

VA Master Specifications

Prepared For

NLR IMPROVE SECURITY CONTROL/MONITORING SYSTEM

Central Arkansas VAMC Little Rock, AR

Contract No. VA256-12-D-0333 Task Order No. VA256-16-J-0655 Project No. 598-16-102

Submittal Date: September 2017
CONSTRUCTION DOCUMENTS

September 2017

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS	DATE
00 05 01	Special Requirements for Work Within A VA Hospital	
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	11-15
01 33 23	Shop Drawings, Product Data, and Samples	07-15
01 35 26	Safety Requirements	09-16
01 42 19	Reference Standards	05-16
	DIVISION 02 - EXISTING CONDITIONS(Not Used)	
	DIVISION 03 - CONCRETE (Not Used)	
	DIVITATION OA MIGONDU (Mak Maral)	
	DIVISION 04 - MASONRY (Not Used)	
	DIVISION 05 - METALS(Not Used)	
	DIVIDION 03 - METALD(NOC OBEC)	
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES (Not Used)	
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 84 00	Firestopping	02-16
	DIVISION 08 - OPENINGS(Not Used)	
	DIVISION 09 - FINISHES(Not Used)	
	DIVISION 10 - SPECIALTIES(Not Used)	
	DIVISION 11 - EQUIPMENT(Not Used)	
	DIVISION 12 - FURNISHINGS(Not Used)	
	DIVISION 13 - SPECIAL CONSTRUCTION(Not Used)	
	DIVISION 14- CONVEYING EQUIPEMENT(Not Used)	
	DIVISION 21- FIRE SUPPRESSION(Not Used)	
	DIVISION 22 - PLUMBING(Not Used)	
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)(Not Used)	

NLR IMPROVE SECURITY CONTROL

Construction Documents

September 2017

	DIVISION 25 - INTEGRATED AUTOMATION(Not Used)	
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	07-13
26 05 26	Grounding and Bonding for Electrical Systems	12-12
26 05 33	Raceway and Boxes for Electrical Systems	05-14
26 27 26	Wiring Devices	01-16
26 41 00	Facility Lightning Protection	
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	06-15
27 05 26	Grounding and Bonding for Communications Systems	06-15
27 05 33	Raceways and Boxes for Communications Systems	06-15
27 10 00	Control, Communication and Signal Wiring	06-15
27 11 00	Communications Equipment Room Fittings	06-15
27 15 00	Communications Structured Cabling	01-16
27 17 10	Testing, Identification and Administration	01 10
2, 1, 10	of Balanced Twist Pair Infrastructure	
27 17 20	Testing, Identification and Administration of Fiber	
	Infrastructure	
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 05 00	Common Work Results for Electronic Safety and Security	09-11
28 05 13	Conductors and Cables for Electronic Safety and Security	09-11
28 05 26	Grounding and Bonding for Electronic Safety and	09-11
	Security	
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security	09-11
28 13 00	Physical Access Control System	10-11
28 13 16	Physical Access Control System and Database Management	
28 23 13	Video Surveillance and Security Platform	
	Ip-Video Surveillance and Security Platform	

SECTION 00 05 01 SPECIAL REQUIREMENTS FOR WORK WITHIN A VA HOSPITAL

1. GENERAL

- A. This section is to bring to the attention of the contractor, Special Requirements of our hospital. Our primary goal is to provide safe, accurate, comfortable treatment and diagnostic work. The construction project is secondary. The prints may show phasing but cannot convey every consideration that must be given to implement the plan. Close coordination and advance notifications must be provided. The VA cannot tolerate the method of construction as would be done in an empty building for example. Therefore, the contractor shall plan for cleanliness, dust proofing, quietness, etc., as needed. The following are considerations and requirements needed in order
- to work at the hospital. B. SAFETY AND INFECTION CONTROL PROCEDURES - TO BE APPLIED TO ALL
- CONSTRUCTION PROJECTS
 - 1. In regard to specifications, regulations, and standards: unless precedence is specifically addressed elsewhere in the contract, the following applies. The specification 000501, and NFPA code takes precedence over specification 013526 Safety on matters SPECIFICALLY addressed in specification 000501 and NFPA documents. Otherwise the most conservative or protective of specifications, regulations, contract requirements take precedence.
 - 2. The overriding principal is to work within an area that is under negative pressure and contain all dust within the construction area. The contractor must whatever is necessary in order to achieve this.
 - In order to accomplish the above, the CUBE method will be used. This method demands that a CUBE consisting of the floor, walls both above and below suspended ceilings and the deck above be established and maintained while construction is being performed. Walls may have to be built by the contractor if the existing walls cannot be utilized. The CUBE will be kept under

negative pressure. In addition to containing dust within the work area, dust must be kept from exiting the work area via footsteps and cart wheels.

The project will have an ICRA (Infection Control Risk Assessment) completed prior to any construction or phase of construction. This document will be posted and maintained at the construction site and serve as reminder of the precautions to be followed. The ICRA will address the following:

ICRA

- To be posted before any work is done and reviewed at each phase for any adjustment needed.
- To be initiated by IC (Infection Control department) or Engineering and signed off by both parties.
- ICRA forms will be kept by Safety and IC.

Infection Control briefing

- An overview of infection control will be given at the preconstruction conference.
- Superintendent will be required to attend the preconstruction conference.

Barrier plan

- Contractor will sketch out the placements of his barrier(s) and get approval by IC and VA safety via the COR.
- Barrier will be inspected by IC and safety before each phase is started.
- The Contractor has must have a 1hr barrier below a maintained ceiling. This barrier is to be at a minimum a metal stud wall with 5/8" gypsum board on both sides. The barrier must have an entry consisting of a metal framed, solid - 45 min, door.
- If the ceiling in the construction area is to be removed, the contractor has the following options in addressing the space ABOVE THE CEILING (the above 1hr barrier remains):
 - 1. Continue the 1hr wall to deck.

- 2. Fire sprinklers heads, pendants, are turned up and positioned within 13" of upper deck. The space between the top of the ceiling height barrier (1 hr. construction wall) and the upper deck may be 6mm fire retardant poly. This poly barrier must be airtight to serve as a dust and smoke barrier.
- 3. Fire watch must be maintained at ALL times.
- Barrier must also serve as physical barrier for when the area is not occupied by contactors. Entry will be via an actual door and frame and will be locked when not occupied.

Negative Air

- Existing ceilings may be used as part of the CUBE barrier.
- Minus .03 inches of water pressure must be maintained. The contractor is responsible for providing negative air unit(s) as needed to maintain .03 inches of pressure. Contractor must install a manometer with a scale of 0-1/2 inch water for each pressure area.
- Discharge into a corridor via a grill. The VA must prove that air discharged is clean (HEPA) via a particle meter before the unit is turned on and any work started.

Mats

- Carpet shall not be used. Contractor must clean his wheels and feet in the anteroom so that no dust is tracked down the hall.
- · Sticky mats will be used in class 3 and 4 construction and will be changed every 4 hours.

Anteroom

- Serves as an air lock and a place to remove dust from people, carts, feet, etc.
- Can be built inside the construction area or if built in the corridor, 5 feet clearance must be maintained.
- Must be hard walls.
- Air flow will be from the outside common space into the anteroom and then into the construction area.

Gross demolition

- Tyvek coveralls and disposable shoe covers must be worn during gross demolition phase which is defined as wall, ceiling and flooring removal.
- Use covered carts or containers when transporting waste down approved routes.
- Disposable items are to be used one time.
- Must be removed in the ante room before leaving the work area.

Existing HVAC Grills

- Must seal all grills supply, return, and exhaust.
- Seal by substantial method to prevent barrier from coming loose. Use blue painter tape only and do not use duct tape anywhere.
- Above Ceiling Inspections as part of work planning
- Allowed to remove one tile per 50 square feet for inspection with no IC control.
- No work will be allowed without IC control with the exception of allowing cable pulling which may be done with the CUBE method.

Fire or Smoke barriers

- Temporary barriers must be built to give the same rating through an alternate path when existing barriers must be compromised.
- Permanent new rated walls and ceilings (as needed) will be built before existing rated barriers are compromised.
- See "Barrier Plan" section above.

General

- · Clean the work area daily to control the amount of accumulated dust from collecting within the work area.
- Ceiling T-grids must be vacuumed before tile is placed.
- Utility runs that don't necessarily have work contained to a room will still have to confirm to the CUBE method. A plastic barrier will have to be placed over the location of a utility run and

secured to the remaining ceiling in conjunction with existing walls and / or barrier walls.

Infection Control Construction Worksheet - Class III/IV								
Location of Construction:				Project Start Date:				
Const	ructi	on Foreman:		Estimated Duration:				
Contr	actor	Performing Work:		Completion Date:				
Super	visor	:		Telephone:				
YES	NO	CONSTRUCTION ACTIVITY	YES		NO	INFECTION CONTROL RISK GROUP		
		TYPE A: Inspection, non-invasive activity				GROUP 1: Low Risk		
		TYPE B: Small scale, short duration activities which create minimal dust.				GROUP 2: Medium Risk		
		TYPE C: Work that generates moderate to high levels of dust, requires demolition or removal of any fixed building components or assemblies; greater than 1 work shift for completion.				GROUP 3: Medium/High Risk		
		TYPE D: Major demolition and construction projects; requires consecutive work shifts.				GROUP 4: Highest Risk		

September 2017

C. Telephone and Computer Wiring:

All telephone and computer jacks shall be removed by the VA as needed. At the pre-construction walkthrough, the contractor shall discuss timeframes for removal with the COTR (Contracting Officer's Technical Representative) who will contact the VA's telecommunications group for actual removal. THE CONTRACTOR SHALL NOT ATTEMPT ANY REMOVAL INCLUDING THE UNPLUGGING OF PHONES AND COMPUTERS. No contractor shall connect, disconnect, move or change the configuration of any VA-owned IT equipment. Only OI&T personnel are authorized to connect, disconnect, or move IT equipment, no exceptions. When in the sequence of completing a task or project, it becomes necessary to connect/disconnect, move or change the configuration of an IT devices, the COR or service representative must communicate to OI&T through the appropriate channels so that a Service Desk ticket can be created for OI&T to fulfill the task.

- 1. The Fire Alarm devices smoke detectors, heat detectors and pull stations, are all addressed devices. Do not remove any of these devices. If they must be removed, please contact the COTR.
- 2. Penetrations through floors and rated walls must be fire-stopped with materials made from the specific application at hand. Sealing must be done at the time the penetration is made and not done at the end of the job.
- 3. No temporary or permanent wireless access point or WIFI will be set up inside or outside any VA Building.
- 4. Materials to be turned over for maintenance stock:
 - a. The contractor will turn over no less than 3 % of each product used for station stock.
 - b. Materials to be turned over is limited to flooring (roll carpet is not needed) and specialty ceiling tile. Turn over material in original containers.
- 5. Electric outlets and Data jacks:
 - a. If plans and specifications to not provide clarity, the Contractor shall provide one duplex outlet (either normal or

- emergency power) and one triplex data jack per 1000 gross square feet (rounded-up) of new or renovated built.
- b. Every job results in the need for additional electric and data jacks needed. The contractor will include in his price, work to install electric outlets and data jacks as directed. For planning purposes this number should be considered 10% of the total numbers in the project with a minimum of 1 set per office or nurse/work station. The Contractor will survey the new space with the COR and users at an appropriate point in construction (in-wall inspection to 20% from completion is an appropriate window). The locations where any are needed is determined at this time.
- 6. The VA will be entitled to a credit for any unneeded devices not installed. Conversely, the VA will pay for any additional needed.

D. Other Areas of Concern:

- 1. When construction is near sensitive areas such as surgery, noisy operations shall be discontinued until a more appropriate time, which may be after normal working hours or on weekends. If this has been determined, it shall be accomplished at no additional cost to the VA.
- 2. The contractor shall notify the COTR in advance of operations that would cause disruption to the operation of the medical center. Examples of these disruptions are: utility shutdown, noise, vibration, etc. The contractor shall adjust his schedule to accommodate patient care activities.
- 3. Utilities shall not be disconnected without coordination with the COTR. Contractors have often cut power to "their" area and ended up cutting off power to areas outside the construction site.
- 4. Contractor shall not attempt to work an electric circuit hot. If necessary, a temporary electric feed will be run.
- 5. Odors may cause problems such as painting with oil-based paint on a patient ward. Reasonable action such as putting an exhaust fan in a window or hanging plastic to isolate a painted area shall be needed.

- 6. The contractor shall take all necessary precautions to ensure compliance with the Life Safety Code (2013) and be mindful of the seriousness of how this affects the invalid. The contractor shall not block corridors, exits or access to exits at any time.
- 7. ID badges shall be worn by all workers at all times.
- 8. The construction area shall be secure at the end of the day. The contractor shall install a door to prevent patients, employees and other unauthorized personnel from entering the work site. This door shall be secured using a Stanley Best Keypad EZ lock with key override. (93KZ7DV15KPS3 for cylindrical applications, 35HZ7EV14KP for mortise applications) VA locksmiths will provide and install the core when lock is in place. The core must be returned to the VA at the conclusion of the contract.
- 9. Exterior work must be secured by placing orange plastic 4 feet tall fencing around the area. Barricade tape will not be acceptable. Appropriate warning signage will be installed. Signage may need to be placed on the interior of exit doors based on the outside work being performed.
- 10. New fire/smoke barriers must be constructed before old barriers are demolished so that barrier integrity is maintained.
- 11. The VA must insure that no asbestos containing products are used in construction or equipment installation. The contractor shall obtain MSDS sheets or product literature stating "CONTAINS NO ASBESTOS" for the following classifications of products that have had a history of containing asbestos products. This list does not cover all suspect items. These MSDS sheets will be bound and submitted as proof that the building materials do not contain asbestos.
 - a. Surfacing Materials: Sprayed or toweled-on
 - b. Thermal insulating products: Batts, blocks, pipe covering, fire doors.
 - c. Textiles: Gaskets, cloth, blankets, felts, sheets, cords/rope/yard, tubing, tape/strip, wiring

- d. Cementitious: Concrete-like materials, corrugated, flat, flexible perforated laminated, roof tiles, clapboard, shingles-roofing/siding, pipe
- e. Paper Products: Corrugated high temperature or moderate temperature, indented, millboard
- f. Roofing Felts: smooth surface, mineral surface, shingles, pipeline
- g. Asbestos containing compounds: caulking, caulking putties, glues, mastics, adhesive (cold applied), joint compound, roofing asphalt, mastics, asphalt tile cement, roof putty, plaster/stucco, spackles, sealants fire/water, cements such as insulation cement, finishing cement, magnesia cements.
- h. Asbestos ebony products: as used in electrical boxes
- i. Flooring tile and sheets goods: vinyl/asbestos tile, asphalt/asbestos tile, sheet goods/resilient
- j. Wall covering: Vinyl wallpaper
- k. Paints and coatings: Roof coating, air tight
- 12. The following items are clarifications that have caused confusion and problems in the past:
 - a. When painting, the entire doorframe shall be painted (excluding UL or other Fire Rating information). Walls shall be painted to a natural break of change in direction. Door silencers shall not be painted.
 - b. Contractors shall mark their dumpsters so VA employees will not assume it is a VA dumpster.
 - c. When excavating, the contractor shall be responsible for locating items within ten (10) feet as scaled from a plan.
 - d. Operational and Maintenance Manuals (4 sets) shall be required for completion of the job.
 - e. Workers parking where not permitted or without proper dash signage displayed, shall be ticketed.
 - f. The VA shall not loan tools or materials to the contractor. It is your responsibility to furnish all labor, materials and equipment necessary for completion of the job.
 - g. Fire sprinkler lines may not be used to support any utility or any other item.

