. 2: Not Required

1.4 SPECIFICATIONS AND DRAWINGS

A. Maintain on the job site one (1) printed set of specifications, one (1) printed set of drawings, one (1) printed copy of all RFI's and any documents that modify the original specifications and drawings.

1.5 PROJECT SCHEDULE

PALO ALTO, CA

- A. Develop a plan and cost-loaded schedule demonstrating fulfillment of the contract requirements and submit to the Contracting Officer Representative for review and approval in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES at least 15 calendar days prior to the date of the preconstruction conference. Work shall not proceed without an approved Project Schedule.
- B. Keep the Project Schedule up-to-date and utilize it for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers).
- C. If it becomes apparent from the current revised monthly Project Schedule that phasing or contract completion dates will not be met, execute some or all of the following remedial actions:

1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.

2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.

3. Reschedule the work in conformance with the specification requirements.

D. Prior to proceeding with any of the above actions, notify and obtain approval from the COR for any proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update.

1.6 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - 1. The Contractor's Security Plan shall define both physical and administrative security procedures that will remain effective for the entire duration of the project. Submit a Security Plan for approval at least 15 calendar days prior to the date of the preconstruction conference. Notice-to-Proceed will not be granted without an approved Security Plan.
 - 2. Assure that all sub-Contractors working on the project also comply with the approved Security Plan.
- B. Security Procedures:

1. Do not enter the project site without attaining and displaying appropriateADVANCE DESIGN CONSULTANTS, INC.01 00 00-410/04/201601 00 00-4

security badge. Also, the Contractor and sub-contractors may be subject to inspection of their personal effects when entering or leaving the project site.

- Create an Employee Daily Log of all personnel working on the site. The Employee Daily Log shall contain the employee's (a) Full Name, (b) Employer/Company Name and (c) Occupation/Trade. The Employee Daily Log shall be submitted with the Contractor's Daily Work Report.
- 3. All work on the contract shall be performed between 8:00 am and 5:00 pm Monday through Friday, excluding National Holidays, unless variance is requested from and approved in writing by the CO. For working outside these hours, give at least two weeks' notice to the COR so that oversight, security and escort arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this specification.
- 4. No photography of VA premises is allowed without written permission of the VA Public Affairs Officer and at no time shall patients be photographed. Submit requests through the COR.
- 5. The VA Police are Federal Police Officers with full authority to make arrests, investigate crimes and issue traffic citations. Citations issued require an appearance in the Federal District Court and/or payment of a fine. Speed limits and other driving and parking codes are strictly enforced. Any vehicle left unattended may be cited by the VA Police.
- 6. Sexual harassment is strictly prohibited. This includes deliberate or unsolicited verbal comments or gestures of a sexual nature, unwelcome sexual advances, requests for sexual favors and/or other unwelcome verbal or physical conduct of a sexual nature.
- 7. Possession or use of non-prescription drugs or alcohol, including beer and wine, on the Health Care System grounds is strictly prohibited. Possession of firearms, knives with blades over 4", ammunition, explosive devices and any other weapons is prohibited. This prohibition includes carrying such items in vehicles.
- 8. The Health Care System does not have the equipment, facilities, or personnel trained to handle serious injuries. Call 911 for emergency medical assistance and notify the COR and the VA Police.
- 9. Vehicle authorization requests shall be required for any vehicle entering the site; such requests shall be submitted at least 24 hours before the desired date and time of access. Access shall be restricted to picking up and dropping off materials and supplies. Separate permits shall be issued for Contractor and subcontractor employees for parking in designated areas only. Contractor and subcontractor personnel are prohibited from parking on-site at Palo Alto campus except in the specific, assigned laydown or work area.
- 10. VA reserves the right to shut down the project site and order Contractor's employees and subcontractors off the premises in the event of a national emergency or local disaster. Return to the site only with the written approval of the Contracting Officer's Representative.

UPGRADE CHILLED WATER SYSTEM FOR BUILDING 100 & 101

- PALO ALTO, CA C. Guards: N/A
 - D. Key Control:
 - 1. The General Contractor shall provide duplicate keys and lock combinations to the Contracting officers representative (COR) for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - 2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation.
 - E. Document Control:
 - 1. Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
 - 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
 - 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
 - 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
 - All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.

b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.

- F. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Contractors and staff are required to provide Access shall be restricted to picking up and dropping off materials and supplies. Parking for construction workers
 - Parking is limited at VAPAHCS. The contractor shall arrange and coordinate carpooling and limit the amount of parked vehicles on site. COR may ask contractor to relocate vehicles or park offsite if parking is problematic at the medical center.

1.7 OPERATIONS AND STORAGE AREAS

- A. Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the COR. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the COR and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at their expense upon completion of the work. Only with the written consent of the COR, buildings and utilities may be abandoned and need not be removed.
- C. Use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the COR. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law, code or regulation. When it is necessary to cross curbs or sidewalks, protect them from damage. Repair any damaged landscaping, curbs, sidewalks, or roads.
- D. Working space and space available for storing materials shall be as determined by the COR.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of the VA Campus, including, but not limited to, operations of utility services, fire protection systems, and any existing equipment, and with work being done by others.

UPGRADE CHILLED WATER SYSTEM FOR BUILDING 100 & 101

- PALO ALTO, CA 100% CONSTRUCTION 1. Do not store materials and equipment in other than assigned areas.
 - 2. Schedule delivery of materials and equipment to construction working areas within buildings in use by the VA in quantities sufficient for not more than two work days. Provide unobstructed access to VA Campus areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.

G. Phasing:

1. The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:

To insure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR four (4) weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to COR and Contractor, as follows:

Phase I: Installation and testing new chillers Phase II: Chilled water system change over new chillers

- H. Building(s) No.100 and 101 will be occupied during performance of work.
 - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc. to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period
- I. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, fire protection systems, or communications systems, cut and cap at suitable places as shown or, in

absence of such indication, where directed by the COR. All such actions shall be coordinated with all applicable utility service companies.

- J. Construction Fence: Before construction operations begin, provide a chain link construction fence, seven-foot (7') minimum height, around the construction area, material storage areas, and dumpsters/waste locations. When any portion of the work area is within 20 feet of pedestrian walkways, car parking spaces or other high value property subject to potential damage, drill fence posts into the ground or pavement to assure adequate resistance to high winds. Provide and maintain visual screening fabric for all fencing. Provide gates as required for access with necessary hardware including hasps and locks. All gates shall be locked when no workers are present. Coordinate with the VA to assure VA access at any time. Remove the fence at the end of the work or when directed by the COR.
- K. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- L. Utilities Services: Maintain existing utility services for the VA Campus at all times.
 - No utility service such as water, gas, steam, sewer, waste, electricity, fire protection systems or communications systems may be interrupted without prior approval of the COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the COR's written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS for additional requirements.
 - 2. Interruption in Utility Services: <u>Submit a request to interrupt any such</u> <u>services or systems to the COR in writing at least four (4) weeks in advance</u> <u>of any proposed interruption.</u> Requests shall state reason, date, exact time of, and approximate duration of such interruption. Approved outage dates are not guaranteed and are subject to VA operational requirements.
 - 3. The Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause the least inconvenience to operations of the VA. Interruption time approved by COR may occur at other than Contractor's normal working hours.
 - 4. In case of a contract construction emergency, service will be interrupted upon verbal request of the Contractor along with the verbal approval of the

COR. Such emergency requests shall then be re-submitted in writing as soon as possible with an explanation as to why the initial verbal written request was needed and how such emergency situation/request will be avoided in the future.

- 5. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service connection to the construction project, for such items as water, sewer, electricity, or gas, payment of such fee shall be paid by the Contractor unless specifically relieved in writing by the Contracting Officer.
- M. Abandoned Lines: All service lines (such as wires, cables, conduits, ducts, pipes, and their hangers or supports) which are to be abandoned but are not required to be entirely removed, shall be sealed, capped, or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions so that they are completely behind the finished surfaces.
- N. To minimize interference of construction activities with flow of VA Campus traffic, comply with the following:
 - Do not block any road or street, walkway, or building egress without requesting approval from the COR. Submit written request ten calendar days prior to proposed blockage. Keep roads, walks, and entrances to grounds, parking and occupied areas of buildings clear of construction materials, debris, standing construction equipment and vehicles. Wherever excavation for new work crosses existing roads, at least one lane must be open to traffic at all times.
 - 2. Method and scheduling of required cutting, altering, and removal of existing roads, walks, and entrances must be approved by the COR.
- O. Coordinate this contract work with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.8 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR.
 - 1. Existing chilled water piping and points of connection.
 - 2. Shall note any discrepancies between drawings and existing conditions at site.
 - 3. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.

1.9 INFECTION PREVENTION MEASURES

A. Implement the requirements of the VA's Infection Control Risk Assessment (ICRA) process. The ICRA team may monitor cleanliness, dust, and air flow in the vicinity of the construction work and may require the Contractor to take corrective action immediately if safe levels are exceeded.

- B. Contractor is required to follow VHA Directive 1192 located here: https://www.va.gov/vhapublications/ViewPublication.asp?pub_ID=5472
- C. Establish and maintain a dust control program as part of the Contractor's infection preventive measures. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to the COR for approval by the Facility ICRA team.

1.10 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed from demolition of buildings or structures shall be disposed of as follows:
 - 1. Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items which are to remain property of the Government shall be removed from present locations in such a manner as to prevent damage. Store such items as directed by the COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by the Contractor.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the VA during the alteration period, such items which are not required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work.
 - 4. Alert the VA immediately in the event any known or suspected hazardous materials are disturbed or will need to be disturbed before proceeding with work. Hazardous materials, such as PCB's, asbestos, lead paint, cleaning solutions, and other harmful chemicals shall be disposed of in accordance with federal, state, and local laws and regulations. In case of an accidental spill of hazardous materials, take immediate action to contain the spill and notify the COR. Disposing of cement, plaster, paint, oil or grease, solvents, etc. into any drains is strictly prohibited. Report any accidental spills that may run into storm drains immediately to Engineering Services at extension 62468 and to the COR.
 - Provide a monthly summary of construction and demolition debris diversion and disposal. Quantify all materials generated at the work site and disposed of or diverted from disposal through recycling per SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT.

1.11 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. Preserve and protect all existing structures, equipment, and vegetation (such as trees, shrubs and grass) on or adjacent to the work site that are not to be altered as part of this contract. Only remove trees when specifically authorized to do so and avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the

B. Protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party. Repair any damage to those facilities, including those that are the property of a third party. If the Contractor fails or refuses to repair the damage promptly, the COR may have the necessary work performed and charge the cost to the Contractor.

1.12 RESTORATION

- A. Remove, cut, alter, replace, patch, and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter, or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and which is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work shall conform in type and quality to that of original existing construction except as otherwise approved by the COR.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone, computer network, etc.) which are indicated on drawings or reasonably discovered during execution of the work and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings for which locations are unknown and not reasonably discovered will be considered for adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.13 PHYSICAL DATA

- A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.
 - 1. The indications of physical conditions on the drawings and in the specifications are the result of site investigations by <u>N/A</u>

(FAR 52.236-4)

- B. Subsurface conditions have been developed by core borings and test pits. Logs of subsurface exploration are shown diagrammatically on drawings.
- C. A copy of the soil report will be made available for inspection by bidders upon request to the Engineering Officer at the VA Medical Center, _N/A and <u>shall</u> be considered part of the contract documents.

D. Government does not guarantee that other materials will not be encountered nor that proportions, conditions or character of several materials will not vary from those indicated by explorations. Bidders are expected to examine site of work and logs of borings; and, after investigation, decide for themselves character of materials and make their bids accordingly. Upon proper application to Department of Veterans Affairs, bidders will be permitted to make subsurface explorations of their own at site.

1.14 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by

the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

1.15 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.16 USE OF ROADWAYS

- A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.

C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - 1. Permission to use each unit or system must be given by COR. If the equipment is not installed and maintained in accordance with the following provisions, permission for use may be withdrawn.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before use and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations shall be eliminated.
 - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
 - 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
 - 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use, maintained to prevent corrosion internally and externally during use, and inspected prior to acceptance by the Government. Boilers, pumps, feed-water heaters, and auxiliary equipment shall operate as a complete system and be fully maintained by operating personnel. Boiler water shall be given complete and continuous chemical treatment.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

UPGRADE CHILLED WATER SYSTEM FOR BUILDING 100 & 101

A. Contractor will not be allowed the use of existing elevators. Outside type hoist shall be used by Contractor for transporting materials and equipment.

1.19 CONNECTION TO EXISTING ELECTRICAL PANELS

A. For permanent or temporary connection to any existing electrical panel, a 30-day load test and evaluation by a licensed electrical engineer shall be performed before connection will be allowed. Submit a request to connect or disconnect the load test equipment to the COR, in writing, at least four (4) weeks in advance of proposed connection/disconnection. Request shall state date, time, and approximate duration of any interruption of electrical service. Approved connection/disconnection dates are not guaranteed and are subject to VA operational requirements.

1.20 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor and subcontractor employees) ample temporary sanitary toilet accommodations with suitable sewer and water connections, or, when approved by the COR, provide suitable dry closets where directed. Keep such places clean and free from odor or flying insects. All connections and appliances connected therewith are to be removed prior to completion of the contract, and the premises left clean.

1.21 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.
 - a. Steam is available at no cost to Contractor.

UPGRADE CHILLED WATER SYSTEM FOR BUILDING 100 & 101

- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - 1. Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - 1. Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve wateruse so none is wasted. Failure to stop leakage or other wastes will be cause for revocation at COR discretion of use of water from Medical Center's system.
- G. Fuel: Natural and LP gas and burner fuel oil required for boiler cleaning, normal initial boiler-burner setup and adjusting, and for performing the specified boiler tests will be furnished by the Government. Fuel required for prolonged boiler-burner setup, adjustments, or modifications due to improper design or operation of boiler, burner, or control devices shall be furnished and paid by the Contractor at Contractor's expense.

1.22 TESTS

PALO ALTO, CA

- A. As per specification section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC, the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, subsystem level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation.
- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another

example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.

- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.
- F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.23 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components.

Manuals shall include an index covering all component parts clearly crossreferenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR

for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.24 GOVERNMENT-FURNISHED PROPERTY

A. N/A

1.25 RELOCATED EQUIPMENT ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.

1.26 CONSTRUCTION SIGN

- A. Provide a Construction Sign where directed by the COR. All wood members shall be of framing lumber. Cover sign frame with 0.7 mm (24 gage) galvanized sheet steel nailed securely around edges and on all bearings. Provide three 100 by 100 mm (4 inch by 4 inch) posts (or equivalent round posts) set 1200 mm (four feet) into ground. Set bottom of sign level at 900 mm (three feet) above ground and secure to posts with through bolts. Make posts full height of sign. Brace posts with 50 x 100 mm (two by four inch) material as directed.
- B. Paint all surfaces of sign and posts two coats of white gloss paint. Border and letters shall be of black gloss paint, except project title which shall be blue gloss paint.
- C. Maintain sign and remove it when directed by the COR.
- D. Detail Drawing of construction sign showing required legend and other characteristics of sign is attached hereto and made a part of this specification.

1.27 SAFETY SIGN

- A. A. Provide a Safety Sign where directed by COR. Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide two 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground.
- B. B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of

UPGRADE CHILLED WATER SYSTEM FOR BUILDING 100 & 101

PALO ALTO, CA

white gloss paint. Letters and design shall be painted with gloss paint of colors noted.

- C. C. Maintain sign and remove it when directed by COR.
- D. D. Standard Detail Drawing Number SD10000-02(Found on VA TIL) of safety sign showing required legend and other characteristics of sign is attached hereto and is made a part of this specification. shown on the drawings.
- E. E. Post the number of accident free days on a daily basis.Post the number of accident free days on a daily basis.

1.28 PHOTOGRAPHIC DOCUMENTATION

- A. During the construction period through completion, provide photographic documentation of construction progress and at selected milestones including electronic indexing, navigation, storage and remote access to the documentation, as per these specifications.
- B. Photographic documentation elements:
 - Each digital image shall be taken with a professional grade camera with minimum size of 6 megapixels (MP) capable of producing 200x250mm (8 x 10 inch) prints with a minimum of 2272 x 1704 pixels and 400x500mm (16 x 20 inch) prints with a minimum 2592 x 1944 pixels.
 - 2. Indexing and navigation system shall utilize actual AUTOCAD construction drawings, making such drawings interactive on an on- line interface. For all documentation referenced herein, indexing and navigation must be organized by both time (date-stamped) and location throughout the project.
 - 3. As-built conditions of mechanical, electrical, plumbing and all other systems shall be documented post-inspection and pre-insulation, sheet rock or dry wall installation. This process shall include all finished systems located in the walls and ceilings of all buildings at the Project. Overlapping photographic techniques shall be used to insure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- C. Upon completion of the project, final copies of the documentation (the "Permanent Record") with the indexing and navigation system embedded (and active) shall be provided in an electronic media format, typically a DVD or external hard-drive. Permanent Record shall have Building Information Modeling (BIM) interface capabilities. On-line access terminates upon delivery of the Permanent Record.

1.29 FINAL ELEVATION DIGITAL IMAGES

- A. A minimum of four (4) images of each elevation shall be taken with a minimum 6 MP camera. All images are provided to the COR on a CD.
- B. Photographs shall be taken upon completion. They shall be taken on a clear sunny day to obtain sufficient detail to show depth and to provide clear, sharp pictures.

A. Where the Contractor or any of the Contractor's employees or subcontractors, prior to, or during the construction work, are advised of or discover any possible archeological, historical, or cultural resources, immediately notify the COR verbally and then in writing.

--End of Section

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1 Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2 For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3 Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4 Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5 Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Contracting Officer Representative "COR" on behalf of the Contracting Officer.
- 1-6 Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7 The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those

required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-8 Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect-Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9 Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - 1. A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
 - 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
 - C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the

specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.

- 1. Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
- 2. Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
- 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
- 4. Contractor shall send a copy of transmittal letter to both COR and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory.
- 5. Laboratory test reports shall be sent directly to COR for appropriate action.
- 6. Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report.
- 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.
- D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- E. Approved samples will be kept on file by the COR at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.

- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - 4. A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
 - 8. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the COR.
 - 9. Samples (except laboratory samples) for approval shall be sent to,

VA Medical Center, Palo Alto Division

3801 Miranda Avenue Palo Alto, CA 94304-1290

END OF SECTION 01 33 23

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS	3
1.2	DEFINITIONS	4
1.3	REGULATORY REQUIREMENTS	5
1.4	ACCIDENT PREVENTION PLAN (APP)	5
1.5	ACTIVITY HAZARD ANALYSES (AHAs)	9
1.6	PRECONSTRUCTION CONFERENCE	10
1.7	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON (CP)	J" 11
1.8	TRAINING	12
1.9	INSPECTIONS	13
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS	13
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE)	14
1.12	INFECTION CONTROL	15
1.13	TUBERCULOSIS SCREENING	17
1.14	FIRE SAFETY	17
1.15	ELECTRICAL	19
1.16	FALL PROTECTION	21
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS	21
1.18	EXCAVATION AND TRENCHES	22
1.19	CRANES	22
1.20	CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)	23
1.21	CONFINED SPACE ENTRY	23
1.22	WELDING AND CUTTING	23
1.23	LADDERS	23
1.24	FLOOR & WALL OPENINGS	24

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):
 - 1. A10.1-2011 .. Pre-Project & Pre-Task Safety and Health Planning
 - 2. A10.34-2012 Protection of the Public on or Adjacent to Construction Sites
 - 3. A10.38-2013 Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations
- C. American Society for Testing and Materials (ASTM):
 - 1. E84-2013Surface Burning Characteristics of Building Materials
- D. The Facilities Guidelines Institute (FGI):
 - 1. FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities
- E. National Fire Protection Association (NFPA):
 - 1. 10-2013......Standard for Portable Fire Extinguishers
 - 2. 30-2012......Flammable and Combustible Liquids Code
 - 3. 51B-2014Standard for Fire Prevention During Welding, Cutting and Other Hot Work
 - 4. 70-2014.....National Electrical Code
 - 5. 70B-2013Recommended Practice for Electrical Equipment Maintenance
 - 6. 70E-2012Standard for Electrical Safety in the Workplace
 - 7. 99-2012......Health Care Facilities Code
 - 8. 241-2013.....Standard for Safeguarding Construction, Alteration, and Demolition Operations
- F. The Joint Commission (TJC)
 - 1. TJC Manual .Comprehensive Accreditation and Certification Manual
- G. U.S. Nuclear Regulatory Commission
 - 1. 10 CFR 20 ... Standards for Protection Against Radiation

- H. U.S. Occupational Safety and Health Administration (OSHA):
 - 1. 29 CFR 1904 Reporting and Recording Injuries & Illnesses
 - 2. 29 CFR 1910 Safety and Health Regulations for General Industry
 - 3. 29 CFR 1926 Safety and Health Regulations for Construction Industry
 - 4. CPL 2-0.124.Multi-Employer Citation Policy
- I. VHA Directive 2005-007

1.2 **DEFINITIONS**:

- A. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- B. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- C. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- D. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.
- E. Recordable Injuries or Illnesses. Any work-related injury or illness that results in:
 - 1. Death, regardless of the time between the injury and death, or the length of the illness;
 - Days away from work (any time lost after day of injury/illness onset);
 - 3. Restricted work;
 - 4. Transfer to another job;
 - 5. Medical treatment beyond first aid;
 - 6. Loss of consciousness; or

7. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (6) above.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable federal, state, and county laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the COR or Government Designated Authority.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
- **1.5 SIGNATURE SHEET.** Title, signature, and phone number of the following:

- A. Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
- B. Plan approver (company/corporate officers authorized to obligate the company);
- C. Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).

1.6 BACKGROUND INFORMATION. List the following:

- A. Contractor;
- B. Contract number;
- C. Project name;
- D. Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- **1.7 STATEMENT OF SAFETY AND HEALTH POLICY**. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.

1.8 RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:

- A. A statement of the employer's ultimate responsibility for the implementation of his SOH program;
- B. Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
- C. The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
 - a. Requirements that no work shall be performed unless a designated competent person is present on the job site;
 - b. Requirements for pre-task Activity Hazard Analysis (AHAs);
 - c. Lines of authority;
 - d. Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- 2. **SUBCONTRACTORS AND SUPPLIERS.** If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - a. Identification of subcontractors and suppliers (if known);
 - b. Safety responsibilities of subcontractors and suppliers.

3. TRAINING.

- a. Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- b. Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- c. Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- d. OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

4. SAFETY AND HEALTH INSPECTIONS.

- a. Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- b. Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- 5. ACCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all OSHA Recordable Incidents. The APP shall include accident/incident investigation procedure & identify person(s) responsible to provide the following to the COR or Government Designated Authority:
 - a. Exposure data (man-hours worked);
 - b. Accident investigations, reports, and logs.
- 6. **PLANS (PROGRAMS, PROCEDURES) REQUIRED.** Based on a risk assessment of contracted activities and on mandatory OSHA

compliance programs, the Contractor shall address all applicable occupational risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:

- a. Emergency response ;
- b. Contingency for severe weather;
- c. Fire Prevention ;
- d. Medical Support;
- e. Posting of emergency telephone numbers;
- f. Prevention of alcohol and drug abuse;
- g. Site sanitation (housekeeping, drinking water, toilets);
- h. Night operations and lighting ;
- i. Hazard communication program;
- j. Welding/Cutting "Hot" work ;
- k. Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- I. General Electrical Safety
- m. Hazardous energy control (Machine LOTO);
- n. Site-Specific Fall Protection & Prevention;
- o. Excavation/trenching;
- p. Asbestos abatement;
- q. Lead abatement;
- r. Crane Critical lift;
- s. Respiratory protection;
- t. Health hazard control program;
- u. Radiation Safety Program;
- v. Abrasive blasting;
- w. Heat/Cold Stress Monitoring;
- x. Crystalline Silica Monitoring (Assessment);
- y. Demolition plan (to include engineering survey);
- z. Formwork and shoring erection and removal;
- aa. PreCast Concrete.
- D. Submit the APP to the COR or Government Designated Authority for review for compliance with contract requirements in accordance with

Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.

- E. Once accepted by the COR or Government Designated Authority, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified.
- F. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the COR or Government Designated Authority. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public (as defined by ASSE/SAFE A10.34) and the environment.

1.9 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the COR or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.

- 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
- 3. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - a. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 4. Submit AHAs to the "COR" Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 5. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 6. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the COR or Government Designated Authority.

1.10 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This

list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.

C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.11 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: *Superintendence by the Contractor.* CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.12 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the COR Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the COR that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.13 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to COR or Government Designated Authority.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - 1. Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - 2. The COR or Government Designated Authority will be notified immediately prior to start of the inspection and invited to accompany the inspection.
 - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
 - 4. A report of the inspection findings with status of abatement will be provided to the COR or Government Designated Authority within one week of the onsite inspection.

1.14 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. Notify the COR or Government Designated Authority as soon as practical, but no more than four hours after any accident meeting the definition of OSHA Recordable Injuries or Illnesses or High Visibility Accidents, property damage equal to or greater than \$5,000, or any weight handling equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the COR or Government Designated Authority determine whether a government investigation will be conducted.
- B. Conduct an accident investigation for recordable injuries and illnesses, for Medical Treatment defined in paragraph DEFINITIONS, and property

damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162, and provide the report to the COR or Government Designated Authority within 5 calendar days of the accident. The COR or Government Designated Authority will provide copies of any required or special forms.

- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the COR or Government Designated Authority monthly.
- D. A summation of all OSHA recordable accidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the COR Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the "COR" Contracting Officer Representative or Government Designated Authority as requested.

1.15 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - 1. Hard Hats unless written authorization is given by the COR or Government Designated Authority in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - 2. Safety glasses unless written authorization is given by the COR or Government Designated Authority appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the COR or Government Designated Authority.
 - 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.16 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the COR or Government Designated Authority before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Resident Project Engineer. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes.
- C. The primary project scope area for this project is: I outside and Class II inside building, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:
 - 1) Notify the COR or Contracting Officer Representative or Government Designated Authority
 - 2) Execute work by methods to minimize raising dust from construction operations.
 - 3) Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.
 - b. Upon Completion:
 - 1) Clean work area upon completion of task
 - 2) Notify the COR or Contracting Officer Representative or Government Designated Authority
 - 2. Class II requirements:
 - a. During Construction Work:
 - Notify the COR Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority

- 2) Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
- 3) Water mist work surfaces to control dust while cutting.
- 4) Seal unused doors with duct tape.
- 5) Block off and seal air vents.
- 6) Remove or isolate HVAC system in areas where work is being performed.
- b. Upon Completion:
 - 1) Wipe work surfaces with cleaner/disinfectant.
 - 2) Contain construction waste before transport in tightly covered containers.
 - 3) Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
 - 4) Upon completion, restore HVAC system where work was performed
 - 5) Notify the COR Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority
- D. Final Cleanup:
 - 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All new air ducts shall be cleaned prior to final inspection.
- E. Exterior Construction
 - 1. Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
 - 2. Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
 - 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.17 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
 - 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
 - 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
 - 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.18 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to COR or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:

- Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ³/₄ hour fire/smoke rated doors with self-closing devices.
- 2. Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed through-penetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with COR or Government Designated Authority.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to COR or Government Designated Authority.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241. Do not charge wet standpipes subject to freezing until weather protected.
- K. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.
- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and

coordinate with COR or Government Designated Authority. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR.

- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with COR or Government Designated Authority.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR. Obtain permits from COR at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to COR or Government Designated Authority.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the COR or other Government Designated Authority that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.19 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance

with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Chief Engineer Chief of Facilities Management COR or Government Designated Authority with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA specific to energized work activities will be developed, reviewed, and accepted prior to the start of that work.

- Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the COR or Government Designated Authority.
- 4. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity has been accepted by the COR or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- Ground-fault circuit interrupters. All 120-volt, single-phase 15- and 20-ampere receptacle outlets on construction sites shall have approved ground-fault circuit interrupters for personnel protection. "Assured Equipment Grounding Conductor Program" only is not allowed.

1.20 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.21 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - 1. Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of

materials that will withstand the environment in which they are used, be legible and shall include:

- 1. The Competent Person's name and signature;
- 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.22 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P.
- B. All excavations and trenches 5 feet in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall be completed and provided to the COR and/or other Government Designated Authority prior to commencing work for the day. At the end of the day, the permit shall be closed out and provided to the COR and/or other COR and/or other Government Designated Authority. The permit shall be closed out and provided to the COR and/or other Government Designated Authority. The permit shall be maintained onsite and include the following:
 - 1. Determination of soil classification
 - 2. Indication that utilities have been located and identified. If utilities could not be located after all reasonable attempt, then excavating operations will proceed cautiously.
 - 3. Indication of selected excavation protective system.
 - 4. Indication that the spoil pile will be stored at least 2 feet from the edge of the excavation and safe access provided within 25 feet of the workers.
 - 5. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere.
- C. If not using an engineered protective system such as a trench box, shielding, shoring, or other Professional Engineer designed system and using a sloping or benching system, soil classification cannot be Solid Rock or Type A. All soil will be classified as Type B or Type C and sloped or benched in accordance with Appendix B of 29 CFR 1926.

1.23 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with

Subpart CC are effective and there is no "Phase In" date of November 10, 2014.

- C. A detailed lift permit shall be submitted 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing. The lift will not be allowed without approval of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.24 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.25 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1910.146 except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the COR and/or other Government Designated Authority.

1.26 WELDING AND CUTTING

1.27 LADDERS

A. All Ladder use shall comply with 29 CFR 1926 Subpart X.

- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
 - 1. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - 2. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - 3. In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- F. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.28 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. See 21.F for covering and labeling requirements. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or color-coded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.

- 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
- 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
- 5. Workers are prohibited from standing/walking on skylights.