- h. The job superintendent or designee shall be on site at all times when work is being performed.
- i. The contractor shall not disturb the floors due to asbestos, other than how shown on the plans.
- j. Where the contractor disturbs lawn areas, he shall aerate compacted areas and sod with common Bermuda.
- k. When ceilings are replaced or altered in height, sprinkler heads shall be removed to allow the tiles to be installed. The heads shall be adjusted in height, if necessary, and reinstalled.
- 1. The VA policy is that there is no smoking in buildings or on rooftops. Smoking is allowed in designated areas only.
- m. Full height and rated walls must be fire caulked using an approved material designed for the walls rating.
- n. Some jobs require exterior areas be closed while a portion of work is being performed. The contractor must inform the VA 14 days prior to closing so the Union can be notified as is the terms of the Union contract. The Contractor will submit a plan showing the area and the times that they intend on using the area. The plan should show the time that the contractor will be placing orange fencing to keep pedestrians and vehicles out of the area. Most work is planned for beginning early in the morning. The contractor must place his fencing the night before. Oftentimes, vehicles are left in the parking area after the fencing is placed. The VA Police will try to contact the owners and ask that they be moved but there is no guarantee that the VA will be successful. Areas where work is to begin after normal duty hours such as 5 pm frequently have vehicles remaining. The Contractor is responsible for placing orange fencing and stationing a man to discourage further use of the parking area.
- o. Demolition of any water piping must be done to prevent any deadlegs. A deadleg is defined as 2 pipe diameters or longer where a water line is capped and cannot flow.

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for NLR VA in Little Rock, AK as required by drawings and specifications.
- B. Superintendent will be required to attend a "pre-bid" mandatory walk-through.
- C. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- D. Offices of BES Design Build, LLC, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

1.3 STATEMENT OF BID ITEM(S)

- A. ITEM I, Improve Security Access and Monitoring System: Work includes general construction, alterations, and necessary removal of existing equipment and certain other items.
 - ITEM II, Electrical and Communications Work: Work includes all labor, material, equipment and supervision to perform the required electrical construction work on this project including...

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.

B. Security Procedures:

- General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that security escort arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- 5. The contractor MUST provide at a minimum of 2 personnel that meet the requirements of Security Investigation Center (SIC) and pass the appropriate background check. This will allow the contractor in

question to escort their workers in all Office of Technology (OIT) Intermediate Data Frame (IDF) closets.

C. Document Control:

- Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
- 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.

- D. Motor Vehicle Restrictions
 - 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - 2. A limited number of (2 to 5) permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.
- C. Working space and space available for storing materials shall be COR.
- D. Workmen are subject to rules of Medical Center applicable to their conduct.
- E. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of

Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.

3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.

F. Phasing:

The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:

To insure such executions, Contractor shall furnish the COR with a schedule of approximate phasing and dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR wo weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing and dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, COR and Contractor, as follows:

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR and a representative of VA Supply Service, of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of the building.

2. Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.

- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR and/or Supply Representative, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.

2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.

3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - 1. Reserved items which are to remain property of the Government are identified by attached tags as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 RESTORATION

A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is

disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.

- B. Upon completion of contract, deliver work complete and undamaged.

 Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.10 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.11 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is

September 2017

satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

- - - E N D - - -

September 2017

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.

- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.
- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid.

 Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - 1. A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center Cemetery, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.

- 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- B. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- C. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- D. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - 4. A space 120 mm by 125 mm (4-3/4) by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.

September 2017

- 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

_BES DESIGN BUILDING, LLC
(Architect-Engineer)
_766 Middle Street
(A/E P.O. Address)
_Fairhope, AL 36532
(City, State and Zip Code)

1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011	.Pre-Project	&	Pre-Task	Safety	and	Health
	Planning					

- A10.34-2012......Protection of the Public on or Adjacent to Construction Sites
- A10.38-2013......Basic Elements of an Employer's Program to

 Provide a Safe and Healthful Work Environment

 American National Standard Construction and

 Demolition Operations
- C. American Society for Testing and Materials (ASTM):
 - E84-2013.....Surface Burning Characteristics of Building Materials
- D. The Facilities Guidelines Institute (FGI):
 - FGI Guidelines-2010 Guidelines for Design and Construction of Healthcare Facilities
- E. National Fire Protection Association (NFPA):

10-2013st	andard for	Portable	Fire	Extinguishers

30-2012.....Flammable and Combustible Liquids Code

51B-2014......Standard for Fire Prevention During Welding,
Cutting and Other Hot Work

70-2014.....National Electrical Code

70B-2013......Recommended Practice for Electrical Equipment

Maintenance

CENTRAL ARKANSAS VETERANS HCS

September 2017

NLR IMPROVE SECURITY CONTROL

Construction Documents

70E-2015Standard for Electrical Safety in the Workplace
99-2012Health Care Facilities Code
241-2013Standard for Safeguarding Construction,
Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification

Manual

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1904Reporting and Recording Injuries & Illnesses

29 CFR 1910Safety and Health Regulations for General Industry

29 CFR 1926Safety and Health Regulations for Construction Industry

CPL 2-0.124......Multi-Employer Citation Policy

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).

- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:

No impact - near miss incidents that should be investigated but are not required to be reported to the VA;

Minor incident/impact - incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;

Moderate incident/impact - Any work-related injury or illness that results in:

- Days away from work (any time lost after day of injury/illness onset);
- 2. Restricted work;
- 3. Transfer to another job;
- 4. Medical treatment beyond first aid;
- 5. Loss of consciousness;
- A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
- 7. any incident that leads to major equipment damage (greater than \$5000).

These incidents must be investigated and are required to be reported to the VA;

Major incident/impact - Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of

contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.

F. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Project Manager and Facility Safety Manager or Contracting Officer Representative.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:

- 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
- 2. Address both the Prime Contractors and the subcontractors work operations.
- 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
- 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET.** Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - 2) Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
 - b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor;
 - 2) Contract number;
 - 3) Project name;
 - 4) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).

- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - 1) A statement of the employer's ultimate responsibility for the implementation of his SOH program;
 - 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
 - 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
 - 4) Requirements that no work shall be performed unless a designated competent person is present on the job site;
 - 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
 - 6) Lines of authority;
 - 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- **e. SUBCONTRACTORS AND SUPPLIERS.** If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.
- f. TRAINING.

- 1) Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc.) and any requirements for periodic retraining/recertification are required.
- 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

- 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- 2) Any external inspections/certifications that may be required
 (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Project Manager and Facility Safety or Contracting Officer Representative:
 - 1) Exposure data (man-hours worked);
 - 2) Accident investigation reports;

September 2017

- 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention;
 - 4) Medical Support;
 - 5) Posting of emergency telephone numbers;
 - 6) Prevention of alcohol and drug abuse;
 - 7) Site sanitation (housekeeping, drinking water, toilets);
 - 8) Night operations and lighting;
 - 9) Hazard communication program;
 - 10) Welding/Cutting "Hot" work;
 - 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
 - 12) General Electrical Safety;
 - 13) Hazardous energy control (Machine LOTO);
 - 14) Site-Specific Fall Protection & Prevention;
 - 15) Excavation/trenching;
 - 16) Asbestos abatement;
 - 17) Lead abatement;
 - 18) Crane Critical lift;

Construction Documents September 2017

- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) PreCast Concrete;
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Project Manager, Facility Safety, Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Project Manager and Facility Safety or Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, Accident Prevention, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Project Manager, project superintendent, project overall designated OSHA Competent Person, and facility Safety or Contracting Officer Representative. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in

order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Project Manager and Facility Safety or Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
 - 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.

Construction Documents

- b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Project Manager and Facility Safety or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Project Manager and Facility Safety or Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting

Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations). However, the SSHO has be a separate qualified individual from the Prime Contractor's Superintendent and/or Quality Control Manager with duties only as the SSHO.
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in

accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Project Manager and Facility Safety or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or

his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.

G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Project Manager and Facility Safety or Contracting Officer Representative.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - 1. Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - 2. The Project Manager, Facility Safety and Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
 - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.

4. A report of the inspection findings with status of abatement will be provided to the Project Manager and Facility Safety or Contracting Officer Representative within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Project Manager and Facility Safety or Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, , or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the proper authority determines whether a government investigation will be conducted.
- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent), and provide the report to the Project Manager and Facility Safety or Contracting Officer Representative within 5 calendar days of the accident. The VA will provide any required forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on

electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.

B. Mandatory PPE includes:

- 1. Hard Hats unless written authorization is given by the Facility Safety or Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
- 2. Safety glasses unless written authorization is given by the Facility Safety or Contracting Officer Representative in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
- 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Facility Safety or Contracting Officer Representative in circumstances of no foot hazards.
- 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities.

 Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.

 Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the

Facility Safety or Contracting Officer Representative before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Project Engineer or Facility Safety Representative. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class II, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:

1. Class I requirements:

- a. During Construction Work:
 - 1) Notify the Project Manager and Facility Safety or Contracting Officer Representative.
 - 2) Execute work by methods to minimize raising dust from construction operations.
 - 3) Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.

b. Upon Completion:

- 1) Clean work area upon completion of task
- 2) Notify the Project Manager and Facility Safety or Contracting Officer Representative.

2. Class II requirements:

- a. During Construction Work:
 - 1) Notify the Project Manager and Facility Safety or Contracting Officer Representative.
 - 2) Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.

Construction Documents

- 3) Water mist work surfaces to control dust while cutting.
- 4) Seal unused doors with duct tape.
- 5) Block off and seal air vents.
- 6) Remove or isolate HVAC system in areas where work is being performed.

b. Upon Completion:

- 1) Wipe work surfaces with cleaner/disinfectant.
- 2) Contain construction waste before transport in tightly covered containers.
- 3) Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
- 4) Upon completion, restore HVAC system where work was performed
- 5) Notify the Project Manager and Facility Safety or Contracting Officer Representative.

3. Class III requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Project Manager and Facility Safety or Contracting Officer Representative.
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording

and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.

- 5) Contain construction waste before transport in tightly covered containers.
- 6) Cover transport receptacles or carts. Tape covering unless solid lid.

b. Upon Completion:

- 1) Do not remove barriers from work area until completed project is inspected by the Project Manager, Facility Safety or Contracting Officer Representative and thoroughly cleaned by the VA Environmental Services Department.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Vacuum work area with HEPA filtered vacuums.
- 4) Wet mop area with cleaner/disinfectant.
- 5) Upon completion, restore HVAC system where work was performed.
- 6) Return permit to the Facility Safety or Contracting Officer Representative.

4. Class IV requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Facility Safety or Contracting Officer Representative.
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit)

before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.

- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.5) Seal holes, pipes, conduits, and punctures.
- 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
- 7) All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.

b. Upon Completion:

- Do not remove barriers from work area until completed project is inspected by the Facility Safety or Contracting Officer Representative with thorough cleaning by the VA Environmental Services Dept.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Contain construction waste before transport in tightly covered containers.
- 4) Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.

- 8) Return permit to the Facility Safety or Contracting Officer Representative.
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - 2. Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center) Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
 - e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
 - f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.

D. Products and Materials:

1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes

Construction Documents

- 2. Barrier Doors: Self Closing One-hour solid core wood in steel frame, painted
- 3. Dust proof one-hour fire-rated drywall
- 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
- 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product
- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be establish and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to Contracting Officer Representative and Facility CSC for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine

impact of construction activities on indoor air quality with safe thresholds established.

- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
 - 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.

7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

I. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- 1. Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- 2. Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.

- 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
- 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
- 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to the Project Manager and Facility Safety or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas the areas that are described in phasing requirements and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating

of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.

- 2. Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with the Project Manager, Facility Safety or Contracting Officer Representative.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Project Manager, Facility Safety or Contracting Officer Representative
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Project Manager, Facility Safety and the

Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.

- K. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day.
- L. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- M. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly.
- N. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- O. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply

with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Chief Engineer, Chief of Facilities Management, Facility Safety and the Contracting Officer Representative with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.

- 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.

E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30-ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30-ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E - 2015, Chapter 1, Article 110.4(C)(2)...

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.

- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart
 - P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.
- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdictionissued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater

than 5 feet in depth. Each section of the permit shall be provided to the Project Manager, Facility Safety or Contracting Officer
Representative prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall be closed out and provided to the Project Manager, Facility Safety or Contracting Officer Representative The permit shall be maintained onsite and the first section of the permit shall include the following:

- 1. Estimated start time & stop time.
- 2. Specific location and nature of the work.
- 3. Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
- 4. Indication of whether soil or concrete removal to an offsite location is necessary.
- 5. Indication of whether soil samples are required to determined soil contamination.
- 6. Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment.
- 7. Indication of review of site drawings for proximity of utilities to digging/drilling.

The second section of the permit for excavations greater than five feet in depth shall include the following:

1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetronmeter will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 - Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 - Type B, greater than 1.5 Tons/FT2 - Type A without condition to reduce to Type B).

- 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
- 3. Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
- 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.
- C. As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - 1. The planned dig site will be outlined/marked in white prior to locating the utilities.
 - Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
 - 3. 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
 - 4. Digging will not commence until all known utilities are marked.
 - 5. Utility markings will be maintained

- D. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- E. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment

[1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Project Manager, Facility Safety or Contracting Officer Representative

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate and obtain permits from the Project Manager, Facility Safety or Contracting Officer Representative at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft. (0.9 m) above the upper landing surface.
 - 1. When a 3 ft. (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.