END OF SECTION 01 35 26

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 **DESCRIPTION**

A. This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to – GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

- A. The specifications and standards cited in this solicitation can be examined at the following location:
- B. DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

A. The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc. <u>http://www.aluminum.org</u>

AABC Associated Air Balance Council <u>http://www.aabchq.com</u>

AAMA American Architectural Manufacturer's Association <u>http://www.aamanet.org</u>

AAN American Nursery and Landscape Association http://www.anla.org

AASHTO American Association of State Highway and Transportation Officials <u>http://www.aashto.org</u>

AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists <u>http://www.acgih.org</u>

ACI American Concrete Institute http://www.aci-int.net

ACPA American Concrete Pipe Association <u>http://www.concrete-pipe.org</u>

ACPPA American Concrete Pressure Pipe Association http://www.acppa.org

ADC Air Diffusion Council <u>http://flexibleduct.org</u>

AGA American Gas Association <u>http://www.aga.org</u>

AGC Associated General Contractors of America <u>http://www.agc.org</u>

AGMAAmerican Gear Manufacturers Association, Inc. <u>http://www.agma.org</u>

AHAMAssociation of Home Appliance Manufacturers http://www.aham.org

AIA American Institute of Architects

http://www.aia.org

AISC American Institute of Steel Construction <u>http://www.aisc.org</u>

AISI American Iron and Steel Institute <u>http://www.steel.org</u>

AITC American Institute of Timber Construction <u>http://www.aitc-glulam.org</u>

AMCA Air Movement and Control Association, Inc. http://www.amca.org

ANLA American Nursery & Landscape Association <u>http://www.anla.org</u>

ANSI American National Standards Institute, Inc. <u>http://www.ansi.org</u>

APA The Engineered Wood Association http://www.apawood.org

ARI Air-Conditioning and Refrigeration Institute <u>http://www.ari.org</u>

ASAE American Society of Agricultural Engineers http://www.asae.org

ASCE American Society of Civil Engineers http://www.asce.org

ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org

ASME American Society of Mechanical Engineers http://www.asme.org

ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org

ASTM American Society for Testing and Materials http://www.astm.org

AWI Architectural Woodwork Institute http://www.awinet.org

AWS American Welding Society http://www.aws.org

AWWA American Water Works Association <u>http://www.awwa.org</u>

BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com

BIA Brick Institute of America <u>http://www.bia.org</u>

CAGI Compressed Air and Gas Institute <u>http://www.cagi.org</u>

CGA Compressed Gas Association, Inc. <u>http://www.cganet.com</u>

CI The Chlorine Institute, Inc. <u>http://www.chlorineinstitute.org</u>

CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org

CISPI Cast Iron Soil Pipe Institute http://www.cispi.org

CLFMI Chain Link Fence Manufacturers Institute <u>http://www.chainlinkinfo.org</u>

CPMBConcrete Plant Manufacturers Bureau http://www.cpmb.org

CRA California Redwood Association <u>http://www.calredwood.org</u>

CRSI Concrete Reinforcing Steel Institute http://www.crsi.org

CTI Cooling Technology Institute http://www.cti.org

DHI Door and Hardware Institute <u>http://www.dhi.org</u>

EGSA Electrical Generating Systems Association http://www.egsa.org

EEI Edison Electric Institute <u>http://www.eei.org</u>

EPA Environmental Protection Agency <u>http://www.epa.gov</u>

ETL ETL Testing Laboratories, Inc. <u>http://www.et1.com</u>

FAA Federal Aviation Administration <u>http://www.faa.gov</u>

FCC Federal Communications Commission http://www.fcc.gov

FPS The Forest Products Society http://www.forestprod.org

GANA Glass Association of North America <u>http://www.cssinfo.com/info/gana.html/</u>

FM Factory Mutual Insurance http://www.fmglobal.com

GA Gypsum Association http://www.gypsum.org GSA General Services Administration http://www.gsa.gov

HI Hydraulic Institute http://www.pumps.org

HPVA Hardwood Plywood & Veneer Association http://www.hpva.org

ICBO International Conference of Building Officials http://www.icbo.org

ICEA Insulated Cable Engineers Association Inc. http://www.icea.net

\ICAC Institute of Clean Air Companies http://www.icac.com

IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org/

IMSA International Municipal Signal Association http://www.imsasafety.org

IPCEA Insulated Power Cable Engineers Association

NBMA Metal Buildings Manufacturers Association http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers http://www.naamm.org

NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org

NBS National Bureau of Standards See - NIST

NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org

NEC National Electric Code See - NFPA National Fire Protection Association

NEMANational Electrical Manufacturers Association http://www.nema.org

NFPA National Fire Protection Association http://www.nfpa.org

NHLA National Hardwood Lumber Association http://www.natlhardwood.org NIH National Institute of Health <u>http://www.nih.gov</u>

NIST National Institute of Standards and Technology http://www.nist.gov

NLMA Northeastern Lumber Manufacturers Association, Inc. <u>http://www.nelma.org</u>

NPA National Particleboard Association 18928 Premiere Court Gaithersburg, MD 20879 (301) 670-0604

NSF National Sanitation Foundation http://www.nsf.org

NWWDA Window and Door Manufacturers Association <u>http://www.nwwda.org</u>

OSHA Occupational Safety and Health Administration Department of Labor <u>http://www.osha.gov</u>

PCA Portland Cement Association http://www.portcement.org

PCI Precast Prestressed Concrete Institute http://www.pci.org

PPI The Plastic Pipe Institute <u>http://www.plasticpipe.org</u>

PEI Porcelain Enamel Institute, Inc. <u>http://www.porcelainenamel.com</u>

PTI Post-Tensioning Institute http://www.post-tensioning.org

RFCI The Resilient Floor Covering Institute http://www.rfci.com

RIS Redwood Inspection Service See - CRA

RMA Rubber Manufacturers Association, Inc. <u>http://www.rma.org</u>

SCMA Southern Cypress Manufacturers Association <u>http://www.cypressinfo.org</u>

SDI Steel Door Institute http://www.steeldoor.org

SOI Secretary of the Interior

http://www.cr.nps.gov/local-law/arch_stnds_8_2.htm

IGMA Insulating Glass Manufacturers Alliance http://www.igmaonline.org

SJI Steel Joist Institute http://www.steeljoist.org

SMACNA Sheet Metal and Air-Conditioning Contractors National Association, Inc. http://www.smacna.org

SSPC The Society for Protective Coatings http://www.sspc.org

STI Steel Tank Institute http://www.steeltank.com

SWI Steel Window Institute <u>http://www.steelwindows.com</u>

TCA Tile Council of America, Inc. <u>http://www.tileusa.com</u>

TEMA Tubular Exchange Manufacturers Association http://www.tema.org

TPI Truss Plate Institute, Inc. 583 D'Onofrio Drive; Suite 200 Madison, WI 53719 (608) 833-5900

UBC The Uniform Building Code See ICBO

UL Underwriters' Laboratories Incorporated http://www.ul.com

ULC Underwriters' Laboratories of Canada <u>http://www.ulc.ca</u>

WCLIB West Coast Lumber Inspection Bureau 6980 SW Varns Road, P.O. Box 23145 Portland, OR 97223 (503) 639-0651

WRCLA Western Red Cedar Lumber Association P.O. Box 120786 New Brighton, MN 55112 (612) 633-4334

WWPA Western Wood Products Association <u>http://www.wwpa.org</u>

END OF SECTION 01 42 19

SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 **DESCRIPTION**:

A. This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by the Contractor.

1.2 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO):

T27-11Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates

T96-02 (R2006)Standard Method of Test for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine

T99-10Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 Kg (5.5 lb.) Rammer and a 305 mm (12 in.) Drop

T104-99 (R2007)Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate

T180-10Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb.) Rammer and a 457 mm (18 in.) Drop

T191-02(R2006)Standard Method of Test for Density of Soil In-Place by the Sand-Cone Method

C. American Concrete Institute (ACI):

506.4R-94 (R2004).Guide for the Evaluation of Shotcrete

D. American Society for Testing and Materials (ASTM):

A325-10Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

A370-12Standard Test Methods and Definitions for Mechanical Testing of Steel Products

A416/A416M-10.....Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete

A490-12Standard Specification for Heat Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength

C31/C31M-10Standard Practice for Making and Curing Concrete Test Specimens in the Field

C33/C33M-11aStandard Specification for Concrete Aggregates

C39/C39M-12Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens

C109/C109M-11b ...Standard Test Method for Compressive Strength of Hydraulic Cement Mortars

C136-06.....Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates

C138/C138M-10b ...Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete

C140-12.....Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units

C143/C143M-10a ...Standard Test Method for Slump of Hydraulic Cement Concrete

C172/C172M-10Standard Practice for Sampling Freshly Mixed Concrete

C173/C173M-10b ...Standard Test Method for Air Content of freshly Mixed Concrete by the Volumetric Method

C330/C330M-09Standard Specification for Lightweight Aggregates for Structural Concrete

C567/C567M-11Standard Test Method for Density Structural Lightweight Concrete

C780-11Standard Test Method for Pre-construction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry

C1019-11Standard Test Method for Sampling and Testing Grout

C1064/C1064M-11 .Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete

C1077-11cStandard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation

C1314-11a.....Standard Test Method for Compressive Strength of Masonry Prisms

D422-63(2007)......Standard Test Method for Particle-Size Analysis of Soils

D698-07e1Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort

D1140-00(2006).....Standard Test Methods for Amount of Material in Soils Finer than No. 200 Sieve

D1143/D1143M-07e1 Standard Test Methods for Deep Foundations Under Static Axial Compressive Load

D1188-07e1Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples

D1556-07.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method

D1557-09.....Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000ft lbf/ft3 (2,700 KNm/m3))

D2166-06.....Standard Test Method for Unconfined Compressive Strength of Cohesive Soil

D2167-08).....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method

D2216-10.....Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

D2974-07a.....Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils

D3666-11Standard Specification for Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials

D3740-11Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as used in Engineering Design and Construction

D6938-10.....Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

E94-04(2010).....Standard Guide for Radiographic Examination

E164-08Standard Practice for Contact Ultrasonic Testing of Weldments

E329-11cStandard Specification for Agencies Engaged in Construction Inspection, Testing, or Special Inspection

E543-09Standard Specification for Agencies Performing Non-Destructive Testing

E605-93(R2011)Standard Test Methods for Thickness and Density of Sprayed Fire Resistive Material (SFRM) Applied to Structural Members

E709-08Standard Guide for Magnetic Particle Examination

E1155-96(R2008) ... Determining FF Floor Flatness and FL Floor Levelness Numbers

E. American Welding Society (AWS):

D1.D1.1M-10Structural Welding Code-Steel

1.3 **REQUIREMENTS**:

- A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office."
- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by COR. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of COR to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to COR, Contractor, unless other arrangements are agreed to in writing by the COR. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- D. Verbal Reports: Give verbal notification to COR immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

- 3.1 EARTHWORK: NOT USED
- 3.2 FOUNDATION PILES: NOT USED
- 3.3 FOUNDATION CAISSONS: NOT USED
- 3.4 LANDSCAPING: NOT USED

3.5 ASPHALT CONCRETE PAVING: NOT USED

3.6 SITE WORK CONCRETE:

A. Test site work concrete including materials for concrete as required in Article CONCRETE of this section.

3.7 POST-TENSIONING OF CONCRETE: NOT USED

3.8 CONCRETE:

- A. Batch Plant Inspection and Materials Testing: NOT REQUIRED
- B. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.
 - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
 - 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type.
 - 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the beginning of each day's pumping operations to determine change in slump.
 - 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
 - 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
 - 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
 - 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
 - 9. Verify that specified mixing has been accomplished.
 - 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:

- When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
- When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.
- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- 13. Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.
- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for levelness and flatness as follows:
 - Perform Floor Tolerance Measurements F_F and F_L in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.
 - b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.

- c. Provide the Contractor and the COR with the results of all profile tests, including a running tabulation of the overall F_F and F_L values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Other inspections:
 - a. Grouting under base plates.
 - b. Grouting anchor bolts and reinforcing steel in hardened concrete.
- C. Laboratory Tests of Field Samples:
 - Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by COR. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.
 - 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
 - 3. Furnish certified compression test reports (duplicate) to COR. In test report, indicate the following information:
 - a. Cylinder identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Type of concrete, slump, and percent air.
 - d. Compressive strength of concrete in MPa (psi).
 - e. Weight of lightweight structural concrete in kg/m³ (pounds per cubic feet).
 - f. Weather conditions during placing.
 - g. Temperature of concrete in each test cylinder when test cylinder was molded.
 - h. Maximum and minimum ambient temperature during placing.
 - i. Ambient temperature when concrete sample in test cylinder was taken.
 - j. Date delivered to laboratory and date tested.

3.9 **REINFORCEMENT**:

A. Review mill test reports furnished by Contractor.

- B. Make one tensile and one bend test in accordance with ASTM A370 from each pair of samples obtained.
- C. Written report shall include, in addition to test results, heat number, manufacturer, type and grade of steel, and bar size.
- D. Perform tension tests of mechanical and welded splices in accordance with ASTM A370.

3.10 SHOTCRETE: NOT USED

3.11 PRESTRESSED CONCRETE: NOT USED

3.12 ARCHITECTURAL PRECAST CONCRETE: NOT USED

3.13 MASONRY: NOT USED

3.14 STRUCTURAL STEEL:

- A. General: Provide shop and field inspection and testing services to certify structural steel work is done in accordance with contract documents. Welding shall conform to AWS D1.1 Structural Welding Code.
- B. Prefabrication Inspection:
 - 1. Review design and shop detail drawings for size, length, type and location of all welds to be made.
 - 2. Approve welding procedure qualifications either by pre-qualification or by witnessing qualifications tests.
 - 3. Approve welder qualifications by certification or retesting.
 - 4. Approve procedure for control of distortion and shrinkage stresses.
 - 5. Approve procedures for welding in accordance with applicable sections of AWS D1.1.
- C. Fabrication and Erection:
 - 1. Weld Inspection:
 - a. Inspect welding equipment for capacity, maintenance and working condition.
 - b. Verify specified electrodes and handling and storage of electrodes in accordance with AWS D1.1.
 - c. Inspect preparation and assembly of materials to be welded for conformance with AWS D1.1.
 - d. Inspect preheating and interpass temperatures for conformance with AWS D1.1.
 - e. Measure 25 percent of fillet welds.

- f. Welding Magnetic Particle Testing: Test in accordance with ASTM E709 for a minimum of:
 - 1) 20 percent of all shear plate fillet welds at random, final pass only.
 - 2) 20 percent of all continuity plate and bracing gusset plate fillet welds, at random, final pass only.
 - 100 percent of tension member fillet welds (i.e., hanger connection plates and other similar connections) for root and final passes.
 - 20 percent of length of built-up column member partial penetration and fillet welds at random for root and final passes.
 - 5) 100 percent of length of built-up girder member partial penetration and fillet welds for root and final passes.
- g. Welding Ultrasonic Testing: Test in accordance with ASTM E164 and AWS D1.1 for 100 percent of all full penetration welds, braced and moment frame column splices, and a minimum of 20 percent of all other partial penetration column splices, at random.
- h. Verify that correction of rejected welds are made in accordance with AWS D1.1.
- i. Testing and inspection do not relieve the Contractor of the responsibility for providing materials and fabrication procedures in compliance with the specified requirements.
- 2. Bolt Inspection:
 - a. Inspect high-strength bolted connections in accordance AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts.
 - Slip-Critical Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in each connection in accordance with AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.
 - c. Fully Pre-tensioned Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in 25 percent of connections in accordance with AISC Specification for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.
- d. Bolts installed by turn-of-nut tightening may be inspected with calibrated wrench when visual inspection was not performed during tightening.
- e. Snug Tight Connections: Inspect 10 percent of connections verifying that plies of connected elements have been brought into snug contact.
- f. Inspect field erected assemblies; verify locations of structural steel for plumbness, level, and alignment.
- D. Submit inspection reports, record of welders and their certification, and identification, and instances of noncompliance to COR.

3.15 STEEL DECKING:

- A. Provide field inspection of welds of metal deck to the supporting steel, and testing services to insure steel decking has been installed in accordance with contract documents and manufacturer's requirements.
- B. Qualification of Field Welding: Qualify welding processes and welding operators in accordance with "Welder Qualification" procedures of AWS D1.1. Refer to the "Plug Weld Qualification Procedure" in Part 3 "Field Quality Control."
- C. Submit inspection reports, certification, and instances of noncompliance to COR.

3.16 SHEAR CONNECTOR STUDS:

- A. Provide field inspection and testing services required by AWS D.1 to insure shear connector studs have been installed in accordance with contract documents.
- B. Tests: Test 20 percent of headed studs for fastening strength in accordance with AWS D1.1.
- C. Submit inspection reports, certification, and instances of noncompliance to COR.

3.17 SPRAYED-ON FIREPROOFING: NOT USED

3.18 TYPE OF TEST:

Approximate Number of Tests Required

A. Concrete:

 Making and Curing Concrete Test Cylinders (ASTM C31)
 2____

 Compressive Strength, Test Cylinders (ASTM C39)
 1____

- B. Reinforcing Steel: Tensile Test (ASTM A370) __1_
- C. Structural Steel:

Technical Personnel:

D.

Ε.

Ultrasonic Testing of Welds (ASTM E164)	<u> 1 </u>
Magnetic Particle Testing of Welds (ASTM E709)	1
Radiographic Testing of Welds (ASTM E94)	0
Inspection:	

Technical Personnel (Man-days)

Minimum 1 Week

2

1. Technicians to perform tests and inspection listed above. Laboratory will be equipped with concrete cylinder storage facilities, compression machine, cube molds, proctor molds, balances, scales, moisture ovens, slump cones, air meter, and all necessary equipment for compaction control.

END OF SECTION 01 45 29

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely affect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - 1. Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
 - 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.

- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):

33 CFR 328Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the COR to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the COR for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.

- b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
- c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
- d. Description of the Contractor's environmental protection personnel training program.
- e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.

B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 **PROTECTION OF ENVIRONMENTAL RESOURCES**

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted.
 - 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
 - 2. Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
 - 3. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.

- 4. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 5. Handle discarded materials other than those included in the solid waste category as directed by the COR.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - 1. Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - 2. Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of California and Bay Area Air Quality Management District (BAAQMD) and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - 1. Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.

- 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m. unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA):

EARTHMC	VING	MATERIALS HANDL	ING
FRONT LOADERS	75	CONCRETE MIXERS	75

BACKHOES	75	CRANES	75
DOZERS	75	DERRICKS IMPACT	75
TRACTORS	75	PILE DRIVERS	95
SCAPERS	80	JACK HAMMERS	75
GRADERS	75	ROCK DRILLS	80
TRUCKS	75	PNEUMATIC TOOLS	80
PAVERS, STATIONARY	80	SAWS	75
PUMPS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.

- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

END OF SECTION 01 57 19

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 – GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).

- 10. Carpet and/or pad.
- 11. Gypsum board.
- 12. Insulation.
- 13. Paint.
- 14. Fluorescent lamps.

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any

revenues or savings obtained from salvage or recycling shall accrue to the contractor.

- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.

- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.

- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the COR a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - 1) Description of materials to be site-separated and selfhauled to designated facilities.
 - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.

- d. The names and locations of trash disposal landfill facilities or sites.
- e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):
- C. LEED Green Building Rating System for New Construction

1.7 RECORDS

A. Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving
- D. Parties, dates removed, transportation costs, weight tickets, tipping fees, manifests and invoices. Include the net total costs for each disposal.

END OF SECTION 01 74 19

SECTION 01 81 13

SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction as summarized in the VA Sustainable Design Manual.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. By submitting a change or substitution of materials or processes, contractor must demonstrate its diligence in performing the level of investigation and comparison required under federal mandates and VA policies.

1.2 RELATED WORK

- A. Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
- B. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.3 DEFINITIONS

- A. Total Materials Cost: A tally of actual material cost from specification divisions 03 through 10, 31 (applicable to foundations) and 32 (applicable to paving, site improvements, and planting). Alternatively, 45 percent of total construction hard costs in those specification divisions.
- B. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - 1. "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.

- C. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.
- D. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- E. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 **REFERENCE STANDARDS**

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U. S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to Contract Officer Representative "COR" and Architect.
- B. Sustainability Action Plan:
 - 1. Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.

- c. Indicate individual(s) responsible for implementing the plan.
- C. Project Materials Cost Data Spreadsheet: Within 30 days after the Preconstruction Meeting provide a preliminary Project Materials Cost Data Spreadsheet. The Project Materials Cost Data Spreadsheet must be an electronic file and indicate all materials in Divisions 3 through 10, 31, and 32 used for Project (excluding labor costs and excluding all mechanical, electrical, and plumbing system components), and be organized by specification section. The spreadsheet must include the following:
 - 1. Identify each reused or salvaged material, its cost, and its replacement value.
 - 2. Identify each recycled-content material, its post-consumer and preconsumer recycled content as a percentage the product's weight, its cost, its combined recycled content value, defined as the sum of post-consumer recycled content value plus one-half of preconsumer recycled content value, and total combined recycled content value for all materials as a percentage of total materials costs.
 - 3. Identify each biobased material, its source, its cost, and total value of biobased materials as a percentage of total materials costs.
 - 4. Total cost for Project and total cost of building materials used for Project.
- D. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include all materials on Project in categories described under Low Pollutant-Emitting Materials.
- E. Construction Indoor Air Quality (IAQ) Management Plan:
 - 1. Not more than 30 days after Preconstruction Meeting provide a Construction IAQ Management Plan as an electronic file including descriptions of the following:
 - a. Instruction procedures for meeting or exceeding minimum requirements of ANSI/SMACNA 008-2008, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling.
 - b. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage.
 - c. Schedule of submission of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials.

- d. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille.
- e. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit.
- f. Instruction procedures and schedule for implementing building flush-out.
- F. Product Submittals:
 - 1. Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and preconsumer recycled content for products having recycled content (excluding MEP systems equipment and components).
 - 2. Biobased Content: Submittals for products to be installed or used included on the USDA BioPreferred program's product category lists. Data to include biobased content and source of biobased material; indicating name of manufacturer, cost of each material.
 - Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13 and additional product performance criteria for Low Pollutant-Emitting.
 - 4. For applicable products and equipment, product documentation confirming Energy Star label and EPEAT certification.
- G. Sustainable Construction Progress Reports: Concurrent with each Application for Payment, submit a Sustainable Construction Progress Report to confirm adherence with Sustainability Action Plan.
 - 1. Include narratives of revised strategies for bringing work progress into compliance with plan and product submittal data and calculations to demonstrate compliance with thresholds based on materials costs.
 - 2. Include updated and current Project Materials Cost Data Spreadsheet.
 - 3. Include updated and current Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 4. Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding landclearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.

- H. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - 1. Final version of Project Material Cost Data Spreadsheet.
 - 2. Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 3. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - 4. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.
 - 5. Minimum 18 construction photographs including six photographs taken on three different occasions during construction of ANSI/SMACNA 008-2008, Chapter 3 approaches employed, along with a brief description of each approach, documenting implementation of IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.
 - 6. Flush-out Documentation:
 - a. Product data for filtration media used during flush-out.
 - b. Product data for filtration media installed immediately prior to occupancy.
 - c. Signed statement describing building air flush-out procedures including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with COR/COR and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, required Construction Indoor Air Quality (IAQ) Management Plan, and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.
- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005 and rule amendment date of January 7, 2005.
- G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.
- H. California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1, Emission Testing method for California Specification 01350 (CDPH Standard Method V1.1-2010).
- I. Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

2.1 PERFORMANCE CRITERIA

- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Low Pollutant-Emitting Materials:
 - 1. Adhesives, sealants and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168.
 - 2. Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:
 - a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.

- b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.
- c. Comply with the following VOC content limits:
 - 1) Anti-Corrosive/Antirust Paints: 250 g/L.
 - 2) Waterproofing Sealers: 250 g/L.
 - 3) Low-Solids Coatings: 120 g/L.
- d. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at the 14 day time point.
- C. Recycled Content:
 - Any product being installed or used that are listed on EPA Comprehensive Procurement Guidelines designated product list must meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:
 - a. Cement and concrete.
 - b. Consolidated and reprocessed latex paint.
 - c. Structural fiberboard.
 - 2. Provide building materials with recycled content such that postconsumer recycled content value plus half the pre-consumer recycled content value constitutes a minimum of 10 percent of cost of materials used for Project, exclusive of mechanical, electrical and plumbing components, specialty items such as elevators, and labor and delivery costs.
- D. Biobased Content:
 - 1. Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to individual specification sections for detailed requirements applicable to that section.
 - a. USDA BioPreferred program categories include:
 - 1) Adhesive and Mastic Removers.
 - 2) Multipurpose Cleaners.
 - 3) Multipurpose Lubricants.
 - 4) Paint Removers.
 - 5) Pneumatic Equipment Lubricants.
 - 6) Roof Coatings.

- E. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSenselabeled or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.
- F. Materials, products, and equipment being installed which fall into a category covered by the Energy Star program must be Energy Starlabeled.
 - 1. Energy Star product categories as of 05/19/2015 include:
 - a. Appliances:
 - b. Heating and Cooling Equipment:
 - 1) Air Cooled Chillers
- G. Materials, products, and equipment being installed which fall into a category covered by the FEMP program must be FEMP-designated. FEMP-designated product categories as of 05/19/2015 include:
 - 1. Heating and Cooling Equipment:
 - a. Electric Chillers, Air-Cooled (Commercial).
- H. Electronic products and equipment being installed which fall into a category covered by EPEAT program must be EPEAT registered.
 - 1. Electronic products and equipment covered by EPEAT program as of 05/19/2015 include:
 - a. Computers: Desktops, Workstations, and Thin Clients.
 - b. Computers: Notebooks and Integrated Computers.
 - c. Displays.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Irrigation professionals must be certified under a WaterSense labeled certification program.
- B. Construction Indoor Air Quality Management:
 - 1. During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.
 - 2. Protect stored on-site and installed absorptive materials from moisture damage.
 - 3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.

- 4. Perform building flush-out as follows:
 - a. After construction ends, prior to occupancy and with interior finishes installed, perform a building flush-out by supplying a total volume of 14000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 degrees Fahrenheit and a relative humidity no higher than 60 percent. OR
 - b. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is occupied, it must be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or design minimum outside air rate determined in Prerequisite EQ 1, whichever is greater. During each day of flush-out period, ventilation must begin a minimum of three hours prior to occupancy and continue during occupancy. These conditions must be maintained until a total of 14000 cu. ft./sq. ft. of outside air has been delivered to the space.
- 5. Provide construction dust control to comply with SCAQMD Rule 403.

END OF SECTION 01 81 13

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division, Division 22, Division 23, series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to, Division 22, and Division 23, series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:
 - 1. Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.

- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the COR as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the COR.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.
- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and

Contract Officer Representative "COR". Thus, the procedures outlined in this specification must be executed within the following limitations:

- 1. No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
- 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
- 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect.
- 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues.
- 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- C. Section 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS
- D. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. The commissioning activities have been developed to support the United States Green Building Council's (USGBC) LEED [™] rating program and to

support delivery of project performance in accordance with the VA requirements developed for the project to support the following credits:

- 1. Commissioning activities and documentation for the LEED[™] section on "Energy and Atmosphere" and the prerequisite of "Fundamental Building Systems Commissioning."
- 2. Activities and documentation for the LEED[™] section on "Measurement and Verification" requirements for the Measurement and Verification credit.
- D. The commissioning activities have been developed to support the Green Buildings Initiative's Green Globes rating program and to support delivery of project performance in accordance with the VA requirements developed for the project.

1.5 ACRONYMS

List of Acronyms	
Acronym	Meaning
A/E	Architect / Engineer Design Team
AHJ	Authority Having Jurisdiction
ASHRAE	Association Society for Heating Air Condition and Refrigeration Engineers
BOD	Basis of Design
BSC	Building Systems Commissioning
CCTV	Closed Circuit Television
CD	Construction Documents
CMMS	Computerized Maintenance Management System
СО	Contracting Officer (VA)
COR	Contracting Officer's Representative
COBie	Construction Operations Building Information Exchange
CPC	Construction Phase Commissioning
Сх	Commissioning
СхА	Commissioning Agent

List of Acronyms	
Acronym	Meaning
СхМ	Commissioning Manager
CxR	Commissioning Representative
DPC	Design Phase Commissioning
FPT	Functional Performance Test
GBI-GG	Green Building Initiative - Green Globes
HVAC	Heating, Ventilation, and Air Conditioning
LEED	Leadership in Energy and Environmental Design
NC	Department of Veterans Affairs National Cemetery
NCA	Department of Veterans Affairs National Cemetery Administration
NEBB	National Environmental Balancing Bureau
O&M	Operations & Maintenance
OPR	Owner's Project Requirements
PFC	Pre-Functional Checklist
PFT	Pre-Functional Test
SD	Schematic Design
SO	Site Observation
ТАВ	Test Adjust and Balance
VA	Department of Veterans Affairs
VAMC	VA Medical Center
VA CFM	VA Office of Construction and Facilities Management
VACO	VA Central Office
VA PM	VA Project Manager

List of Acronyms	
Acronym	Meaning
USGBC	United States Green Building Council

1.6 **DEFINITIONS**

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training.

<u>Accuracy</u>: The capability of an instrument to indicate the true value of a measured quantity.

<u>Back Check:</u> A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines.

Benchmarks: Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself.. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument.

<u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>COBie</u>: Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole

Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

<u>Commissionability</u>: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned

Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

Commissioning Checklists: Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also – Commissioning Observation).

Commissioning Manager (CxM): A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

Commissioning Plan: A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

Commissioning Process: A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report</u>: The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

<u>Commissioning Representative (CxR)</u>: An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

<u>Commissioning Specifications:</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

Construction Phase Commissioning: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD)</u>: Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC)</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

Coordination Drawings: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

<u>Data Logging:</u> The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

Deferred System Test: Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

Design Criteria: A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR.

Design Intent: The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the

owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

Design Narrative: A written description of the proposed design solutions that satisfy the requirements of the OPR.

Design Phase Commissioning (DPC): All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Industry Accepted Best Practice: A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

Installation Verification: Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project. Issues Log: A formal and ongoing record of problems or concerns – and their resolution – that have been raised by members of the Commissioning Team during the course of the Commissioning Process.

Lessons Learned Workshop: A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability</u>: A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment. Maintainability also includes components that have readily obtainable repair parts or service.

<u>Manual Test:</u> Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation').

Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

Peer Review: A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

Precision: The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

<u>Pre-Design Phase Commissioning:</u> Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project

<u>**Pre-Functional Checklist (PFC):</u>** A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.</u>

<u>Pre-Functional Test (PFT)</u>: An inspection or test that is done before functional testing. PFT's include installation verification and system and component start up tests.

<u>Procedure or Protocol</u>: A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

<u>Range</u>: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated.

<u>Resolution</u>: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.
<u>Site Observation Reports (SO)</u>: Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

Special System Inspections: Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

<u>Static Tests</u>: Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

<u>Start Up Tests</u>: Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

Systems Manual: A system-focused composite document that includes all information required for the owners operators to operate the systems.

<u>**Test Procedure:**</u> A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Testing: The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC.

Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

Training Plan: A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

Unresolved Commissioning Issue: Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.

- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

<u>Verification</u>: The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning:</u> Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit:</u> A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

<u>Whole Building Commissioning:</u> Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

- A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
- B. The following systems will be commissioned as part of this project:

Systems To Be Commissioned								
System Description								
HVAC								
Noise and Vibration Control	Noise and vibration levels for critical equipment such as Chillers, Pumps, etc. will be commissioned as part of the system commissioning							

Systems To Be Commissioned									
System	Description								
Direct Digital Control System**	Operator Interface Computer, Operator Work Station (including graphics, point mapping, trends, alarms), Network Communications Modules and Wiring, Integration Panels. [DDC Control panels will be commissioned with the systems controlled by the panel]								
Chilled Water System**	Chillers air-cooled, pumps, variable primary, VFDs associated with chilled water system components, DDC Control Panels (including integration with Building Control System)								
Table Notes									
** Denotes systems th	at LEED requires to be commissioned to comply with the								

LEED Fundamental Commissioning pre-requisite.

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - 1. Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - 1. Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - 2. User: Representatives of the facility user and operation and maintenance personnel.

3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - 2. Conduct operation and maintenance training sessions in accordance with approved training plans.
 - 3. Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.

- 5. Review and comment on commissioning documentation.
- 6. Participate in meetings to coordinate Systems Functional Performance Testing.
- 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
- 8. Provide information to the Commissioning Agent for developing commissioning plan.
- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for

maintenance and component replacement or repair, and for general conformance with the Construction Documents.

- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents. Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:

- 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
- 2. Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
- 3. Identification of systems and equipment to be commissioned.
- 4. Schedule of Commissioning Coordination meetings.
- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:
 - 1. Name and identification code of tested system.
 - 2. Test number.

- 3. Time and date of test.
- 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
- 5. Dated signatures of the person performing test and of the witness, if applicable.
- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating an Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.

- b. Assign a descriptive title for the issue.
- c. Identify date and time of the issue.
- d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
- e. Identify system, subsystem, and equipment to which the issue applies.
- f. Identify location of system, subsystem, and equipment.
- g. Include information that may be helpful in diagnosing or evaluating the issue.
- h. Note recommended corrective action.
- i. Identify commissioning team member responsible for corrective action.
- j. Identify expected date of correction.
- k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:

- 1. Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
- 2. Commissioning plan.
- 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5. Commissioning Issues Log.
- 6. Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - 2. Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.
 - 4. Updated Commissioning Issues Log, including status of unresolved issues.
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - 1. Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - 4. Commissioning Documents: A preliminary list of commissioningrelated documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
 - 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
 - 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
 - 7. Systems Functional Performance Test Procedures: Preliminary step-by-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.

- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - 1. The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
 - 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.

- B. Within 30 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 60 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the

Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.

- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or - 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or - 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Construction Phase			Commis	nt	L = Lead		
Commissioning Roles & Responsibilities			Contrac sentative Design A Prime Co = Gov't F	P = Participate A = Approve R = Review O = Optional			
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Meetings	Construction Commissioning Kick Off meeting	L	A	Р	Р	0	
	Commissioning Meetings	L	А	Ρ	Р	0	
	Project Progress Meetings	Р	А	Ρ	L	0	
	Controls Meeting	L	А	Р	Ρ	0	

Construction Pl	nase	CxA =	Commis	L = Lead			
Commissioning Roles & Responsibilities			Contrac sentative Design A Prime Cc = Gov't F	P = Participate A = Approve R = Review O = Optional			
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	A	Р	Р	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	А	R	R	0	
Schedules	Duration Schedule for Commissioning Activities	L	A	R	R	N/A	
OPR and BOD	Maintain OPR on behalf of Owner	L	А	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
	TAB Plan Review	L	А	R	R	0	

Construction Phase			Commis	L = Lead			
Commissioning Roles & Responsibilities			Contrac sentative Design / Prime Co = Gov't F	P = Participate A = Approve R = Review O = Optional			
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Document	Submittal and Shop Drawing Review	R	А	R	L	0	
Reviews	Review Contractor Equipment Startup Checklists	L	A	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	А	R	R	N/A	
Site	Witness Factory Testing	Р	A	Р	L	0	
Observations	Construction Observation Site Visits	L	А	R	R	0	
Functional Test	Final Pre-Functional Checklists	L	А	R	R	0	
FIDIOCOIS	Final Functional Performance Test Protocols	L	A	R	R	0	

Construction Phase			Commis	L = Lead			
Commissioning I	ommissioning Roles & ResponsibilitiesCOR= Contracting Officer RepresentativeA/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M			r	P = Participate A = Approve R = Review O = Optional		
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Technical	Issues Resolution Meetings	Р	А	Р	L	0	
Activities							
Reports and	Status Reports	L	А	R	R	0	
Logs	Maintain Commissioning Issues Log	L	А	R	R	0	

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Pha	ase	CxA = Commissioning Agent					L = Lead
Commissioning Roles & Responsibilities			COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M				P = Participate A = Approve R = Review O = Optional
Category	Task Description	СхА	COR	A/E	PC	O&M	Notes
Meetings	Commissioning Meetings	L	А	Ρ	Р	0	
	Project Progress Meetings	Р	А	Ρ	L	0	
	Pre-Test Coordination Meeting	L	А	Ρ	Р	0	
	Lessons Learned and Commissioning Report Review Meeting	L	A	Ρ	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	Р	Р	0	
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	А	R	R	0	

Acceptance Pha	ase	CxA =	Commi	L = Lead			
Commissioning Roles & Responsibilities			= Contra sentativ Design Prime C = Gov't	P = Participate A = Approve R = Review O = Optional			
Category	Task Description	СхА	COR	A/E	Notes		
Schedules	Prepare Functional Test Schedule	L	А	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	А	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	
	Review Operations & Maintenance Manuals	L	А	R	R	R	
	Training Plan Review	L	А	R	R	R	
	Warranty Review	L	А	R	R	0	
	Review TAB Report	L	A	R	R	0	

Acceptance Pha	ase	CxA = Commissioning Agent					L = Lead
Commissioning Roles & Responsibilities			E Contra sentativ Design Prime C E Gov't	P = Participate A = Approve R = Review O = Optional			
Category	Task Description	CxA	COR	O&M	Notes		
Site	Construction Observation Site Visits	L	А	R	R	0	
Observations	Witness Selected Equipment Startup	L	А	R	R	0	
Functional Test	TAB Verification	L	А	R	R	0	
PTOLOCOIS	Systems Functional Performance Testing	L	А	Ρ	Ρ	Р	
	Retesting	L	А	Ρ	Ρ	Р	
Technical	Issues Resolution Meetings	Р	А	Ρ	L	0	
Activities	Systems Training	L	S	R	Р	Р	
	Status Reports	L	A	R	R	0	

Acceptance Phase			Commi	L = Lead			
Commissioning	Roles & Responsibilities	COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M			P = Participate A = Approve R = Review O = Optional		
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Reports and	Maintain Commissioning Issues Log	L	А	R	R	0	
Logs	Final Commissioning Report	L	А	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase			Commi	ent	L = Lead		
Commissioning Roles & Responsibilities			Contra sentativ Design Prime C Gov't	P = Participate A = Approve R = Review O = Optional			
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Meetings	Post-Occupancy User Review Meeting	L	А	0	Р	Р	
Site Observations	Periodic Site Visits	L	A	0	0	Ρ	
Functional Test	Deferred and/or seasonal Testing	L	А	0	Р	Р	
Protocols							
Technical Activities	Issues Resolution Meetings	L	S	0	0	Ρ	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	A		R	Ρ	
	Final Commissioning Report Amendment	L	A		R	R	

Warranty Phase	/arranty Phase CxA = Commissioning Agent			L = Lead			
Commissioning Roles & Responsibilities			Contra Sentativ Design Prime C	P = Participate A = Approve R = Review O = Optional			
		O&M = Gov't Facility O&M					
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Reports and Logs	Status Reports	L	А		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.

- c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.
- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
- 4. Execution of Equipment Startup
 - a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
 - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
 - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
 - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent

will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.

C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.4 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers Critical, Priority, and Maintenance.
 - 1. Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
 - 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.

- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the COR and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the COR. Any pre-test trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the COR, prior to the execution of Systems Functional Performance Testing.
 - Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.
 - 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.

4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

Chilled Water System Trending and Alarms (Each Row has 3 Chillers)								
Point	Туре	Trend Interval	Operational Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Chillers Row 1 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A			
Chillers Row 1 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Ρ	±5°F from SP	10 Min	
Chillers Row 1 Flow	AI	15 Minutes	12 Hours	3 days	N/A			
Chillers Row 1 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A			
Chillers Row1 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A			
Chillers Row 1 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A			

Chilled Water System Trending and Alarms (Each Row has 3 Chillers)								
Point	Туре	Trend Interval	Operational Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Chillers Row 2 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A			
Chiller Row 2 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Ρ	±5°F from SP	10 Min	
Chillers Row 2 Flow	AI	15 Minutes	12 Hours	3 days	N/A			
Chillers Row 2 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A			
Chillers Row 2 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A			
Chillers Row 2 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A			
Primary Loop Decoupler Flow	AI	15 Minutes	12 Hours	3 days	N/A			
Primary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A			
Primary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A			
Primary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Comma nd	30 min	

Chilled Water System Trending and Alarms (Each Row has 3 Chillers)								
Point	Туре	Trend Interval	Operational Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Primary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Comma nd	30 min	
Primary Loop Pump 3 Status	DI	COV	12 Hours	3 days	С	Status <> Comma nd	30 min	
Chillers in Row 1 Status	DI	COV	12 Hours	3 days	С	Status <> Comma nd	30 min	
Chillers in Row 1 Evaporator Iso- Valve	DI	COV	12 Hours	3 days	N/A			
Chillers in Row 1 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A			
Chillers in Row 1 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min	
Chillers in Row 2 Status	DI	COV	12 Hours	3 days	С	Status <> Comma nd	30 min	
Chillers in Row 2 Evaporator Iso- Valve	DI	COV	12 Hours	3 days	N/A			
Chillers in Row 2 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A			

Chilled Water System Trending and Alarms (Each Row has 3 Chillers)								
Point	Туре	Trend Interval	Operational Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Chillers in Row 2 Unit Alarm	DI	cov	12 Hours	3 days	С	True	10 Min	
Emergency Shutdown	DI	cov	12 Hours	3 days	Р	True	1 Min	
Primary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A			
Primary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A			
Primacy Loop Pump 3 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A			
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A			
Chillers in Row 1 Enable	DO	COV	12 Hours	3 days	N/A			
Chillers Row 1 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A			
Chillers in Row 2 Enable	DO	COV	12 Hours	3 days	N/A			

Chilled Water System Trending and Alarms (Each Row has 3 Chillers)								
Point	Туре	Trend Interval	Operational Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay	
Chillers in Row 2 Iso-Valve Command	DO	COV	12 Hours	3 days	N/A			

- E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the COR and Commissioning Agent.
 - 1. Point-to-Point checkout documentation;
 - 2. Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
 - 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM						
Sensor	Calibration Frequency	O&M Calibration Procedure Reference				
Discharge air temperature	Once a year	Volume I Section D.3.aa				
Discharge static pressure	Every 6 months	Volume II Section A.1.c				

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve

temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1							
Control Reference	Proportional Constant	Integral Constant	Derivative Constant	Interval			
Heating Valve Output	1000	20	10	2 sec.			

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warmup, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.
- C. **Development of Systems Functional Performance Test Procedures:** Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the

Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.

- D. Purpose of Test Procedures: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms developed by the Commissioning Agent will include, but not be limited to, the following information:
 - 1. System and equipment or component name(s)
 - 2. Equipment location and ID number
 - Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
 - 4. Date
 - 5. Project name
 - 6. Participating parties
 - 7. A copy of the specification section describing the test requirements
 - 8. A copy of the specific sequence of operations or other specified parameters being verified
 - 9. Formulas used in any calculations
 - 10. Required pretest field measurements
 - 11. Instructions for setting up the test.
 - 12. Special cautions, alarm limits, etc.
 - 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
 - 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
 - 15. A section for comments.
 - 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall

determine which method is most appropriate for tests that do not have a method specified.

- 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
- 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
- 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
- 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.
- K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.

- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - 1. Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
 - 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - The Commissioning Agent will document the item of a. noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
 - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
 - 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - The item of noncompliance shall be documented on the test a. form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.

- b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
- c. The Commissioning Agent will document the resolution process.
- d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - 1. Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
 - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair

work shall proceed with reasonable speed beginning within one week from when parts can be obtained.

E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:

- 1. Review the Contract Documents.
- 2. Review installed systems, subsystems, and equipment.
- 3. Review instructor qualifications.
- 4. Review instructional methods and procedures.
- 5. Review training module outlines and contents.
- 6. Review course materials (including operation and maintenance manuals).
- 7. Review and discuss locations and other facilities required for instruction.
- 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
- 9. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - 2. Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.

- c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
- Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
- e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.
- D. Quality Assurance:
 - 1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
 - Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
 - 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.
- E. Training Coordination:
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
 - 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
 - 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.
- F. Instruction Program:
 - 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part

of a system, as required by individual Specification Sections, and as follows:

- a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.
- b. Intrusion detection systems.
- c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
- d. Medical equipment, including medical gas equipment and piping.
- e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
- f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
- g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
- h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
- i. HVAC instrumentation and controls.
- j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
- k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
- I. Lighting equipment and controls.
- m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.
- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.

- b. Performance and design criteria if Contractor is delegated design responsibility.
- c. Operating standards.
- d. Regulatory requirements.
- e. Equipment function.
- f. Operating characteristics.
- g. Limiting conditions.
- h. Performance curves.
- 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.

- h. Normal shutdown instructions.
- i. Operating procedures for emergencies.
- j. Operating procedures for system, subsystem, or equipment failure.
- k. Seasonal and weekend operating instructions.
- I. Required sequences for electric or electronic systems.
- m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.
- H. Training Execution:

- Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.
- 2. Instruction:
 - a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
 - b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1) The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2) The VA will furnish an instructor to describe VA's operational philosophy.
 - 3) The VA will furnish the Contractor with names and positions of participants.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.
- I. Demonstration and Training Recording:
 - 1. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - 2. Video Format: Provide high quality color DVD color on standard size DVD disks.

- 3. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
- 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

END OF SECTION 01 91 00

SECTION 03 30 53

(SHORT-FORM) CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment pads.
 - 2. Preparation of existing surfaces to receive concrete.
 - 3. Preparation of existing surface to received concrete topping.

1.2 RELATED REQUIREMENTS

A. Materials Testing and Inspection During Construction: Section 01 45 29, TESTING LABORATORY SERVICES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this Section.
- B. American Concrete Institute (ACI):
 - 1. 117-15 Tolerances for Concrete Construction, Materials and Commentary.
 - 2. 117M-10(R2015) Tolerances for Concrete Construction, Materials and Commentary.
 - 3. 211.1-91(R2009) Proportions for Normal, Heavyweight, and Mass Concrete.
 - 4. 211.2-98(R2004) Selecting Proportions for Structural Lightweight Concrete.
 - 5. 301/310M-10 Structural Concrete.
 - 6. 305.1-14 Hot Weather Concreting.
 - 7. 306.1-90(R2002) Cold Weather Concreting.
 - 8. 318/318M-14 Building Code Requirements for Structural Concrete and SP-66-04-ACI Detailing Manual.
 - 9. 347-04 Guide to Formwork for Concrete.
- C. ASTM International(ASTM):
 - 1. A615/A615M-15ae1 Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.
 - 2. A996/A996M-15 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
 - 3. A1064/A1064M-15 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.

- 4. C33/C33M-13 Concrete Aggregates.
- 5. C39/C39M-15a Compressive Strength of Cylindrical Concrete Specimens.
- 6. C94/C94M-15a Ready-Mixed Concrete.
- 7. C143/C143M-15 Slump of Hydraulic Cement Concrete.
- 8. C150/C150M-15 Portland Cement.
- 9. C171-07 Sheet Material for Curing Concrete.
- 10. C192/C192M-15 Making and Curing Concrete Test Specimens in the Laboratory.
- 11. C219-14a Terminology Relating to Hydraulic Cement.
- 12. C260/C260M-10a Air-Entraining Admixtures for Concrete.
- 13. C330/C330M-14 Lightweight Aggregates for Structural Concrete.
- 14. C494/C494M-15 Chemical Admixtures for Concrete.
- 15. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 16. C881/C881M-14 Epoxy-Resin-Base Bonding Systems for Concrete.
- 17. C989/C989M-14 Slag Cement for Use in Concrete and Mortars.
- 18. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 19. D1751-04(2013el) Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types).
- 20. E1155-14 Determining FF Floor Flatness and FL Floor Levelness Numbers.
- 21. E1745-11 Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs.
- D. International Concrete Repair Institute:
 - 310.2R-2013 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Large scale drawings of reinforcing steel.
- C. Manufacturer's Literature and Data:

- 1. Concrete Mix Design.
- 2. Air-entraining admixture, chemical admixtures, and curing compounds.
- 3. Indicate manufacturer's recommendation for each application.
- D. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- E. Certificates: Certify products comply with specifications.
 - a. Each ready mix concrete batch delivered to site.

1.5 DELIVERY

A. Deliver each ready-mixed concrete batch with mix certification in duplicate according to ASTM C94/C94M.

1.6 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

3.1 MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
 - 2. Slag: ASTM C989/C989M; Grade 100.
 - 3. Silica Fume: ASTM C1240.
- C. Coarse Aggregate: ASTM C33/C33M.
 - 1. Size 67 for other applications.
- D. Fine Aggregate: ASTM C33/C33M.
- E. Lightweight Aggregate for Structural Concrete: ASTM C330/C330M, Table
 1.
- F. Mixing Water: Fresh, clean, and potable.
- G. Air-Entraining Admixture: ASTM C260/C260M.
- H. Chemical Admixtures: ASTM C494/C494M.
- I. Vapor Barrier: ASTM E1745, Class A with a minimum puncture resistance of 2200 g (3000 lbs.); minimum 0.38 mm (15 mil) thick.

- J. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M, deformed. See Structural Drawings for grade.
- K. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer, of grade or type suitable to obtain type of finish specified.
 - 1. Plywood: Exterior grade, free of defects and patches on contact surface.
 - 2. Lumber: Sound, grade-marked, S4S stress graded softwood.
 - 3. Form coating: As recommended by Contractor.
- L. Expansion Joint Filler: ASTM D1751.
- M. Sheet Materials for Curing Concrete: ASTM C171.
- N. Abrasive Aggregates: Aluminum oxide grains or emery grits.
- O. Liquid Densifier/Sealer: 100 percent active colorless aqueous siliconate solution.
- P. Grout, Non-Shrinking: Premixed ferrous or non-ferrous. Grout to show no settlement or vertical drying shrinkage at 3 days. Compressive strength for grout, at least 18 MPa (2500 psi) at 3 days and 35 MPa (5000 psi) at 28 days.

3.2 ACCESSORIES

- A. Bonding Agent: ASTM C 1059/C 1059M, Type II.
- B. Structural Adhesive: ASTM C881, 2-component material suitable for use on dry or damp surfaces. Provide material Type, Grade, and Class to suit Project requirements.

3.3 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Compressive strength at 28 days: minimum 25 MPa (3,000 psi).
- C. Submit mix design and results of compression tests to the Contracting Officer for his evaluation. Identify all materials, including admixtures, making-up the concrete.
- D. Maximum Slump for Vibrated Concrete: 100 mm (4 inches) tested according to ASTM C143.
- E. Cement and Water Factor (See Table I):

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE				
Concrete: Strength	Non-Air-Entrained		Air-Entrained	
Min. 28 Day Comp. Str. MPa (psi)	Min. Cement kg/cu. m (Ibs./cu. yd.)	Max. Water Cement Ratio	Min. Cement kg/cu. m (lbs./cu. yd.)	Max. Water Cement Ratio
35 (5000)1,3	375 (630)	0.45	385 (650)	0.40
30 (4000)1,3	325 (550)	0.55	340 (570)	0.50
25 (3000)1,3	280 (470)	0.65	290 (490)	0.55
25 (3000)1,2	300 (500)	*	310 (520)	*

Footnotes:

If trial mixes are used, achieve a compressive strength 8.3 MPa (1 200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve a compressive strength 9.7 MPa (1,400 psi) in excess of f'c.

Lightweight Structural Concrete: Pump mixes may require higher cement values as specified in ACI 318/318M.

For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.

* Laboratory Determined according to ACI 211.1 for normal weight concrete or ACI 211.2 for lightweight structural concrete.

3.4 BATCHING AND MIXING

- A. Store, batch, and mix materials according to ASTM C94/C94M.
 - 1. Job-Mixed: Batch mix concrete in stationary mixers as specified in ASTM C94/C94M.
 - 2. Ready-Mixed Concrete: Comply with ASTM C94/C94M, except use of non-agitating equipment for transporting concrete to Site is not acceptable.
 - 3. When aggregate producer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Installation: Conform to ACI 347. Construct forms to obtain concrete of the shapes, dimensions and profiles indicated, with tight joints.
- B. Design and construct forms to prevent bowing-out of forms between supports and to be removable without prying against or otherwise damaging fresh concrete.
- C. When patching formed concrete, seal form edges against existing surface to prevent leakage; set forms so that patch is flush with adjacent surfaces.
- D. Treating and Wetting: Treat or wet concrete contact surfaces:
 - 1. Coat plywood and lumber forms with non-staining form sealer.
 - 2. Wet wood forms thoroughly when they are not treated with form release agent.
 - 3. Prevent water from accumulating and remaining within forms.
 - 4. Clean and coat removable metal forms with light form oil before reinforcement is placed.
 - 5. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
 - 6. Prevent water from accumulating and remaining within forms.
- E. Inserts, Sleeves, and Similar Items: Install flashing reglets, masonry ties, anchors, inserts, wires, hangers, sleeves, boxes for floor hinges, and other cast-in items specified in other Sections. Place where indicated, square, flush and secured to formwork.
- F. Construction Tolerances General: Install and maintain concrete formwork to assure completion of work within specified tolerances.
- G. Adjust or replace completed work exceeding specified tolerances before placing concrete.

3.2 REINFORCEMENT

- A. Install concrete reinforcement according to ACI 318 and ACI SP-66.
- B. Support and securely tie reinforcing steel to prevent displacement during placing of concrete.
- C. Drilling for Dowels in Existing Concrete: Use sharp bits, drill hole slightly oversize, fill with epoxy grout, inset the dowel, and remove excess epoxy.

3.3 VAPOR BARRIER

A. Except where membrane waterproofing is required, place interior concrete slabs on a continuous vapor barrier.

- B. Lap joints 150 mm (6 inches) and seal with a compatible pressure-sensitive tape.
- C. Patch punctures and tears.

3.4 PLACING CONCRETE

- A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior of forms, and from inside of mixing and conveying equipment. Obtain approval from Contracting Officer's Representative before placing concrete.
- B. Install screeds at required elevations for concrete slabs.
- C. Roughen and clean free from laitance, foreign matter, and loose particles before placing new concrete on existing concrete.
 - 1. Blow-out areas with compressed air and immediately coat contact areas with adhesive in compliance with manufacturer's instructions.
- D. Place structural concrete according to ACI 301 and ACI 318.
- E. Convey concrete from mixer to final place of deposit by method that will prevent segregation or loss of ingredients. Do not deposit, in Work, concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 1500 mm (5 feet) in unexposed work nor more than 900 mm (3 feet) in exposed work.
- F. Place and consolidate concrete in horizontal layers not exceeding 300 mm (12 inches) in thickness. Consolidate concrete by spading, rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Continuously vibrate during placement of concrete.
- G. Hot Weather Concrete Placement: As recommended by ACI 305.1 to prevent adversely affecting properties and serviceability of hardened concrete.
- H. Cold Weather Concrete Placement: As recommended by ACI 306.1, to prevent freezing of thin sections less than 300 mm (12 inches) and to permit concrete to gain strength properly.
 - 1. Do not use calcium chloride without written approval from Contracting Officer's Representative.
 - 2. Paragraph 4.8.3, Class A 3 mm (1/8 inches) for offset in form-work.
 - 3. Table R4.8.4, "Flat" 6 mm (1/4 inch) in 3 m (10 feet) for slabs.

3.5 **PROTECTION AND CURING**

A. Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical damage, and excessive hot or cold temperatures.

- B. Curing Methods: Cure concrete with curing compound using wet method with sheets.
- C. Formed Concrete Curing: Wet the tops and exposed portions of formed concrete and keep moist until forms are removed.
 - 1. If forms are removed before 14 days after concrete is cast, install sheet curing materials as specified above.

3.6 FORM REMOVAL

- A. Maintain forms in place until concrete is self-supporting, with construction operation loads.
- B. Remove fins, laitance and loose material from concrete surfaces when forms are removed. Repair honeycombs, rock pockets, sand runs, spalls, or otherwise damaged surfaces by patching with the same mix as concrete minus the coarse aggregates.
- C. Finish to match adjacent surfaces.

3.7 FINISHES

- A. Vertical and Overhead Surface Finishes:
 - 1. Surfaces Concealed in Completed Construction: As-cast; no additional finishing required.
 - 2. Surfaces Exposed in Unfinished Areas: As-cast; no additional finishing required.
 - a. Mechanical rooms.
 - b. Electrical rooms.

B. Slab Finishes:

- 1. Allow bleed water to evaporate before surface is finished. Do not sprinkle dry cement on surface to absorb water.
- 2. Scratch Finish: Rake or wire broom after partial setting slab surfaces to received bonded applied cementitious application, within 2 hours after placing, to roughen surface and provide permanent bond between base slab and applied cementitious materials.
- 3. Steel Trowel Finish: Applied toppings, concrete surfaces to receive resilient floor covering or carpet, future floor roof and other monolithic concrete floor slabs exposed to view without other finish indicated or specified.
 - Delay final steel troweling to secure smooth, dense surface, usually when surface can no longer be dented by fingers. During final troweling, tilt steel trowel at slight angle and exert heavy pressure on trowel to compact cement paste and form dense, smooth surface.

b. Finished surface: Free from trowel marks. Uniform in texture and appearance.

END OF SECTION 02 30 53

SECTION 05 12 00 STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 **DESCRIPTION**:

A. This section specifies structural steel shown and classified by Section 2, Code of Standard Practice for Steel Buildings and Bridges.

1.2 RELATED WORK:

A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.

1.3 QUALITY ASSURANCE:

- A. Fabricator and erector shall maintain a program of quality assurance in conformance with Section 8, Code of Standard Practice for Steel Buildings and Bridges. Work shall be fabricated in an AISC certified Category Std fabrication plant.
- B. Before authorizing the commencement of steel erection, the controlling contractor shall ensure that the steel erector is provided with the written notification required by 29 CFR 1926.752. Provide copy of this notification to the COR.

1.4 TOLERANCES:

A. Fabrication tolerances for structural steel shall be held within limits established by ASTM A6, by AISC 303, Sections 6 and 7, Code of Standard Practice for Buildings and Bridges, except as follows:

1.5 DESIGN:

A. Connections: Design and detail all connections for each member size, steel grade and connection type to resist the loads and reactions indicated on the drawings or specified herein. Use details consistent with the details shown on the Drawings, supplementing where necessary. The details shown on the Drawings are conceptual and do not indicate the required weld sizes or number of bolts unless specifically noted. Use rational engineering design and standard practice in detailing, accounting for all loads and eccentricities in both the connection and the members. Promptly notify the COR of any location where the connection design criteria is not clearly indicated. The design of all connections is subject to the review and acceptance of the COR. Submit structural calculations prepared and sealed by a qualified engineer registered in the state where

the project is located. Submit calculations for review before preparation of detail drawings.

1.6 REGULATORY REQUIREMENTS:

AISC 360: Specification for Structural Steel Buildings

AISC 303: Code of Standard Practice for Steel Buildings and Bridges.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop and Erection Drawings: Complete
- C. Certificates:
 - 1. Structural steel.
 - 2. Steel for all connections.
 - 3. Welding materials.
 - 4. Shop coat primer paint.
- D. Test Reports:
 - 1. Welders' qualifying tests.
- E. Design Calculations and Drawings:
 - 1. Connection calculations, if required.
- F. Record Surveys.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Institute of Steel Construction (AISC):
 - 1. AISC 360-10 Specification for Structural Steel Buildings
 - 2. AISC 303-10 Code of Standard Practice for Steel Buildings and Bridges

C. American National Standards Institute (ANSI):

B18.22.1-65(R2008)	Plain Washers
B18.22M-81(R2000)	Metric Plain Washers

D. American Society for Testing and Materials (ASTM):

A6/A6M-11.....Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling

A36/A36M-08.....Standard Specification for Carbon Structural Steel

A53/A53M-10.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless

A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

A242/A242M-04(R2009).....Standard Specification for High-Strength Low-Alloy Structural Steel

A283/A283M-03(R2007)..... Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates

A307-10Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength

A325-10Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

A490-12Standard Specification for Heat-Treated Steel Structural Bolts 150 ksi Minimum Tensile Strength

A500/A500M-10a....Standard Specification for Cold Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

A501-07Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing

A572/A572M-07.....Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel

A992/A992M-11.....Standard Specification for Structural Steel Shapes

E. American Welding Society (AWS):

D1.1/D1.1M-10Structural Welding Code-Steel

- F. Research Council on Structural Connections (RCSC) of The Engineering Foundation:
- G. Specification for Structural Joints Using ASTM A325 or A490 Bolts
- H. Military Specifications (Mil. Spec.):

MIL-P-21035......Paint, High Zinc Dust Content, Galvanizing, Repair

I. Occupational Safety and Health Administration (OSHA):

29 CFR Part 1926-2001 Safety Standards for Steel Erection

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Structural Steel Angles and Channels: ASTM A36.
- B. Structural Steel W Shapes: ASTM A992.
- C. Structural Steel Plates and Bars: ASTM A36 or A572 Grade 50.
- D. Structural Tubing: ASTM A500, Grade B.
- E. Steel Pipe: ASTM A53, Grade B.
- F. Bolts, Nuts and Washers:
 - 1. High-strength bolts, including nuts and washers: ASTM A490.
 - 2. Bolts and nuts, other than high-strength: ASTM A307, Grade A.
 - 3. Plain washers, other than those in contact with high-strength bolt heads and nuts: ANSI Standard B18.22.1.
- G. Threaded Rod and Nuts: ASTM A36.
- H. Zinc Coating: ASTM A123.
- I. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035.

PART 3 - EXECUTION

3.1 CONNECTIONS (SHOP AND FIELD):

- A. Welding: Welding in accordance with AWS D1.1. Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.1 to perform type of work required.
- B. High-Strength Bolts: High-strength bolts tightened to a bolt tension not less than 70% of their minimum tensile strength. Tightening done with properly calibrated wrenches, by turn-of-nut method or by use of direct tension indicators (bolts or washers). Tighten bolts in connections identified as slip-critical using Direct Tension Indicators. Twist-off torque bolts are not an acceptable alternate fastener for slip critical connections.

3.2 FABRICATION:

A. Fabrication in accordance with Chapter M, AISC 360. .

3.3 SHOP PAINTING:

- A. General: Shop paint steel with primer in accordance with AISC 303, Section 6.
- B. Shop paint for steel surfaces is specified in Section 09 91 00, PAINTING.
- C. Do not apply paint to following:
 - 1. Surfaces within 50 mm (2 inches) of joints to be welded in field.
 - 2. Surfaces which will be encased in concrete.
 - 3. Surfaces which will receive sprayed on fireproofing.
 - 4. Top flange of members which will have shear connector studs applied.
- D. Structural steel in the interstitial space that does not receive sprayed on fireproofing shall be painted with primer in accordance with general requirement of shop painting.
- E. Zinc Coated (Hot Dip Galvanized) per ASTM A123 (after fabrication): Touch-up after erection: Clean and wire brush any abraded and other spots worn through zinc coating, including threaded portions of bolts and welds and touch-up with galvanizing repair paint.

3.4 ERECTION:

A. General: Erection in accordance with AISC 303, Section 7B. Temporary Supports: Temporary support of structural steel frames during erection in accordance with AISC 303, Section 7

3.5 FIELD PAINTING:

- A. After erection, touch-up steel surfaces specified to be shop painted. After welding is completed, clean and prime areas not painted due to field welding.
- B. Finish painting of steel surfaces is specified in Section 09 91 00, PAINTING.

3.6 SURVEY:

A. Upon completion of finish bolting or welding on any part of the work, and prior to start of work by other trades that may be supported, attached, or applied to the structural steel work, submit a certified report of survey to COR for approval. Reports shall be prepared by Registered Land Surveyor or Registered Civil Engineer as specified in Section 01 00 00, GENERAL REQUIREMENTS. Report shall specify that location of structural steel is acceptable for plumbness, level and alignment within specified tolerances specified in the AISC Manual.

END OF SECTION 05 12 00

SECTION 07 01 50.19

PREPARATION FOR RE-ROOFING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Partial roof removal for new roof system installation.
- B. Existing Roofing System: TPO. System components include:
 - 1. Pavers and paver supports.
 - 2. Aggregate ballast.
 - 3. Roof insulation and drainage board.
 - 4. Roofing membrane.
 - 5. Cover board.
 - 6. Roof insulation.
 - 7. Vapor retarder.
 - 8. Substrate board.

1.2 RELATED REQUIREMENTS

- A. New Roofing System: Section 07 54 23, THERMOPLASTIC POLYOLEFIN (TPO) ROOFING.
- B. Sheet Metal Counterflashing: Section 07 60 00, SHEET METAL FLASHING AND TRIM.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Single-Ply Roofing Institute (ANSI/SPRI):
 - 1. FX-1-01(R2006) Standard Field Test Procedure for Determining the Withdrawal Resistance of Roofing Fasteners.
- C. American Society for Nondestructive Testing (ASNT):
 - 1. SNT-TC-1A Personnel Qualification and Certification for Nondestructive Testing.
- D. ASTM International (ASTM):
 - 1. C208-12 Cellulosic Fiber Insulating Board.
 - 2. C578-15 Rigid, Cellular Polystyrene Thermal Insulation.
 - 3. C728-15 Perlite Thermal Insulation Board.

- 4. C1177/C1177M-13 Glass Mat Gypsum Substrate for Use as Sheathing.
- 5. C1153-97(2003)e1 Location of Wet Insulation in Roofing Systems Using Infrared Imaging.
- 6. C1278/C1278M-07a(2015) Fiber-Reinforced Gypsum Panel.
- 7. D4263-83(2012) Indicating Moisture in Concrete by the Plastic Sheet Method.
- E. U.S. Department of Commerce National Institute of Standards and Technology (NIST):
 - 1. DOC PS 1-09 Structural Plywood.
 - 2. DOC PS 2-04 Performance Standard for Wood-Based Structural-Use Panels.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting minimum 30 days before beginning Work of this section.
- B. Required Participants:
 - 1. Contracting Officer's Representative.
 - 2. Architect/Engineer.
 - 3. Inspection and Testing Agency.
 - 4. Contractor.
 - 5. Installer.
 - 6. Manufacturer's field representative.
 - 7. Other installers responsible for adjacent and intersecting work, including mechanical and electrical equipment installers.
- C. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - 1. Removal and installation schedule.
 - 2. Removal and installation sequence.
 - 3. Preparatory work.
 - 4. Protection before, during, and after installation.
 - 5. Removal and installation.
 - 6. Temporary roofing including daily terminations.
 - 7. Transitions and connections to other work.
 - 8. Inspecting and testing.
 - 9. Other items affecting successful completion.

D. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Description of temporary roof system and components.
 - 3. List of patching materials.
 - 4. Recover board fastening requirements.
 - 5. Temporary roofing installation instructions and removal instructions. Preparation instructions to receive new roofing.
 - 6. Existing roofing warrantor's instructions.
- D. Photographs: Document existing conditions potentially affected by roofing operations before work begins.
- E. Field Inspection Reports:
 - 1. Certify warrantor inspected completed roofing and existing warranty remains in effect.
- F. Infrared Roof Moisture Survey Report.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Same installer as Section 07 54 23, THERMOPLASTIC POLYOLEFIN (TPO) ROOFING.
 - 2. Approved by existing roofing system warrantor when work affects existing roofing system under warranty.

1.7 FIELD CONDITIONS

- A. Building Occupancy: Perform work to minimize disruption to normal building operations.
 - 1. Verify occupants are evacuated from affected building areas when working on structurally impaired roof decking above occupied areas.
 - 2. Provide notice minimum 72 hours before beginning activities affecting normal building operations.
- B. Existing Roofing Available Information:

- 1. The following are available for Contractor reference:
 - a. Construction drawings and project manual.
- 2. Examine available information before beginning work of this section.
- C. Weather Limitations: Proceed with reroofing preparation only during dry weather conditions as specified for new roofing installation in Section 07 54 23, THERMOPLASTIC POLYOLEFIN (TPO) ROOFING.
 - 1. Remove only as much roofing in one day as can be made watertight in same day.
- D. Hazardous materials are not expected in existing roofing system.
 - 1. Do not disturb suspected hazardous materials. When discovered, notify Contracting Officer's Representative.
 - 2. Hazardous materials discovered during execution of the work will be removed by Government as work of a separate contract.

1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Existing Warranties: Perform work to maintain existing roofing warranty in effect.
 - 1. Notify warrantor before beginning, and upon completion of reroofing.
 - 2. Obtain warrantor's instructions for maintaining existing warranty.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Patching Materials: Match existing roofing system materials.
- B. Metal Flashing: See Section 07 60 00, SHEET METAL FLASHING AND TRIM.
- C. Temporary Protection Materials:
 - 1. Expanded Polystyrene (EPS) Insulation: ASTM C578.
 - 1) Temporary Roofing System Materials: Contractor's option.
 - 2) Recover Board: One of the following:
 - a) Insulation: See Section 07 22 00, ROOF AND DECK INSULATION.
 - b) Fiber Board: ASTM C208, Type II, fiber board; 13 mm (1/2 inch) thick, and/or.

- c) Glass Mat Gypsum Board: ASTM C1177/C1177M, water-resistant; 6 mm (1/4 inch), 13 mm (1/2 inch) Type X, 16 mm (5/8 inch) thick, and/or.
- d) Fiber Reinforced Gypsum Board: ASTM C1278/C1278M, water-resistant; 6 mm (1/4 inch), 10 mm (3/8 inch)
 13 mm (1/2 inch), 16 mm (5/8 inch) thick, and/or.
- e) Perlite: ASTM C728; 3 mm (1/2 inch), 19 mm (3/4 inch) 25 mm (1 inch) thick, and/or
- 3) Fasteners: Type and size required by roof membrane manufacturer to resist wind uplift.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Infrared Roof Moisture Survey: Ground-based, walk-over type performed according to ASTM C1153.
 - 1. Record the entire survey on DVD and provide one copy to Contracting Officer's Representative with report.
 - 2. Include in report thermograms of suspect areas and corresponding daytime photos of same locations.
 - 3. Conduct inspection by NDT test technician certified to at least Level 2 in Thermal/Infrared test method according to ASNT SNT-TC-1A.
 - 4. Mark out roof areas determined to be wet to indicate minimum areas to be removed.

3.2 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing roofing system indicated to remain.
 - 1. Cover roof membrane with temporary protection materials without impeding drainage.
 - 2. Limit traffic and material storage to protected areas.
 - 3. Maintain temporary protection until replacement roofing is completed.
- C. Protect existing construction and completed work from damage.
- D. Maintain access to existing walkways and adjacent occupied facilities.
- E. Coordinate use of rooftop fresh air intakes with Contracting Officer's Representative to minimize effect on indoor air quality.
- F. Ensure temporary protection materials are available for immediate use in case of unexpected rain.
- G. Ensure roof drainage remains functional.

- 1. Keep drainage systems clear of debris.
- 2. Prevent water from entering building and existing roofing system.
- H. Coordinate rooftop utilities remaining active during roofing work with Contacting Officer's Representative.

3.3 RE-ROOFING PREPARATION - GENERAL

- A. Notify Contacting Officer's Representative of planned operations, daily.
 - 1. Identify location and extent of roofing removal.
 - 2. Request authorization to proceed.

3.4 OVERBURDEN REMOVAL

- A. Remove pavers and paver support.
 - 1. Store undamaged pavers and paver supports for reuse.
 - 2. Dispose of damaged pavers.
- B. Remove insulation and drainage board from protected roofing membrane.
 - 1. Store insulation and drainage board for reuse.

3.5 PARTIAL ROOFING SYSTEM REMOVAL

- A. Remove existing roofing completely, exposing structural roof deck at locations and to extent indicated on drawings.
 - 1. Remove cover board, roof insulation, vapor retarder, and substrate board.
 - 2. Remove or cut-off roofing system fasteners.

3.6 ROOFING MEMBRANE AND SELECTIVE ROOFING SYSTEM COMPONENT REMOVAL

- A. Remove existing roofing membrane, only, in locations and to extent indicated on drawings.
- B. Visually inspect cover board, roof insulation, vapor retarder, and substrate board for moisture immediately after roof membrane removal.
 - 1. Coordinate with Contracting Officer's Representative to observe inspections.
 - 2. Identify wet roofing system components required to be removed.
 - 3. Mark roofing system removal locations and extents.
- C. Remove wet roofing system components.
 - 1. Remove or cut-off roofing system fasteners when removals expose structural roof deck.
- D. Patch selective roofing system removals immediately after inspection and repair.

- E. Install patching materials to match existing roofing system.
- F. Patch roofing membrane to maintain building watertight, unless new roofing membrane is installed same day as removal and repair.

3.7 DECK PREPARATION

- A. Inspect structural roof deck after roofing system removal.
- B. Concrete Roof Decks:
 - 1. Visually confirm concrete roof deck is dry.
 - 2. Perform moisture test according to ASTM D4263 each day for each separate roof area.
 - a. Proceed with roofing work only when moisture is not observed.

3.8 TEMPORARY ROOFING

- A. Install temporary roofing to maintain building watertight.
- B. Remove temporary roofing before installing new roofing.
- C. Prepare temporary roofing to receive new roofing.

3.9 EXISTING MEMBRANE PREPARATION FOR NEW ROOFING

- A. Remove existing roofing surface projections and irregularities. Produce smooth surface to receive recover boards.
 - 1. Broom clean existing surface.

3.10 BASE FLASHING REMOVAL

- A. Expose base flashings to permit removal.
 - 1. Two-Piece Counterflashings: Remove cap flashing and store for reuse.
 - 2. Single Piece Counterflashings: Carefully bend counterflashing.
 - 3. Metal Copings: Remove decorative cap and store for reuse.
- B. Remove existing base flashings.
 - 1. Clean substrates to receive new flashings.
- C. Replace counterflashings damaged during removal.
 - 1. Counterflashings: See Section 07 60 00 SHEET METAL FLASHING AND TRIM.

3.11 RECOVER BOARD INSTALLATION

- A. Install recover boards over existing roof insulation roofing membrane with butted joints. Stagger end joints in adjacent rows.
- B. Fasten recover boards to resist wind-uplift.

- 1. Fastening Requirements: See Section 07 54 23, THERMOPLASTIC POLYOLEFIN (TPO) ROOFING
- 2. Uplift Resistance: Base on pull out resistance determined by specified field testing.

3.12 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
 - 1. Fastener Pull Out Tests: ANSI/SPRI FX-1.
- B. Existing Roofing System Warrantor Services:
 - 1. Inspect reroofing preparation and roofing installation to verify compliance with existing warranty conditions.
 - 2. Submit reports of field inspections, and supplemental instructions issued during inspections.

3.13 DISPOSAL

- A. Collect waste materials in containers.
- B. Remove waste materials from project site, regularly, to prevent accumulation.
- C. Legally dispose of waste materials.

END OF SECTION 07 01 50 19

SECTION 07 14 21 LATEX MASTIC DECK COVERING

PART 1 - GENERAL

1.1 **DESCRIPTION**:

A. This section specifies latex mastic covering for waterproofing deck surfacing.

1.2 RELATED WORK:

A. Color of deck covering: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 QUALITY ASSURANCE:

- A. Manufacturer's Qualifications: Latex mastic deck covering manufacturer to have a minimum of five (5) years' experience in manufacturing latex mastic deck covering products specified herein. Obtain products from single manufacturer or from sources recommended by manufacturer for use with latex mastic deck covering and incorporated in manufacturer's warranty. Submit manufacturer's qualifications.
- B. Installers Qualifications: Work is to be performed by installer having three
 (3) years' experience for work relating to this section and approved in writing by latex mastic deck covering manufacturer. Submit installer qualifications.

C. APPLICABLE PUBLICATIONS:

- D. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- E. ASTM International (ASTM):

D412-06a (R2013)..Vulcanized Rubber and Thermoplastic Elastomers-Tension

D570-98(R2010) e1 Water Absorption of Plastics

D903-98(R2010).....Peel or Stripping Strength of Adhesive Bonds

D2240-05(R2010)...Rubber Property-Durometer Hardness

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples: 152 mm (6 inch) square, each color.
- C. Manufacturer's Literature and Data:
 - 1. Latex mastic deck covering.

- 2. Installation instructions.
- 3. Primer.
- D. Certificates:
 - 1. Compliance of material with specification requirements.
 - 2. Manufacturer's qualifications as specified.
 - 3. Installer's qualifications as specified.
- E. Manufacturer warranty.

1.5 DELIVERY:

A. Deliver materials to job site in original sealed containers identified with manufacturer's name and brand.

1.6 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. B. Manufacturer Warranty: Manufacturer shall warranty their latex mastic deck covering for a minimum of five (5) years starting from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

PART 2 - PRODUCTS

2.1 LATEX MASTIC DECK COVERING:

A. Product to be a trowel applied elastomeric material meeting all performance requirements specified and designed primarily for waterproofing deck surfacing.

2.2 PRIMER:

A. As recommended by the Latex Mastic Covering manufacturer.

2.3 **PERFORMANCE REQUIREMENTS:**

- A. Tensile Strength: ASTM D412: Not less than 7240 KPa (1050 psi).
- B. Water Transmission: ASTM D570: None when subjected to a water pressure of 345 KPa (50 psi) for a period of one (1) hour.
- C. Hardness: ASTM D2240: 60-70 Shore "A".
- D. Adhesive Strength: ASTM D903: Not less than 1035 kPa (150 psi).
- E. Weight: 1.8 kg per sq. m (0.45 lbs. per sq. ft.).
- F. Elongation: ASTM D412: 500 percent (of original benchmark distance).
- G. The topcoat to be of the specified color in Section 09 06 00, SCHEDULE FOR FINISHES.
PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS:

A. Apply deck covering coating as per the manufacturer's written instructions.

3.2 INSTALLATION:

- A. Prepare surface by removing dirt or other foreign matter including any concrete curing agents.
- B. Apply primer by roller.
- C. Apply basecoat and pigmented topcoat as per manufacturer's instructions. Turn up the material against walls to form an integral waterproof membrane.
- D. Provide finish of two coats for a total minimum thickness not less than 2 mm (1/16 inch).

END OF SECTION 07 14 21

SECTION 07 22 00

ROOF AND DECK INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
- B. Roof and deck insulation replacement of existing components, substrate board, vapor retarder, and cover board on existing concrete substrates ready to receive roofing or waterproofing membrane.
- C. Repairs and alteration work to existing roof insulation.

1.2 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Society of Heating, Refrigeration and Air Conditioning (ASHRAE):
 - 1. Standard 90.1-13 Energy Standard for Buildings Except Low-Rise Residential Buildings.
- C. ASTM International (ASTM):
 - 1. C208-12 Cellulosic Fiber Insulating Board.
 - 2. C552-15 Cellular Glass Thermal Insulation.
 - 3. C726-05 Mineral Fiber Roof Insulation Board.
 - 4. C728-15 Perlite Thermal Insulation Board.
 - C1177/C1177M-13 Glass Mat Gypsum Substrate for Use as Sheathing.
 - 6. C1278/C1278M-07a(2015) Fiber-Reinforced Gypsum Panel.
 - C1289-15 Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board.
 - 8. C1396/C1396M-14a Gypsum Board.
 - D41/D41M-11 Asphalt Primer Used in Roofing, Dampproofing, and Waterproofing.
 - 10. D312-06 Asphalt Used in Roofing.
 - D1970/D1970M-15 Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection.

- D2178/D2178M-15 Asphalt Glass Felt Used in Roofing and Waterproofing.
- 13. D2822/D2822M-11 Asphalt Roof Cement, Asbestos Containing.
- D4586/D4586M-07(2012)e1 Asphalt Roof Cement, Asbestos-Free.
- 15. E84-15a Surface Burning Characteristics of Building Materials.
- 16. F1667-15 Driven Fasteners: Nails, Spikes, and Staples.
- D. National Roofing Contractors Association (NRCA):
 - 1. Manual-15 The NRCA Roofing Manual: Membrane Roof Systems.
- E. U.S. Department of Agriculture (USDA):
 - 1. USDA BioPreferred Program Catalog.
- F. UL LLC (UL):
 - 1. Listed Online Certifications Directory.
- G. U.S. Department of Commerce National Institute of Standards and Technology (NIST):
 - 1. DOC PS 1-09 Structural Plywood.
 - 2. DOC PS 2-04 Performance Standard for Wood-Based Structural-Use Panels.

1.3 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and installation details.
 - a. Nailers, cants, and terminations.
 - b. Layout of insulation showing slopes, tapers, penetrations, and edge conditions.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
- D. Samples:
 - 1. Roof insulation, each type.
 - 2. Fasteners, each type.
- E. Qualifications: Substantiate qualifications meet specifications.

1. Installer.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Same installer as Division 07 roofing section installer.

1.5 DELIVERY

- A. Comply with recommendations of NRCA Manual.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
- D. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Comply with recommendations of NRCA Manual.
- B. Store products indoors in dry, weathertight facility.
- C. Protect products from damage during handling and construction operations.

1.7 FIELD CONDITIONS

- A. Environment:
 - 1. Install products when existing and forecasted weather permit installation according to manufacturer's instructions.

1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant substrate board, vapor retarder, insulation, and cover board against material and manufacturing defects as part of Division 07 roofing system warranty.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Insulation Thermal Performance:
 - 1. Overall Average R-Value: RSI-57 (R-33), minimum.
 - 2. Any Location R-Value: RSI-17 (R-10), minimum.
- B. Fire and Wind Uplift Resistance: Provide roof insulation complying with requirements specified in Division 07 roofing section.
- C. Insulation on Concrete Decking: UL labeled indicating compliance with one of the following:

- 1. UL Listed.
- Insulation Surface Burning Characteristics: When tested according to ASTM E84.
 - a. Flame Spread Rating: 75 maximum.
 - b. Smoke Developed Rating: 150 maximum.

2.2 PRODUCTS - GENERAL

A. Provide each product from one manufacturer.

2.3 ADHESIVES

- A. Primer: ASTM D41/D41M.
- B. Asphalt: ASTM D312, Type III or IV for vapor retarders and insulation.
- C. Modified Asphaltic Insulation Adhesive: Insulation manufacturer's recommended modified asphaltic, asbestos-free, cold-applied adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- D. Bead-Applied Urethane Insulation Adhesive: Insulation manufacturer's recommended bead-applied, low-rise, one- or multicomponent urethane adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- E. Full-Spread Applied Urethane Insulation Adhesive: Insulation manufacturer's recommended spray-applied, low-rise, two-component urethane adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- F. Roof Cement: Asbestos free, ASTM D2822/D2822M, Type I or Type II; or, ASTM D4586/D4586M, Type I or Type II.

2.4 ROOF AND DECK INSULATION

- A. Roof and Deck Insulation, General: Preformed roof insulation boards approved by roofing manufacturer.
- B. Cellular Glass Board Insulation: ASTM C552, Type IV, kraft-paper sheet faced.
- C. Perlite Board Insulation: ASTM C728, expanded perlite particles, selected binders, and cellulosic fibers with surface treated to reduce bitumen absorption.
- D. Tapered Roof Insulation System:
 - 1. Fabricate of mineral fiberboard, polyisocyanurate, perlite board, or cellular glass. Use only one insulation material for tapered sections. Use only factory-tapered insulation.

- 2. Cut to provide high and low points with crickets and slopes as shown.
- 3. Minimum thickness of tapered sections; 38 mm (1-1/2 inch).
- 4. Minimum slope 1/48 (1/4 inch per 12 inches).

2.5 INSULATION ACCESSORIES

- A. Glass (Felt): ASTM D2178/D2178M, Type VI, heavy duty ply sheet.
- B. Cants and Tapered Edge Strips:
 - 1. Insulation Cant Strips: ASTM C208, Type II, Grade 1, cellulosic-fiber insulation board.
 - 2. Tapered Edge Strips: 1/12 (1 inch per 12 inches), from 0 mm (0 inches), 300 mm to 450 mm (12 inches to 18 inches) wide.
 - a. Cellulosic Fiberboard: ASTM C208.
 - b. Mineral Fiberboard: ASTM C726.
 - c. Perlite Board: ASTM C728.
- C. Vapor Retarder:
 - 1. Glass-Fiber Felts: ASTM D2178/D2178M, Type IV, asphalt impregnated.
 - Self-Adhering Sheet Vapor Retarder: ASTM D1970/D1970M, minimum 1.0 mm (40 mils) thick membrane of HDPE film fully coated with asphalt adhesive, or 0.76 to 1.0 mm (30 to 40 mils) thick membrane of butyl rubber based adhesive backed by a layer of high density cross-laminated polyethylene; maximum permeance rating of 6 ng/Pa/s/sq. m (0.1 perms).
- D. Substrate Board: Match Existing
 - Gypsum Board: ASTM C1396/C1396M, 16 mm (5/8 inch) thick, Type X.
 - Glass-Mat, Water-Resistant Gypsum Roof Board: ASTM C1177/C1177M, 13 mm (1/2 inch) Type X, 16 mm (5/8 inch) thick, factory primed.
 - Cellulosic-Fiber-Reinforced, Water-Resistant Gypsum Roof Board: ASTM C1278/C1278M, 6 mm (1/4 inch) 10 mm (3/8 inch) 13 mm (1/2 inch) 16 mm (5/8 inch) thick.
 - Perlite Board Insulation: ASTM C728, 19 mm (3/4 inch) 25 mm (1 inch).

E. Cover Board:

- Glass-Mat, Water-Resistant Gypsum Roof Board: ASTM C1177/C1177M, 6 mm (1/4 inch) 13 mm (1/2 inch) 16 mm (5/8 inch) thick, factory primed.
- Cellulosic-Fiber-Reinforced, Water-Resistant Gypsum Roof Board: ASTM C1278/C1278M, 6 mm (1/4 inch) 10 mm (3/8 inch) 13 mm (1/2 inch) 16 mm (5/8 inch) thick.
- 3. Cellulosic-Fiber Insulation Board: ASTM C208, Type II, Grade 2, 13 mm (1/2 inch) thick.
- 4. Oriented Strand Board: DOC PS 2, Exposure 1, 11 mm (7/16 inch) thick.

2.6 ACCESSORIES

- A. Fasteners: Corrosion-resistant carbon steel fasteners and galvalume-coated steel or plastic round plates for fastening substrate board and insulation to roof deck.
- B. Nails: ASTM F1667; type to suit application.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Comply with requirements of Division 07 roofing section.

3.2 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.

3.3 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
 - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Comply with requirements of UL for insulated steel roof deck.
- C. Attach substrate board and other products to meet requirements of Division 07 roofing section.

3.4 SUBSTRATE BOARD INSTALLATION

- A. Fasten substrate board to top flanges of steel decking to resist uplift pressures according requirements for specified roofing system.
 - 1. Locate the long dimension edge joints solidly bearing on top of decking ribs.

3.5 VAPOR RETARDER INSTALLATION

- A. Vapor Retarder Installation, General:
 - 1. Install continuous vapor retarder on roof decks where indicated.
 - 2. At vertical surfaces, turn up vapor retarder to top of insulation or base flashing.
 - 3. Seal penetrations through vapor retarder with roof cement to prevent moisture entry from below.

3.6 INSULATION INSTALLATION

- A. Insulation Installation, General:
 - 1. Base Sheet: Where required by roofing system, install one lapped base sheet specified in Division 07 roofing section by mechanically fastening to roofing substrate before installation of insulation.
 - 2. Cant Strips: Install preformed insulation cant strips wood cant strips specified in Section 06 10 00 ROUGH CARPENTRY at junctures of roofing system with vertical construction.
 - 3. Use same insulation as existing for roof repair and alterations unless specified otherwise.
- B. Insulation Thickness:
 - 1. Thickness of roof insulation shown on drawings is nominal. Provide thickness required to comply with specified thermal performance.
 - 2. When actual insulation thickness differs from drawings, coordinate alignment and location of roof drains, flashing, gravel stops, fascias and similar items.
 - 3. Where tapered insulation is used, maintain insulation thickness at high points and roof edges shown on drawings.
 - a. Low Point Thickness: Minimum 38 mm (1-1/2 inches).
 - 4. Use minimum two layers of insulation when required thickness is 68 mm (2.7 inch) or greater.
- C. Lay insulating units with close joints, in regular courses and with end joints staggered.
 - 1. Stagger joints between layers minimum 150 mm (6 inches).
- D. Lay units with long dimension perpendicular to the rolled (longitudinal) direction of the roofing felt.
- E. Seal cut edges at penetrations and at edges against blocking with bitumen or roof cement.
- F. Cut to fit tightly against blocking or penetrations.

- G. Cover all insulation installed on the same day; comply with temporary protection requirements of Division 07 roofing section.
- H. Installation Method:
 - 1. Adhered Insulation:
 - a. Prime substrate as required.
 - b. Set each layer of insulation firmly in solid mopping of hot asphalt.
 - c. Set each layer of insulation firmly in ribbons of bead-applied insulation adhesive.
 - d. Set each layer of insulation firmly in uniform application of full-spread insulation adhesive.
 - 2. Mechanically Fastened Insulation:
 - a. Fasten insulation according to requirements in Division 07 roofing section.
 - b. Fasten insulation to resist uplift pressures specified in Division 07 roofing section.
 - 3. Mechanically Fastened and Adhered Insulation:
 - a. Fasten first layer of insulation according to "Mechanically Fastened Insulation" requirements.
 - b. Fasten each subsequent layer of insulation according to "Adhered Insulation" requirements.

3.7 COVER BOARD INSTALLATION

- A. Install cover boards over insulation with long joints in continuous straight lines with staggered end joints.
- B. Offset cover board joints from insulation joints 150 mm (6 inches), minimum.
- C. Secure cover boards according to "Adhered Insulation" requirements.

END OF SECTION 07 22 00

SECTION 07 54 23 THERMOPLASTIC POLYOLEFIN (TPO) ROOFING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Thermoplastic Polyolefin (TPO) sheet roofing adhered to roof deck insulation.

1.2 RELATED WORK

- A. Section 05 50 00: METAL FABRICATION.
- B. Section 07 22 00: ROOF AND DECK INSULATION.
- C. Section 07 60 00: FLASHING AND SHEET METAL.
- D. Section 07 84 00: FIRESTOPPING

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. American National Standards Institute/Single-Ply Roofing Institute (ANSI/SPRI):

ANSI/SPRI ES-1-03 Wind Design Standard for Edge Systems Used with Low Slope Roofing Systems.

C. American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI):

ASCE/SEI-7-10......Minimum Design Loads for Buildings and Other Structures

D. ASTM International (ASTM): C67-09.....Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile C140-09.....Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units

C1371-04Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers C1549-04.....Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer D4263Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method D4434-06Standard Specification for Poly (Vinyl Chloride) Sheet Roofing D6878-08.....Standard Specification for Thermoplastic Polyolefin Based Sheet Roofing E108-10Standard Test Methods for Fire Tests of Roof Coverings E408-71(R2008)Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques E1918-06Standard Test Method for Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field E1980-01Standard Test Method for Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) ASHRAE 90.1-2007 Energy Standard for Buildings Except Low-Rise Residential Buildings, Appendix f. Cool Roof Rating Council: CRRC-1Product Rating Program, www.coolroofs.org FM Approvals: RoofNav Approved Roofing Assemblies and Products. 4450-89......Approved Standard for Class 1 Insulated Steel Deck Roofs

4470-10.....Approved Standard for Class 1 Roof Coverings 1-28-09Loss Prevention Data Sheet: Design Wind Loads.

Ε.

F.

G.

1-29-09Loss Prevention Data Sheet: Above-Deck Roof Components

1-49-09Loss Prevention Data Sheet: Perimeter Flashing

- H. National Roofing Contractors Association: Roofing and Waterproofing Manual
- I. U.S. Department of Agriculture (USDA): USDA BioPreferred Catalog, <u>www.biopreferred.gov</u>
- J. U.S. Department of Energy (DoE): Roof Products Qualified Product List, <u>www.energystar.gov</u>

1.4 PERFORMANCE REQUIREMENTS

- A. Material Compatibility: Provide roofing materials that are compatible with one another under conditions of service and application required, as demonstrated by membrane roofing manufacturer based on testing and field experience.
- B. Roofing System Energy Performance Requirements: Provide a roofing system identical to components that that have been successfully tested by a qualified independent testing and inspecting agency to meet the following requirements:

1.5 QUALITY CONTROL

- A. Installer Qualifications:
 - 1. Licensed or approved in writing by manufacturer to perform work under warranty requirements of this Section.
 - Employ full-time supervisors knowledgeable and experienced in roofing of similar types and scopes, and able to communicate with owner and workers.
- B. Inspector Qualifications: Inspection of work by third-party technical inspector or technical representative of manufacturer experienced in the installation and maintenance of the specified roofing system, qualified to perform roofing observation and inspection specified in Field Quality Control Article, to determine Installer's compliance with the requirements

of this Project, and approved by the manufacturer to issue warranty certification. The Roofing Inspector shall be one of the following:

- 1. An authorized full-time technical employee of the manufacturer, not engaged in the sale of products.
- 2. An independent party certified as a Registered Roof Observer by the Roof Consultants Institute (RCI), retained by the Contractor or the Manufacturer and approved by the Manufacturer.
- C. Product/Material Requirements:
 - Obtain products from single manufacturer or from sources recommended by manufacturer for use with roofing system and incorporated in manufacturer's warranty.
 - 2. Bio-Based Materials: For Products designated by the USDA's Bio Preferred program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred program, visit <u>http://www.biopreferred.gov</u>
- D. Roofing system design standard requirements:
 - Recommendations of the NRCA "Roofing and Waterproofing Manual" applicable to TPO heat-welded sheet roofing for storage, handling and application.
 - Recommendations of FM Approvals 1-49 Loss Prevention Data Sheet for Perimeter Flashings.
 - 3. Recommendations of ANSI/SPRI ES-1 for roof edge design.
 - Roofing System Design: Provide roofing system that is identical to systems that have been successfully tested by a qualified testing and inspecting agency to resist uplift pressure calculated according to ASCE/SEI 7.
 - a. Corner Uplift Pressure: 0.67 kPa/sq. m (20 lbf/sq. ft.).
 - b. Perimeter Uplift Pressure: 0.77 kPa/sq. m (16 lbf/sq. ft.).
 - c. Field-of-Roof Uplift Pressure: 0.96 kPa/sq. m (14 lbf/sq. ft.).

- 5. FM Approvals Listing: Provide roofing membrane, base flashing, and component materials that comply with requirements in FM Approvals 4450 and FM Approvals 4470 as part of a roofing system and that are listed in FM Approvals "RoofNav" for Class 1 or noncombustible construction, as applicable. Identify materials with FM Approvals markings.
 - a. Fire/Windstorm Classification: Class 1A-90.
 - b. Hail Resistance: MH.
- E. Pre-Roofing Meeting:
 - Upon completion of roof deck installation and prior to any roofing application, hold a pre-roofing meeting arranged by the Contractor and attended by the Roofing Inspector, Material Manufacturers Technical Representative, Roofing Applicator, Contractor, and COR.
 - Discuss specific expectations and responsibilities, construction procedures, specification requirements, application, environmental conditions, job and surface readiness, material storage, and protection.
 - 3. Inspect roof deck at this time to:
 - a. Verify that work of other trades which penetrates roof deck is completed.
 - Determine adequacy of deck anchorage, presence of foreign material, moisture and unlevel surfaces, or other conditions that would prevent application of roofing system from commencing or cause a roof failure.
 - c. Examine samples and installation instructions of manufacturer.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, SAMPLES.
- B. Product Data:

- 1. Adhesive materials.
- 2. Membrane sheet roofing and flashing membrane.
- 3. Roofing cement.
- 4. Roof walkway.
- 5. Fastening requirements.
- 6. Application instructions.
- C. Federal Sustainable Design Submittals:
 - Product Test Reports for Credit SS 7.2: For roof materials, indicating that roof materials comply with Solar Reflectance Index requirement.
 - Product Data for Credit IEQ 4.1: For adhesives and sealants used inside the weatherproofing system, documentation including printed statement of VOC content.
 - 3. Product Data for Federally-Mandated Bio-Based Materials: For roof materials, indicating USDA designation and compliance with definitions for bio-based products, Rapidly Renewable Materials, and certified sustainable wood content.
- D. Samples:
 - 1. Nails and fasteners, each type.
- E. Shop Drawings: Include plans, sections, details, and attachments.
 - 1. Base flashings and terminations.
- F. Certificates:
 - Indicating materials and method of application of roofing system meets requirements of FM Approvals "RoofNav" for specified fire/windstorm classification.
 - 2. Indicating compliance with Miami-Dade County requirements.
 - 3. Indicating compliance with energy performance requirement.
- G. Warranty: As specified.
- H. Documentation of supervisors' and inspectors' qualifications.
- I. Field reports of roofing inspector.
- J. Temporary protection plan. Include list of proposed temporary materials.

- K. Contract Close-out Submittals:
 - 1. Maintenance Manuals.
 - 2. Warranty signed by installer and manufacturer.

1.7 DELIVERY, STORAGE AND HANDLING

 Comply with the recommendations of the NRCA "Roofing and Waterproofing Manual" applicable to single ply membrane roofing for storage, handling and installation.

1.8 ENVIRONMENTAL REQUIREMENTS

- A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's written instructions and warranty requirements.
- Environmental Controls: Refer to Section 01 57 19, TEMPORARY
 ENVIRONMENTAL CONTROLS.
- C. Protection of interior spaces: Refer to Section 01 00 00, GENERAL REQUIREMENTS.

1.9 WARRANTY

 A. Roofing work subject to the terms of the Article "Warranty of Construction," FAR clause 52.246-21, except extend the warranty period to 10 years.

PART 2 - PRODUCTS

2.1 TPO MEMBRANE ROOFING

- A. TPO Sheet: ASTM D6878, internally fabric or scrim reinforced, 1.5 mm (60 mils) thick, with no backing.
 - 1. Color: White.

2.2 ACCESSORIES:

A. Sheet Flashing: Manufacturer's standard sheet flashing of same material, type, reinforcement, thickness, and color as TPO sheet membrane.

- B. Bonding Adhesive: Manufacturer's standard, water based.
- C. Metal Termination Bars: Manufacturer's standard, predrilled stainlesssteel or aluminum bars, approximately 25 by 3 mm (1 by 1/8 inch) thick; with anchors.
- D. Metal Battens: Manufacturer's standard, aluminum-zinc-alloy-coated or zinc-coated steel sheet, approximately 25 mm wide by 1.3 mm (1 inch wide by 0.05 inch) thick, prepunched.
- E. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with FM Approvals 4470, designed for fastening membrane to substrate.
- F. Miscellaneous Accessories: Provide sealers, preformed flashings, preformed inside and outside corner sheet flashings, T-joint covers, lap sealants, termination reglets, and other accessories acceptable to manufacturer.

2.3 ADHESIVE AND SEALANT MATERIALS:

- General: Adhesive and sealant materials recommended by roofing system manufacturer for intended use, identical to materials utilized in approved listed roofing system, and compatible with roofing membrane.
 - 1. Liquid-type auxiliary materials shall comply with VOC limits of authorities having jurisdiction.
 - 2. Adhesives and sealants that are not on the exterior side of weather barrier shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Plastic Foam Adhesives: 50 g/L.
 - b. Gypsum Board and Panel Adhesives: 50 g/L.
 - c. Multipurpose Construction Adhesives: 70 g/L.
 - d. Fiberglass Adhesives: 80 g/L.
 - e. Single-Ply Roof Membrane Adhesives: 250 g/L.
 - f. Other Adhesives: 250 g/L.
 - g. PVC Welding Compounds: 510 g/L.
 - h. Adhesive Primer for Plastic: 650 g/L

- i. Single-Ply Roof Membrane Sealants: 450 g/L.
- j. Nonmembrane Roof Sealants: 300 g/L.
- k. Sealant Primers for Nonporous Substrates: 250 g/L.
- I. Sealant Primers for Porous Substrates: 775 g/L.