Construction Documents

- 2. In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

September 2017

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

Construction Documents

September 2017

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

AABC Associated Air Balance Council

http://www.aabchq.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AAN American Nursery and Landscape Association

http://www.anla.org

AASHTO American Association of State Highway and Transportation

Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

AGC	Associated General Contractors of America http://www.agc.org
AGMA	American Gear Manufacturers Association, Inc. http://www.agma.org
AHAM	Association of Home Appliance Manufacturers http://www.aham.org
AIA	American Institute of Architects
	http://www.aia.org
AISC	American Institute of Steel Construction
	http://www.aisc.org
AISI	American Iron and Steel Institute
	http://www.steel.org
AITC	American Institute of Timber Construction
	http://www.aitc-glulam.org
AMCA	Air Movement and Control Association, Inc.
	http://www.amca.org
ANLA	American Nursery & Landscape Association
	http://www.anla.org
ANSI	American National Standards Institute, Inc.
	http://www.ansi.org
APA	The Engineered Wood Association
	http://www.apawood.org
ARI	Air-Conditioning and Refrigeration Institute
	http://www.ari.org
ASAE	American Society of Agricultural Engineers
	http://www.asae.org
ASCE	American Society of Civil Engineers
	http://www.asce.org

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

ASHRAE American Society of Heating, Refrigerating, and

Air-Conditioning Engineers

http://www.ashrae.org

ASME American Society of Mechanical Engineers

http://www.asme.org

ASSE American Society of Sanitary Engineering

http://www.asse-plumbing.org

ASTM American Society for Testing and Materials

http://www.astm.org

AWI Architectural Woodwork Institute

http://www.awinet.org

AWS American Welding Society

http://www.aws.org

AWWA American Water Works Association

http://www.awwa.org

BHMA Builders Hardware Manufacturers Association

http://www.buildershardware.com

BIA Brick Institute of America

http://www.bia.org

CAGI Compressed Air and Gas Institute

http://www.cagi.org

CGA Compressed Gas Association, Inc.

http://www.cganet.com

CI The Chlorine Institute, Inc.

http://www.chlorineinstitute.org

CISCA Ceilings and Interior Systems Construction Association

http://www.cisca.org

CISPI Cast Iron Soil Pipe Institute

http://www.cispi.org

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

CLFMI	Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org
CPMB	Concrete Plant Manufacturers Bureau <pre>http://www.cpmb.org</pre>
CRA	California Redwood Association <pre>http://www.calredwood.org</pre>
CRSI	Concrete Reinforcing Steel Institute <pre>http://www.crsi.org</pre>
CTI	Cooling Technology Institute <pre>http://www.cti.org</pre>
DHI	Door and Hardware Institute <pre>http://www.dhi.org</pre>
EGSA	Electrical Generating Systems Association <pre>http://www.egsa.org</pre>
EEI	Edison Electric Institute <pre>http://www.eei.org</pre>
EPA	Environmental Protection Agency http://www.epa.gov
ETL	ETL Testing Laboratories, Inc. <pre>http://www.etl.com</pre>
FAA	Federal Aviation Administration <pre>http://www.faa.gov</pre>
FCC	Federal Communications Commission <pre>http://www.fcc.gov</pre>
FPS	The Forest Products Society http://www.forestprod.org
GANA	Glass Association of North America http://www.cssinfo.com/info/gana.html/
FM	Factory Mutual Insurance <pre>http://www.fmglobal.com</pre>

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

GA Gypsum Association http://www.gypsum.org

GSA General Services Administration

http://www.gsa.gov

HI Hydraulic Institute

http://www.pumps.org

HPVA Hardwood Plywood & Veneer Association

http://www.hpva.org

ICBO International Conference of Building Officials

http://www.icbo.org

ICEA Insulated Cable Engineers Association Inc.

http://www.icea.net

ICAC Institute of Clean Air Companies

http://www.icac.com

IEEE Institute of Electrical and Electronics Engineers

http://www.ieee.org\

IMSA International Municipal Signal Association

http://www.imsasafety.org

IPCEA Insulated Power Cable Engineers Association

NBMA Metal Buildings Manufacturers Association

http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings

Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers

http://www.naamm.org

NAPHCC Plumbing-Heating-Cooling Contractors Association

http://www.phccweb.org.org

NBS National Bureau of Standards

See - NIST

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

NBBPVI National Board of Boiler and Pressure Vessel Inspectors

http://www.nationboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association

http://www.nema.org

NFPA National Fire Protection Association

http://www.nfpa.org

NHLA National Hardwood Lumber Association

http://www.natlhardwood.org

NIH National Institute of Health

http://www.nih.gov

NIST National Institute of Standards and Technology

http://www.nist.gov

NLMA Northeastern Lumber Manufacturers Association, Inc.

http://www.nelma.org

NPA National Particleboard Association

18928 Premiere Court Gaithersburg, MD 20879

(301) 670-0604

NSF National Sanitation Foundation

http://www.nsf.org

NWWDA Window and Door Manufacturers Association

http://www.nwwda.org

OSHA Occupational Safety and Health Administration

Department of Labor http://www.osha.gov

PCA Portland Cement Association

http://www.portcement.org

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

PCI	Precast Prestressed Concrete Institute
	http://www.pci.org
PPI	The Plastic Pipe Institute
	http://www.plasticpipe.org
PEI	Porcelain Enamel Institute, Inc.
	http://www.porcelainenamel.com
PTI	Post-Tensioning Institute
	http://www.post-tensioning.org
RFCI	The Resilient Floor Covering Institute
	http://www.rfci.com
RIS	Redwood Inspection Service
	See - CRA
RMA	Rubber Manufacturers Association, Inc.
	http://www.rma.org
SCMA	Southern Cypress Manufacturers Association
	http://www.cypressinfo.org
SDI	Steel Door Institute
	http://www.steeldoor.org
SOI	Secretary of the Interior
	http://www.cr.nps.gov/local-law/arch_stnds_8_2.htm
IGMA	Insulating Glass Manufacturers Alliance
	http://www.igmaonline.org
SJI	Steel Joist Institute
	http://www.steeljoist.org
SMACNA	Sheet Metal and Air-Conditioning Contractors
	National Association, Inc.
	http://www.smacna.org
SSPC	The Society for Protective Coatings
	http://www.sspc.org

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

STI Steel Tank Institute

http://www.steeltank.com

SWI Steel Window Institute

http://www.steelwindows.com

TCA Tile Council of America, Inc.

http://www.tileusa.com

TEMA Tubular Exchange Manufacturers Association

http://www.tema.org

TPI Truss Plate Institute, Inc.

583 D'Onofrio Drive; Suite 200

Madison, WI 53719 (608) 833-5900

UBC The Uniform Building Code

See ICBO

UL Underwriters' Laboratories Incorporated

http://www.ul.com

ULC Underwriters' Laboratories of Canada

http://www.ulc.ca

WCLIB West Coast Lumber Inspection Bureau

6980 SW Varns Road, P.O. Box 23145

Portland, OR 97223

(503) 639-0651

WRCLA Western Red Cedar Lumber Association

P.O. Box 120786

New Brighton, MN 55112

(612) 633-4334

WWPA Western Wood Products Association

http://www.wwpa.org

- - - E N D - - -

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Installer qualifications.
- C. Inspector qualifications.
- D. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- E. List of FM, UL, or WH classification number of systems installed.
- F. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- G. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.3 DELIVERY AND STORAGE:

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.4 QUALITY ASSURANCE:

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality

assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

34-14Surface Burning Characteristics of Building
Materials
599-09Standard Practice for Evaluation of Agencies
Involved in Testing, Quality Assurance, and
Evaluating of Building Components
314-13aFire Tests of Through-Penetration Fire Stops
2174-14Standard Practice for On-Site Inspection of
Installed Firestops
2393-10aStandard Practice for On-Site Inspection of
Installed Fire Resistive Joint Systems and

Perimeter Fire Barriers

C. FM Global (FM):

Annual Issue Approval Guide Building Materials
4991-13......Approval of Firestop Contractors

D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

723-10(2008)......Standard for Test for Surface Burning
Characteristics of Building Materials

1479-04(R2014).....Fire Tests of Through-Penetration Firestops

- E. Intertek Testing Services Warnock Hersey (ITS-WH):
 - Annual Issue Certification Listings
- F. Environmental Protection Agency (EPA):

40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS:

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 in.) nominal pipe or 0.01 sq. m (16 sq. in.) in overall cross sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.

- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101 mm (4 in.) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS:

- A. Provide mineral fiber filler and bond breaker behind sealant.
- B. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.
- C. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION:

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION:

A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.

- B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 INSTALLATION:

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP:

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

Construction Documents September 2017

3.5 INSPECTIONS AND ACCEPTANCE OF WORK:

A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).

B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

- - - E N D - - -

FIRESTOPPING 07 84 00-6

Construction Documents

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of conductors and cable, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
 Laboratories, Inc. (UL), Institute of Electrical and Electronics
 Engineers (IEEE), and National Fire Protection Association (NFPA) codes
 and standards are the minimum requirements for materials and
 installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that

maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - 1. The Government shall have the option of witnessing factory tests.

 The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.

3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.

- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work.
 Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
 - 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.

- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements.

 Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards,

- switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____"
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.

Construction Documents

- d. Installation instructions.
- e. Safety precautions for operation and maintenance.
- f. Diagrams and illustrations.
- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

A. The Contractor shall furnish the instruments, materials, and labor for tests.

- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10Star	ndard	Specification	for	Vinyl	Chloride
Plas	stic E	Pressure-Sensit	ive	Electi	rical
Insi	ulatir	ng Tape			

D2304-10Test Method for Thermal Endurance of Rigid
Electrical Insulating Materials
D3005-10Low-Temperature Resistant Vinyl Chloride
Plastic Pressure-Sensitive Electrical

Insulating Tape

C. National Electrical Manufacturers Association (NEMA):

WC 70-09......Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

44-10Thermoset-Insulated Wires and Cables
83-08Thermoplastic-Insulated Wires and Cables
467-07Grounding and Bonding Equipment
486A-486B-03Wire Connectors
486C-04Splicing Wire Connectors
486D-05Sealed Wire Connector Systems
486E-09 Equipment Wiring Terminals for Use with
Aluminum and for Coppor Conductors

Aluminum and/or Copper Conductors

493-07......Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-04......Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.

Construction Documents September 2017

- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

D. Color Code:

- 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V		
Black	A	Brown		
Red	В	Orange		
Blue	С	Yellow		
White	Neutral	Gray *		
* or white with	colored (other	than green) tracer.		

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:

- 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
- 3. Splice and insulation shall be product of the same manufacturer.
- 4. All bolts, nuts, and washers used with splices shall be cadmiumplated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - 1. Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

Construction Documents September 2017

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, or junction boxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.

B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes and pullboxes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.5 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.6 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

September 2017

insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.

c. Perform phase rotation test on all three-phase circuits.

---END---

September 2017

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.

2. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the

extent referenced. Publications are referenced in the text by designation only.

В.	American	Society	for	Testing	and	Materials	(ASTM):

B1-07Standard	Specification	for	Hard-Drawn	Copper
Wire				

B3-07.....Standard Specification for Soft or Annealed Copper Wire

B8-11.....Standard Specification for Concentric-LayStranded Copper Conductors, Hard, Medium-Hard,
or Soft

C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-83...... IEEE Guide for Measuring Earth Resistivity,
Ground Impedance, and Earth Surface Potentials
of a Ground System Part 1: Normal Measurements

D. National Fire Protection Association (NFPA):

E. Underwriters Laboratories, Inc. (UL):

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2GROUND CONNECTIONS

A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.

B. Above Grade:

- 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 2. Connection to Building Steel: Exothermic-welded type connectors.
- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.4GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to NFPA 99 and NEC.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:

- 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
- 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

Construction Documents September 2017

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

---END---

Construction Documents September 2017

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- B. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.

- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05......Electrical Rigid Steel Conduit C80.3-05......Steel Electrical Metal Tubing C80.6-05......Electrical Intermediate Metal Conduit C. National Fire Protection Association (NFPA): 70-11......National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05......Flexible Metal Conduit 5-11.....Surface Metal Raceway and Fittings 6-07......Electrical Rigid Metal Conduit - Steel 50-95......Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13..... Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12......Conduit, Tubing, and Cable Fittings 514C-07......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers

651-11.....Schedule 40 and 80 Rigid PVC Conduit and

Conduit

Fittings 651A-11......Type EB and A Rigid PVC Conduit and HDPE

797-07..... Electrical Metallic Tubing

1242-06......Electrical Intermediate Metal Conduit - Steel

E. National Electrical Manufacturers Association (NEMA):

NLR IMPROVE SECURITY CONTROL

Construction Documents

September 2017

TC-2-13	Electrical Polyvinyl Chloride (PVC) Tubing and
	Conduit
TC-3-13	PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
FB1-12	Fittings, Cast Metal Boxes and Conduit Bodies
	for Conduit, Electrical Metallic Tubing and
	Cable
FB2.10-13	Selection and Installation Guidelines for
	Fittings for use with Non-Flexible Conduit or
	Tubing (Rigid Metal Conduit, Intermediate
	Metallic Conduit, and Electrical Metallic
	Tubing)
FB2.20-12	Selection and Installation Guidelines for
	Fittings for use with Flexible Electrical
	Conduit and Cable
F. American Iron and Stee	l Institute (AISI):
S100-2007	North American Specification for the Design of
	Cold-Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

B. Conduit:

- 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
- 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
- 3. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 4. Flexible Metal Conduit: Shall conform to UL 1.
- 5. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 6. Surface Metal Raceway: Shall conform to UL 5.

C. Conduit Fittings:

- 1. Rigid Steel Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.

- b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
- c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
- d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
- e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.

- c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 6. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
- 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm \times 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings.

 Include couplings, offsets, elbows, expansion joints, adapters, hold-

down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.

- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.

- 4. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors 600 V and Below: Rigid steel or EMT. Mixing different types of conduits in the same system is prohibited.
 - 2. Align and run conduit parallel or perpendicular to the building lines.
 - 3. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 4. Tightening set screws with pliers is prohibited.
 - 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel or EMT. Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- F. Surface Metal Raceways: Use only where shown on drawings.

Construction Documents

G. Painting:

- 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
- 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.6 WET OR DAMP LOCATIONS

- A. Use rigid steel or EMT conduit unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or EMT conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.

C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.8 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.9 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm $(1.125\ inch)$ in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.

- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.10 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

September 2017

- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

2. Manuals:

a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA):

70-14......National Electrical Code (NEC)

99-15.....Health Care Facilities

C. National Electrical Manufacturers Association (NEMA):

WD 1-10......General Color Requirements for Wiring Devices

WD 6-12Wiring Devices - Dimensional Specifications

D. Underwriter's Laboratories, Inc. (UL):

5-11.....Surface Metal Raceways and Fittings

20-10......General-Use Snap Switches

231-08.....Power Outlets

467-13......Grounding and Bonding Equipment

498-12.....Attachment Plugs and Receptacles

943-15.....Ground-Fault Circuit-Interrupters

1449-14.....Surge Protective Devices

1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall match existing color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
- C. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade

attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- I. Install horizontally mounted receptacles with the ground pin to the right.
- J. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- K. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:

Construction Documents

- a. Inspect physical and electrical conditions.
- b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
- c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- d. Test GFCI receptacles.
- 2. Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

September 2017

SECTION 26 41 00 FACILITY LIGHTNING PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing and installation of a complete UL master labeled lightning protection system.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Penetrations through the roof.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground faults.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Show locations of air terminals, connections to required metal surfaces, down conductors, and grounding means.
 - c. Show the mounting hardware and materials used to attach air terminals and conductors to the structure.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the lightning protection system conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the lightning protection system has been properly installed and inspected.
 - c. Certification that the lightning protection system has been inspected by a UL representative and has been approved by UL without variation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA):

70-11......National Electrical Code (NEC)
780-11.....Standard for the Installation of Lightning
Protection Systems

C. Underwriters Laboratories, Inc. (UL):

96-05.....Lightning Protection Components
96A-07.....Installation Requirements for Lightning
Protection Systems

467-07.....Standard for Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Lightning protection components shall conform to NFPA 780 and UL 96, for use on Class II structures. Aluminum materials are not allowed.
 - 1. Class II conductors: Copper.
 - 2. Class I air terminals: Solid copper, 460 mm (18 inches) long, not less than 9.5 mm (3/8 inch) diameter, with blunt nickel-plated points.
 - 3. Ground rods: Copper-clad steel, 0.75 in (19 mm) diameter by 3 m (10 feet) long.
 - 4. Ground plates: Solid copper, not less than 20 gauge.
 - 5. Bonding plates: Bronze, 50 square cm (8 square inches).
 - 6. Through roof connectors: Solid copper riser bar, length and type as required to accommodate roof structure and flashing requirements.
 - 7. Down conductor guards: Stiff copper or brass.
 - 8. Anchors and fasteners: Bronze bolt and clamp type shall be used for all applications except for membrane roof. Adhesive type are allowed only for attachment to membrane roof materials, using adhesive that is compatible with the membrane material.
 - 9. Connectors: Bronze clamp-type connectors shall be used for roof conductor splices, and the connection of the roof conductor to air terminals and bonding plates. Crimp-type connectors are not allowed.

10. Exothermic welds: Exothermic welds shall be used for splicing the roof conductor to the down conductors, splices of the down conductors, and for connection of the down conductors to ground rods, ground plates, and the ground ring.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be coordinated with the roofing manufacturer and installer.
- B. Install the conductors as inconspicuously as practical.
- C. Install the down conductors within the concealed cavity of exterior walls where practical. Run the down conductors to the exterior at elevations below the finished grade.
- D. Where down conductors are subject to damage or are accessible near grade, protect with down conductor guards to 2.4 m (8 feet) above grade. Bond down conductors guards to down conductor at both ends.
- E. Make connections of dissimilar metal with bimetallic type fittings to prevent electrolytic action.
- F. Install ground rods and ground plates not less than 600 mm (2 feet) deep and a distance not less than 900 mm (3 feet) nor more than 2.5 m (8 feet) from the nearest point of the structure. Exothermically weld the down conductors to ground rods and ground plates in the presence of the COR.
- G. Bond down conductors to metal main water piping where applicable.
- H. Bond down conductors to building structural steel.
- I. Connect roof conductors to all metallic projections and equipment above the roof as indicated on the drawings.
- J. Connect exterior metal surfaces, located within 900 mm (3 feet) of the conductors, to the conductors to prevent flashovers.
- K. Maintain horizontal or downward coursing of main conductor and insure that all bends have at least a 200 mm (8 inches) radius and do not exceed 90 degrees.
- L. Conductors shall be rigidly fastened every 900 mm (3 feet) along the roof and down to the building to ground.
- M. Air terminals shall be secured against overturning either by attachment to the object to be protected or by means of a substantial tripod or other braces permanently and rigidly attached to the building or structure.
- N. Install air terminal bases, cable holders and other roof-system

- supporting means without piercing membrane or metal roofs.
- O. Use through-roof connectors for penetration of the roof system. Flashing shall be provided by roofing contractor in accordance with Section 07 60 00, FLASHING AND SHEET METAL.
- P. Down conductors coursed on or in reinforced concrete columns or on structural steel columns shall be connected to the reinforcing steel or the structural steel member at its upper and lower extremities. In the case of long vertical members an additional connection shall be made at intervals not exceeding 30 M (100 feet).
- Q. A counterpoise or ground ring, where shown, shall be of No. 1/0 copper cable having suitable resistance to corrosion and shall be laid around the perimeter of the structure in a trench not less than 600 mm (2 feet) deep at a distance not less than 900 mm (3 feet) nor more than 2.5 M (8 feet) from the nearest point of the structure.
- R. On construction utilizing post tensioning systems to secure precast concrete sections, the post tension rods shall not be used as a path for lightning to ground.
- S. Where shown, use the structural steel framework or reinforcing steel as the down conductor.
 - 1. Weld or bond the non-electrically-continuous sections together and make them electrically continuous.
 - 2. Verify the electrical continuity by measuring the ground resistances to earth at the ground level, at the top of the building or stack, and at intermediate points with a sensitive ohmmeter. Compare the resistance readings.
 - 3. Connect the air terminals together with an exterior conductor connected to the structural steel framework at not more than 18 m (60 foot) intervals.
 - 4. Install ground connections to earth at not more than 18 m (60 foot) intervals around the perimeter of the building.
 - 5. Weld or braze bonding plates to cleaned sections of the steel and connect the conductors to the plates.
 - 6. Do not pierce the structural steel in any manner. Connections to the structural steel shall conform to UL 96A.

September 2017

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Test the ground resistance to earth by standard methods, and conform to the ground resistance requirements specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. A UL representative shall inspect the lightning protection system.

 Obtain and install a UL numbered master label for each of the lightning protection systems at the location directed by the UL representative and the COR.

---END---

Construction Documents September 2017

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - 1. Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also
	Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station
CAD	AutoCAD
CBOPC	Community Based Out Patient Clinic

CBC	Coupled Bonding Conductor	
CBOC	Community Based Out Patient Clinic (refer to CBOPC,	
	OPC, VAMC)	
CCS	TIP's Cross Connection System (refer to VCCS and	
	HCCS)	
CFE	Contractor Furnished Equipment	
CFM	US Department of Veterans Affairs Office of	
	Construction and Facilities Management	
CFR	Consolidated Federal Regulations	
CIO	Communication Information Officer (Facility, VISN or	
	Region)	
cm	Centimeters	
CO	Central Office	
COR	Contracting Officer Representative	
CPU	Central Processing Unit	
CSU	Customer Service Unit	
CUP	Conditional Use Permit(s) - Federal/GSA for VA	
dВ	Decibel	
dBm	Decibel Measured	
dBmV	Decibel per milli-Volt	
DC	Direct Current	
DEA	United States Drug Enforcement Administration	
DSU	Data Service Unit	
EBC	Equipment Bonding Conductor	
ECC	Engineering Control Center (refer to DCR, EMCR)	
EDGE	Enhanced Data (Rates) for GSM Evolution	
EDM	Electrical Design Manual	
EMCR	Emergency Management Control Room (refer to DCR, ECC)	
EMI	Electromagnetic Interference (refer to RFI)	
EMS	Emergency Medical Service	
EMT	Electrical Metallic Tubing or thin wall conduit	
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,	
	LEC)	

EPBX	Electronic Digital Private Branch Exchange
ESR	Vendor's Engineering Service Report
FA	Fire Alarm
FAR	Federal Acquisition Regulations in Chapter 1 of Title
	48 of Code of Federal Regulations
FMS	VA's Headquarters or Medical Center Facility's
	Management Service
FR	Frequency (refer to RF)
FTS	Federal Telephone Service
GFE	Government Furnished Equipment
GPS	Global Positioning System
GRC	Galvanized Rigid Metal Conduit
GSM	Global System (Station) for Mobile
HCCS	TIP's Horizontal Cross Connection System (refer to
	CCS & VCCS)
HDPE	High Density Polyethylene Conduit
HDTV	Advanced Television Standards Committee High-
	Definition Digital Television
HEC	Head End Cabinets(refer to HEIC, PA)
HEIC	Head End Interface Cabinets(refer to HEC, PA)
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
HSPA	High Speed Packet Access
HZ	Hertz
IBT	Intersystem Bonding Termination (NEC 250.94)
IC	Intercom
ICRA	Infectious Control Risk Assessment
IDEN	Integrated Digital Enhanced Network
IDC	Insulation Displacement Contact
IDF	Intermediate Distribution Frame
ILSM	Interim Life Safety Measures
IMC	Rigid Intermediate Steel Conduit
IRM	Department of Veterans Affairs Office of Information
	Resources Management

ISDN	Integrated Services Digital Network
ISM	Industrial, Scientific, Medical
IWS	Intra-Building Wireless System
LAN	Local Area Network
LBS	Location Based Services, Leased Based Systems
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)
LED	Light Emitting Diode
LMR	Land Mobile Radio
LTE	Long Term Evolution, or 4G Standard for Wireless Data
	Communications Technology
M	Meter
MAS	Medical Administration Service
MATV	Master Antenna Television
MCR	Main Computer Room
MCOR	Main Computer Operators Room
MDF	Main Distribution Frame
MH	Manholes or Maintenance Holes
MHz	Megahertz (10 ⁶ Hz)
mm	Millimeter
MOU	Memorandum of Understanding
MW	Microwave (RF Band, Equipment or Services)
NID	Network Interface Device (refer to DEMARC)
NEC	National Electric Code
NOR	Network Operations Room
NRTL	OSHA Nationally Recognized Testing Laboratory
NS	Nurse Stations
NTIA	U.S. Department of Commerce National
	Telecommunications and Information Administration
OEM	Original Equipment Manufacturer
OI&T	Office of Information and Technology
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)
OSH	Department of Veterans Affairs Office of Occupational
	Safety and Health

OSHA	United States Department of Labor Occupational Safety
	and Health Administration
OTDR	Optical Time-Domain Reflectometer
PA	Public Address System (refer to HE, HEIC, RPEC)
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)
PCR	Police Control Room (refer to SPCC, could be
	designated SCC)
PCS	Personal Communications Service (refer to UPCS)
PE	Professional Engineer
PM	Project Manager
PoE	Power over Ethernet
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,
	PBX)
PSTN	Public Switched Telephone Network
PSRAS	Public Safety Radio Amplification Systems
PTS	Pay Telephone Station
PVC	Poly-Vinyl Chloride
PWR	Power (in Watts)
RAN	Radio Access Network
RBB	Rack Bonding Busbar
RE	Resident Engineer or Senior Resident Engineer
RF	Radio Frequency (refer to FR)
RFI	Radio Frequency Interference (refer to EMI)
RFID	RF Identification (Equipment, System or Personnel)
RMC	Rigid Metal Conduit
RMU	Rack Mounting Unit
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,
	PA)
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security
	(COMSEC)

SME Subject Matter Experts (refer to AHJ) SMR Specialized Mobile Radio SMS Security Management System SNMP Simple Network Management Protocol SPCC Security Police Control Center (refer to PCR, SMS) STP Shielded Balanced Twisted Pair (refer to UTP) STR Stacked Telecommunications Room TAC VA's Technology Acquisition Center, Austin, Texas TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation VACO Veterans Affairs Central Office	SFO	Solicitation for Offers
SMS Security Management System SNMP Simple Network Management Protocol SPCC Security Police Control Center (refer to PCR, SMS) STP Shielded Balanced Twisted Pair (refer to UTP) STR Stacked Telecommunications Room TAC VA's Technology Acquisition Center, Austin, Texas TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	SME	Subject Matter Experts (refer to AHJ)
SNMP Simple Network Management Protocol SPCC Security Police Control Center (refer to PCR, SMS) STP Shielded Balanced Twisted Pair (refer to UTP) STR Stacked Telecommunications Room TAC VA's Technology Acquisition Center, Austin, Texas TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	SMR	Specialized Mobile Radio
SPCC Security Police Control Center (refer to PCR, SMS) STP Shielded Balanced Twisted Pair (refer to UTP) STR Stacked Telecommunications Room TAC VA's Technology Acquisition Center, Austin, Texas TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	SMS	Security Management System
STP Shielded Balanced Twisted Pair (refer to UTP) STR Stacked Telecommunications Room TAC VA's Technology Acquisition Center, Austin, Texas TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	SNMP	Simple Network Management Protocol
STR Stacked Telecommunications Room TAC VA's Technology Acquisition Center, Austin, Texas TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	SPCC	Security Police Control Center (refer to PCR, SMS)
TAC VA's Technology Acquisition Center, Austin, Texas TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	STP	Shielded Balanced Twisted Pair (refer to UTP)
TCO Telecommunications Outlet TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	STR	Stacked Telecommunications Room
TER Telephone Equipment Room TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TAC	VA's Technology Acquisition Center, Austin, Texas
TGB Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TCO	Telecommunications Outlet
Bonding Busbar (SBB)) TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TER	Telephone Equipment Room
TIP Telecommunications Infrastructure Plant TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TGB	Telecommunications Grounding Busbar (also Secondary
TMGB Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation		Bonding Busbar (SBB))
Primary Bonding Busbar (PBB)) TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TIP	Telecommunications Infrastructure Plant
TMS Traffic Management System TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TMGB	Telecommunications Main Grounding Busbar (also
TOR Telephone Operators Room TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation		Primary Bonding Busbar (PBB))
TP Balanced Twisted Pair (refer to STP and UTP) TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TMS	Traffic Management System
TR Telecommunications Room (refer to STR) TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TOR	Telephone Operators Room
TWP Twisted Pair UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TP	Balanced Twisted Pair (refer to STP and UTP)
UHF Ultra-High Frequency (Radio) UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TR	Telecommunications Room (refer to STR)
UMTS Universal Mobile Telecommunications System UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	TWP	Twisted Pair
UPCS Unlicensed Personal Communications Service (refer to PCS) UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	UHF	Ultra-High Frequency (Radio)
UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	UMTS	Universal Mobile Telecommunications System
UPS Uninterruptible Power Supply USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	UPCS	Unlicensed Personal Communications Service (refer to
USC United States Code UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation		PCS)
UTP Unshielded Balanced Twisted Pair (refer to TP and STP) UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	UPS	Uninterruptible Power Supply
UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	USC	United States Code
UV Ultraviolet V Volts VAAR Veterans Affairs Acquisition Regulation	UTP	Unshielded Balanced Twisted Pair (refer to TP and
V Volts VAAR Veterans Affairs Acquisition Regulation		STP)
VAAR Veterans Affairs Acquisition Regulation	UV	Ultraviolet
	V	Volts
VACO Veterans Affairs Central Office	VAAR	Veterans Affairs Acquisition Regulation
	VACO	Veterans Affairs Central Office

VAMC	VA Medical Center (refer to CBOC, OPC, VACO)
VCCS	TIP's Vertical Cross Connection System (refer to CCS
	and HCCS)
VHF	Very High Frequency (Radio)
VISN	Veterans Integrated Services Network (refers to
	geographical region)
VSWR	Voltage Standing Wave Radio
W	Watts
WEB	World Electronic Broadcast
WiMAX	Worldwide Interoperability (for MW Access)
WI-FI	Wireless Fidelity
WMTS	Wireless Medical Telemetry Service
WSP	Wireless Service Providers

B. Definitions:

- 1. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 2. Conduit: Includes all raceway types specified.
- 3. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 4. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 5. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 6. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks $\/$ shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.