PART 3 - EXECUTION

3.1 EXAMINATION:

- A. Examine substrates and conditions with roofing Installer and roofing inspector to verify compliance with project requirements and suitability to accept subsequent roofing work. Correct unsatisfactory conditions before proceeding with roofing work.
- B. Do not apply roofing if roof surface will be used for subsequent work platform, storage of materials, or staging or scaffolding will be erected thereon unless system is protected.

3.2 PREPARATION

- A. Complete roof deck construction prior to commencing roofing work:
 - Install curbs, blocking, edge strips, nailers, cants, and other components where insulation, roofing, and base flashing is attached to, in place ready to receive insulation and roofing.
 - 2. Complete deck and insulation to provide designed drainage to working roof drains.
 - Document installation of related materials to be concealed prior to installing roofing work.
- B. Dry out surfaces, including the flutes of metal deck that become wet from any cause during progress of the work before roofing work is resumed. Apply materials to dry substrates.
- C. Sweep decks to broom clean condition. Remove all dust, dirt or debris.
- D. Remove projections that might damage materials.
- E. Existing Membrane Roofs and Repair Areas:
 - Comply with requirements in Section 07 01 50.19 PREPARATION FOR REROOFING.

- 2. At areas to be altered or repaired, remove loose, damaged, or cut sheet that is not firmly adhered only where new penetrations occur or repairs are required.
- Cut and remove existing roof membrane for new work to be installed. Clean cut edges and install a temporary seal to cut surfaces. Use roof cement and one layer of 7 Kg (15 pound) felt strip cut to extend 150 mm (6 inches) on each side of cut surface. Bed strip in roof cement and cover strip with roof cement to completely embed the felt.

3.3 TEMPORARY PROTECTION

- A. Install temporary protection at the end of day's work and when work is halted for an indefinite period or work is stopped when precipitation is imminent. Comply with approved temporary protection plan.
- B. Install temporary cap flashing over the top of base flashings where permanent flashings are not in place to provide protection against moisture entering the roof system through or behind the base flashing. Securely anchor in place to prevent blow off and damage by construction activities.
- C. Provide for removal of water or drainage of water away from the work.
- D. Provide temporary protection over installed roofing by means of duckboard walkways, plywood platforms, or other materials, as approved by COR, for roof areas that are to remain intact, and that are subject to foot traffic and damage. Provide notches in sleepers to permit free drainage.

3.4 INSTALLATION, GENERAL

A. FM Approvals Installation Standard: Install roofing membrane, base flashings, wood cants, blocking, curbs, and nailers, and component materials in compliance with requirements in FMG 4450 and FMG 4470 as part of a membrane roofing system as listed in FM Approval's "RoofNav" for fire/windstorm classification indicated. Comply with recommendations in FM Approvals' Loss Prevention Data Sheet 1-49, including requirements for wood nailers and cants.

- B. NRCA Installation Standard: Install roofing system in accordance with applicable NRCA Manual Plates and NRCA recommendations.
- C. Manufacturer Recommendations: Comply with roofing system manufacturer's written installation recommendations.
- D. Coordination with related work: Coordinate roof operations with roof insulation and sheet metal work so that insulation and flashings are installed concurrently to permit continuous roofing operations.
- E. Installation Conditions:
 - 1. Apply dry roofing materials. Apply roofing work over dry substrates and materials.
 - 2. Apply materials within temperature range and surface and ambient conditions recommended by manufacturer.
 - 3. Except for temporary protection, do not apply materials during damp or rainy weather, during excessive wind conditions, nor while moisture (dew, snow, ice, fog or frost) is present in any amount in or on the materials to be covered or installed:
 - a. Do not apply materials when the temperature is below 4 deg.C (40 deg. F).
 - b. Do not apply materials to substrate having temperature of 4 deg. C (40 deg. F) or less.

3.5 INSTALLATION OF TPO ROOFING

- A. Do not allow the membrane to come in contact with surfaces contaminated with asphalt, coal tar, oil, grease, or other substances which are not compatible with TPO.
- B. Install the membrane so the sheets run perpendicular to the long dimension of the insulation boards.
- C. Commence installation at the low point of the roof and work towards the high point. Lap the sheets so the flow of water is not against the edges of the sheet.

- D. Position the membrane so it is free of buckles and wrinkles.
- E. Roll sheet out on deck; inspect for defects as being rolled out and remove defective areas. Allow for relaxing before proceeding.
 - Lap edges and ends of sheets 50 mm (two inches) or more as recommended by the manufacturer.
 - 2. Heat weld laps. Apply pressure as required. Seam strength of laps as required by ASTM D4434.
 - 3. Check seams to ensure continuous adhesion and correct defects.
 - 4. Finish edges of laps with a continuous beveled bead of sealant to sheet edges to provide smooth transition.
 - 5. Finish seams as the membrane is being installed (same day).
 - 6. Anchor perimeter to deck or wall as specified.
- F. Repair areas of welded seams where samples have been taken or marginal welds, bond voids, or skips occurs.
- G. Repair fishmouths and wrinkles by cutting to lay flat and installing patch over cut area extending 100 mm (four-inches) beyond cut.
- H. Membrane Perimeter Anchorage:
 - Install metal fastening strip at the perimeter of each roof level, curb flashing, expansion joints and similar penetrations as indicated and in accordance with membrane manufacturer's instructions on top of roof membrane to deck or wall.
 - 2. Mechanically Fastened Metal Fastening Strip:
 - Set top of mechanical fastener set flush with top surface of the metal fastening strip. Space mechanical fasteners a maximum 300 mm (12 inches) on center starting 25 mm (one inch) from the end of the nailing strip.
 - b. When strips are cut round corners and eliminate sharp corners.
 - After mechanically fastening strip cover and seal strip with a six-inch wide roof membrane strip; heat weld to roof membrane and seal edges.

- At parapet walls, intersecting building walls and curbs, secure the membrane to the structural deck with fasteners 300 mm (12 inches) on centers or as shown on NRCA manual.
- I. Adhered System:
 - Apply adhesive in quantities required by roof membrane manufacturer.
 - 2. Fold sheet back on itself after rolling out and coat the bottom side of the membrane and the top of the deck with adhesive. Do not coat the lap joint area.
 - After adhesive has set according to adhesive manufacturers application instruction, roll the membrane into the adhesive in a manner that minimizes voids and wrinkles.
 - 4. Repeat for other half of sheet. Cut voids and wrinkles to lay flat and clean for repair patch over cut area.

3.6 INSTALLATION OF FLASHING

- A. Install flashings as the membrane is being installed. If the flashing can not be completely installed in one day, complete the installation until the flashing is in a watertight condition and provide temporary covers or seals.
- B. Flashing Roof Drains:
 - Install roof drain flashing as recommended by the membrane manufacturer, generally as follows:
 - Coordinate to set the metal drain flashing in asphalt roof cement, holding cement back from the edge of the metal flange.
 - b. Do not allow the roof cement to come in contact with the TPO roof membrane.
 - c. Adhere the TPO roof membrane to the metal flashing with the membrane manufacturer's recommended adhesive.
 - 2. Turn down the metal drain flashing and TPO roof membrane into the drain body and install clamping ring and strainer.

- C. Installing TPO Base Flashing and Pipe Flashing:
 - Install TPO flashing membranes to pipes, wall or curbs to a height not less than eight-inches above roof surfaces and 100 mm (four inches) on roof membrane.
 - a. Adhere flashing to pipe, wall or curb with adhesive.
 - Form inside and outside corners of TPO flashing membrane in accordance with NRCA manual. Form pipe flashing in accordance with NRCA manual use pipe boot.
 - c. Lap ends not less than 100 mm (four inches).
 - Heat weld flashing membranes together and flashing membranes to roof membranes. Finish exposed edges with sealant as specified.
 - e. Install flashing membranes in accordance with NRCA manual.
 - Anchor top of flashing to walls or curbs with fasteners spaced not over 200 mm (eight inches) on centers. Use fastening strip on ducts. Use pipe clamps on pipes or other round penetrations.
 - 3. Apply sealant to top edge of flashing.
- D. Repairs to membrane and flashings:
 - Remove sections of TPO sheet roofing or flashing that is creased wrinkled or fishmouthed.
 - Cover removed areas, cuts and damaged areas with a patch extending 100 mm (four inches) beyond damaged, cut, or removed area. Heat weld to roof membrane or flashing. Finish edge of lap with sealant as specified.

3.7 FIELD QUALITY CONTROL:

- A. Roofing Inspector: Contractor shall engage a qualified roofing inspector for a minimum of 3 full-time days on site to perform roof tests and inspections and to prepare start up, interim, and final reports.
 - 1. Examine and probe seams in the membrane and flashing in the presence of COR and Membrane Manufacturer's Inspector.

- 2. Probe edge of welded seams with a blunt tipped instrument. Use sufficient hand pressure to detect marginal welds, voids, skips, and fishmouths.
- B. Final Roof Inspection: Arrange for roofing system manufacturer's technical personnel to inspect roofing installation on completion.
 - Notify Architect and Owner 48 hours in advance of date and time of inspection.
- C. Repair or remove and replace components of roofing work where test results or inspections indicate that they do not comply with specified requirements.
 - Additional testing and inspecting, at Contractor's expense, will be performed to determine if replaced or additional work complies with specified requirements.

3.8 PROTECTING AND CLEANING

- A. Protect membrane roofing system from damage and wear during remainder of construction period.
- B. Correct deficiencies in or remove membrane roofing system that does not comply with requirements; repair substrates; and repair or reinstall membrane roofing system to a condition free of damage and deterioration at time of acceptance by Owner.
- C. Clean overspray and spillage from adjacent construction. Clean membrane and restore surface to like-new condition meeting solar reflectance requirements.

END OF SECTION 07 54 23

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Formed sheet metal work for wall and roof flashing, copings, roof edge metal, fasciae, drainage specialties, and formed expansion joint covers are specified in this section.

1.2 RELATED WORK

- A. Membrane base flashings and stripping.
- B. Joint Sealants: Section 07 92 00, JOINT SEALANTS.
- C. Integral flashing components of manufactured roof specialties and accessories or equipment: Division 22, PLUMBING sections and Division 23 HVAC sections.
- D. Paint materials and application: Section 09 91 00, PAINTING.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. Aluminum Association (AA):

AA-C22A41.....Aluminum Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick

AA-C22A42.....Chemically etched medium matte, with integrally colored anodic coating, Class I Architectural, 0.7 mils thick

AA-C22A44.....Chemically etched medium matte with electrolytically deposited metallic compound, integrally colored coating Class I Architectural, 0.7-mil thick finish

C. American National Standards Institute/Single-Ply Roofing Institute (ANSI/SPRI):

ANSI/SPRI ES-1-03 Wind Design Standard for Edge Systems Used with Low Slope Roofing Systems

D. American Architectural Manufacturers Association (AAMA):

AAMA 620.....Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Aluminum

AAMA 621......Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Hot Dipped Galvanized (HDG) and Zinc-Aluminum Coated Steel Substrates E. ASTM International (ASTM):

A240/A240M-14.....Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications.

A653/A653M-11.....Steel Sheet Zinc-Coated (Galvanized) or Zinc Alloy Coated (Galvanized) by the Hot- Dip Process

B32-08Solder Metal

B209-10Aluminum and Aluminum-Alloy Sheet and Plate

B370-12Copper Sheet and Strip for Building Construction

D173-03(R2011).....Bitumen-Saturated Cotton Fabrics Used in Roofing and Waterproofing

D412-06(R2013) Vulcanized Rubber and Thermoplastic Elastomers-Tension

D1187-97(R2011)...Asphalt Base Emulsions for Use as Protective Coatings for Metal

D1784-11.....Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds

D3656-07Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns

D4586-07Asphalt Roof Cement, Asbestos Free

- 1.4 Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual.
- 1.5 National Association of Architectural Metal Manufacturers (NAAMM):

AMP 500-06.....Metal Finishes Manual

A. Federal Specification (Fed. Spec):

A-A-1925AShield, Expansion; (Nail Anchors)

UU-B-790ABuilding Paper, Vegetable Fiber

B. International Code Commission (ICC): International Building Code, Current Edition

1.6 PERFORMANCE REQUIREMENTS

- A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:
 - 1. Wind Zone 1: 0.48 to 0.96 kPa (10 to 20 lbf/sq. ft.): 1.92-kPa (40-lbf/sq. ft.) perimeter uplift force, 2.87-kPa (60-lbf/sq. ft.) corner uplift force, and 0.96-kPa (20-lbf/sq. ft.) outward force.
 - 2. Wind Zone 1: 1.00 to 1.44 kPa (21 to 30 lbf/sq. ft.): 2.87-kPa (60-lbf/sq. ft.) perimeter uplift force, 4.31-kPa (90-lbf/sq. ft.) corner uplift force, and 1.44-kPa (30-lbf/sq. ft.) outward force.

- 3. Wind Zone 2: 1.48 to 2.15 kPa (31 to 45 lbf/sq. ft.): 4.31-kPa (90-lbf/sq. ft.) perimeter uplift force, 5.74-kPa (120-lbf/sq. ft.) corner uplift force, and 2.15-kPa (45-lbf/sq. ft.) outward force.
- 4. Wind Zone 3: 2.20 to 4.98 kPa (46 to 104 lbf/sq. ft.): 9.96-kPa (208-lbf/sq. ft.) perimeter uplift force, 14.94-kPa (312-lbf/sq. ft.) corner uplift force, and 4.98-kPa (104-lbf/sq. ft.) outward force.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Flashings
- C. Manufacturer's Literature and Data: For all specified items, including:
 - 1. Two-piece counterflashing
 - 2. Thru wall flashing
 - 3. Nonreinforced, elastomeric sheeting
 - 4. Copper clad stainless steel
 - 5. Copper covered paper
- D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

- A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
- B. Copper ASTM B370, cold-rolled temper.
- C. Bituminous Coated Copper: Minimum copper ASTM B370, weight not less than 1 kg/m² (3 oz/sf). Bituminous coating shall weigh not less than 2 kg/m² (6 oz/sf); or, copper sheets may be bonded between two layers of coarsely woven bitumen-saturated cotton fabric ASTM D173. Exposed fabric surface shall be crimped.
- D. Copper Covered Paper: Fabricated of electro-deposit pure copper sheets ASTM B 370, bonded with special asphalt compound to both sides of creped, reinforced building paper, UU-B-790, Type I, style 5, or to a three ply sheet of asphalt impregnated creped paper. Grooves running along the width of sheet.
- E. Polyethylene Coated Copper: Copper sheet ASTM B370, weighing 1 Kg/m² (3 oz/sf) bonded between two layers of (two mil) thick polyethylene sheet.
- F. Galvanized Sheet: ASTM, A653.

G. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056 inch) thick. Sheeting shall have not less than 7 MPa (1,000 psi) tensile strength and not more than seven percent tension-set at 50 percent elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1 mm (1/32 inch) diameter mandrel and then bent at same point over same size mandrel in opposite direction through 360 degrees at temperature of - 30°C (-20 °F).

2.2 FLASHING ACCESSORIES

- A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.
- B. Rosin Paper: Fed-Spec. UU-B-790, Type I, Grade D, Style 1b, Rosinsized sheathing paper, weighing approximately 3 Kg/10 m²(6 lbs/100 sf).
- C. Bituminous Paint: ASTM D1187, Type I.
- D. Fasteners:
 - 1. Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.
 - 2. Nails:
 - a. Minimum diameter for copper nails: 3 mm (0.109 inch).
 - b. Minimum diameter for aluminum nails 3 mm (0.105 inch).
 - c. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
 - d. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
 - 3. Rivets: Not less than 3 mm (1/8 inch) diameter.
 - 4. Expansion Shields: Fed Spec A-A-1925A.
- E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- F. Insect Screening: ASTM D3656, 18 by 18 regular mesh.
- G. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Concealed Locations (Built into Construction):
 - 1. Copper: 30g (10 oz) minimum 0.33 mm (0.013 inch thick).

- 2. Stainless steel: 0.25 mm (0.010 inch) thick.
- 3. Copper clad stainless steel: 0.25 mm (0.010 inch) thick.
- 4. Galvanized steel: 0.5 mm (0.021 inch) thick.
- C. Exposed Locations:
 - 1. Copper: 0.4 Kg (16 oz).
 - 2. Stainless steel: 0.4 mm (0.015 inch).
 - 3. Copper clad stainless steel: 0.4 mm (0.015 inch).
- D. Thickness of aluminum or galvanized steel is specified with each item.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - 1. In general, copper, stainless steel and copper clad stainless steel joints, except expansion and contraction joints, shall be locked and soldered.
 - 2. Jointing of copper over 0.5 Kg (20 oz) weight or stainless steel over 0.45 mm (0.018 inch) thick shall be done by lapping, riveting and soldering.
 - 3. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 - 4. Flat and lap joints shall be made in direction of flow.
 - 5. Edges of bituminous coated copper, copper covered paper, nonreinforced elastomeric sheeting and polyethylene coated copper shall be jointed by lapping not less than 100 mm (4 inches) in the direction of flow and cementing with asphalt roof cement or sealant as required by the manufacturer's printed instructions.
 - 6. Soldering:
 - a. Pre tin both mating surfaces with solder for a width not less than 38 mm (1 1/2 inches) of uncoated copper, stainless steel, and copper clad stainless steel.
 - b. Wire brush to produce a bright surface before soldering lead coated copper.
 - c. Treat in accordance with metal producers recommendations other sheet metal required to be soldered.

- d. Completely remove acid and flux after soldering is completed.
- B. Expansion and Contraction Joints:
 - 1. Fabricate in accordance with the Architectural Sheet Metal Manual recommendations for expansion and contraction of sheet metal work in continuous runs.
 - 2. Space joints as shown or as specified.
 - 3. Space expansion and contraction joints for copper, stainless steel, and copper clad stainless steel at intervals not exceeding 7200 mm (24 feet).
 - 4. Space expansion and contraction joints for aluminum at intervals not exceeding 5400 mm (18 feet), except do not exceed 3000 mm (10 feet) for gravel stops and fascia-cant systems.
 - 5. Fabricate slip-type or loose locked joints and fill with sealant unless otherwise specified.
 - 6. Fabricate joint covers of same thickness material as sheet metal served.
- C. Cleats:
 - 1. Fabricate cleats to secure flashings and sheet metal work over 300 mm (12 inches) wide and where specified.
 - 2. Provide cleats for maximum spacing of 300 mm (12 inch) centers unless specified otherwise.
 - 3. Form cleats of same metal and weights or thickness as the sheet metal being installed unless specified otherwise.
 - 4. Fabricate cleats from 50 mm (2 inch) wide strip. Form end with not less than 19 mm (3/4 inch) wide loose lock to item for anchorage. Form other end of length to receive nails free of item to be anchored and end edge to be folded over and cover nail heads.
- D. Edge Strips or Continuous Cleats:
 - 1. Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
 - Except as otherwise specified, fabricate edge strips or minimum
 1.25 mm (0.050 inch) thick aluminum.
 - 3. Use material compatible with sheet metal to be secured by the edge strip.
 - 4. Fabricate in 3000 mm (10 feet) maximum lengths with not less than 19 mm (3/4 inch) loose lock into metal secured by edge strip.
 - 5. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the

flashing to be hooked over the lower edge at least 19 mm (3/4-inch).

- 6. Fabricate anchor edge maximum width of 75 mm (3 inches) or of sufficient width to provide adequate bearing area to insure a rigid installation using 1.6 mm (0.0625 inch) thick aluminum.
- E. Drips:
 - Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascias, gravel stops, wall copings, by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.
 - 2. Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.
- F. Edges:
 - 1. Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.
 - 2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.
 - 3. All metal roof edges shall meet requirements of IBC, current edition.
- G. Metal Options:
 - 1. Where options are permitted for different metals use only one metal throughout.
 - 2. Stainless steel may be used in concealed locations for fasteners of other metals exposed to view.
 - 3. Where copper gravel stops, copings and flashings will carry water onto cast stone, stone, or architectural concrete, or stainless steel.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 1. Copper: Mill finish.
 - 2. Stainless Steel: Finish No. 2B or 2D.

- 3. Aluminum:
 - a. Clear Finish: AA-C22A41 medium matte, clear anodic coating, Class 1 Architectural, 18 mm (0.7 mils) thick.
 - b. Colored Finish: AA-C22A42 (anodized) or AA-C22A44 (electrolytically deposited metallic compound) medium matte, integrally colored coating, Class 1 Architectural, 18 mm (0.7 mils) thick. Dyes will not be accepted.
 - c. Fluorocarbon Finish: AAMA 620, high performance organic coating.
 - d. Mill finish.
- 4. Steel and Galvanized Steel:
 - a. Finish painted under Section 09 91 00, PAINTING unless specified as prefinished item.
 - b. Manufacturer's finish:
 - 1) Baked on prime coat over a phosphate coating.
 - 2) Baked-on prime and finish coat over a phosphate coating.
 - 3) Fluorocarbon Finish: AAMA 621, high performance organic coating.

2.6 THROUGH-WALL FLASHINGS

- A. Form through-wall flashing to provide a mechanical bond or key against lateral movement in all directions. Install a sheet having 2 mm (1/16 inch) deep transverse channels spaced four to every 25 mm (one inch), or ribbed diagonal pattern, or having other deformation unless specified otherwise.
 - 1. Fabricate in not less than 2400 mm (8 feet) lengths; 3000 mm (10 feet) maximum lengths.
 - 2. Fabricate so keying nests at overlaps.

2.7 BASE FLASHING

- A. Use metal base flashing at vertical surfaces intersecting built-up roofing without cant strips or where shown.
 - 1. Use either copper, or stainless steel, thickness specified unless specified otherwise.
 - 2. When flashing is over 250 mm (10 inches) in vertical height or horizontal width use either 0.5 Kg (20 oz) copper or 0.5 mm (0.018 inch) stainless steel.
 - 3. Use stainless steel at aluminum roof curbs where flashing contacts the aluminum.

- 4. Use either copper, or stainless steel at pipe flashings.
- B. Fabricate metal base flashing up vertical surfaces not less than 200 mm (8 inch) nor more than 400 mm (16 inch).
- C. Fabricate roof flange not less than 100 mm (4 inches) wide unless shown otherwise. When base flashing length exceeds 2400 mm (8 feet) form flange edge with 13 mm (1/2 inch) hem to receive cleats.
- D. Form base flashing bent from strip except pipe flashing. Fabricate ends for riveted soldered lap seam joints. Fabricate expansion joint ends as specified.
- E. Pipe Flashing: (Other than engine exhaust or flue stack)
 - 1. Fabricate roof flange not less than 100 mm (4 inches) beyond sleeve on all sides.
 - 2. Extend sleeve up and around pipe and flange out at bottom not less than 13 mm (1/2 inch) and solder to flange and sleeve seam to make watertight.
 - 3. At low pipes 200 mm (8 inch) to 450 mm (18 inch) above roof:
 - a. Form top of sleeve to turn down into the pipe at least 25 mm (one inch).
 - b. Allow for loose fit around and into the pipe.
 - 4. At high pipes and pipes with goosenecks or other obstructions which would prevent turning the flashing down into the pipe:
 - a. Extend sleeve up not less than 300 mm (12 inch) above roofing.
 - b. Allow for loose fit around pipe.

2.8 COUNTERFLASHING (CAP FLASHING OR HOODS)

- A. Either copper or stainless steel, unless specified otherwise.
- B. Fabricate to lap base flashing a minimum of 100 mm (4 inches) with drip:
 - 1. Form lock seams for outside corners. Allow for lap joints at ends and inside corners.
 - 2. In general, form flashing in lengths not less than 2400 mm (8 feet) and not more than 3000 mm (10 feet).
 - 3. Two-piece, lock in type flashing may be used in-lieu-of one piece counter-flashing.
 - 4. Manufactured assemblies may be used.
 - 5. Where counterflashing is installed at new work use an integral flange at the top designed to be extended into the masonry joint or reglet in concrete.

- 6. Where counterflashing is installed at existing work use surface applied type, formed to provide a space for the application of sealant at the top edge.
- C. One-piece Counterflashing:
 - 1. Back edge turned up and fabricate to lock into reglet in concrete.
 - 2. Upper edge formed to extend full depth of masonry unit in mortar joint with back edge turned up 6 mm (1/4 inch).
- D. Two-Piece Counterflashing:
 - 1. Receiver to extend into masonry wall depth of masonry unit with back edge turned up 6 mm (1/4 inch) and exposed edge designed to receive and lock counterflashing upper edge when inserted.
 - 2. Counterflashing upper edge designed to snap lock into receiver.
- E. Surface Mounted Counterflashing; one or two piece:
 - 1. Use at existing or new surfaces where flashing can not be inserted in vertical surface.
 - 2. One piece fabricate upper edge folded double for 65 mm (2 1/2 inches) with top 19 mm (3/4 inch) bent out to form "V" joint sealant pocket with vertical surface. Perforate flat double area against vertical surface with horizontally slotted fastener holes at 400 mm (16 inch) centers between end holes. Option: One piece surface mounted counter-flashing (cap flashing) may be used. Fabricate as detailed on Plate 51 of SMACNA Architectural Sheet Metal Manual.
 - 3. Two pieces: Fabricate upper edge to lock into surface mounted receiver. Fabricate receiver joint sealant pocket on upper edge and lower edge to receive counterflashing, with slotted fastener holes at 400 mm (16 inch) centers between upper and lower edge.
- F. Pipe Counterflashing:
 - 1. Form flashing for water-tight umbrella with upper portion against pipe to receive a draw band and upper edge to form a "V" joint sealant receiver approximately 19 mm (3/4 inch) deep.
 - 2. Fabricate 100 mm (4 inch) over lap at end.
 - 3. Fabricate draw band of same metal as counter flashing. Use 0.6 Kg (24 oz) copper or 0.33 mm (0.013 inch) thick stainless steel or copper coated stainless steel.
 - 4. Use stainless steel bolt on draw band tightening assembly.
 - 5. Vent pipe counter flashing may be fabricated to omit draw band and turn down 25 mm (one inch) inside vent pipe.

G. Where vented edge decks intersect vertical surfaces, form in one piece, shape to slope down to a point level with and in front of edge-set notched plank; then, down vertically, overlapping base flashing.

PART 3 - EXECUTION

3.1 INSTALLATION

- H. General:
 - 1. Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 - 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
 - 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
 - 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
 - 5. Coordinate with masonry work for the application of a skim coat of mortar to surfaces of unit masonry to receive flashing material before the application of flashing.
 - 6. Apply a layer of 7 Kg (15 pound) saturated felt followed by a layer of rosin paper to wood surfaces to be covered with copper. Lap each ply 50 mm (2 inch) with the slope and nail with large headed copper nails.
 - Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.
 - 8. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
 - 9. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.
 - 10. Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.
 - 11. Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.

- 12. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.
- 13. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
- 14. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.
- 15. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.
- 16. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.
- 17. Bitumen Stops:
 - a. Install bitumen stops for built-up roof opening penetrations through deck and at formed sheet metal gravel stops.
 - b. Nail leg of bitumen stop at 300 mm (12 inch) intervals to nailing strip at roof edge before roofing material is installed.

2.9 THROUGH-WALL FLASHING

- A. General:
 - 1. Install continuous through-wall flashing between top of concrete foundation walls and bottom of masonry building walls; at top of concrete floors; under masonry, concrete, or stone copings and elsewhere as shown.
 - 2. Where exposed portions are used as a counterflashings, lap base flashings at least 100 mm (4 inches)and use thickness of metal as specified for exposed locations.
 - 3. Exposed edge of flashing may be formed as a receiver for two piece counter flashing as specified.
 - 4. Terminate exterior edge beyond face of wall approximately 6 mm (1/4 inch) with drip edge where not part of counter flashing.
- 5. Turn back edge up 6 mm (1/4 inch) unless noted otherwise where flashing terminates in mortar joint or hollow masonry unit joint.
- 6. Terminate interior raised edge in masonry backup unit approximately 38 mm (1 1/2 inch) into unit unless shown otherwise.
- 7. Under copings terminate both edges beyond face of wall approximately 6 mm (1/4 inch) with drip edge.
- 8. Lap end joints at least two corrugations, but not less than 100 mm (4 inches). Seal laps with sealant.
- 9. Where dowels, reinforcing bars and fastening devices penetrate flashing, seal penetration with sealing compound. Sealing compound is specified in Section 07 92 00, JOINT SEALANTS.
- 10. Coordinate with other work to set in a bed of mortar above and below flashing so that total thickness of the two layers of mortar and flashing are same as regular mortar joint.
- 11. Where ends of flashing terminate turn ends up 25 mm (1 inch) and fold corners to form dam extending to wall face in vertical mortar or veneer joint.
- 12. Turn flashing up not less than 200 mm (8 inch) between masonry or behind exterior veneer.
- 13. When flashing terminates in reglet extend flashing full depth into reglet and secure with lead or plastic wedges spaced 150 mm (6 inch) on center.
- 14. Continue flashing around columns:
 - a. Where flashing cannot be inserted in column reglet hold flashing vertical leg against column.
 - b. Counterflash top edge with 75 mm (3 inch) wide strip of saturated cotton unless shown otherwise. Secure cotton strip with roof cement to column. Lap base flashing with cotton strip 38 mm (1 1/2 inch).
- B. Flashing at Top of Concrete Foundation Walls Where concrete is exposed. Turn up not less than 200 mm (8 inch) high and into masonry backup mortar joint or reglet in concrete backup as specified.
- C. Flashing at Top of Concrete Floors (except where shelf angles occur): Place flashing in horizontal masonry joint not less than 200 mm (8 inch) below floor slab and extend into backup masonry joint at floor slab 38 mm (1 1/2 inch).
- D. Flashing at Cavity Wall Construction: Where flashing occurs in cavity walls turn vertical portion up against backup under waterproofing, if any, into mortar joint. Turn up over insulation, if any, and horizontally through insulation into mortar joint.

2.10 BASE FLASHING

- A. Install where roof membrane type base flashing is not used and where shown.
 - 1. Install flashing at intersections of roofs with vertical surfaces or at penetrations through roofs, to provide watertight construction.
 - 2. Install metal flashings and accessories having flanges extending out on top of the built-up roofing before final bituminous coat and roof aggregate is applied.
 - 3. Set flanges in heavy trowel coat of roof cement and nail through flanges into wood nailers over bituminous roofing.
 - 4. Secure flange by nailing through roofing into wood blocking with nails spaced 75 mm (3 inch) on centers or, when flange over 100 mm (4 inch) wide terminate in a 13 mm (1/2 inch) folded edge anchored with cleats spaced 200 mm (8 inch) on center. Secure one end of cleat over nail heads. Lock other end into the seam.
- B. For long runs of base flashings install in lengths of not less than 2400 mm (8 feet) nor more than 3000 mm (ten feet). Install a 75 mm (3 inch) wide slip type, loose lock expansion joint filled with sealant in joints of base flashing sections over 2400 mm (8 feet) in length. Lock and solder corner joints at corners.
- C. Extend base flashing up under counter flashing of roof specialties and accessories or equipment not less than 75 mm (3 inch).

2.11 COUNTERFLASHING (CAP FLASHING OR HOODS)

- A. General:
 - 1. Install counterflashing over and in conjunction with installation of base flashings, except as otherwise specified or shown.
 - 2. Install counterflashing to lap base flashings not less than 100 mm (4 inch).
 - 3. Install upper edge or top of counterflashing not less than 225 mm (9 inch) above top of the roofing.
 - 4. Lap joints not less than 100 mm (4 inch). Stagger joints with relation to metal base flashing joints.
 - 5. Use surface applied counterflashing on existing surfaces and new work where not possible to integrate into item.
 - 6. When fastening to concrete or masonry, use screws driven in expansion shields set in concrete or masonry. Use screws to wood and sheet metal. Set fasteners in mortar joints of masonry work.
- B. One Piece Counterflashing:

- 1. Where flashing is installed at new masonry, coordinate to insure proper height, embed in mortar, and end lap.
- 2. Where flashing is installed in reglet in concrete insert upper edge into reglet. Hold flashing in place with lead wedges spaced not more than 200 mm (8 inch) apart. Fill joint with sealant.
- 3. Where flashing is surface mounted on flat surfaces.
 - a. When top edge is double folded anchor flat portion below sealant "V" joint with fasteners spaced not over 400 mm (16 inch) on center:
 - 1) Locate fasteners in masonry mortar joints.
 - 2) Use screws to sheet metal or wood.
 - b. Fill joint at top with sealant.
- 4. Where flashing or hood is mounted on pipe.
 - a. Secure with draw band tight against pipe.
 - Set hood and secure to pipe with a one by 25 mm x 3 mm (1 x 1/8 inch) bolt on stainless steel draw band type clamp, or a stainless worm gear type clamp.
 - c. Completely fill joint at top with sealant.
- C. Two-Piece Counterflashing:
 - 1. Where receiver is installed at new masonry coordinate to insure proper height, embed in mortar, and lap.
 - 2. Surface applied type receiver:
 - a. Secure to face construction in accordance, with manufacturers instructions.
 - b. Completely fill space at the top edge of receiver with sealant.
 - 3. Insert counter flashing in receiver in accordance with fabricator or manufacturer's instructions and to fit tight against base flashing.
- D. Where vented edge occur install so lower edge of counterflashing is against base flashing.
- E. When counter flashing is a component of other flashing install as shown.