- 7. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 8. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 9. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 10. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 11. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 12. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 13. Microducts: All forms of air blown fiber pathways.
- 14. Ohm: A unit of restive measurement.
- 15. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 16. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 17. Sound (SND): Changing air pressure to audible signals over given time span.
- 18. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 19. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to

telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to
 http://www.cfm.va.gov/TIL/cPro.asp:
 - 1. Federal Communications Commission, (FCC) CFR, Title 47: Part 15 Restrictions of use for Part 15 listed RF Equipment in Safety of Life Emergency Functions and Equipment Locations Chapter A, Paragraphs 6.1-6.23, Access to Part 47 Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Part 58 Television Broadcast Service Part 73 Radio and Television Broadcast Rules Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration Chapter XXIII National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book'- Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations
 - 2. US Department of Commerce/National Institute of Standards
 Technology,(NIST):

FIPS PUB 1-1	Telecommunications Information Exchange
FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
	Circuit Terminating Equipment for operation
	with Packet Switched Networks, or Between Two
	DTEs, by Dedicated Circuit

FIPS 199

Construction Documents

September 2017

FIPS PUB 140/2	Telecommunications Information Security
	Algorithms
FIPS PUB 143	General Purpose 37 Position Interface between
	DTE and Data Circuit Terminating Equipment
FIPS 160/2	Electronic Data Interchange (EDI),
FIPS 175	Federal Building Standard for
	Telecommunications Pathway and Spaces
FIPS 191	Guideline for the Analysis of Local Area
	Network Security
FIPS 197	Advanced Encryption Standard (AES)

Standards for Security Categorization of Federal Information and Information Systems

- 3. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules
- 4. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at

	http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.htm
	<u>1</u>)
Subpart 35	Compliance with NFPA 101, Life Safety Code
Subpart 36	Design and Construction Requirements for Exit
	Routes
Subpart 268	Telecommunications
Subpart 305	Wiring Methods, Components, and Equipment for
	General Use
Subpart 508	Americans with Disabilities Act Accessibility
	Guidelines; technical requirement for
	accessibility to buildings and facilities by
	individuals with disabilities

- 5. US Department of Veterans Affairs (VA): Office of Telecommunications (O1&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

- b. COMSEC, "VA wide coordination and control of security classified communication assets."
- c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information Security Office of Cyber and Information Security, and Handbook 6500 - Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/dts/otpca/nrtl/index.html
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - 2. Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - 3. Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).

September 2017

4. Underwriters Laboratory (UL):

٠	Underwriters Laborato	ory (UL):
	1-2005	Flexible Metal Conduit
	5-2011	Surface Metal Raceway and Fittings
	6-2007	Rigid Metal Conduit
	44-010	Thermoset-Insulated Wires and Cables
	50-1995	Enclosures for Electrical Equipment
	65-2010	Wired Cabinets
	83-2008	Thermoplastic-Insulated Wires and Cables
	96-2005	Lightning Protection Components
	96A-2007	Installation Requirements for Lightning
		Protection Systems
	360-2013	Liquid-Tight Flexible Steel Conduit
	444-2008	Communications Cables
	467-2013	Grounding and Bonding Equipment
	486A-486B-2013	Wire Connectors
	486C-2013	Splicing Wire Connectors
	486D-2005	Sealed Wire Connector Systems
	486E-2009	Standard for Equipment Wiring Terminals for Use
		with Aluminum and/or Copper Conductors
	493-2007	Thermoplastic-Insulated Underground Feeder and
		Branch Circuit Cable
	497/497A/497B/497C	
	510-2005	Polyvinyl Chloride, Polyethylene and Rubber
		Insulating Tape
	514A-2013	Metallic Outlet Boxes
	514B-2012	Fittings for Cable and Conduit
	514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
		and Covers
	651-2011	Schedule 40 and 80 Rigid PVC Conduit
	651A-2011	Type EB and A Rigid PVC Conduit and HDPE
		Conduit
	797-2007	Electrical Metallic Tubing
	884-2011	Underfloor Raceways and Fittings
	1069-2007	Hospital Signaling and Nurse Call Equipment
	1242-2006	Intermediate Metal Conduit
	1449-2006	Standard for Transient Voltage Surge
		Suppressors
	1479-2003	Fire Tests of Through-Penetration Fire Stops

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety
D. Industry Standards:	
1. Advanced Television	Systems Committee (ATSC):
A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
	Digital Television System
A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
	RF/Transmission System Characteristics
A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
	Service Multiplex and Transport System
	Characteristics
A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
	2 Video System Characteristics
A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
	Audio System Characteristics
A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
	Enhanced AC-3 Audio System Characteristics

- 2. American Institute of Architects (AIA): 2006 Guidelines for Design &Construction of Health Care Facilities.
- 3. American Society of Mechanical Engineers (ASME):
 - A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material

NLR IMPROVE SECURITY CONTROL

Construction Documents

		Lifts, and Dumbwaiters with Automatic Transfer
	17.3 (2011)	Safety Code for Existing Elevators and
	17.3 (2011)	Escalators
	17.4 (2009)	Guide for Emergency Personnel
1	17.5 (2011)	Elevator and Escalator Electrical Equipment
4.		Testing and Materials (ASTM):
	B1 (2001)	Standard Specification for Hard-Drawn Copper Wire
	B8 (2004)	Standard Specification for Concentric-Lay-
		Stranded Copper Conductors, Hard, Medium-Hard,
		or Soft
	D1557 (2012)	Standard Test Methods for Laboratory Compaction
		Characteristics of Soil Using Modified Effort
		56,000 ft-lb/ft3 (2,700 kN-m/m3)
	D2301 (2004)	Standard Specification for Vinyl Chloride
		Plastic Pressure Sensitive Electrical
		Insulating Tape
	B258-02 (2008)	Standard Specification for Standard Nominal
		Diameters and Cross-Sectional Areas of AWG
		Sizes of Solid Round Wires Used as Electrical
		Conductors
	D709-01(2007)	Standard Specification for Laminated
		Thermosetting Materials
	D4566 (2008)	Standard Test Methods for Electrical
		Performance Properties of Insulations and
		Jackets for Telecommunications Wire and Cable
5.	American Telephone as	nd Telegraph Corporation (AT&T) - Obtain
	following AT&T Public	cations at https://ebiznet.sbc.com/SBCNEBS/):
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
		Environmental, and Physical Design Requirements
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
		Requirements
	ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and
		Removal Requirements - Cable Racks and Raceways
	ATT-TP-76306 (2009)	Electrostatic Discharge Control
	ATT-TP-76400 (2012)	Detail Engineering Requirements

CENTRAL ARKANSAS VETERANS HCS

NLR IMPROVE SECURITY CONTROL

Construction Documents

	ATT-TP-76402 (2013)	AT&T Raised Access Floor Engineering and
		Installation Requirements
	ATT-TP-76405 (2011)	Technical Requirements for Supplemental Cooling
		Systems in Network Equipment Environments
	ATT-TP-76416 (2011)	Grounding and Bonding Requirements for Network
		Facilities
	ATT-TP-76440 (2005)	Ethernet Specification
	ATT-TP-76450 (2013)	Common Systems Equipment Interconnection
		Standards for AT&T Network Equipment Spaces
	ATT-TP-76461 (2008)	Fiber Optic Cleaning
	ATT-TP-76900 (2010)	AT&T Installation Testing Requirement
	ATT-TP-76911 (1999)	AT&T LEC Technical Publication Notice
6.	British Standards In	stitution (BSI):
	BS EN 50109-2	Hand Crimping Tools - Tools for The Crimp
		Termination of Electric Cables and Wires for
		Low Frequency and Radio Frequency Applications
		- All Parts & Sections. October 1997
7.	Building Industry Co	nsulting Service International(BICSI):
	ANSI/BICSI 002-2011	Data Center Design and Implementation Best
		Practices
	ANSI/BICSI 004-2012	Information Technology Systems Design and
		Implementation Best Practices for Healthcare
		Institutions and Facilities
	ANSI/NECA/BICSI	
	568-2006	Standard for Installing Commercial Building
		Telecommunications Cabling
	NECA/BICSI 607-2011	Standard for Telecommunications Bonding and
		Grounding Planning and Installation Methods for
		Commercial Buildings
	ANSI/BICSI 005-2013	Electronic Safety and Security (ESS) System
		Design and Implementation Best Practices
Ω	Electronic Component	s Assemblies and Materials Association (FCA)

- 8. Electronic Components Assemblies and Materials Association, (ECA). ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices -Recommended Procedures for User Certification EIA/ECA 310-E (2005) Cabinets, and Associated Equipment
- 9. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities.
- 10. Insulated Cable Engineers Association (ICEA):

September 2017

	ANSI/ICEA	
	S-80-576-2002	Category 1 & 2 Individually Unshielded Twisted-
		Pair Indoor Cables for Use in Communications
		Wiring Systems
	ANSI/ICEA	
	S-84-608-2010	Telecommunications Cable, Filled Polyolefin
		Insulated Copper Conductor, S-87-640(2011)
		Optical Fiber Outside Plant Communications
		Cable
	ANSI/ICEA	
	S-90-661-2012	Category 3, 5, & 5e Individually Unshielded
		Twisted-Pair Indoor Cable for Use in General
		Purpose and LAN Communication Wiring Systems
	S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,
		Polyolefin Insulated, Copper Conductors
	S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
		Insulated, Copper Conductors
	ICEA S-102-700	
	(2004)	Category 6 Individually Unshielded Twisted Pair
	(2004)	Category 6 Individually Unshielded Twisted Pair Indoor Cables (With or Without an Overall
	(2004)	
	(2004)	Indoor Cables (With or Without an Overall
11.		Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring
11.		Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements
11.	Institute of Electri	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE):
11.	Institute of Electri	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and
11.	Institute of Electri	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2)
11.	Institute of Electri	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless
11.	Institute of Electri	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless Networks
11.	Institute of Electri ISSN 0739-5175 IEEE C2-2012	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless Networks
11.	Institute of Electri ISSN 0739-5175 IEEE C2-2012 C62.41.2-2002/	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless Networks National Electrical Safety Code (NESC)
11.	Institute of Electri ISSN 0739-5175 IEEE C2-2012 C62.41.2-2002/	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless Networks National Electrical Safety Code (NESC) Recommended Practice on Characterization of
11.	Institute of Electri ISSN 0739-5175 IEEE C2-2012 C62.41.2-2002/	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless Networks National Electrical Safety Code (NESC) Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC
11.	Institute of Electri ISSN 0739-5175 IEEE C2-2012 C62.41.2-2002/ Cor 1-2012 IEEE	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless Networks National Electrical Safety Code (NESC) Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits 4)
11.	Institute of Electri ISSN 0739-5175 IEEE C2-2012 C62.41.2-2002/ Cor 1-2012 IEEE	Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements Cal and Electronics Engineers (IEEE): March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue: 2) Medical Grade-Mission Critical-Wireless Networks National Electrical Safety Code (NESC) Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits 4) IEEE Recommended Practice on Surge Testing for

Grounding System

Impedance, and Earth Surface Potentials of a

CENTRAL ARKANSAS VETERANS HCS

100-1992	IEEE the New IEEE Standards Dictionary of
	Electrical and Electronics Terms
602-2007	IEEE Recommended Practice for Electric Systems
	in Health Care Facilities
1100-2005	IEEE Recommended Practice for Powering and
	Grounding Electronic Equipment
12. International Code	Council:
AC193 (2014)	Mechanical Anchors in Concrete Elements
13. International Organ	ization for Standardization (ISO):
ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and
	Computing Technology in Healthcare Facilities -
	Recommendations for Electromagnetic
	Compatibility (Management of Unintentional
	Electromagnetic Interference) with Medical
	Devices
14. National Electrical	Manufacturers Association (NEMA):
NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V
	Maximum)
ANSI C62.61 (1993)	American National Standard for Gas Tube Surge
	Arresters on Wire Line Telephone Circuits
ANSI/NEMA FB 1 (201	2) Fittings, Cast Metal Boxes and Conduit Bodies
	for Conduit, Electrical Metallic Tubing EMT)
	and Cable
ANSI/NEMA OS 1 (200	9) Sheet-Steel Outlet Boxes, Device Boxes,
	Covers, and Box Supports
NEMA SB 19 (R2007)	NEMA Installation Guide for Nurse Call Systems
TC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with
	Rigid PVC Conduit and Tubing
NEMA VE 2 (2006)	Cable Tray Installation Guidelines
15. National Fire Protection	ction Association (NFPA):
70E-2015	Standard for Electrical Safety in the Workplace
70-2014	National Electrical Code (NEC)
72-2013	National Fire Alarm Code
75-2013	Standard for the Fire Protection of Information
	Technological Equipment
76-2012	Recommended Practice for the Fire Protection of
	Telecommunications Facilities
77-2014	Recommended Practice on Static Electricity

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

	90A-2015	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	99-2015	Health Care Facilities Code
	101-2015	Life Safety Code
	241	Safeguarding construction, alternation and
		Demolition Operations
	255-2006	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2014	Standard for the Installation of Lightning
		Protection Systems
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
16.	Society for Protecti	ve Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17.	Telecommunications I	ndustry Association (TIA):
	TIA-120 Series	Telecommunications Land Mobile communications
		(APCO/Project 25) (January 2014)
	TIA TSB-140	Additional Guidelines for Field-Testing Length,
		Loss and Polarity of Optical Fiber Cabling
		Systems (2004)
	TIA-155	Guidelines for the Assessment and Mitigation of
		Installed Category 6 Cabling to Support
		10GBASE-T (2010)
	TIA TSB-162-A	Telecommunications Cabling Guidelines for
		Wireless Access Points (2013)
	TIA-222-G	Structural Standard for Antenna Supporting
		Structures and Antennas (2014)
	TIA/EIA-423-B	Electrical Characteristics of Unbalanced
		Voltage Digital Interface Circuits (2012)
	TIA-455-C	General Requirements for Standard Test
		Procedures for Optical Fibers, Cables,
		Transducers, Sensors, Connecting and

CENTRAL ARKANSAS VETERANS HCS

	Terminating Devices, and other Fiber Optic
	Components (August 2014)
TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5-μ Core Diameter/125-um Cladding Diameter
	Class la Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components

CENTRAL ARKANSAS VETERANS HCS

	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard.
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)
TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	medbarements for baraneed twisted rail casting
	(September 2009)
TIA-1179	-

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
 - 4. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
 - 5. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 6. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
 - 7. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - 8. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
 - 9. Wiring devices: Section 26 27 26, WIRING DEVICES.
 - 10. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
 - 11. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
 - 12. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.