END OF SECTION 07 60 00

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 **DESCRIPTION**:

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK:

A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
- 1. Volatile organic compounds per volume as specified in ART 2 PRODUCTS.
 - C. Installer qualifications.
 - D. Inspector qualifications.
 - E. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
 - F. List of FM, UL, or WH classification number of systems installed.
 - G. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
 - H. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.4 DELIVERY AND STORAGE:

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE:

A. FM, UL, or WH or other approved laboratory tested products will be acceptable.

- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

E84-14Surface Burning Characteristics of Building Materials

E699-09Standard Practice for Evaluation of Agencies Involved in Testing, Quality Assurance, and Evaluating of Building Components

E814-13aFire Tests of Through-Penetration Fire Stops

E2174-14Standard Practice for On-Site Inspection of Installed Firestops

E2393-10aStandard Practice for On-Site Inspection of Installed Fire Resistive Joint Systems and Perimeter Fire Barriers

C. FM Global (FM):

Annual Issue Approval Guide Building Materials

4991-13.....Approval of Firestop Contractors

D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

723-10(2008)Standard for Test for Surface Burning Characteristics of Building Materials

1479-04(R2014).....Fire Tests of Through-Penetration Firestops

- E. Intertek Testing Services Warnock Hersey (ITS-WH): Annual Issue Certification Listings
- F. Environmental Protection Agency (EPA):

40 CFR 59(2014) National Volatile Organic Compound Emission Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS:

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 in.) nominal pipe or 0.01 sq. m (16 sq. in.) in overall cross sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - 2. Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.

- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101 mm (4 in.) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

PART 3 - EXECUTION

3.1 EXAMINATION:

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 **PREPARATION**:

- A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping

materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 NSTALLATION:

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP:

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

3.5 INSPECTIONS AND ACCEPTANCE OF WORK:

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

END OF SECTION 07 84 00

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 **DESCRIPTION**:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A. A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- C. Mechanical Work: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION .

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
- D. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.
- E. Lab Tests: Submit samples of materials that will be in contact or affect joint sealants to joint sealant manufacturers for tests as follows:
 - 1. Adhesion Testing: Before installing elastomeric sealants, test their adhesion to protect joint substrates according to the method in ASTM C794 to determine if primer or other specific joint preparation techniques are required.

- 2. Compatibility Testing: Before installing elastomeric sealants, determine compatibility when in contact with glazing and gasket materials.
- 3. Stain Testing: Perform testing per ASTM C1248 on interior and exterior sealants to determine if sealants or primers will stain adjacent surfaces. No sealant work is to start until results of these tests have been submitted to the Contracting Officer Representative (COR) and the COR has given written approval to proceed with the work.

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Installer qualifications.
- C. Contractor certification.
- D. Manufacturer warranty.

1.6 **PROJECT CONDITIONS**:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 degrees C (40 degrees F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - 1. Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - 1. Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F).

1.8 **DEFINITIONS**:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five 5 years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM):

C509-06.....Elastomeric Cellular Preformed Gasket and Sealing Material

C612-14.....Mineral Fiber Block and Board Thermal Insulation

C717-14aStandard Terminology of Building Seals and Sealants

C734-06(R2012).....Test Method for Low-Temperature Flexibility of Latex Sealants after Artificial Weathering

C794-10.....Test Method for Adhesion-in-Peel of Elastomeric Joint Sealants

C919-12.....Use of Sealants in Acoustical Applications.

C920-14a.....Elastomeric Joint Sealants.

C1021-08(R2014)...Laboratories Engaged in Testing of Building Sealants

C1193-13.....Standard Guide for Use of Joint Sealants.

C1248-08(R2012)...Test Method for Staining of Porous Substrate by Joint Sealants

C1330-02(R2013)...Cylindrical Sealant Backing for Use with Cold Liquid Applied Sealants

C1521-13.....Standard Practice for Evaluating Adhesion of Installed Weatherproofing Sealant Joints

D217-10.....Test Methods for Cone Penetration of Lubricating Grease

D412-06a(R2013)...Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension

D1056-14.....Specification for Flexible Cellular Materials—Sponge or Expanded Rubber

E84-09Surface Burning Characteristics of Building Materials

C. Sealant, Waterproofing and Restoration Institute (SWRI).

The Professionals' Guide

D. Environmental Protection Agency (EPA):

40 CFR 59(2014) National Volatile Organic Compound Emission Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. Exterior Sealants:
 - 1. S-1 Vertical surfaces, provide non-staining ASTM C920, Type S or M, Grade NS, Class 25.
 - 2. S-1 Horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T.
 - 3. Provide location(s) of exterior sealant as follows:
 - a. Joints formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Provide sealant at exterior surfaces of exterior wall penetrations.
 - b. Metal to metal.
 - c. Masonry to masonry or stone.
 - d. Stone to stone.
 - e. Cast stone to cast stone.
 - f. Masonry expansion and control joints.
 - g. Wood to masonry.
 - h. Masonry joints where shelf angles occur.
 - i. Voids where items penetrate exterior walls.

- j. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels.
- B. Interior Sealants:
 - 1. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Architectural Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
 - 2. S-2 Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25.

2.2 COLOR:

- A. Sealants used with unpainted concrete are to match color of adjacent concrete.
- B. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.4 FILLER:

- A. Mineral fiberboard: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.5 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.6 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 **PREPARATIONS**:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - 1. Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.

- 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - 2. Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.
- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

3.4 SEALANT DEPTHS AND GEOMETRY:

A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.

B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 **INSTALLATION**:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between
 - 2. 5 degrees C and 38 degrees C (40 degrees and 100 degrees F).
 - 3. Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
 - 4. Do not install sealant type listed by manufacture as not suitable for use in locations specified.
 - 5. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 6. Avoid dropping or smearing compound on adjacent surfaces.
 - 7. Fill joints solidly with compound and finish compound smooth.
 - 8. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
 - 9. Finish paving or floor joints flush unless joint is otherwise detailed.
 - 10. Apply compounds with nozzle size to fit joint width.
 - 11. Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports.
 - 12. Replace sealant which is damaged during construction process.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
- C. Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - 1. Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.

- 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
- 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
- 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
- 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

- A. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.
- B. Inspect tested joints and report on following:
 - 1. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate.
 - 2. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 - 3. Whether sealants filled joint cavities and are free from voids.
 - 4. Whether sealant dimensions and configurations comply with specified requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

END OF SECTION 07 92 00

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes coatings specified, and striping or markers and identity markings, chilled water parts, structural steel, chiller mounts, flashing and existing walls.

1.2 RELATED WORK

- A. Shop prime painting of steel and ferrous metals: Division 05 12 00 -STRUCTURAL STEEL FRAMING, Division 23 – HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL.
- B. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.
- C. Sample Panels:
- D. Sample of identity markers if used.

- E. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. High temperature aluminum paint.
 - 3. Epoxy coating.
 - 4. Intumescent clear coating or fire retardant paint.
 - 5. Plastic floor coating.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH):

ACGIH TLV-BKLT-2012 Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs)

ACGIH TLV-DOC-2012 Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)

C. American National Standards Institute (ANSI):

A13.1-07Scheme for the Identification of Piping Systems

D. American Society for Testing and Materials (ASTM):

D260-86.....Boiled Linseed Oil

E. Commercial Item Description (CID):

A-A-1555......Water Paint, Powder (Cementitious, White and Colors) (WPC) (cancelled)

A-A-3120.....Paint, For Swimming Pools (RF) (cancelled)

F. Federal Specifications (Fed Spec):

TT-P-1411APaint, Copolymer-Resin, Cementitious (For Waterproofing Concrete and Masonry Walls) (CEP)

G. Master Painters Institute (MPI):

No. 1-12.....Aluminum Paint (AP)

- No. 4-12.....Interior/ Exterior Latex Block Filler
- No. 5-12 Exterior Alkyd Wood Primer
- No. 7-12.....Exterior Oil Wood Primer
- No. 8-12.....Exterior Alkyd, Flat MPI Gloss Level 1 (EO)
- No. 9-12.....Exterior Alkyd Enamel MPI Gloss Level 6 (EO)
- No. 10-12.....Exterior Latex, Flat (AE)

- No. 11-12.....Exterior Latex, Semi-Gloss (AE)
- No. 18-12.....Organic Zinc Rich Primer
- No. 22-12.....Aluminum Paint, High Heat (up to 590% 1100F) (HR)
- No. 26-12.....Cementitious Galvanized Metal Primer
- No. 27-12.....Exterior / Interior Alkyd Floor Enamel, Gloss (FE)
- No. 31-12.....Polyurethane, Moisture Cured, Clear Gloss (PV)
- No. 36-12.....Knot Sealer
- No. 43-12.....Interior Satin Latex, MPI Gloss Level 4
- No. 44-12.....Interior Low Sheen Latex, MPI Gloss Level 2
- No. 45-12.....Interior Primer Sealer
- No. 46-12.....Interior Enamel Undercoat
- No. 47-12.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK)
- No. 48-12.....Interior Alkyd, Gloss, MPI Gloss Level 6 (AK)
- No. 49-12.....Interior Alkyd, Flat, MPI Gloss Level 1 (AK)
- No. 50-12.....Interior Latex Primer Sealer
- No. 51-12.....Interior Alkyd, Eggshell, MPI Gloss Level 3
- No. 52-12.....Interior Latex, MPI Gloss Level 3 (LE)
- No. 53-12.....Interior Latex, Flat, MPI Gloss Level 1 (LE)
- No. 54-12.....Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)
- No. 59-12.....Interior/Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE)
- No. 60-12.....Interior/Exterior Latex Porch & Floor Paint, Low Gloss
- No. 66-12.....Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC)
- No. 67-12.....Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR)

No. 68-12.....Interior/ Exterior Latex Porch & Floor Paint, Gloss

- No. 71-12.....Polyurethane, Moisture Cured, Clear, Flat (PV)
- No. 74-12.....Interior Alkyd Varnish, Semi-Gloss
- No. 77-12.....Epoxy Cold Cured, Gloss (EC)
- No. 79-12.....Marine Alkyd Metal Primer
- No. 90-12.....Interior Wood Stain, Semi-Transparent (WS)
- No. 91-12.....Wood Filler Paste
- No. 94-12.....Exterior Alkyd, Semi-Gloss (EO)
- No. 95-12Fast Drying Metal Primer
- No. 98-12.....High Build Epoxy Coating
- No. 101-12.....Epoxy Anti-Corrosive Metal Primer
- No. 108-12.....High Build Epoxy Coating, Low Gloss (EC)
- No. 114-12.....Interior Latex, Gloss (LE) and (LG)
- No. 119-12.....Exterior Latex, High Gloss (acrylic) (AE)
- No. 135-12.....Non-Cementitious Galvanized Primer
- No. 138-12.....Interior High Performance Latex, MPI Gloss Level 2 (LF)
- No. 139-12.....Interior High Performance Latex, MPI Gloss Level 3 (LL)
- No. 140-12.....Interior High Performance Latex, MPI Gloss Level 4
- No. 141-12.....Interior High Performance Latex (SG) MPI Gloss Level 5
- H. Steel Structures Painting Council (SSPC):
 - SSPC SP 1-04 (R2004) Solvent Cleaning
 - SSPC SP 2-04 (R2004) Hand Tool Cleaning
 - SSPC SP 3-04 (R2004) Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Cementitious Paint (CEP): TT-P-1411A [Paint, Copolymer-Resin, Cementitious (CEP)], Type 1 for exterior use, Type II for interior use.
- B. Wood Sealer: MPI 31 (gloss) or MPI 71 (flat) thinned with thinner recommended by manufacturer at rate of about one part of thinner to four parts of varnish.
- C. Plastic Tape:
 - 1. Pigmented vinyl plastic film in colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES or specified.
 - 2. Pressure sensitive adhesive back.
 - 3. Widths as shown.
- D. Identity markers options:
 - 1. Pressure sensitive vinyl markers.
 - 2. Snap-on coil plastic markers.
- E. Aluminum Paint (AP): MPI 1.
- F. Interior/Exterior Latex Block Filler: MPI 4.
- G. Exterior Alkyd Wood Primer: MPI 5.
- H. Exterior Oil Wood Primer: MPI 7.
- I. Exterior Alkyd, Flat (EO): MPI 8.
- J. Exterior Alkyd Enamel (EO): MPI 9.
- K. Exterior Latex, Flat (AE): MPI 10.
- L. Exterior Latex, Semi-Gloss (AE): MPI 11.
- M. Organic Zinc rich Coating (HR): MPI 22.
- N. High Heat Resistant Coating (HR): MPI 22.
- O. Cementitious Galvanized Metal Primer: MPI 26.
- P. Exterior/ interior Alkyd Floor Enamel, Gloss (FE): MPI 27.

- Q. Knot Sealer: MPI 36.
- R. Interior Satin Latex: MPI 43.
- S. Interior Low Sheen Latex: MPI 44.
- T. Interior Primer Sealer: MPI 45.
- U. Interior Enamel Undercoat: MPI 47.
- V. Interior Alkyd, Semi-Gloss (AK): MPI 47.
- W. Interior Alkyd, Gloss (AK): MPI 49.
- X. Interior Latex Primer Sealer: MPI 50.
- Y. Interior Alkyd, Eggshell: MPI 51
- Z. Interior Latex, MPI Gloss Level 3 (LE): MPI 52.
- AA. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53.
- BB. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.
- CC. Interior / Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE): MPI 59.
- DD. Interior/ Exterior Latex Porch & Floor Paint, Low Gloss: MPI 60.
- EE. Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC): MPI 66.
- FF. Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR): MPI 67.
- GG. Interior/ Exterior Latex Porch & Floor Paint, gloss: MPI 68.
- II. Epoxy Cold Cured, Gloss (EC): MPI 77.
- JJ. Marine Alkyd Metal primer: MPI 79.
- KK. Interior Wood Stain, Semi-Transparent (WS): MPI 90.
- LL. Wood Filler Paste: MPI 91.
- MM. Exterior Alkyd, Semi-Gloss (EO): MPI 94.
- NN. Fast Drying Metal Primer: MPI 95.
- OO. High Build Epoxy Coating: MPI 98.
- PP. Epoxy Anti-Corrosive Metal Primer: MPI 101.

- QQ. High Build Epoxy Marine Coating (EC): MPI 108.
- RR. Interior latex, Gloss (LE) and (LG): MPI 114.
- SS. Exterior Latex, High Gloss (acrylic) (AE): MPI 119.
- TT. Waterborne Galvanized Primer: MPI 134.
- UU. Non-Cementitious Galvanized Primer: MPI 135.
- VV. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138.
- WW. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139.
- XX. Interior High Performance Latex, MPI Gloss Level 4: MPI 140.
- YY. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - 1. Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.

- c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- 3. Asbestos: Materials shall not contain asbestos.
- 4. Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
- 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints, where possible.
- 7. VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - 1. Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - 2. Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.

- 3. Do no exterior painting when it is windy and dusty.
- 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
- 5. Apply only on clean, dry and frost free surfaces except as follows:
 - Apply water thinned acrylic and cementitious paints to damp a. (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.

3.2 SURFACE PREPARATION

- Α. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- Β. General:
 - Remove prefinished items not to be painted such as lighting fixtures, 1. escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - 2. Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - 3. See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.
 - 5. Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - Thin filler in accordance with manufacturer's instructions for a. application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.

C. Ferrous Metals:

- 1. Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
- Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
- 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- D. Concrete:
 - 1. Remove efflorescence, loose and other deterants to adhesion
 - Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.

- B. Do not thinner unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by COR, except in spaces sealed from existing occupied spaces.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.

H. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- Α. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- Ε. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Steel and iron: MPI 79 (Marine Alkyd Metal Primer).
 - 2. Machinery not factory finished: MPI 9 (Exterior Alkyd Enamel (EO)).
 - 3. Asphalt coated metal: MPI 1 (Aluminum Paint (AP)).
- F. Concrete:
 - MPI 53 (Interior Flat) 1.

3.6 EXTERIOR FINISHES

- Apply following finish coats where specified in Section 09 06 00, SCHEDULE Α. FOR FINISHES.
- B. Steel and Ferrous Metal:
 - 1. Two coats of MPI 8 (Exterior Alkyd, Flat (EO)) on exposed surfaces, except on surfaces over 94 degrees C (200 degrees F) on surfaces over incinerator.
- Machinery without factory finish except for primer: One coat MPI 94 (Exterior C. Alkyd, Semi-Gloss (EO)).

3.7 **INTERIOR FINISHES**

Α. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.

- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
 - b. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) on exposed interior surfaces of alkyd-amine enamel prime finished windows.
 - c. Machinery: One coat MPI 9 (Exterior Alkyd Enamel (EO)).

3.8 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Sand or dull glossy surfaces prior to painting.
- H. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.9 PAINT COLOR

A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.

- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.10 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified under paragraph H, colors.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 23 – HEATING, VENTILATION AND AIR-CONDITIONING, and Division 26 - ELECTRICAL.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- G. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED.
- H. Color:

- 1. Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces.
- 2. Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following:
 - a. WhiteExterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.
 - b. Gray:Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.
 - c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).
 - d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
 - e. Federal Safety Orange: .Entire lengths of electrical conduits containing feeders 600 volts or more.
 - f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Exterior Locations:
 - a. Apply two coats of MPI 9 (Exterior Alkyd Enamel (EO)) to the following ferrous metal items: Vent and exhaust pipes with temperatures under 94 degrees C (200 degrees F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping and similar items.
 - b. Apply two coats of MPI 11 (Exterior Latex, Semi Gloss (AE)) to the following metal items: Galvanized and zinc-copper alloy metal.

- 2. Interior Locations:
 - 1.) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.

3.11 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B.
 - 1. Painting and finishing of existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 3. Painting of ferrous metal and galvanized metal.
 - 4. Painting of wood with fire retardant paint exposed in attics, when used as mechanical equipment space.
 - 5. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
 - 3. Concealed surfaces:

- a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
- b. Inside walls or other spaces behind access doors or panels.
- c. Surfaces concealed behind permanently installed casework and equipment.
- 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
- 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
- 6. Galvanized metal:
 - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Gas Storage Racks.
 - c. Except where specifically specified to be painted.
- 7. Metal safety treads and nosings.
- 8. Gaskets.
- 9. Concrete curbs, gutters, pavements, retaining walls, exterior exposed foundations walls and interior walls in pipe basements.
- 10. Face brick.
- 11. Structural steel encased in concrete, masonry, or other enclosure.
- 12. Structural steel to receive sprayed-on fire proofing.
- 13. Ceilings, walls, columns in interstitial spaces.

- 14. Ceilings, walls, and columns in pipe basements.
- 15. Wood Shingles.

3.12 IDENTITY PAINTING SCHEDULE

- A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.
 - 1. Legend may be identified using 2.1 G options or by stencil applications.
 - Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow.
 - Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - 6. Legend name in full or in abbreviated form as follows:

COLOR OF	COLOR OF	COLOR OF	LEGEND LETTERS
PIPING	EXPOSED PIPING	BACKGROUND	BBREVIATIONS

Chilled Water Supply	Green	White	Ch. Wtr Sup
Chilled Water Return	Green	White	Ch. Wtr Ret
Drain Line	Green	White	Drain
Medium Pressure Steam	Yellow	Black	M. P. Stm*
Medium Pressure Condensate I	Return	Yellow Black	M.P. Ret*
------------------------------	------------	--------------	------------------
Low Pressure Steam		Yellow Black	L.P. Stm*
Low Pressure Condensate Retu	ırn Yellow	Black	L.P. Ret*
Hot Water Heating Supply	Yellow	Black	H. W. Htg Sup
Hot Water Heating Return	Yellow	Black	H. W. Htg Ret
Gravity Condensate Return	Yellow	Black	Gravity Cond Ret
Pumped Condensate Return	Yellow	Black	Pumped Cond Ret
Vent Line	Yellow	Black	Vent
Atmospheric Vent	Green	White	ATV

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50 mm (2 inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6100 mm (20 foot) intervals in between. Use labels with yellow background with black border and words Danger High Voltage Class, 15000.
- B. Fire and Smoke Partitions:
 - 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
 - 3. Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition.
 - 4. Use semigloss paint of color that contrasts with color of substrate.
- C. Identify columns in pipe basements and interstitial space:
 - 1. Apply stenciled number and letters to correspond with grid numbering and lettering shown.
 - 2. Paint numbers and letters 100 mm (4 inches) high, locate 450 mm (18 inches) below overhead structural slab.
 - 3. Apply on four sides of interior columns and on inside face only of exterior wall columns.

- 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

3.13 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

END OF SECTION 09 91 00

SECTION 22 05 11

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. CDA: Copper Development Association
 - 14. C: Celsius
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. COR: Contracting Officer's Representative
 - 18. CPVC: Chlorinated Polyvinyl Chloride
 - 19. CR: Chloroprene
 - 20. CRS: Corrosion Resistant Steel
 - 21. CWP: Cold Working Pressure
 - 22. CxA: Commissioning Agent
 - 23. db(A): Decibels (A weighted)
 - 24. DDC: Direct Digital Control

- 25. DI: Digital Input
- 26. DISS: Diameter Index Safety System
- 27. DO: Digital Output
- 28. DVD: Digital Video Disc
- 29. DN: Diameter Nominal
- 30. DWV: Drainage, Waste and Vent
- 31. ECC: Engineering Control Center
- 32. EPDM: Ethylene Propylene Diene Monomer
- 33. EPT: Ethylene Propylene Terpolymer
- 34. ETO: Ethylene Oxide
- 35. F: Fahrenheit
- 36. FAR: Federal Acquisition Regulations
- 37. FD: Floor Drain
- 38. FED: Federal
- 39. FG: Fiberglass
- 40. FNPT: Female National Pipe Thread
- 41. FPM: Fluoroelastomer Polymer
- 42. GPM: Gallons Per Minute
- 43. HDPE: High Density Polyethylene
- 44. Hg: Mercury
- 45. HOA: Hands-Off-Automatic
- 46. HP: Horsepower
- 47. HVE: High Volume Evacuation
- 48. ID: Inside Diameter
- 49. IPS: Iron Pipe Size
- 50. Kg: Kilogram
- 51. kPa: Kilopascal
- 52. lb: Pound
- 53. L/s: Liters Per Second
- 54. L/min: Liters Per Minute
- 55. MAWP: Maximum Allowable Working Pressure
- 56. MAX: Maximum
- 57. MED: Medical

- 58. m: Meter
- 59. MFG: Manufacturer
- 60. mg: Milligram
- 61. mg/L: Milligrams per Liter
- 62. ml: Milliliter
- 63. mm: Millimeter
- 64. MIN: Minimum
- 65. NF: Oil Free Dry (Nitrogen)
- 66. NPTF: National Pipe Thread Female
- 67. NPS: Nominal Pipe Size
- 68. NPT: Nominal Pipe Thread
- 69. OD: Outside Diameter
- 70. OSD: Open Sight Drain
- 71. OS&Y: Outside Stem and Yoke
- 72. OXY: Oxygen
- 73. PBPU: Prefabricated Bedside Patient Units
- 74. PH: Power of Hydrogen
- 75. PLC: Programmable Logic Controllers
- 76. PP: Polypropylene
- 77. PPM: Parts per Million
- 78. PSIG: Pounds per Square Inch
- 79. PTFE: Polytetrafluoroethylene
- 80. PVC: Polyvinyl Chloride
- 81. PVDF: Polyvinylidene Fluoride
- 82. RAD: Radians
- 83. RO: Reverse Osmosis
- 84. RPM: Revolutions Per Minute
- 85. RTRP: Reinforced Thermosetting Resin Pipe
- 86. SCFM: Standard Cubic Feet Per Minute
- 87. SDI: Silt Density Index
- 88. SPEC: Specification
- 89. SPS: Sterile Processing Services
- 90. STD: Standard

- 91. SUS: Saybolt Universal Second
- 92. SWP: Steam Working Pressure
- 93. TEFC: Totally Enclosed Fan-Cooled
- 94. TFE: Tetrafluoroethylene
- 95. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 96. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 97. T/P: Temperature and Pressure
- 98. USDA: U.S. Department of Agriculture
- 99. V: Volt
- 100. VAC: Vacuum
- 101. VA: Veterans Administration
- 102. VAMC: Veterans Administration Medical Center
- 103. VAC: Voltage in Alternating Current
- 104. WAGD: Waste Anesthesia Gas Disposal
- 105. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- F. Section 07 84 00, FIRESTOPPING.
- G. Section 07 92 00, JOINT SEALANTS.
- H. Section 09 91 00, PAINTING.
- I. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- J. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- K. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

ASME Boiler and Pressure Vessel Code -

BPVC Section IX-2013Welding, Brazing, and Fusing QualificationsB31.1-2012Power Piping

C. American Society for Testing and Materials (ASTM):

A36/A36M-2012.....Standard Specification for Carbon Structural Steel

A575-96(R2013)e1 .Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E84-2013aStandard Test Method for Surface Burning Characteristics of Building Materials

E119-2012aStandard Test Methods for Fire Tests of Building Construction and Materials

F1760-01(R2011) ...Standard Specification for Coextruded Poly(Vinyl Chloride) (PVC) Non-Pressure Plastic Pipe Having Reprocessed-Recycled Content

D. International Code Council, (ICC):

IBC-2012.....International Building Code

IPC-2012.....International Plumbing Code

E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:

SP-58-2009.....Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application and Installation

SP-69-2003.....Pipe Hangers and Supports - Selection and Application

F. Military Specifications (MIL):

P-21035B.....Paint High Zinc Dust Content, Galvanizing Repair (Metric)

G. National Electrical Manufacturers Association (NEMA):

MG 1-2011.....Motors and Generators

H. National Fire Protection Association (NFPA):

51B-2014Standard for Fire Prevention During Welding, Cutting and Other Hot Work

54-2012.....National Fuel Gas Code

70-2014.....National Electrical Code (NEC)

I. NSF International (NSF):

5-2012......Water Heaters, Hot Water Supply Boilers, and Heat Recovery Equipment

14-2012.....Plastic Piping System Components and Related Materials

61-2012.....Drinking Water System Components – Health Effects

- 372-2011.....Drinking Water System Components Lead Content
- J. Department of Veterans Affairs (VA):

PG-18-10Plumbing Design Manual

PG-18-13-2011Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.

- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- I. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8 inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, controls, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- J. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all

components of the systems with diagrams of the internal wiring for each item of equipment.

2. Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
 - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
 - 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
 - 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.

- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit <u>http://www.biopreferred.gov</u>.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the

COR at least 10 working days prior to commencing installation of any item.

- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.
- Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- G. Cleanliness of Piping and Equipment Systems:
 - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - 2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Plastic pipe, fittings and solvent cement shall meet NSF 14 and shall bear the NSF seal "NSF-PW". Polypropylene pipe and fittings shall comply with NSF 14 and NSF 61. Solder or flux containing lead shall not be used with copper pipe.
- B. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.
- C. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- D. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will

be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2

inches) round brass disc, attached with brass "S" hook or brass chain.

- 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
- 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door.

2.7 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.8 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.9 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC) and Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Submittals based on the International Building Code (IBC) and Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.

- 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Seismic Restraint of Piping: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.10 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.

- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- J. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.11 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.12 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.

C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.13 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F. Cutting Holes:
 - 1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 2. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
 - 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual

hammer type drill will not be allowed, except as permitted by COR where working area space is limited.

- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- I. Protection and Cleaning:
 - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 53, SHORT FORM-CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- K. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- M. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.
- N. Work in Existing Building:
 - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation

of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- O. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.
- P. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

A. Openings in building structures shall be planned to accommodate design scheme.

- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.

F. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.

- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.

- 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

END OF SECTION 22 05 11

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Systems Readiness Report.
 - 5. Balancing water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 6. Vibration and sound measurements.
 - 7. Recording and reporting results.
- B. Definitions:
 - 1. Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes chilled water.
 - 6. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION:
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Equipment Insulation.

- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- H. Section 23 64 00, PACKAGED WATER CHILLERS: Testing Refrigeration Equipment.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - 1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
 - 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related

activities and will provide necessary information as required by the COR. The responsibilities would specifically include:

- a. Shall directly supervise all TAB work.
- b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
- c. Would follow all TAB work through its satisfactory completion.
- d. Shall provide final markings of settings of all HVAC adjustment devices.
- All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline.
 - a. Chilled water pumps: Minus 0 percent to plus 5 percent.
 - b. Chilled water coils: Minus 0 percent to plus 5 percent.
 - 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
 - 4. Typical TAB procedures and results shall be demonstrated to the COR for per one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the COR staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 90 days for conventional design projects after the system layout on water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Systems Readiness Report.
 - 4. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
- C. 011HVAC Applications ASHRAE Handbook, Chapter 38, Testing, Adjusting, and Balancing and Chapter 48, Sound and Vibration Control
- D. Associated Air Balance Council (AABC):

002.....AABC National Standards for Total System Balance

E. National Environmental Balancing Bureau (NEBB):

7th Edition 2005......Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006 Procedural Standards for the Measurement of Sound and Vibration

3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction

F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002......HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

A. Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

A. See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

A. The TAB Specialist shall review the Contract Plans and specifications and advise the COR of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after chilled water equipment is on site and piping installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on chillers and pumps. Check for conformance with submittals.

3.4 SYSTEM READINESS REPORT

A. The TAB Contractor shall measure existing water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to COR.

- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the COR.

3.5 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the COR if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the COR.

3.6 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction water flow rate. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 14 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Water Balance and Equipment Test: Include circulating pumps, coils, and chillers:
 - 1. Coordinate water chiller flow balancing with Section 23 64 00, PACKAGED WATER CHILLERS.
 - 2. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.

- 3. Variable volume systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
- 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for cooling coils. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units. Make air and water temperature measurements at the same time.

3.7 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including, pumps, chillers, and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the COR. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the COR.

3.8 MARKING OF SETTINGS

A. Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COR.

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

END OF SECTION 23 05 93

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Piping above ceilings and in chases, interstitial space and pipe spaces.
 - 5. Exposed: Piping and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Shafts, chases, and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 8. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 9. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 10. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 11. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum

published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

- 12. CH: Chilled water supply.
- 13. CHR: Chilled water return.

1.2 RELATED WORK

A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

Section 07 84 00, FIRESTOPPING.

Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See <u>4.2.4.2.</u>)

4.3.3.3 Pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical
density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:

- 1. Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
- 2. Each type of facing and jacket: Minimum size 100 mm (4 inches square).
- 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride - Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):

MIL-A-3316C (2)-90 Adhesives, Fire-Resistant, Thermal Insulation

MIL-A-24179A (1)-87 Adhesive, Flexible Unicellular-Plastic Thermal Insulation

MIL-C-19565C (1)-88 Coating Compounds, Thermal Insulation, Fireand Water-Resistant, Vapor-Barrier

MIL-C-20079H-87...Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):

A167-99(2004)......Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

B209-07Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation

C449-07Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C533-09.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

C534-08.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C547-07Standard Specification for Mineral Fiber pipe Insulation

C552-07Standard Specification for Cellular Glass Thermal Insulation

C553-08.....Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications

C585-09.....Standard Practice for Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System) R (1998)

C612-10.....Standard Specification for Mineral Fiber Block and Board Thermal Insulation

C1126-04.....Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation

C1136-10.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation

D1668-97a (2006)...Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing

E84-10Standard Test Method for Surface Burning Characteristics of Building Materials

E119-09cStandard Test Method for Fire Tests of Building Construction and Materials

E136-09bStandard Test Methods for Behavior of Materials in a Vertical Tube Furnace at 750 degrees C (1380 F)

E. National Fire Protection Association (NFPA):

90A-09Standard for the Installation of Air Conditioning and Ventilating Systems

96-08.....Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations

F. 101-09....Life Safety Code

251-06.....Standard methods of Tests of Fire Endurance of Building Construction Materials

255-06.....Standard Method of tests of Surface Burning Characteristics of Building Materials

G. Underwriters Laboratories, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08

H. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS):

SP58-2009......Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 RIGID CELLULAR PHENOLIC FOAM

- Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.2 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- Pipe insulation for use at temperatures up to 200 degrees C (400 degrees
 F) with all service vapor retarder jacket.