- 13. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 14. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - 2. Movement of materials: Unload materials and equipment delivered to site.
 - 3. Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 - 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - 1. Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - 1. Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - 2. Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.

- H. Test Equipment List:
 - 1. Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.
 - 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
 - 4. Provide sample test and evaluation reports.

I. Submittal Drawings:

- 1. Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
- 2. Logical Drawings: Provide logical riser or schematic drawings for
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

A. Provide following closeout submittals prior to project closeout date:

- 1. Warranty certificate.
- 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
- 3. Project record documents.
- 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - 6. Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
 - 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.

1. Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.

C. Record Wiring Diagrams:

- 1. Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
- 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.

D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - 1. OEM must have three installations of equipment submitted presently in operation of similar size and type as this project that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.

- 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
- 4. Identify factory wiring on equipment being furnished and on wiring
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - 1. When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

A. Comply with FAR clause 52.246-21, except as follows:

PART 2 - WARRANTY MATERIAL AND EQUIPMENT TO BE FREE FROM DEFECTS, WORKMANSHIP, AND REMAIN SO FOR A PERIOD OF ONE YEAR FOR EMERGENCY SYSTEMS FROM DATE OF FINAL ACCEPTANCE OF SYSTEM BY GOVERNMENT; PROVIDE OEM'S EOUIPMENT WARRANTY DOCUMENT TO COR. PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.4 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.5 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - 1. Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - 3. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - 5. Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - 6. Fill slots, sleeves and other openings in floors or walls if not
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
 - 7. Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
 - 8. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.

- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4inch).
- 10. Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.

B. Core Drilling:

- 1. Avoid core drilling whenever possible.
- 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
- 3. Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
- 4. Protect areas from damage.

C. Verification of In-Place Conditions:

- 1. Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
- 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.

- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.

- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - 1. Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - 2. Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.

- C. Protect adjacent installations during cutting and patching operations.
- D. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- E. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or non-compliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result

from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.

G. Tests:

- 1. Interim inspection is required at approximately 50 percent of installation.
- 2. Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
- 3. Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
- 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
- 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B pin assignments and cabling connections are in compliance with TIA standards.
- 6. Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
- 7. Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.

12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.

- a. Additional inspections are scheduled at direction of COR.
- b. Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
- c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:
 - a. Utility provider entrance.
 - b. Buried conduit duct locations.
 - c. Maintenance Holes (Manholes) and hand holes.
 - d. ENTR or DEMARC.
 - e. PBX interconnections.
 - f. MCR interconnections.
 - q. MCOR interconnections.
 - h. TER interconnections.
 - i. TOR interconnections.
 - j. Control room interconnections.
 - k. TR interconnections.

- 1. System interfaces in locations listed herein.
- m. HE interconnections.
- n. Antenna (outside and inside) interconnections.
- o. System and lightning ground interconnections.
- p. Communications circulating ground system.
- q. UPS areas.
- r. Emergency generator interconnections.
- s. Each general floor areas.
- t. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

I. Acceptance Test:

- 1. Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- 2. Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - 3) Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - 3) EMS Representatives: Police, Sherriff, City, County or State representatives.
- 4. Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.

- a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - 2) Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - 3) Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
 - 4) If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.

J. Acceptance Test Procedure:

- 1. Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
- 2. A system inventory including available spare parts must be taken at this time.
- 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
- 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
- 5. Inventory system diagrams, record drawings, equipment manuals, pretest results.
- 6. Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.

K. Operational Test:

- 1. Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
- 2. Government's Condition of Acceptance of System Language:

- a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
- b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
- c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - 1. If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.

- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - 1. Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - 3. Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

September 2017

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - 2. Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - 2. Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.

- C. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
 - 1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
 - 2. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- D. Equipment Rack and Cabinet Ground Bars:
 - 1. Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:
 - a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
 - b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
 - c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
 - d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole grounding lugs.
 - e. Copper splice bar of same material to transition between adjoining racks.

- f. Two each $12-24 \times 19.1 \text{ mm}$ (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- 2. Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- E. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- F. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- G. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- H. Antioxidant Joint Compound: Oxide inhibiting joint compound for copper-to-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- B. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- C. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
 - 2. Raised Floors: Bonding raised floor components to ground.
- D. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- E. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - 4. Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 5. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
 - 6. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.

- c. Apply corrosion inhibitor to surfaces before joining.
- 7. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
- 8. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
 - c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
 - d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.

F. Telecommunications Room Bonding:

- 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
- 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:

- 1) Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
- 2) Install 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.
- G. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - 1. Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - 2. At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
 - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
 - d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- H. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- I. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- J. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.

- 2. Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
- 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.

K. Communications Cable Tray Systems:

- 1. Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.
- 2. Where metallic cable tray systems are mechanically discontinuous:
 - a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is 0.010 ohms or less, as verified by measuring across splice plate connection.
 - b. Install 16 mm² (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
- 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.

L. Communications Raceway Grounding:

- 1. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
- 2. Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.

M. Ground Resistance:

- 1. Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
- 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
- 3. Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
 - 3. Flexible Galvanized Steel Conduit: Conform to UL 1.
 - 4. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
 - 5. Surface Metal Raceway: Conform to UL 5.

6. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.

C. Conduit Fittings:

- 1. Rigid Galvanized Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - 2) Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - g. Provide OEM approved fittings.
- 2. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and $ANSI/NEMA\ FB1;$ only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - 2) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.

- c. Indent type connectors or couplings are not permitted.
- d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
- e. Provide OEM approved fittings.
- 3. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 5. Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.
- 6. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- 7. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 9. Wireway Fittings: As recommended by wireway OEM.

- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250
 tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke

- generation, ignitibility, and toxicity requirements of environmental air space.
- 5. Size: Metric Designator 53 (trade size 2) or smaller.
- 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
- 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
- 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
- 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.

I. Outlet Boxes:

- 1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
- 2. Flush wall mounted 12.7 cm (5 inches) square x 7.3 cm (2-7/8 inches); deep pressed galvanized steel.
- 3. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

K. Cable Tray:

- 1. Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
- 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.

Construction Documents

- c. Rounded edges and smooth surfaces.
- 3. Provide continuous welded top side wire to protect cable insulation and installers.
- 4. High strength steel wires formed into a 50×100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
- 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: 105 mm (4 inch).
 - c. Width: 300 mm (12 inches).
- 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
- 7. Provide accessories to protect, support and install wire basket tray system.
- L. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- M. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method	
Grounding	27 05 26	Conduit Not Required	
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders	
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray	
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code	
Physical Access Control System and Database Management	28 13 16	Conduit to Cable Tray Partitioned Cable Tray	
Video Surveillance	28 23 00	Complete Conduit	

B. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.

- b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
- c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - 1) Fill and seal clearances between raceways and openings with fire stop material.
 - 2) Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.

C. Conduit Installation:

- 1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
- 2. Install insulated bushings on all conduit ends.
- 3. Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
- 4. Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.
- 8. Minimum radius of communication conduit bends:

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches		
3/4	150 (6)		
1	230 (9)		
1-1/4	350 (14)		
1-1/2	430 (17)		
2	525 (21)		
2-1/2	635 (25)		
3	775 (31)		
3-1/2	900 (36)		
4	1125 (45)		

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- 10. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables
- 12. Flattened, dented, or deformed conduit is not permitted.
- 13. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and EMT conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.

- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - 2) As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - 1) Conduit outside diameter larger than 1/3 of slab thickness is prohibited.
 - 2) Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - 3) Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
 - e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - 1. Rigid steel. Different type conduits mixed indiscriminately in same system is not permitted.

2. Align and run conduit parallel or perpendicular to building lines.

- 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - 1. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - 4. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

G. Expansion Joints:

- 1. Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
- 2. Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.
- H. Conduit Supports, Installation:
 - 1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - 2. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is $2.5\ m$ (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200

- pounds). Attach each conduit with U-bolts or other accepted fasteners.
- 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
- 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - 1) Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - 3) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- 8. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- 9. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

I. Box Installation:

- 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.

- 3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - 2. Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
 - 4. Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

September 2017

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - 2. Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - 3. Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.
- D. Power: Provide specific voltage, amperage, phases and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:

- Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
- 2. Provide certified OEM sweep test tags from each cable reel to COR.
- 3. Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
- 4. Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
- 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.

D. Remote Control Cable:

- Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
- 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).
- 3. Color-coded Conductors: Combined multi-conductors are acceptable for this installation, on condition system performance standards are met.
- 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:

Construction Documents

- 1) 18 AWG, minimum, Outside.
- 2) 20 AWG, minimum, Inside.
- d. Color Coding: Required, EIA industry standard.
- e. Bend Radius: 10 times cable outside diameter.
- f. Impedance: As required.
- g. Shield Coverage: As required by OEM specification.
- h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum	
0.7	5.2	
1.0	6.5	
4.0	14.0	
8.0	19.0	
16.0	26.0	
20.0	29.0	
25.0	33.0	
31.0	36.0	
50.0	52.0	

- E. Distribution System Signal Wires and Cables:
 - 1. Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
 - 3. Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
 - 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:

- 1. Provide connectors for transmission lines, and signal extensions to maintain uninterrupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
- 2. Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.
 - 2) Data Cable Shields.
 - 3) Equipment Racks.
 - 4) Equipment Cabinets.
 - 5) Conduits.
 - 6) Ducts.
 - 7) Cable Trays.
 - 8) Power Panels.
 - 9) Connector Panels.
 - 10) Grounding Blocks.

- b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- 2. Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - 1. Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, and control cables to be connected through panel. Match panel color to cabinet installed.
 - a. Voice (or Telephone):
 - Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 6.
 - 2) IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 6and the size and type of cable used.
 - 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
 - 4) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 100.

- b) Number of Terminals per Row: Minimum 4.
- c) Terminal Protector: Required for each used or unused terminal.
- d) Insulation Splicing: Required between each row of terminals.

b. Digital or High Speed Data:

- 1) Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 5E (or on a case by case basis Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
- 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.

- c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
- d. Pull multiple cables into a single conduit together.
- B. Installation in Maintenance or Man holes:
 - 1. Install and support cables in maintenance holes on steel racks with porcelain or equal insulators.
 - 2. Train cables around maintenance hole walls, but do not bend to a radius less than six times overall cable diameter.
 - 3. Fireproofing:
 - a. Install fireproofing where low voltage cables are installed in same maintenance holes with high voltage cables; also cover low voltage cables with arc proof and fireproof tape.
 - b. Use tape of same type used for high voltage cables, and apply tape in a single layer, one-half lapped or as recommended by manufacturer. Install tape with coated side towards the cable and extend minimum 25 mm (1 inch) into each duct.
 - c. Secure tape in place by a random wrap of glass cloth tape.
- C. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
 - 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
 - 5. Concealed splices are not allowed.
 - 6. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
 - 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power,

- DC and speaker wires or cables on the left; control, microphone and line level audio and data wires or cables, on the right.
- 8. Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
- 11. Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
 - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
 - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
 - d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
 - e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
 - f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.

D. AC Power:

- Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
- 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated

- outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
- 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
- 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.
 - 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
 - 3. Install labels retaining their markings after cleaning.
 - 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.

B. Labeling:

- 1. Industry Standard: ANSI/TIA-606-B.
- 2. Print lettering for voice and data circuits using laser printers thermal ink transfer process; handwritten labels are not acceptable.
- 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- 4. Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.
- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.

6. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

---END---

September 2017

SECTION 27 11 00 TELECOMMUNICATIONS ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies equipment cabinets, interface enclosures, relay racks, and associated hardware in service provider DEMARC, computer and telecommunications rooms.
- B. Telephone system is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Adhere to Seismic reference standards for systems connecting to or extending telephone system and cabling.

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION.
- B. Separate submittal into sections for each subsystem containing the following:
 - 1. Pictorial layouts of each Telecommunications Room and Cross Connection Space (VCCS, and HCCS termination cabinets), each distribution cabinet layout, and TCO as each is expected to be installed and configured.
 - 2. Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.
- C. Environmental Requirements: Identify environmental specifications for housing system as initial and expanded system configurations.
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling height.

3. Minimum door size for equipment passage.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. Provide components of cabinet system (cabinet, thermal, cable and power management accessories) from a single manufacturer.
- B. Equipment Standards and Testing:
 - 1. Equipment must be listed by a NRTL where a UL standard is in existence; active and passive equipment must conform with each UL standard in effect for equipment, on the submittal date.
 - Each item of electronic equipment must be labeled by a NRTL that warrants equipment has been tested in accordance with, and conforms to specified standards.
- C. Equipment Cabinets (Enclosures):
 - 1. Fully enclose and physically secure internally mounted and connected, active and passive equipment.
 - 2. Types of Equipment Enclosures accepted for specific VA Spectrum Management, FMS and OI&T applications in CFM and Facility Projects:

CABINET	FUNCTION
Communications	FMS Special Communications Equipment
Server / Router	OI&T Data/LAN/WAN Equipment

- 3. Each cabinet to be:
 - a. Provided in head end, MCR, TER, PCR, EMGR, each TR at a minimum.
 - b. Fabricated with minimum 1.59 mm (16 gauge) steel.
 - c. Provided with manufacturer's standard painted finish in a color accepted by COR with concurrence from FMS Service Chief.
 - d. Mounted on floor or wall.
 - e. Lockable; tubular locks keyed alike. Provide six keys to COR for each cabinet.
 - f. Compliant with facility's SMS card access system.
- 4. Provide equipment mounting shelves; attach to front and rear mounting rails and allowing equipment to be secured to respective mounting rails.
- 5. Each enclosure to include:
 - a. Floor or wall mounting.
 - b. Knock out holes for conduit connections or cable entrance.
 - c. Front and rear locking doors; wall mounted cabinets require only front locking door.
 - d. Power outlet strips.