2.3 POLYISOCYANURATE CLOSED-CELL RIGID

- Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
- Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.5 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed

ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.

- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

2.7 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.8 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.

- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.9 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.10 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.11 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the COR for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.

- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system.
- G. HVAC work not to be insulated:
 - 1. Relief air ducts (Economizer cycle exhaust air).
 - 2. Equipment: Expansion tanks.
- 3.2 Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- 3.3 Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
 - A. Firestop Pipe insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors

- b. Pipe chase walls and floors
- c. Smoke partitions
- d. Fire partitions
- B. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity areas.
- C. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.4 INSULATION INSTALLATION

- A. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, and equipment for temperatures up to 121 degrees C (250 degrees F).
 - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - 6. Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - 8. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
- B. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- C. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).

- 2. Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
- 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications).
- 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
- 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
- 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
- 7. For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
- 8. All metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- 9. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- 10. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 11. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- D. Flexible Elastomeric Cellular Thermal Insulation:
 - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.

- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
- 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 - a. Chilled water pumps
 - b. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.

END OF SECTION 23 07 11

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 **DESCRIPTION**

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 **DEFINITIONS**

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

The Contractor shall complete Pre-Functional Checklists to verify systems, Α. subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 **DESCRIPTION**

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
 - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall

provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.

- 5. The control system shall be compatible with the existing Engineering Control Center(s) and the control system shall accommodate web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurment of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - 1. Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - a. Chiller controls. These controls, if not native BACnet, will require a BACnet Gateway.

- b. Unitary HVAC equipment rooftop air cooled chillers controls. These include:
 - 1) Discharge temperature control.
 - 2) Flowrate control.
 - 3) Setpoint reset.
 - 4) Time of day indexing.
 - 5) Status alarm.
- c. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 2. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Interface with chiller/boiler controls	23 09 23	23 09 23	23 09 23	26
Chiller controls interface with control system	23	23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Chiller/starter interlock wiring	N/A	N/A	26	26
Chiller Flow Switches	23	23	23	N/A
Water treatment system	23	23	23	26
VFDs	23 09 23	26	23 09 23	26

- E. This facility's existing direct-digital control system is manufactured by SIMENS, and its ECC is located at Building 06 The existing system's topend communications is via BACKNET The existing system's ECC and top-end controllers were installed in Building 100 Main Chiller Room in basement. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
 - 1. Provide a new BACnet ECC, communications network, and controllers. Provide a programmable internetworking gateway allowing for real-time communication between the existing direct-digital control system and the new BACnet control system. Real-time communication shall provide all object properties and read/write services shown on VA-approved interoperability schedules. The contractor administered by this Section of the technical specifications shall provide all necessary investigation and site-specific programming to execute the interoperability schedules.
 - a. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.
 - b. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have limited operations and control capability over the legacy systems, as described in the VA-approved interoperability schedules.

- 2. Leave existing direct-digital control system intact and in place. Provide a new ASHRAE Standard 135 BACnet-compliant ECC in the same room as the existing system's ECC, and provide a new standalone BACnet-compliant control system serving the work in this project. No interoperability is required.
- F. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - 1. The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
 - 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.

Item/Task	Section 23 09 23 contactor	Control system integrator	VA
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels and	Х		

a. Responsibility Table:

equipment			
Point addressing: all hardware and software points including setpoint, calculated point, data point(analog/ binary), and reset schedule point	Х		
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	X		

G. The direct-digital control system shall start and stop equipment, move (position) valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 23 64 00, Packaged Water Chillers.
- B. Section 26 29 11, Motor Starters.

1.3 **DEFINITION**

A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.

- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.

- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.

- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.

- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.

- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - 4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation

systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.

- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - 1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two (2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.

- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Carbon Dioxide (CO ₂)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0–1.5 kPa (0–6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa
		(-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0–1 MPa (1–150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0–12.5 kPa (0–50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified

personnel to the job site to resolve the problem within 24 hours after the problem is reported.

D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - 6. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.

- 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 11. Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:

- a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
- b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - 1. Formal instructions to the VA facilities personnel for a total of 8 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.

3. Training shall be given by direct employees of the controls system subcontractor.

1.9 **PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)**

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The chiller control shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65°C (-40 to 150°F).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

Standard 135-10.....BACNET Building Automation and Control Networks

C. American Society of Mechanical Engineers (ASME):

B16.18-01Cast Copper Alloy Solder Joint Pressure Fittings.

B16.22-01Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-08Standard Specification for Solder Metal

B88-09Standard Specifications for Seamless Copper Water Tube

B88M-09Standard Specification for Seamless Copper Water Tube (Metric)

B280-08Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service

D2737-03.....Standard Specification for Polyethylene (PE) Plastic Tubing

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11.....National Electric Code

90A-09Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc. (UL):

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances

294-10.....Access Control System Units

486A/486B-10.....Wire Connectors

555S-11Standard for Smoke Dampers

916-10.....Energy Management Equipment

1076-10.....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - 1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - 2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels – not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnetcompliant communication equipment including Servers and digital data processors.

- c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
- d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
- e. Addressable elements, sensors, transducers and end devices.
- f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - 1. The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - 1. Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.

- 2. Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
- 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
- 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - 2. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly

connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.

- 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute specified control system operation. An authorized operator shall be able to edit cross-controller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

A. Is existing in the VA Palo Alto Medical Facility, Contractor shall coordinate a site visit with the COR to ensure that Bid includes all necessary equipment materials and labor to connect to this system and to ensure control system operation compatibility.

2.5 PORTABLE OPERATOR'S TERMINAL (POT)

- A. Provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required.
- B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3
SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive.

C. Software: POT shall include software equal to the software on the ECC.

2.6 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - 3. a. FFF = Facility code (see below)
 - 4. b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - 2. b. DD = 00-99, this allows up to 100 devices per network.
 - 3. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 4. Facility code assignments:
 - 5. 000-400 Building/facility number

- 6. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - Name the control devices based on facility name, location within a 1. facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.

- 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
 - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
 - 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.

- b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - 1. Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall reside on an ARCNET network using the ISO 8802-2 Data Link/Physical layer protocol for its communications.
 - c. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.

- 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- 7. Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - 1. The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.

- c. Proportional plus integral (PI) control.
- d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
- e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - Power Demand Limiting (PDL): Power demand limiting a. program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatthour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air guality.
 - b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
 - c. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible

time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.

- d. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.
- e. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- f. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alphanumeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm,

and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.

- g. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.
- h. Chilled water Plant Operation: This program shall have the ability to sequence the multiple chillers to minimize energy consumption. The program shall provide sequence of operation as described on the drawings and include the following as a minimum:
 - Each chiller raw has three chiller modules and each module has two compressors for a total of 6 steps per raw.
 - Automatic start/stop of chillers and auxiliaries in accordance with the sequence of operation shown on the drawings, while incorporating requirements and restraints, such as starting frequency of the equipment imposed by equipment manufacturers.
 - 3) Variable flow primary chilled water pumps and controls.
 - Generate chilled water plant load profiles for different seasons for use in forecasting efficient operating schedule.
 - 5) The chilled water plant program shall display the following as a minimum:
 - a) Chilled water flow rate.
 - b) Chilled water supply and return temperature.
 - c) Outdoor air dry bulb temperature.
 - d) Outdoor air wet bulb temperature.
 - e) Ton-hours of chilled water per day/month/year.
 - f) On-off status for each chiller.

- g) Chilled water flow rate.
- h) Chilled water supply and return temperature.
- i) Operating set points-temperature and pressure.
- j) Kilowatts and power factor.
- k) Current limit set point.
- I) Date and time.
- m) Operating or alarm status.
- n) Operating hours.

2.10 SPECIAL CONTROLLERS – NOT REQUIRED

2.11 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature Sensors shall be electronic, vibration and corrosion resistant for wall and/or immersion. Provide all remote sensors as required for the systems.
 - 1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - b. Space sensors shall be equipped with in-space User setpoint adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - c. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - d. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
 - e. Wire: Twisted, shielded-pair cable.
 - f. Output Signal: 4-20 ma.
- C. Water flow sensors:
 - 1. Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.

- b. Retractor: ASME threaded, non-rising stem type with hand wheel.
- c. Mounting connection: 2 inch 150 PSI flange.
- d. Sensor assembly: Design for expected water flow and pipe size.
- e. Seal: Teflon (PTFE).
- 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
- 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
- 4. Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- D. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100% humidity.
 - Depending conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.
 - d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet).

- e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
- f. Ambient temperature effects, less than 0.005 percent calibrated span per °C (°F) temperature change.
- g. RFI effect flow meter shall not be affected by RFI.
- h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
- E. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- F. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

- A. General:
 - 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts,

cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiberoptic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating null or dead band cooling).
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.

- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
 - 7. Two position water valves shall be line size.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
 - 2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.

- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- 6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - 2. Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 5. Install all system components in accordance with local Building Code and National Electric Code.
 - Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack

mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.

- c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.

- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to shortcircuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Actuators:
 - a. Mount and link valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 3. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from

other manufacturers as specified and required to make the system work as one system.

- E. Installation of digital controllers and programming:
 - 1. Provide a separate digital control panel for each major piece of equipment, such as chiller, pumping unit etc. Points used for control loop reset such as outdoor air, or space temperature could be located on any of the remote control units.
 - 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications

and sequences of operation submitted. Installer shall complete and submit Test Check List.

- C. Demonstration
 - System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program off-line.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.

- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
 - i. Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - I. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

END OF SECTION 23 09 23

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water and drain piping.
 - 2. Extension of domestic water make-up piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 03 30 53, SHORT FORM- CAST-IN-PLACE CONCRETE.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for piping.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- G. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Piping insulation.
- H. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Flexible connectors for water service.
 - 8. All specified hydronic system components.
 - 9. Water flow measuring devices.
 - 10. Gages.
 - 11. Thermometers and test wells.
 - 12. Seismic bracing details for piping.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Air separators.
 - 2. Expansion tanks.
- D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, and other piping systems and equipment.

- 1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
- 2. One complete set of reproducible drawings.
- 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.
- B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI):

B1.20.1-83(R2006) .Pipe Threads, General Purpose (Inch)

B16.4-06Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings

B16.23-02Cast Copper Alloy Solder joint Drainage fittings

B40.100-05Pressure Gauges and Gauge Attachments

C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI):

70-2-2006Control Valve Seat Leakage

D. American Society of Mechanical Engineers (ASME):

B16.1-98Cast Iron Pipe Flanges and Flanged Fittings

B16.3-2006Malleable Iron Threaded Fittings: Class 150 and 300

B16.4-2006Gray Iron Threaded Fittings: (Class 125 and 250)

B16.5-2003Pipe Flanges and Flanged Fittings: NPS ½ through NPS 24 Metric/Inch Standard

B16.9-07Factory Made Wrought Butt Welding Fittings

B16.11-05Forged Fittings, Socket Welding and Threaded

B16.18-01Cast Copper Alloy Solder Joint Pressure Fittings

B16.22-01Wrought Copper and Bronze Solder Joint Pressure Fittings.

B16.24-06Cast Copper Alloy Pipe Flanges and Flanged Fittings

B16.39-06Malleable Iron Threaded Pipe Unions

B16.42-06Ductile Iron Pipe Flanges and Flanged Fittings

B31.1-08Power Piping

E. American Society for Testing and Materials (ASTM):

A47/A47M-99 (2004)...... Ferritic Malleable Iron Castings

A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service

A126-04Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings

A183-03 Standard Specification for Carbon Steel Track Bolts and Nuts

A216/A216M-08..... Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service

A234/A234M-07..... Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service

A307-07 Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

A536-84 (2004)...... Standard Specification for Ductile Iron Castings

A615/A615M-08..... Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

A653/A 653M-08..... Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) By the Hot-Dip Process

B32-08 Standard Specification for Solder Metal

B62-02 Standard Specification for Composition Bronze or Ounce Metal Castings

B88-03 Standard Specification for Seamless Copper Water Tube

B209-07 Aluminum and Aluminum Alloy Sheet and Plate

C177-04 Standard Test Method for Steady State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus

C478-09 Precast Reinforced Concrete Manhole Sections

C533-07 Calcium Silicate Block and Pipe Thermal Insulation

C552-07 Cellular Glass Thermal Insulation

D3350-08 Polyethylene Plastics Pipe and Fittings Materials

C591-08 Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation

D1784-08 Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compound

D1785-06 Poly (Vinyl Chloride0 (PVC) Plastic Pipe, Schedules 40, 80 and 120

D2241-05 Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe (SDR Series)

F439-06 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80

F441/F441M-02..... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

F477-08 Elastomeric Seals Gaskets) for Joining Plastic Pipe

F. American Water Works Association (AWWA):

C110-08Ductile Iron and Grey Iron Fittings for Water

C203-02Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied

G. American Welding Society (AWS):

B2.1-02Standard Welding Procedure Specification

H. Copper Development Association, Inc. (CDA):

CDA A4015-06.....Copper Tube Handbook

I. Expansion Joint Manufacturer's Association, Inc. (EJMA):

EMJA-2003.....Expansion Joint Manufacturer's Association Standards, Ninth Edition

J. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.:

SP-67-02a.....Butterfly Valves

SP-70-06.....Gray Iron Gate Valves, Flanged and Threaded Ends

SP-71-05.....Gray Iron Swing Check Valves, Flanged and Threaded Ends

SP-80-08.....Bronze Gate, Globe, Angle and Check Valves

SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends

SP-110-96.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

SP-125-00.....Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves

K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI):

14-06.....Plastic Piping System Components and Related Materials

50-2009a.....Equipment for Swimming Pools, Spas, Hot Tubs and other Recreational Water Facilities – Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities

61-2008.....Drinking Water System Components – Health Effects

L.Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Chilled Water:
 - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up and All Solar Hot Water Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.

- 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
- 2. Welding flanges and bolting: ASME B16.5:
 - Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

A. Provide where copper tubing and ferrous metal pipe are joined.

- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2760 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.

- b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves):
 - a) 50 mm (2 inches) and smaller: MSS-SP 80, Bronze, 1034 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Check Valves
 - 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.), 45 degree swing disc.
 - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.
 - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water. Check valves incorporating a balancing feature may be used.

- a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
- b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- F. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball or Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.

2.8 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - 2. Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in I/m (gpm).

2.9 STRAINERS

- A. Y Type.
 - 1. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.10 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.
- B. Mechanical Pipe Couplings:
- C. See other fittings specified under Part 2, PRODUCTS.

2.11 HYDRONIC SYSTEM COMPONENTS

- A. Tangential Air Separator: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the cross-sectional area of connecting piping.
- B. Diaphragm Type Pre-Pressurized Expansion Tank: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, welded steel shell, rust-proof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 116 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).
- C. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless

steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F).

- D. Pressure Relief Valve: Bronze or iron body and bronze or stainless steel trim, with testing lever. Comply with ASME Code for Pressure Vessels, Section 8, and bear ASME stamp.
- E. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 1034 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.12 WATER FILTERS AND POT CHEMICAL FEEDERS

- A. See section 23 25 00, HVAC WATER TREATMENT, Article 2.2, CHEMICAL
- B. TREATMENT FOR CLOSED LOOP SYSTEMS.

2.13 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.

- B. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, —100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
 - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.15 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water: 0-38 degrees C (32-100 degrees F).

2.16 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.

- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 SEISMIC BRACING ABOVEGROUND PIPING

A. Provide in accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.4 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.
 - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
 - 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.6 WATER TREATMENT

A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.7 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

END OF SECTION 23 21 13

RORSECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Hydronic pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 21 13, HYDRONIC PIPING.
- H. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.

- 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- 8. After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- C. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI):

AISI 1045.....Cold Drawn Carbon Steel Bar, Type 1045

AISI 416Type 416 Stainless Steel

C. American National Standards Institute (ANSI):

ANSI B15.1-00(R2008)...... Safety Standard for Mechanical Power Transmission Apparatus

ANSI B16.1-05......Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800

D. American Society for Testing and Materials (ASTM):

A48-03 (2008)......Standard Specification for Gray Iron Castings

B62-2009Standard Specification for Composition Bronze or Ounce Metal Castings

E. Maintenance and Operating Manuals in accordance with Section 01 00 00, General Requirements.

1.6 **DEFINITIONS**

- A. Capacity: Liters per second (L/s) (Gallons per minute (GPM) of the fluid pumped.
- B. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.

1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the COR.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A. General:
 - 1. Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1½ times the designed pressure.
 - 3. Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.

- c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMNTS FOR HVAC and STEAM GENERATION EQUIPMENT. Motors shall be TEFC and operate at 1750 rpm unless noted otherwise.
- d. Provide coupling guards that meet ANSI B15.1, Section 8 and OSHA requirements.
- e. Pump Connections: Flanged.
- f. Pump shall be factory tested.
- g. Performance: As scheduled on the Contract Drawings.
- 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip-proof motor.
 - b. Variable Speed Motor Controllers: Refer to Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION paragraph, Variable Speed Motor Controllers. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.
- B. Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48.
 - 2. Casing Wear Rings: Bronze.
 - 3. Suction and Discharge: Plain face flange, 850 kPa (125 psig), ANSI B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - 5. Casing Drain and Gage Taps: 15 mm (1/2-inch) plugged connections minimum size.
 - 6. Impeller: Low zinc silicon brass, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, AISI Type 1045 or stainless steel.
 - 8. Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
 - 11. Base Mounted Pumps:

- a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
- b. Impeller Wear Rings: Bronze.
- c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, ANSI B15.1, bolted to the baseplate.
- d. Bearings (Double-Suction pumps): Regreaseable ball or roller type.

Provide lip seal and slinger outboard of each bearing.

- e. Base: Cast iron or fabricated steel for common mounting to a concrete base.
- 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:
 - a. Body: Cast iron with steel inlet vanes and combination diffuser-strainer-orifice cylinder with 5 mm (3/16-inch) diameter openings for pump protection. Provide taps for strainer blowdown and gage connections.
 - b. Provide adjustable foot support for suction piping.
 - c. Strainer free area: Not less than five times the suction piping.
 - d. Provide disposable start-up strainer.

PART 3 – EXECUTION

3.1 INSTALLATION

- A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- B. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- C. Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Lubricate pumps before start-up.
- C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.

- D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- F. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- G. After several days of operation, replace the disposable start-up strainer with a regular strainer in the suction diffuser.

END OF SECTION 23 21 23

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Field Quality Control and Certified Laboratory Reports: During the one year guarantee period, the water treatment laboratory shall provide not less than 12 reports based on on-site periodic visits, as stated in paragraph 1.3.B, sample taking and testing, and review with VA personnel, of water treatment control for the previous period. In addition to field tests, the water treatment laboratory shall provide certified laboratory test reports. These monitoring reports shall assess chemical treatment accuracy, scale formation, fouling and corrosion control, and shall contain instructions for the correction of any out-of-control condition.
- D. Log Forms: Provide one year supply of preprinted water treatment test log forms.

E. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

70-2008.....National Electric Code (NEC)

C. American Society for Testing and Materials (ASTM):

F441/F441M-02 (2008)..... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually.

Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.

- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.
- D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.
- E. Side stream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with // polypropylene // stainless steel // core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 13.8 kPa (2 psig) at design flow rate when clean, and maximum pressure drop of 172 kPa (25 psig) when dirty. A constant flow rate valve shall be provided in the piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.3 CHEMICAL TREATMENT FOR OPEN LOOP SYSTEM(S)

- A. Centrifugal Solid Separator:
 - 1. Material: The separator shall be fabricated of carbon steel with shell material and head material of 0.135 inch wall or heavier. Maximum operating pressure shall be 10.3 bar (150 psi), unless specified otherwise.
 - 2. Finish: Paint coating shall be enamel, spray-on.
 - 3. Performance: The removal of solids from a pumped/pressurized liquid system shall be accomplished with a centrifugal-action vortex separator. Solids removal efficiency is principally predicated on the difference in specific gravity between the solids and the liquid.

Recirculating test performance shall be less than 99% removal of solids 25 microns and larger. Pressure loss shall be between 2-5 psi.

 Purging: Evacuation of separated solids shall be accomplished automatically, employing a timer-activated motorized ball valve. Straight-through valve design, with bronze valve body and stainless steel ball in a Teflon seat. NEMA 4 housing for indoor and outdoor installation. Valve size: 3/4".

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- C. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- D. Do not valve in or operate system pumps until after system has been cleaned.
- E. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- F. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- G. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- H. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

END OF SECTION 23 25 00

SECTION 23 64 00 PACKAGED WATER CHILLERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Scroll air-cooled chillers complete with accessories.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. Section 23 21 23, HYDRONIC PUMPS.
- G. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- H. Section 23 21 13, HYDRONIC PIPING.
- I. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- J. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- K. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- L. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 DEFINITION

- A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135.

- C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- D. FTT-10: Echelon Transmitter-Free Topology Transceiver.

1.4 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, and comply with the following.
- B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance.
- C. Comply with AHRI requirements for testing and certification of the chillers.
- D. Refer to paragraph, WARRANTY, Section 00 72 00, GENERAL CONDITIONS, except as noted below:
 - 1. Provide a 5-year motor and compressor warranty to include materials, parts and labor.
- E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard
- F. Refer to ASHRAE Standard 15, Safety Standard for Refrigeration System, for refrigerant vapor detectors and monitor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI):

370-01.....Sound Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment

495-1999 (R2002)...Refrigerant Liquid Receivers

550/590-03.....Standard for Water Chilling Packages Using the Vapor Compression Cycle

560-00.....Absorption Water Chilling and Water Heating Packages

575-94......Methods for Measuring Machinery Sound within Equipment Space

C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

ANSI/ASHRASE-15-2007 Safety Standard for Mechanical Refrigeration Systems

GDL 3-1996Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems

D. American Society of Mechanical Engineers (ASME):

2007ASME Boiler and Pressure Vessel Code, Section VIII, "Pressure Vessels - Division 1"

E. American Society of Testing Materials (ASTM):

C 534/ C 534M-2008 Preformed, Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C 612-04Mineral-fiber Block and Board Thermal Insulation

F. National Electrical Manufacturing Association (NEMA):

250-2008.....Enclosures for Electrical Equipment (1000 Volts Maximum)

G. National Fire Protection Association (NFPA):

70-2008.....National Electrical Code

H. Underwriters Laboratories, Inc. (UL):

1995-2005..... Heating and Cooling Equipment

1.6 SUBMITTALS

- A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data.
 - 1. Scroll water chillers, including motor starters, control panels, and vibration isolators, and condenser data shall include the following:
 - a. Rated capacity.

- b. Pressure drop.
- c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard.
- d. Refrigerant
- e. Fan performance (Air-Cooled Chillers only.)
- f. Accessories.
- g. Installation instructions.
- h. Start up procedures.
- i. Wiring diagrams, including factor-installed and field-installed wiring.
- j. Sound/Noise data report. Manufacturer shall provide sound ratings. Noise warning labels shall be posted on equipment.
- C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- D. Run test report for all chillers.
- E. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests.
- F. Provide seismic restraints for refrigeration equipment to withstand seismic forces.

PART 2 - PRODUCTS

2.1 WATER CHILLERS

	OCTAVE BAND							Overall	
<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1000</u>	<u>2000</u>	<u>4000</u>	<u>8000</u>	<u>dB(A)</u>	

A. Hermetic or open: Chillers shall be open or hermetically sealed, using one of the following refrigerants: HFC-134a or HCFC-410A.

B. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 4 enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.

2.2 SCROLL AIR-COOLED WATER CHILLERS

- A. General: Factory-assembled and-tested scroll water chillers, complete with evaporator, compressors, motor, starters, integral condenser, and controls mounted on a welded steel base. The chiller unit shall consist of two compressors minimum, but not more than eight, mounted on a single welded steel base. Where compressors are paralleled, not more than two shall be so connected and not less than two independent refrigerant circuits shall be provided. Chiller shall be capable of operating one of the following refrigerants: HCFC-134a or HCFC-410a.
- B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings.
- C. Capacity of a single air-cooled chiller shall not exceed 250 Tons (Standard AHRI Conditions).
- D. Applicable Standard: Chillers shall be rated and certified according to AHRI 550/590, and shall be stamped in compliance with AHRI certification.
- E. Acoustics: Sound pressure levels shall not exceed the following specified levels. The manufacturer shall provide sound treatment if required to comply with the specified maximum levels. Testing shall be in accordance with AHRI requirements.

	OCTAVE BAND							_ Overall		
<u>63</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1000</u>	<u>2000</u>	<u>4000</u>	<u>8000</u>	<u>dB(A)</u>		

F. Compressor (Scroll Type): Three dimensional, positive-displacement, hermetically sealed design, with suction and discharge valves, crankcase oil heater and suction strainer. Compressor shall be mounted on vibration isolators. Rotating parts shall be factory balanced. Lubrication system shall consist of reversible, positive displacement pump, strainer, oil level sight glass, and oil charging valve. Capacity control shall be by on-off compressor cycling of single and multiple compressors.

- G. Refrigerants Circuit: Each circuit shall contain include an expansion valve, refrigerant charging connections, compressor suction and discharge shutoff valves, replaceable-core filter drier, sight glass with moisture indicator, liquid-line solenoid valve and insulated suction line.
- H. Refrigerant and Oil: Sufficient volume of dehydrated refrigerant and lubricating oil shall be provided to permit maximum unit capacity operation before and during tests. Replace refrigerant charge lost during the warranty period, due to equipment failure, without cost to the Government.
- I. Condenser:
 - 1. Air-cooled integral condenser as shown on the drawings and specified hereinafter.
 - Integral Condenser: Condenser coils shall be extended surface fin and tube type, seamless copper tubes with aluminum fins. For corrosion protection, see Paragraph 2.7 below. Condenser coils shall be factory air tested at 3105 kPa (450 psig). Condenser fans shall be propeller type, directly connected to motor shaft. Fans shall be statically and dynamically balanced, with wire safety guards. Condenser fan motors with permanently lubricated ball bearings and three-phase thermal overload protection. Unit shall start -18°C (0 F) with external damper assemblies. Units shall have grilles factory mounted to prevent damage to coil surfaces.
- J. Evaporator: Brazed plate and frame type heat exchanger design. Brazed plate evaporator shall be constructed of stainless steel with copper brazing material. The evaporator shall be designed for a minimum of 1.5 times the working pressure produced by the water system, but not less than 10,350 kPa (150 psig). Refrigerant side working pressure shall comply with ASHRAE Standard 15.
- K. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 20 mm (0.75 inch) minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534.
- L. Refrigerant Receiver: Provide a liquid receiver for chiller units when system refrigerant charge exceeds 80 percent of condenser refrigerant volume. Liquid receivers shall be horizontal-type, designed, fitted, and rated in conformance with AHRI 495. Receiver shall be constructed and tested in conformance with Section VIII D1 of the ASME Boiler and Pressure Vessel Code. Each receiver shall have a storage capacity not less than 20 percent in excess of that required for fully charged system. Each receiver shall be equipped with inlet, outlet drop pipes, drain plug, purging valve, and relief devices as required by ASHRAE Standard 15.

- M. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 1 NEMA 12 NEMA 3R NEMA 4 enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.
 - 1. Following shall display as a minimum on the panel:
 - a. Date and time.
 - b. Outdoor air temperature.
 - c. Operating and alarm status.
 - d. Entering and leaving water temperature-chilled water.
 - e. Operating set points-temperature and pressure.
 - f. Refrigerant temperature and pressure.
 - g. Operating hours.
 - h. Number of starts.
 - i. Current limit set point.
 - j. Maximum motor amperage (percent).
 - 2. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Entering and leaving chilled water temperature and control set points.
 - c. Automatic lead-lag switch.
 - 3. Safety Functions: Following conditions shall shut down the chiller and require manual reset to start:
 - a. Loss of chilled water flow.
 - b. Low chilled water temperature.
 - c. Compressor motor current-overload protection.
 - d. Freeze protection (for air-cooled chillers).

- e. Starter fault.
- f. High or low oil pressure.
- N. The chiller control panel shall provide leaving chilled water temperature reset based on signal from Energy Control Center (ECC).
- O. Provide contacts for remote start/stop, alarm for abnormal operation or shutdown, and for Engineering Control Center (ECC).
- P. Chiller control panel shall either reside on the "LonTalk FTT-10a network", and provide data using LonMark standard network variable types and configuration properties, or BACnet interworking using ARCNET or MS/TP physical data link layer protocol for communication with building automation control system.
- Q. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Compressor motor furnished with the chiller shall be in accordance with the chiller manufacturer and the electrical specification Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT. Starting torque of motors shall be suitable for driven machines.
- R. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 – EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation.

3.2 EQUIPMENT INSTALLATION

- A. Install chiller on per contract drawing with isolation pads or vibration isolators.
 - Vibration isolator types and installation requirements are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
 - 2. Charge the chiller with refrigerant, if not factory charged.

- 3. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements.
- 4. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc.
- B. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings.
- C. Piping Connections:
 - 1. Make piping connections to the chiller for chilled water and other connections as necessary for proper operation and maintenance of the equipment.
 - 2. Make equipment connections with flanges and couplings for easy removal and replacement of equipment from the equipment room.

3.3 STARTUP AND TESTING

- A. Engage manufacturer's factory-trained representative to perform startup and testing service.
- B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections.
- C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the VA that the equipment operate and perform as intended.
 - 1. Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak.
 - 2. Check bearing lubrication and oil levels.
 - 3. Verify proper motor rotation.
 - 4. Verify pumps associated with chillers are installed and operational.
 - 5. Verify thermometers and gages are installed.
 - 6. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance.
 - 7. Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller.

- 8. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment.
- 9. Prepare a written report outlining the results of tests and inspections, and submit it to the VA.
- D. Engage manufacturer's certified factory trained representative to provide training for 8 hours for the VA maintenance and operational personnel to adjust, operate and maintain equipment.

END OF SECTION 23 64 00

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

- B. Definitions:
 - 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
 - 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified:
 - 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.

3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient

care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:

- 1. Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
- 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
- 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.

- 2. Equipment/bus name, date prepared, and manufacturer name and address.
- 3. Arc flash boundary.
- 4. Available arc flash incident energy and the corresponding working distance.
- 5. Minimum arc rating of clothing.
- 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_26 05 11_".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed

installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.

- 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
- 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.

- Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION 26 05 11

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 **DESCRIPTION**

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.

- 2) Splicing materials and pulling lubricant.
- 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid **Electrical Insulating Materials** D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-14.....National Electrical Code (NEC) Ε. Underwriters Laboratories, Inc. (UL): 44-10.....Thermoset-Insulated Wires and Cables 83-08.....Thermoplastic-Insulated Wires and Cables 467-07.....Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04Splicing Wire Connectors 486D-05Sealed Wire Connector Systems 486E-09Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07......Thermoplastic-Insulated Underground Feeder and **Branch Circuit Cables**

514B-04Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - Conductors shall be color-coded as follows: 4. 208/120 V Phase 480/277 V А Black Brown Red В Orange С Blue Yellow White Neutral Grav *

- 5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 6. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - 1. Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.

2.3 CONNECTORS AND TERMINATIONS

A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.

- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zinc-plated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
- 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
- 2. Use nonmetallic pull ropes.
- 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
- 4. All conductors in a single conduit shall be pulled simultaneously.
- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

END OF SECTION 26 05 19

SECTION 26 05 26

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers.
- E. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low-voltage switchgear.
- F. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- G. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

- b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
- 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07Standard Specification for Hard-Drawn Copper Wire B3-07Standard Specification for Soft or Annealed Copper Wire

- B8-11Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-83.....IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements

D. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

70E-12National Electrical Safety Code

99-12.....Health Care Facilities

E. Underwriters Laboratories, Inc. (UL):
 44-10Thermoset-Insulated Wires and Cables
 83-08Thermoplastic-Insulated Wires and Cables

467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.