- 6. Provide quiet ventilation fan with non-disposable locally cleanable air filter.
- 7. Size each cabinet in order to contain and maintain internal mounted equipment items.
- 8. Provide OEM's fully assembled unit.
- 9. Provide OEM assembled side-by-side enclosures in a single unit, at locations requiring more than two enclosures.
- 10. Provide minimum one cabinet with blank rack space, for additional system expansion equipment.
- 11. Bond to communications circulating grounding system.
- 12. Technical Characteristics:
 - a. External:
 - 1) Overall Height:
 - a) Communications/Server: Maximum 2,184 mm (86 inches).
 - 2) Overall Depth:
 - a) Communications/Server: Maximum 914 mm (36 inches).
 - 3) Overall Width All: Maximum 864 mm (34 inches).
 - b. Front Panel Openings:
 - 1) Width:
 - a) Communications: 482.6 mm (19 inches), per EIA.
 - b) Server: 483 mm (19 inches), per EIA/ECA 310.
 - 2) Height:
 - a) Communications/Server: Maximum 2,000 mm (78-3/4 inches or 45 Rack Units [RU]), per EIA/ECA 310.
 - b) Seismic: Maximum 1,689 mm (66-1/2 inches or 38 RUs, per EIA/ECA 310).
 - c. Heavy Duty Cycle: Maximum 544 kilograms (1,200 pounds) capacity.
 - d. Certification:
 - 1) NRTL (i.e. UL): For communications and server cabinets.
 - 2) Telcordia Technologies: #63-GR-CORE, (2012) for seismic cabinets.
 - 3) Seismic: Provide cabinet OEM constructed to seismic design category.
- 13. Cabinet Internal Components:
 - a. AC Power:
 - 1) Standard "Quad AC Box":
 - a) Power capacity: 20 Ampere, single phase, 120 VAC continuous duty.

- b) Wire gauge: #12 AWG, solid copper, connected to room's internal AC Power Panel, or as directed by COR.
- c) Number of AC power outlets: Minimum 4 receptacles.
- d) Enclosure: Fully self-contained, metal 102 mm (4 inch) x 102 mm (4 inches) x 64 mm (2-1/2 inches) with cover
- e) Connection: Minimum 25.4 mm (1 inch) conduit connected to room's AC Power Panel, or as directed by COR
- f) Number of boxes: One.
- g) Compliance: NRTL (i.e. UL); NPFA 70 (NEC).
- b. AC Outlet Strips:
 - 1) Power Capacity: 15 Ampere, single phase, 120 VAC continuous duty.
 - 2) Wire Gauge: Minimum #12 AWG, solid copper.
 - 3) Number of AC Power Outlets: Minimum 10 "U" grounded.
 - 4) Enclosure: Fully self-contained; typically metal.
 - 5) Connecting Wire: Minimum 2 m (6 feet) long, with three prong self-grounding AC plug connected to cabinet's internal AC "Quad" box.
 - 6) Number of Strips: 2.
 - 7) Certification: NRTL (i.e. UL).
- c. AC Power Line Surge Protector and Filter Construction:
 - 1) Input Voltage Range: 120 VAC + 15 percent at 50/60 Hz, single phase.
 - 2) Power Service Capacity: 20 AMP, 120 VAC.
 - 3) Voltage Output Regulation: +5.0 percent, instantaneous of input.
 - 4) Circuit Breaker: 15 AMP; may be self-contained.
 - 5) AC Outlets: Minimum four duplex grounded NEMA 5-20R.
 - 6) Response Time: 5.0 nanosecond.
 - 7) Suppression: Isolate and filter any noise, surge spikes
 - a) Surge: Minimum 20,000 AMP.
 - b) Noise:
 - 1) Common: -40 dB.
 - 2) Differential: -45 dB.
 - 8) Clamping Voltage: Minimum 300 V.
 - 9) Enclosure: One; self-contained.
 - 10) Mounting: Internal to cabinet floor or on internal mounting rail shelf, allowing two plugs from two plug strips.

- 11) AC Power Cord: Required; minimum 1,628 mm (6 feet), three wire (green ground); minimum #14 AWG stranded.
- 12) Compliance: NRTL (i.e. UL60950-1).
- d. Uninterruptible Power Supply (UPS): Provide each cabinet with an internal UPS which may be combined with surge protector and filter if system's 50 percent expansion requirement is met. Provide at least one hour continuous full load two hours if working with a life safety system uninterruptible system primary AC Power, with a 50 percent 30 min respectively reserve capacity, in the event of facility primary or emergency AC power failure.
 - 1) UPS to include:
 - a) On-Off Switch: This function is required to be a part of system's electronic supervision requirements.
 - b) First/Fast Charge Unit: Must provide clean predicable charge voltage/current. Function is required to be a part of system's electronic supervision requirements.
 - c) Over Voltage/Current Protect: Cannot short circuit AC power line at any time. This function is required to be a part of system's electronic supervision requirements.
 - d) Trickle Charge Unit: Must be capable of maintaining a suitable internal battery charge without damaging batteries.
 - e) Mounting: Provide per OEM's direction.
 - f) Proper Ventilation: Do not override cabinets' ventilation system.
 - g) Power Change from AC Input: Accomplish change without interruption to communications link or subsystem being protected. Generate visual and aural alarms in electrical supervision system, local and remote, to annunciating panels via direct connection for trouble indication.
 - 2) Specific requirements for current and surge protection to include:
 - a) Voltage Protection: Threshold, line to neutral, starts at maximum 200 Volts peak. Transient voltage cannot exceed 330 Volts peak. Furnish documentation on peak clamping Voltage as a function of transient waveform.
 - b) Peak Power Dissipation: Minimum 35 Joules per phase, as measured for 1.0 millisecond at sub branch panels, 100

Joules per phase at branch panels and 300 Joules per phase at service entrance panels. Typically, power dissipation is 12,000 Watts (W) for 1.0 mS (or 12 Joules). Provide explanation of how ratings were measured or empirically derived.

- c) Surge Protector (may be combined with On-Off switch of UPS): Must not short circuit AC power line at any time.
 - 1) Components must be minimum silicon semi-conductors.
 - 2) Secondary stages, if used, may include other types of rugged devices.
 - 3) Indicators: Provide visual device indicating surge suppression component is functioning.
 - 4) Electrical Supervision: Required; must be audible and visual, local and remote to annunciating panels via direct connection for trouble indication.
- d) Provide current and surge protection on ancillary equipment.
- e) Equip each cabinet with the following:
 - 1) Equipment Mounting Rails (Front & Rear): Fully adjustable internal equipment mounting rails allowing front or rear equipment mounting with pre-drilled EIA/ECA 310-E Standard tapped holes. Support entire equipment by supplementary support in addition to face mounting screws on rails.
 - 2) Cabinet Ground: Stainless steel adjustable, lug connected to cabinet's main structure providing an internal cabinet ground for all installed equipment properly bolted to rail and with ground wire connected.
 - 3) Grounding Terminals: A separate mounting hole on equipment mounting rail, with stainless steel connecting bolt bonded by minimum #10 AWG copper wire to cabinet's internal grounding lug.
- 14. Ground Interconnection: Bond cabinet's common grounding lug to room's communications circulating ground busbar with a minimum #4 AWG stranded copper wire.
- 15. Blank Panels: Provide at every unused rack space.
 - a. Match cabinet color.

- b. Provide panels of 3 mm (1/8 inch) thick aluminum with vertical dimensions in increments of one rack unit (RMU) or 45 mm (1-3/4 inch) with mounting holes spaced to correspond to EIA/ECA 310-E Standard 483 mm (19 inch) rack dimensions.
- c. Fill large unused openings with single standard large panel instead of numerous types.
- d. Leave one blank rack space (RMU), covered with a blank panel, between each item of equipment, for minimum internal air flow.
- e. Leave 356 mm (14 inches)(8.0 RMU) open space, covered with blank cover panel, for additional expansion equipment.
- f. Wire Management: System that connects each item of installed equipment to room wire management system.
- g. Knock-out Holes: Provide for cable entrance/exits via conduits, cable duct/trays.
- D. Wall Mounted Distribution or System Interface Cabinet:
 - 1. Construct of minimum 1.59 mm (16 gauge) cold rolled steel, with top, side and bottom panels.
 - Provide double-hinged front door and main cabinet body allowing access to all internal equipment and wiring; mount to solid walls or internal studs.
 - 3. Provide baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using FMS Chief or COR.
 - 4. Provide integral and adjustable EIA/ECA 310 standard predrilled rack mounting rails to allow front panel equipment mounting and access.
 - 5. After equipment, doors and panels are installed, snap-in-place chrome trim strip covers all front panel screw fasteners.
 - 6. Provide full-length vertical piano hinge to allow entire front portion of cabinet to "swing out" from wall for access to installed equipment, wires and cable; maintain minimum OSHA Safety clearances and NFPA operational functions.
 - 7. Provide an OEM's fully assembled unit enclosure.
 - 8. Equip these cabinets same as equipment cabinets, except mount UPS on floor below cabinet with AC power connection in conduit to AC service panel.
 - 9. Technical Characteristics:
 - a. Overall Height: Maximum 1,218 mm (48 inches).
 - b. Overall Depth: Maximum 558 mm (22 inches).
 - c. Overall Width: Maximum 610 mm (24 inches).

- d. Front Panel Horizontal: Maximum width 483 mm (19 inches).
- e. Capacity: Maximum 180 kilograms (400 pounds).
- f. Lockable:
 - 1) Tubular lock with 7-pin security.
 - 2) Key cabinets alike.
 - 3) Police SMS access card system.
- E. Stand Alone Open Equipment Rack:
 - 1. Construct of minimum 1.59 mm (16 gauge) cold rolled steel with manufacturer's standard paint finish, in a color to be selected by COR with concurrence from facility's FMS Service Chief.
 - 2. Floor-mount as directed by COR with concurrence from facility's FMS Service Chief.
 - 3. Equip rack same as equipment cabinet, except mount UPS with additional support for weight and AC power connection in conduit to AC service panel.
 - 4. Provide an OEM fully assembled unit.
 - 5. Technical Characteristics:
 - a. Overall Height: Maximum 2,180 mm (85-7/8 inches).
 - b. Overall Depth: Maximum 650 mm (25-1/2 inches).
 - c. Overall Width: Maximum 535 mm (21-1/16 inches).
 - d. Front Panel Opening: 483 mm (19 inches), EIA/ECA 310 horizontal width.
 - e. Hole Spacing: Per EIA/ECA 310.
 - f. Load Capacity: Maximum 680.4 kg (1,500 lbs).
 - g. Certifications:
 - 1) EIA/ECA: 310-E.
 - 2) NRTL (i.e. UL): OEM specific.
- F. Wire Management Equipment:
 - 1. Provide an orderly horizontal and vertical interface between outside and inside wires and cables, distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide an uniform connection media for system fire-retardant wires and cables and other subsystems.
 - 2. Interface to each cable tray, duct, wireway, or conduit used in the system.
 - 3. Interconnection or distribution wires and cables must enter system at top (or from a wireway in the floor) via overhead protection system and be uniformly routed down either or both sides at same

- time, of the frames side protection system, then laterally for termination on rear of each respective terminating assembly.
- 4. Custom configure to meet 30 percent fill system design and user needs.

G. Vertical Cable Managers:

- Use same make, style and size of vertical cable manager on rack/frame or in between racks/frames when more than one cable manager is used on a rack/frame or group of racks/frames.
- 2. Match color and cover style of racks/frames and cable managers.

H. Horizontal Cable Managers:

- Use same make and style of cable manager on rack/frame or racks/frames, when more than one horizontal cable manager is used on a rack/frame or group of racks/frames.
- 2. Match color of racks/frames and cable managers.
- I. Telecommunication Room (TR): In hostile TR locations, where it has been determined (by COR or Facility Chief Engineer) that proper TR climate or external signal radiation cannot be maintained or controlled, provide a minimum of two individual and properly sized self-contained climate controlled equipment cabinet enclosures; one designated for voice, and one designated for data.
- J. Provide installation hardware when enclosures or racks are attached to structural floor.
- K. Provide noise filters and surge protectors for each equipment interface cabinet, switch equipment cabinet, control console, and local and remote active equipment locations to ensure protection from input primary AC power surges so as a consequence noise glitches are not induced into low voltage data circuits.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate cabinet installation such that doors fully close and lock, with active and passive equipment installed and connected.
- B. Verify equipment dimensions and brackets allow mounting with cabinet doors closed. Front door or rear door of any cabinet that does not close and lock may result in immediate cancellation of inspections or tests.

3.2 INSTALLATION

A. Equipment Cabinets:

- 1. Install cabinets in a manner that complies with OEM instructions, requirements of this specification, and in a manner which does not constitute a safety hazard.
- 2. Provide weatherproof equipment installed outdoors or install in NEMA 3S rated enclosures with hinged doors and locks with two keys.
- 3. Install equipment indoors in NEMA 4 rated metal cabinets with hinged doors and locks with two keys.

B. Grounding:

- 1. Bond equipment, including identified Government furnished equipment, to ground so total ground resistance measures maximum 0.1 Ohm.
 - a. Install lightning arrestors and grounding in accordance with NFPA.
 - b. Install gas protection devices at nearest point of entrance in buildings where protection is required and on same circuits as MDF in telephone switch room.
 - c. Do not use AC neutral, including in power panel or receptacle outlet, for system control, subcarrier or audio reference ground.
 - d. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted.
- 2. Connect each equipment grounding terminal to a separate mounting hole on equipment mounting rail, to right as one looks at it from rear, with a minimum #12 AWG stranded copper wire with protective green jacket.
- 3. Extend common ground bus of minimum #10 AWG solid copper wire throughout each equipment cabinet and bond to TGB. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground buses together.
- 4. Bond equipment to cabinet bus with copper braid equivalent to #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.
- 5. Bond cable shields to cabinet ground bus with minimum #12 AWG stranded copper wire at only one end of cable run. Insulate cable shields from each other, faceplates, equipment racks, consoles, enclosures or cabinets, except at system common ground point.