- Bonding conductors shall be bare stranded copper, except that sizes No.
 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have

minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers.
 Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to NFPA 99 and NEC.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):

- 1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
- 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:
 - 1. Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.
 - Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:

- 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
- 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - 1. Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.7 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.8 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.9 EXTERIOR LIGHT POLES

A. Provide 6.1 M (20 feet) of No. 4 AWG bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

3.10 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressure-type ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.11 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

END OF SECTION 26 05 26

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Conduits bracing.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:

- a. Size and location of main feeders.
- b. Size and location of panels and pull-boxes.
- c. Layout of required conduit penetrations through structural elements.
- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):

C80.1-05.....Electrical Rigid Steel Conduit

C80.3-05.....Steel Electrical Metal Tubing

C80.6-05.....Electrical Intermediate Metal Conduit

C. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

- 5-11.....Surface Metal Raceway and Fittings
- 6-07.....Electrical Rigid Metal Conduit Steel
- 50-95.....Enclosures for Electrical Equipment
- 360-13.....Liquid-Tight Flexible Steel Conduit
- 467-13.....Grounding and Bonding Equipment
- 514A-13Metallic Outlet Boxes

514B-12	Conduit, Tubing, and Cable Fittings
514C-07	Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers
651-11	Schedule 40 and 80 Rigid PVC Conduit and Fittings
651A-11	Type EB and A Rigid PVC Conduit and HDPE Conduit
797-07	Electrical Metallic Tubing
1242-06	Electrical Intermediate Metal Conduit - Steel
National Electrical	Manufacturers Association (NEMA):
TC-2-13	Electrical Polyvinyl Chloride (PVC) Tubing and Conduit
TC-3-13	PVC Fittings for Use with Rigid PVC Conduit and Tubing
FB1-12	Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
FB2.10-13	Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing)
FB2.20-12	Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable
American Iron and	Steel Institute (AISI):
S100-2007	North American Specification for the Design of Cold- Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 MATERIAL

F.

Ε.

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.

- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- 8. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and rain-tight, with connectors having insulated throats.

- d. Indent-type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 6. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.

- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 **PENETRATIONS**

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:

- 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
- 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown on drawings.

2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - 4. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
 - 2. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.6 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be half-lapped with 10 mil

PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.8 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper bonding jumper installed.

3.9 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.

- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.10 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.

- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

END OF SECTION 26 05 33

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 **DESCRIPTION**

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 **DEFINITIONS**

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in

accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility electrical systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a

broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

END OF SECTION 26 08 00

SECTION 26 24 13 DISTRIBUTION SWITCHBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the low-voltage circuit-breaker distribution switchboards, indicated as switchboard(s) in this section.

1.2 RELATED WORK

- A. Section 03 30 53, SHOR FORM- CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint for nonstructural components.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Switchboards shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects. Tests shall be conducted as per NEMA PB 2. Factory tests shall be certified.
- B. The following additional tests shall be performed:
 - 1. Verify that circuit breaker sizes and types correspond to drawings.
 - 2. Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - 3. Exercise all active components.

- 4. Perform an insulation-resistance test, phase to ground, on each bus section, with phases not under test grounded, in accordance with manufacturer's published data.
- 5. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 V DC for 300-volt rated cable and 1000 V DC for 600-volt rated cable, or as required if solid-state components or control devices cannot tolerate the applied voltage.
- C. Furnish four (4) copies of certified manufacturer's factory test reports prior to shipment of the switchboards to ensure that the switchboards have been successfully tested as specified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Switchboard shop drawings shall be submitted simultaneously with or after the Overcurrent Protective Device Coordination Study.
 - b. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - c. Prior to fabrication of switchboards, submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Circuit breaker sizes.
 - 3) Interrupting ratings.
 - 4) Safety features.
 - 5) Accessories and nameplate data.
 - 6) Switchboard one line diagram, showing ampere rating, number of bars per phase and neutral in each bus run (horizontal and vertical), bus spacing, equipment ground bus, and bus material.
 - 7) Elementary and interconnection wiring diagrams.
 - 8) Technical data for each component.
 - 9) Dimensioned exterior views of the switchboard.
 - 10) Dimensioned section views of the switchboard.
 - 11) Floor plan of the switchboard.
 - 12) Foundation plan for the switchboard.

- 13) Provisions and required locations for external conduit and wiring entrances.
- 14) Approximate design weights.
- d. Certification from the manufacturer that representative switchboards have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the switchboard.
 - Include information for testing, repair, trouble shooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the switchboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the switchboards have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. B. Institute of Engineering and Electronic Engineers (IEEE):

C37.13-08Low Voltage AC Power Circuit Breakers Used in Enclosures

C57.13-08Instrument Transformers

C62.41.1-03.....Surge Environment in Low-voltage (1000V and less) AC Power Circuits

C62.45-92.....Surge Testing for Equipment connected to Low-Voltage AC Power Circuits

C. International Code Council (ICC):

IBC-12.....International Building Code

D. National Electrical Manufacturer's Association (NEMA):

PB-2-06.....Deadfront Distribution Switchboards

PB-2.1-07.....Proper Handling, Installation, Operation, and Maintenance of Deadfront Distribution Switchboards Rated 600 Volts or Less

E. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

F. Underwriters Laboratories, Inc. (UL):

67-09.....Panelboards

489-09......Molded-Case Circuit Breakers, Molded-Case Switches, and Circuit-Breaker Enclosures

891-05.....Switchboards

PART 2 - PRODUCTS

2.1 GENERAL

- A. Shall be in accordance with ANSI, IEEE, NEMA, NFPA, UL, as shown on the drawings, and have the following features:
 - 1. Switchboard shall be a complete, grounded, continuous-duty, integral assembly, dead-front, dead-rear, self-supporting, indoor type switchboard assembly, tamperproof, weatherproof, outdoor type switchboard assembly. Incorporate devices shown on the drawings and all related components required to fulfill operational and functional requirements.
 - 2. Ratings shall not be less than shown on the drawings. Short circuit ratings shall not be less than the available fault current shown in the Overcurrent Protective Device Coordination Study.
 - 3. Switchboard shall conform to the arrangements and details shown on the drawings.

- 4. Coordinate all requirements with the electric utility company supplying electrical service to the switchboard. The incoming electric utility feeder and revenue metering installation shall conform to the requirements of the electric utility company.
- 5. Switchboards shall be assembled, connected, and wired at the factory so that only external circuit connections are required at the construction site. Split the structure only as required for shipping and installation. Packaging shall provide adequate protection against rough handling during shipment.
- All non-current-carrying parts shall be grounded per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS for additional requirements.
- 7. Series rated switchboards are not allowed.

2.2 BASIC ARRANGEMENT

- A. Type 1: Switchboard shall be front accessible with the following features:
 - 1. Device mounting:
 - a. Main breaker: Individually mounted and compartmented or group mounted with feeder breakers.
 - b. Feeder breakers: Group mounted.
 - 2. Section alignment: As shown on the drawings.
 - 3. Accessibility:
 - a. Main section line and load terminals: Front and side.
 - b. Distribution section line and load terminals: Front.
 - c. Through bus connections: Front and end.
 - 4. Bolted line and load connections.
 - 5. Full height wiring gutter covers for access to wiring terminals.

2.3 HOUSING

- A. Shall have the following features:
 - 1. Frames and enclosures:
 - a. The assembly shall be braced with reinforcing gussets using bolted connections jig welds to assure rectangular rigidity.
 - b. The enclosure shall be steel, leveled, and not less than the gauge required by applicable publications.
 - c. Die-pierce the holes for connecting adjacent structures to insure proper alignment, and to allow for future additions.
 - d. All bolts, nuts, and washers shall be zinc-plated steel.

- B. Finish:
 - 1. All metal surfaces shall be thoroughly cleaned, phosphatized and factory primed prior to applying baked enamel or lacquer finish.
 - 2. Provide a light gray finish for indoor switchboard.

2.4 BUSES

- A. Bus Bars and Interconnections:
 - 1. Provide copper phase and neutral buses, fully rated for the amperage as shown on the drawings for the entire length of the switchboard. Bus laminations shall have a minimum of 6 mm (1/4 inch) spacing.
 - 2. Mount the buses on appropriately spaced insulators and brace to withstand the available short circuit currents.
 - 3. The bus and bus compartment shall be designed so that the acceptable NEMA standard temperature rises are not exceeded.
 - 4. Install a copper ground bus the full length of the switchboard assembly.
 - 5. Main Bonding Jumper: An un-insulated copper bus, size as shown on drawings, shall interconnect the neutral and ground buses, when the switchboard is used to establish the system common ground point.
 - 6. All bolts, nuts, and washers shall be zinc-plated steel. Bolts shall be torqued to the values recommended by the manufacturer.
 - 7. Make provisions for future bus extensions by means of bolt holes or other approved method.

2.5 MAIN CIRCUIT BREAKERS

- A. Type I or Type II Switchboards: Provide molded case main circuit breakers as shown on the drawings. Circuit breakers shall be the solid state adjustable trip type.
 - 1. Trip units shall have field adjustable tripping characteristics as follows:
 - a. Long time pickup.
 - b. Long time delay.
 - c. Short time pickup.
 - d. Short time delay.
 - e. Instantaneous.
 - 2. Breakers with same frame size shall be interchangeable with each other.

3. Breakers shall be fully rated.

2.6 FEEDER CIRCUIT BREAKERS

- A. Provide molded case circuit breakers as shown on the drawings.
- B. Non-adjustable Trip Molded Case Circuit Breakers:
 - 1. Molded case circuit breakers shall have automatic, trip free, nonadjustable, inverse time characteristics, and instantaneous magnetic trip.
 - 2. Breaker features shall be as follows:
 - a. A rugged, integral housing of molded insulating material.
 - b. Silver alloy contacts.
 - c. Arc quenchers and phase barriers for each pole.
 - d. Quick-make, quick-break, operating mechanisms.
 - e. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - f. Electrically and mechanically trip free.
 - g. An operating handle which indicates ON, TRIPPED, and OFF positions.
 - h. Line and load connections shall be bolted.
 - i. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.

2.7 ELECTRIC UTILITY COMPANY EQUIPMENT

- A. Provide separate compartment for electric utility company metering equipment as shown on drawings.
- B. Provide suitable arrangements within the electric utility company metering compartment for mounting metering equipment. Obtain the electric utility company's approval of the compartment arrangements prior to fabrication of the switchboard.
- **C.** Allow access to electric utility company personnel as required for installation of utility metering equipment.

2.8 METERING

- A. Refer to Section 25 10 10, ADVANCED UTILITY METERING. Refer to drawings for meter locations.
- B. Provide current transformers for each meter. Current transformers shall be wired to shorting-type terminal blocks.
- C. Provide voltage transformers including primary fuses and secondary protective devices for metering as shown on the drawings.

2.9 OTHER EQUIPMENT

A. Furnish tools and accessories required for circuit breaker and switchboard test, inspection, maintenance, and proper operation.

2.10 CONTROL WIRING

A. Switchboard control wires shall not be less than No. 14 AWG copper 600 volt rated. Install wiring complete at the factory, adequately bundled and protected. Provide separate control circuit fuses in each breaker compartment and locate for ease of access and maintenance.

2.11 NAMEPLATES AND MIMIC BUS

- A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. For Essential Electrical System, provide laminated red phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. Nameplates shall indicate equipment served, spaces, or spares in accordance with one line diagram shown on drawings. Nameplates shall be mounted with plated screws on front of breakers or on equipment enclosure next to breakers. Mounting nameplates only with adhesive is not acceptable.
- B. Mimic Bus: Provide an approved mimic bus on front of each switchboard assembly. Color shall be black for the Normal Power system and red for the Essential Electrical System, either factory-painted plastic or metal strips. Plastic tape shall not be used. Use symbols similar to one line diagram shown on drawings. Plastic or metal strips shall be mounted with plated screws.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install switchboards in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- Anchor switchboards with rustproof bolts, nuts, and washers not less than 13 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. In seismic areas, switchboards shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. All be as specified in Section 03 30 53, SHORT-FORM- CAST-IN-PLACE CONCRETE.
- E. Interior Location. Mount switchboard on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the

equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 53, SHORT FORM-CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
 - f. Vacuum-clean switchboard enclosure interior. Clean switchboard enclosure exterior.
 - g. Inspect insulators for evidence of physical damage or contaminated surfaces.
 - h. Verify correct shutter installation and operation.
 - i. Exercise all active components.
 - j. Verify the correct operation of all sensing devices, alarms, and indicating devices.
 - k. Verify that vents are clear.
 - 2. Electrical tests:
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.
 - c. Perform phasing check on double-ended switchboards to ensure correct bus phasing from each source.
- B. Prior to the final inspection for acceptance, a technical representative from the electric utility company shall witness the testing of the equipment to

assure the proper operation of the individual components, and to confirm proper operation/coordination with electric utility company's equipment.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the switchboard is in good operating condition and properly performing the intended function.

3.4 WARNING SIGN

A. Mount on each entrance door of the switchboard room, approximately 1500 mm (5 feet) above grade or floor, a clearly lettered warning sign for warning personnel. The sign shall be attached with rustproof metal screws.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for one, 4-hour training period for instructing personnel in the maintenance and operation of the switchboards, on the dates requested by the COR.

END OF SECTION 26 24 13
SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

99-15.....Health Care Facilities

C. National Electrical Manufacturers Association (NEMA): WD 1-10.....General Color Requirements for Wiring Devices

WD 6-12Wiring Devices – Dimensional Specifications

D. Underwriter's Laboratories, Inc. (UL):

5-11.....Surface Metal Raceways and Fittings

20-10.....General-Use Snap Switches

231-08.....Power Outlets

467-13.....Grounding and Bonding Equipment

498-12.....Attachment Plugs and Receptacles

943-15.....Ground-Fault Circuit-Interrupters

1449-14.....Surge Protective Devices

1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.

- 1. Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or -1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.

- 2) Screws exposed while the wall plates are in place shall be the tamperproof type.
- Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles – hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.
 - a. Bodies shall be brown nylon.
- C. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
- C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- E. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.

2.4 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - 3. Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.

- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.

END OF SECTION 26 27 26

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint for nonstructural components.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload

relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.

- c. Certification from the manufacturer that representative motor controllers have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - 3) Elementary schematic diagrams shall be provided for clarity of operation.
 - 4) Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE):

519-92.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems

C37.90.1-02Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus

C. International Code Council (ICC):

IBC-12.....International Building Code

D. National Electrical Manufacturers Association (NEMA):

ICS 1-08.....Industrial Control and Systems: General Requirements

ICS 1.1-09.....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control

ICS 2-05.....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts

ICS 4-05.....Industrial Control and Systems: Terminal Blocks

ICS 6-06.....Industrial Control and Systems: Enclosures

ICS 7-06.....Industrial Control and Systems: Adjustable-Speed Drives

ICS 7.1-06.....Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems

MG 1 Part 31Inverter Fed Polyphase Motor Standards

E. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

F. Underwriters Laboratories Inc. (UL):

508A-07Industrial Control Panels

508C-07Power Conversion Equipment

UL 1449-06.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with circuit breaker motor circuit protector as

specified on the drawing disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.

- 1. Circuit Breakers:
 - a. Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.
 - Equipped with automatic, trip free, non-adjustable, inversetime, and instantaneous magnetic trips for less than 400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.
 - c. Additional features shall be as follows:
 - 1) A rugged, integral housing of molded insulating material.
 - 2) Silver alloy contacts.
 - 3) Arc quenchers and phase barriers for each pole.
 - 4) Quick-make, quick-break, operating mechanisms.
 - 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.
- 2. Motor Circuit Protectors:
 - a. Magnetic trip only.
 - b. Bolt-on type with a minimum interrupting rating as indicated on the drawings.
 - c. Equipped with automatic, adjustable magnetic trip. Magnetic trip shall be adjustable up to 1300% of the motor full load amperes.
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - 2. Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.

- 3. For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
- 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Thermal Temperature Probe Thermal Relay Electronic type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - 4. Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
 - 6. Temperature probe relays shall be connected to thermistors or resistance temperature detectors (RTD) embedded in the motor winding.
 - 7. Electronic overload relays shall utilize internal current transformers and electro-mechanical components. The relays shall have ambient temperature compensation, single-phase protection, manual or automatic reset, and trip classes of 10, 15, 20 and 30. The relay shall provide fault cause indication, including jam/stall, ground fault, phase loss, and overload.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.

L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing across-theline mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.3 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: 50 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum $+90^{\circ}$ F Minimum 40° F

- 3. Relative Humidity: 95%
- 4. VSMC Location: roof, penthouse, equipment room.
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
 - 8. Provide automatic shutdown upon receiving a power transfer warning signal from an automatic transfer switch. VSMC shall automatically restart motor after the power transfer.
 - 9. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.

- 10. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- 11. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-toline and line-to-ground overcurrent, loss-of-phase, reversephase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.

- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMA-rated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. In seismic areas, motor controllers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- C. Install manual motor controllers in flush enclosures in finished areas.
- D. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- E. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- F. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start

without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COR before increasing settings.

G. Set the taps on reduced-voltage autotransformer controllers at 65 percent of line voltage.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COR.

END OF SECTION 26 29 11

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 **DESCRIPTION**

- A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
- B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings.

1.2 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 MANUFACTURED PRODUCTS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.

- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Contracting Officer Representative (COR) a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.5 EQUIPMENT REQUIREMENTS

A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.6 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - 1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry

of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.

- 2. Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.7 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - a. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.9 EQUIPMENT IDENTIFICATION

A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.

B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as a standard catalog item, or where other method of identification is herein specified, are exceptions.

1.10 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
- E. Mark the submittals, "SUBMITTED UNDER SECTION_____".
- F. Submittals shall be marked to show specification reference including the section and paragraph numbers.
- G. Submit each section separately.
- H. The submittals shall include the following:
 - 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or piping so that the proposed installation can be properly reviewed.
- I. Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
- J. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.

- K. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation and maintenance instructions.
 - e. Safety precautions.
 - f. Diagrams and illustrations.
 - g. Testing methods.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.

- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Raceway and pathway hangers, clamps and supports.
 - 4. Duct sealing compound.
- N. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.11 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.12 TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.

END OF SECTION 27 05 11

SECTION 27 05 26

GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27.

1.2 RELATED WORK

- A. Direct Digital Controls: Section, 23 09 23.
- B. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - 2. Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Ground Rods:

- 1. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- 2. Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
 - 1.) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2.) 3 lugs with 25.4 mm (1 inch) hole centers.
 - 3.) Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - 4.) Listed as grounding and bonding equipment.
 - 2. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1.) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2.) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:
 - 1. Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:

- a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high harddrawn electrolytic tough pitch 110 alloy copper bar.
- b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
- c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
- d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole grounding lugs.
- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each 12-24 x 19.1 mm (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- 2. Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when

available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

- H. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), antennas, satellite dishes, towers, raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Install telecommunications bonding backbone conductor throughout building via telecommunications backbone pathways effectively bonding all interior telecommunications grounding busbars in telecommunications rooms, to telecommunications main grounding busbar in Demarc room after testing bond to verify bonding conductor for telecommunications from grounding electrode conductor is installed per NEC. Size telecommunications bonding backbone conductor as specified in TIA-607-B.
- C. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- D. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- E. Boxes, Cabinets, and Enclosures:
 - 1. Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.

- F. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- G. Telecommunications Grounding System:
 - 1. Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - 2. Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - 4. Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 5. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.
 - 6. Bonding Jumpers:
 - Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
 - 7. Bonding Jumper Fasteners:
 - Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners.
 Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
 - c. Grounding Busbars: Fasten bonding conductors using twohole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.

- d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.
- H. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - 1. Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - 2. At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
 - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
 - d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- I. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- J. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- K. Communications Cable Grounding:
 - 1. Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - 2. Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external

ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.

- L. Communications Raceway Grounding:
 - 1. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
- M. Ground Resistance:
 - 1. Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
 - 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
 - 3. Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

END OF SECTION 27 05 26

SECTION 27 05 33

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Fabrications for deflection of water away from building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- C. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- D. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

- 2.1 MATERIAL
 - A. Minimum Conduit Size: 19 mm (3/4 inch).
 - B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.

- 3. Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
- 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
- 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Conform to UL 5.
- 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - 1. Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1.) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.

- 2.) Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- g. Provide OEM approved fittings.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1.) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - 2.) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 3.) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - 1.) Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:

- a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
- b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
- c. Provide connectors with insulated throats to prevent damage to cable jacket.
- d. Provide OEM approved fittings.
- 6. Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.
- 7. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- 8. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 9. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 10. Rigid Aluminum Fittings:
 - a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
 - d. Indent type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made of "pot metal" are not permitted.
 - f. Provide OEM approved fittings.

- 11. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - 2. Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.

- 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
- 5. Size: Metric Designator 53 (trade size 2) or smaller.
- 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
- 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
- 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
- Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- I. Outlet Boxes:
 - 1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 - 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
System	Specification Section	Installed Method
---	-----------------------	---
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray

- B. Penetrations:
 - 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - 1.) Fill and seal clearances between raceways and openings with fire stop material.
 - 2.) Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
 - d. Waterproofing at Floor, Exterior Wall, and Roof Conduit Penetrations:
 - 1.) Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS
- C. Conduit Installation:
 - 1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.

- 3. Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
- 4. Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 10. Complete each entire conduit run installation before pulling in cables.
- 11. Flattened, dented, or deformed conduit is not permitted.

- 12. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 13. Install conduit mechanically continuous.
- 14. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 15. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 16. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 17. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 18. Do not use aluminum conduits in wet locations.
- 19. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 20. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 21. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. Exposed Work Installation:
 - a. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - 1.) Provide rigid steel, IMC or rigid aluminum.
 - 2.) Different type of conduits mixed indiscriminately in system is not permitted.
 - b. Align and run conduit parallel or perpendicular to building lines.

- c. Install horizontal runs close to ceiling or beams and secure with conduit straps.
- d. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
- e. Surface Metal Raceways: Use only where shown on drawings.
- f. Painting:
 - 1.) Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2.) Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - 3.) Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- E. Seismic Areas:
 - 1. In seismic areas, follow H-18-8 Seismic Design Requirements.
 - 2. Rigidly secure conduit to building structure on opposite sides of a building expansion joint with pull boxes on both sides of joint.
 - 3. Connect conduits to pull boxes with 375 mm (15 inches) of slack flexible conduit.
 - 4. Install green copper wire minimum #6 AWG in flexible conduit for bonding jumper.
- F. Conduit Supports, Installation:
 - 1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - 2. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.

- b. Existing Construction:
 - 1.) Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2.) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - 3.) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- 8. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- 9. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- G. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
 - 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
 - 3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
 - 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- H. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - 2. Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
 - 4. Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- 1. Examine fittings and locknuts for secureness.
- 2. Test RMC, IMC and EMT systems for electrical continuity.
- 3. Perform simple continuity test after cable installation.

END OF SECTION 27 05 33

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - 2. Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - 3. Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.
- D. Power: Provide specific voltage, amperage, phases, and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:

- 1. Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
- 2. Provide certified OEM sweep test tags from each cable reel to COR.
- 3. Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
- 4. Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
- 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - 1. Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).
 - 3. Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
 - 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:

- 1.) 18 AWG, minimum, Outside.
- 2.) 20 AWG, minimum, Inside.
- d. Color Coding: Required, EIA industry standard.
- e. Bend Radius: 10 times cable outside diameter.
- f. Impedance: As required.
- g. Shield Coverage: As required by OEM specification.
- h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum	
0.7	5.2	
1.0	6.5	
4.0	14.0	
8.0	19.0	
16.0	26.0	
20.0	29.0	
25.0	33.0	
31.0	36.0	
50.0	52.0	

- E. Distribution System Signal Wires and Cables:
 - 1. Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
 - 3. Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
 - 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of HVAC Control systems; provide not less than TIA Performance Category 5e.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
 - 1. Provide connectors for transmission lines, and signal extensions to maintain uninterupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
 - 2. Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1.) Control Cable Shields.
 - 2.) Data Cable Shields.
 - 3.) Equipment Racks.
 - 4.) Equipment Cabinets.

- 5.) Conduits.
- 6.) Ducts.
- 7.) Cable Trays.
- 8.) Power Panels.
- 9.) Connector Panels.
- 10.) Grounding Blocks.
- 2. Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, as-installed drawings, and construction documents.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 005OP2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in raceway.
 - 2. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.
 - c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.

- d. Pull multiple cables into a single conduit together.
- B. Control, Communication and Signal Wiring Installation:
 - 1. Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - 2. Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
 - 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
 - 5. Concealed splices are not allowed.
 - 6. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
 - 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
 - 8. Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
 - 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
 - 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
 - 11. Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- C. AC Power:
 - 1. Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and

to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.

- 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
- 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
- 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.
 - 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
 - 3. Install labels retaining their markings after cleaning.
 - 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.
- B. Labeling:
 - 1. Industry Standard: ANSI/TIA-606-B.
 - 2. Print lettering for HVAC Control circuits.
 - 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
 - 4. Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.

- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- 6. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

END OF SECTION 27 10 00

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Center, here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - 1. Pictorial layout drawing of each HVAC Direct Digital Controllers showing termination cabinets, as each is expected to be installed and configured.
 - 2. List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - 1. Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.
 - 2. Pre-acceptance Certification: Submit in accordance with test procedures.
 - 3. Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on as-installed drawings.

- 4. Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

1. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - 1. Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - 2. Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - 3. Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - 4. Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
 - 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.
- C. System Performance: Provide complete system to meet or exceed TIA Category 6 or on a case by case basis Category 6A for specialized powered systems' requirements.

- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - 1. Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Provide separate cable distribution system for emergency, safety and protection systems (i.e. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems; etc.)
 - 3. Contact SMCS 005OP2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, analog and videotele communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic or coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, Fiber optic, Coaxial and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.

- c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
- 2. Backbone Copper Cables:
 - a. Riser Cable:
 - 1.) Provide communication riser cables listed in NEC Table 800, 154(a) for the purpose and suited for electrical connection to a communication network.
 - 2.) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication (analog RF coaxial cable is not to be provided in riser systems) riser cables with a thermoplastic outer jacket.
 - 3.) Label and test complete riser cabling system.
- 3. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6 requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 500 MHz.
 - c. Provide four pair (22 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - 1.) Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category 6 Type jacks at TCO.
 - (a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - (b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- 4. Fiber Optics Backbone Cable:
 - a. Provide 50/125 micron OM4 multi-mode cable, containing at minimum 18 strands of fiber, unless otherwise specified.
 - b. Provide loose tube cable, which separates individual fibers from the environment, or indoor/outdoor cables, for outdoor runs or any area that includes an outdoor run.
 - c. Provide tight buffered fiber cable or indoor/outdoor cables for indoor runs.

- d. Terminate multimode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system.
 Provide minimum 610 mm (2 ft.) cable loop at each end.
- e. Provide single mode fiber optic cable 8.3 mm containing at minimum 12 strands of fiber, unless otherwise specified. Terminate single mode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 feet) cable loop at each end to allow for future movement.
- f. Install fiber optic cables in TR's, Voice (Telephone) Switch Room, and Main Computer Room, in rack mounted fiber optic patch panels. Provide female LC couplers in appropriate panel for termination of each strand.
- g. Test all fiber optic strands' cable transmission performance in accordance with TIA standards. Measure attenuation in accordance with fiber optic test procedures TIA-455-C ('-61', or -53). Provide written results to COR for review and approval.
- B. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - 2. Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
 - 3. Fiber Optic Cables:
 - a. Provide fiber CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - b. Install fiber optic cable slack in protective enclosures.
- C. Coaxial and Analog Cables: Bond equipment to ground per TIA standards, such that all grounding systems comply with all applicable National, Regional, and Local Building and Electrical codes.
 - 1. Provide current arrester for each copper or coaxial cable that enters from outside of a building regardless if cable is installed underground or aerial.
 - 2. Provide a gas surge protector/module and bond to earth ground.
- D. Main Cross-connection Subsystem (MCCS): MCCS is common point of distribution for inter- and intra-building copper and fiber optic backbone system cables, and connections to the voice (telephone) and data cable systems.

- E. Data Cross-Connection Subsystems:
 - 1. Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations and system ground with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.
 - c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- F. Fiber-Optic Cross-Connection Subsystems: Provide rack mounted patch or distribution panels installed inside a lockable cabinet or "breakout enclosure" that accommodate minimum 12 strands multimode fiber and 12 strand single mode fiber - these counts do not include 50 percent spare requirement. Provide cable management system for each panel.
 - 1. Provide panels for minimum 24 female SC connectors, able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to OEM's maximum standard panel size for this type of use. Protect patch panel sides, including front and back, by a cabinet or enclosure.
 - 2. Provide panels that conform to EIA/ECA 310-E dimensions suitable for installation in standard racks, cabinets, and enclosures.
 - 3. Provide patch panels with highest OEM approved density of fiber SC termination's (maximum of 72 each), while maintaining a high level of manageability. Provide proper SC couplers installed for each pair of fiber optic cable SC connectors.
 - a. Provide system inputs from interface equipment or distribution systems on top row of connectors of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of connectors of same patch panel.
 - c. Provide patch cords for each pair of fiber optic strands with connector to match couplers.
 - 4. Provide field installable connectors that are pre-polished.

- a. Terminate every fiber cable with appropriate connector, and test to ensure compliance to specifications and industry standards for fiber optic SC female connector terminated with a fiber optic cable.
- b. Install a terminating cap for each unused SC connector.
- G. Copper Outside Plant Cable: Minimum of UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flex gel - waterproof Rural Electric Association (REA) listed PE 39 code) between outer armor or jacket and inner conductors protective lining.
- H. Horizontal Cabling (HC):
 - 1. Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 - 2. Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. System Connectors:
 - 1. Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - 1.) Number of Pins:
 - (a) RJ-45: Eight.
 - (b) RJ-11/45: Compatible with RJ-45.
 - 2.) Dielectric: Surge.
 - 3.) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4.) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5.) Leakage: Maximum 100 µA.
 - 6.) Connections:
 - (a) Initial contact resistance: Maximum 20 milli-Ohms.
 - (b) Insulation displacement: Maximum 10 milli-Ohms.
 - (c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.

- (d) Durability: Minimum 200 insertions/withdrawals.
- B. Fiber Optic Terminators:
 - 1. Pre-polished crimp on type that has proper ferrule to terminate fiber optic cable.
 - 2. Technical Characteristics:
 - a. Frequency: Light wave.
 - b. Power Blocking: As required.
 - c. Return Loss: 25 dB.
 - d. Connectors: SC.
 - e. Construction: Ceramic.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
 - e. Maximum 40 percent conduit fill for cable installation.
 - 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - 1. Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient

quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.

- 2. Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
- 3. Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
- 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 005OP2H3 (202-461-5310) prior to installation.
- D. Patient Bedside Prefabricated Units (PBPU) Installation:
 - 1. Under no circumstances, proceed with installing PBPU without written approval of PBPU OEM and specific instructions regarding attachment to or modifying of PBPU.
 - 2. Maintain UL integrity of each PBPU. If installation violates UL integrity, obtain on site UL re-certification of violated PBPU at the direction of COR.
- E. Labeling:
 - 1. Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - 2. Print lettering of labels with laser printers transfer process; handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

- A. Interim Inspection:
 - 1. Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factory-certified representative and witnessed by COR.
 - 2. Check each item of installed equipment to ensure appropriate NRTL label.
 - 3. Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.

- 4. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
- 5. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
- 6. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
- 7. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - 2. Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
 - 3. Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Microduct Tests:
 - 1. Furnish COR, obstruction and pressure test data for each microduct installed. Complete pressure and obstruction tests per manufacturer's recommended procedures prior to installing fiber, and ensure 100 percent of all microducts are compliant with manufacturer.
 - 2. Complete microduct pressure testing before proceeding with endto-end microduct obstruction testing.
 - 3. Notify COR at least one week in advance of test date so that Government and design professional may be present to witness testing.
 - 4. Maintain close contact with chosen and technically-approved OEM and SMCS 005OP2H3 throughout installation, testing and certification process.
- D. Acceptance Test:

- 1. After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
- 2. Test only in presence of a COR.
- 3. Test utilizing approved test equipment to certify proof of performance.
- 4. Verify that total system meets the requirements of this section.
- 5. Include expected duration oftest time, with notification of the acceptance test.
- E. Verification Tests:
 - 1. Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
 - 2. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-7 using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.
- F. Performance Testing:
 - Perform Category 5E (or on a case by case basis Category 6 for specialized powered systems accepted by SMCS 005OP2H3, (202) 461-5310, IT and FMS Services and COR) tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- G. Total System Acceptance Test: Perform verification tests for UTP copper cabling systems and single mode fiber optic cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - 1. Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.

- b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
- 2. Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
- 3. Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - b. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
- 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

END OF SECTION 27 15 00