C. Equipment Assembly:

1. Cabinets:

- a. Install and adjust cabinet/frame accessories to position, including thermal management accessories, vertical cable managers, vertical power managers and equipment-mounting rails, using manufacturer's installation instructions prior to baying or placing cabinet for attachment to building and before installing any rack-mount equipment into cabinet. Shelves, horizontal cable managers and filler panels (rack-mount accessories), if used, may be installed after cabinet is placed.
- b. When used in a multi-cabinet bay, attach cabinets side-by-side using baying kits according to manufacturer's instructions.
- c. Attach overhead ladder rack or cable tray to ceiling or top of cabinet. Maintain minimum 75 mm (3 inches) clearance between top of cabinet and bottom of ladder rack/cable tray. Position ladder rack/cable tray so that it does not interfere with hot air exhaust through cabinet's top panel. Use radius drops where cable enters or exits ladder rack/cable tray.
- d. Install ladder rack with side stringers facing rack or cabinet so that ladder forms an inverted U-shape and so that welds between stringers (sides) and cross members (middle) face away from cables.
- e. Secure ladder rack to tops of equipment racks or cabinets using manufacturer's recommended supports and appropriate hardware.
- f. Attach bonding conductor sized per TIA-607-B between telecommunications grounding busbar and cabinet. Attach bonding conductor to cabinet using a ground terminal block according to manufacturer's installation instructions.
- g. Provide bonding conductor and other hardware required to make connections between cabinet and telecommunications grounding busbar.
- h. Install rack mounted equipment normally requiring adjustment or observation so operational adjustments can be conveniently made.
- i. Mount heavy equipment with rack slides or rails to allow servicing from front of enclosure. Provide support in addition to front panel mounting screws for heavy equipment.
- j. Provide with cable slack to permit servicing by removal of installed equipment from front of enclosure.
- k. Install color-matched blank panel spacer 44 mm (1.75 inches) high between each piece of active and passive equipment to ensure

- adequate air circulation for efficient equipment cooling and air ventilation.
- 1. Provide quiet fans and non-disposable air filters at each console or cabinet.
- m. Install enclosures and racks plumb and square, permanently attached to building structure and held in place.
- n. Provide 381 mm (15 inches) of front vertical space opening for additional equipment.
- o. Install equipment located indoors in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
- p. Cables must enter equipment racks or enclosures in such a manner to allow doors or access panels to open and close without disturbing or damaging cables.
- q. Mount distribution hardware in a manner that allows access to connections for testing and provides room for doors or access panels to open and close without disturbing the cables.

2. Racks:

- a. Assemble racks according to manufacturer's instructions.
- b. Verify that equipment mounting rails are sized properly for rackmount equipment before attaching rack to floor.
- c. Attach assembled racks to floor in four places using appropriate floor mounting anchors. When placed over a raised floor, threaded rods should pass through raised floor tile and be secured in structural floor below.
- d. Bond racks to telecommunications grounding busbar using appropriate hardware provided by contractor.
- e. Ladder rack may be attached to top of rack to deliver cables to rack. Do not drill rack to attach; use appropriate hardware from rack manufacturer.
- f. Provide radius drops to guide cable where cable exits or enters side of overhead ladder rack to access a rack, frame, cabinet or wall-mounted rack, cabinet or termination field.
- g. Evenly distribute equipment load on rack. Place large and heavy equipment towards bottom of rack. Secure equipment to rack with equipment mounting screws.

3. Vertical Cable Managers:

- a. Provide vertical managers so number of cables in each manager does not exceed OEM fill capacity.
- b. Attach vertical cable managers to side of rack/frame using manufacturer's installation instructions and hardware.
- c. Attach vertical cable manager to both racks/frames when a single vertical cable manager is used between two racks/frames.
- d. Dress cables through openings in between T-shaped guides on manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
- e. Attach doors to cable manager in closed position after cabling is complete.

4. Horizontal Cable Managers:

- a. Attach horizontal cable managers to rack/frame with minimum four screws according to manufacturer's installation instructions. Center each cable manager within allocated rack-mount space (RMU).
- b. Provide horizontal managers located so number of cables each manager supports is less than cable manager's cable fill capacity.
- c. Dress cables through openings in between T-shaped guides on cable manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
- d. Attach covers to cable manager in closed position after cabling is complete.
- D. Labeling: Permanently label each enclosure in accordance with TIA-606-B using laser printers; handwritten labels are not acceptable.
 - 1. Equipment: Label system equipment with contrasting plastic laminate or bakelite material on face of unit corresponding to its source.
 - Conduit, Cable Duct, and/or Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 m (10 feet), identifying system.

- - - E N D - - -

September 2017

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Center here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - 1. Pictorial layout drawing of each telecommunications room, showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - 2. List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

B. Certifications:

- Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.
- 2. Pre-acceptance Certification: Submit in accordance with test procedures.

- 3. Test system cables and certify with COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- 4. Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.

B. Industry Standards:

- 1. Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
- Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
- 3. Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
- 4. Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.

Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be

used in completion of this contract, equipment must bear approved NRTL label.

- C. System Performance: Provide complete system to meet or exceed TIA Category 6 or on a case by case basis Category 6A for specialized powered systems' requirements.
- D. Provide continuous inter- and/or intra-facility voice and data service.
 - 1. Contact SMCS 0050P2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, and videotele communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic cable unterminated, unconnected, loose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, Fiber optic:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.

- c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
- 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP fiber optic backbone cables, terminate UTP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels, 110A or equivalent type punch down blocks that are dedicated to voice and data applications.
 - b. Provide 24 port fiber optic modular patch panels with "LC" or OEM specified couplers dedicated for voice, data and FMS applications.
 - c. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
 - d. In TR's, which are only served by a UTP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.
- 3. Backbone Copper Cables:
 - a. Riser Cable:
 - Provide communication riser cables listed in NEC Table 800,
 154(a) for the purpose and suited for electrical connection to a communication network.
 - 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication riser cables with a thermoplastic outer jacket.
 - 3) Label and test complete riser cabling system.
- 4. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 250 MHz.
 - c. Provide four pair 0.205 mm2 (24 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):

- 1) Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category 6 Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- 5. Fiber Optics Backbone Cable:
 - a. Provide 50/125 62.5/125 (for Bell System Interconnection Compatibility micron OM4 multi-mode cable, containing at minimum 18 strands of fiber, unless otherwise specified.
 - b. Provide loose tube cable, which separates individual fibers from the environment, or indoor/outdoor cables, for outdoor runs or any area that includes an outdoor run.
 - c. Provide tight buffered fiber cable or indoor/outdoor cables for indoor runs.
 - d. Terminate multimode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 ft.) cable loop at each end.
 - e. Provide single mode fiber optic cable 8.3 mm containing at minimum 12 strands of fiber, unless otherwise specified.
 Terminate single mode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 feet) cable loop at each end to allow for future movement.
 - f. Install fiber optic cables in TR's, Voice (Telephone) Switch Room, and Main Computer Room, in rack mounted fiber optic patch panels. Provide female LC couplers in appropriate panel for termination of each strand.
 - g. Test all fiber optic strands' cable transmission performance in accordance with TIA standards. Measure attenuation in accordance with fiber optic test procedures TIA-455-C ('-61', or -53).

 Provide written results to COR for review and approval.
- B. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
 - 3. Fiber Optic Cables:

- a. Provide fiber CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
- b. Install fiber optic cable slack in protective enclosures.
- C. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper, fiber optic cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.
 - Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- D. Main Cross-connection Subsystem (MCCS): MCCS is common point of distribution for inter- and intra-building copper and fiber optic backbone system cables, and connections to the voice (telephone) and data cable systems.
- E. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1. Provide Insulation Displacement Connection (IDC) hardware.
 - 2. Provide the following for each Category 5E (or on a case by case basis Category 6 for specialized powered systems technically accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services and COR) Cabling System termination; cross-connection wires, RJ-45 patch cord connector to RJ-45 patch cord connector, hybrid modular cord to IDC patch cord connector.
 - a. Provide terminations to be accessible without need for disassembly of IDC wafer. Provide IDC wafers removable from their mounts to facilitate testing on either side of connector.
 - b. Provide removable designation strips or labels to allow for inspection of terminations.
 - c. Provide cable management system as a part of IDC.
 - Provide IDC connectors capable of re-terminations, without damage, a minimum of 200 IDC insertions or withdrawals on either side of connector panel.
 - 4. Install using only non-impact terminating tool having both a tactile and an audible feedback to indicate proper termination.
 - 5. Provide inputs from PBX, FTS, Local Voice (Telephone) System, or diverse routed voice distribution systems on left side of IDC (110A

- blocks with RJ45 connections are acceptable alternates to IDC) of $\ensuremath{\mathsf{MCCS}}$.
- 6. Provide system outputs from MCCS to voice backbone cable distribution system on the right side of same IDC (or 110A blocks) of MCCS
- 7. Do not split pairs within cables between different jacks or connections.
- 8. Provide UTP cross connect wire to connect each pair of terminals plus an additional 50 percent spare.
- F. Data Cross-Connection Subsystems:
 - 1. Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations and system ground with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.
 - c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- G. Fiber-Optic Cross-Connection Subsystems: Provide rack mounted patch or distribution panels installed inside a lockable cabinet or "breakout enclosure" that accommodate minimum 12 strands multimode fiber and 12 strand single mode fiber these counts do not include 50 percent spare requirement. Provide cable management system for each panel.
 - 1. Provide panels for minimum 24 female LC connectors, able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to OEM's maximum standard panel size for this type of use. Protect patch panel sides, including front and back, by a cabinet or enclosure.
 - 2. Provide panels that conform to EIA/ECA 310-E dimensions suitable for installation in standard racks, cabinets, and enclosures.

- 3. Provide patch panels with highest OEM approved density of fiber LC termination's (maximum of 72 each), while maintaining a high level of manageability. Provide proper LC couplers installed for each pair of fiber optic cable LC connectors.
 - a. Provide system inputs from interface equipment or distribution systems on top row of connectors of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of connectors of same patch panel.
 - c. Provide patch cords for each pair of fiber optic strands with connector to match couplers.
- 4. Provide field installable connectors that are pre-polished.
 - a. Terminate every fiber cable with appropriate connector, and test to ensure compliance to specifications and industry standards for fiber optic LC female connector terminated with a fiber optic cable.
 - b. Install a terminating cap for each unused LC connector.

H. Horizontal Cabling (HC):

- 1. Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
- 2. Splitting of pairs within a cable between different jacks is not permitted.

3. Indoor Microducts:

- a. Provide empty bundled microducts comprising an inner layer of microducts optimized for air blown fiber system and an outer jacket layer of plenum riser rated material with product identification and sequential length marking on outer layer at minimum one-meter (three feet) intervals.
- b. Provide microduct allowing multiple fibers to be installed simultaneously into each microduct using air blown fiber installation technique and fibers to also be removed from microduct using same technique.
- c. Size each microduct for 50 percent unoccupied microducts after initial fiber bundle installation.
- d. Furnish microducts that maintain minimum bend radius of 20 times cable diameter.
- e. Provide quantity of plugs or end-caps so all unoccupied microducts are plugged on both ends per manufacturer's

specifications. Provide plugs or end-caps that can be easily installed or removed from duct connectors as needed over the lifetime of the installation.

- 4. Microduct Couplers: Provide plastic-bodied pneumatic connector to join microducts of same size.
 - a. Provide straight connectors constructed of a transparent plastic material permitting a visual verification of fiber population.
 - b. Provide tee connectors with additional port allowing for gasblocking in internal/external situations, or provide gas-blocking couplers as needed to protect and isolate classified areas from non-classified areas or provide close-down connectors if needed for midspan assisted blows in long runs
- 5. Microduct Distribution Units: Provide NEMA-rated enclosure, suited for site environmental conditions provided for microduct distribution, routing, and termination.
 - a. Provide unit capable of wall mounting to provide proper geometry for distribution wherever several microducts enter same location or where microduct type transitions take place.
 - b. Size based on number of microducts to enter unit.
- 6. Fiber Termination Units: Provide at locations where fiber is to be terminated.
 - a. Provide for strain relief of incoming microducts.
 - b. Provide connector panels and connector couplings adequate to accommodate the number of fibers to be terminated.
 - c. Incorporate radius control mechanisms to limit bending of fibers to manufacturer's recommended minimum or 76 mm (3 inches), whichever is larger.
 - d. Where rack-mount fiber termination hardware is required, provide wall-mount microduct distribution unit near rack and provide individual microducts to route and connect fiber bundle passing through microduct distribution units to fiber termination hardware.
 - e. Provide LC connectors mounted on a coupler panel that snaps into patch panel housing assembly.
- 7. Fiber Bundles or Cables:
 - a. Provide fiber bundles or cables designed and manufactured to facilitate:

- 1) Rapid installation of fiber using air blown fiber installation process without risk or damage to fibers.
- 2) Re-installation without degradation of the optical specifications and performance of fiber.
- 3) Transition points from indoor to outdoor environments without splices.
- b. Provide jacketed optical fibers manufactured so that the jacketed fiber strands meet GR409 and meet either UL 1666 for riser rated cables or UL 910 for plenum rated cables and are specific to the purpose of being blown throughout the bundled microduct system.
- c. Provide fiber designed to be stripped and terminated with standard tools.
- d. Provide fiber designed to be terminated with standard fiber optic connectors.
- e. Provide maximum 72 strands of fiber to be blown within each microduct; if fiber counts higher than 72 strands are required, provide microcore fiber with counts to 432 strands in larger size microducts.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum one voice (telephone) RJ45 jack and two data RJ45 jacks mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.
 - 2. Provide RJ-45/11 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections.
 Provide LC ceramic ferrule female type fiber optic connectors.
 - 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit voice (telephone) multi-pin jack, data multi- pin jacks, fiber optic jacks, when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications. Install stainless steel face plate, for prefabricated bedside patient unit installations.
- B. Backbone Distribution Cables:

- 1. Meet TIA transmission performance requirements of Voice Grade Category 6.
- 2. Provide cable listed for environments where it is installed.
- 3. Technical Characteristics:
 - a. Length: As required, in minimum 1 kilometer (3,000 ft.) reels.
 - b. Size:
 - 1) Minimum 0.326 mm2 (22 AWG) outside plant installation.
 - 2) Minimum 0.205 mm2 (24 AWG) interior installations.
 - c. Color Coding: American Telephone and Telegraph Company Standard; Bell System Practices Outside Plant Construction and Maintenance Section G50.607.3, Issue 2 February, 1959.
 - d. Minimum Bend Radius: 10X cable outside diameter.
 - e. Impedance: 120 Ohms + 15 percent.
 - f. DC Resistance: Maximum 8.00 ohms/100 m
 - g. Shield Coverage: As required by drawing notes single shield tape design.

h. Maximum attenuation for 100m at 20° C:

Frequency (MHz)	Category 3 (dB)	Category 5e (dB)	Category 6 (dB)	
.772	2.2	-	-	
1	2.6	2.0	2.0	
4	5.6	4.1	3.8	
8	8.5	5.8	5.3	
10	9.7	6.5	6.0	
16	13.1	8.2	7.6	
20		9.3	8.5	
25		10.4	9.5	
31.25		11.7	10.7	
62.5		17.0	15.4	
100		22.0	19.8	
200			29.0	
250			32.8	
300				

NLR IMPROVE SECURITY CONTROL

Construction Documents

September 2017

Frequency	(MHz)	Category 3 (dB	Category 5e (di	3) Category 6 (dB)
400				
500				

- 4. Data Multi-Conductor:
 - a. Unshielded F/UTP cable with solid conductors.
 - b. Able to handle the power and voltage used over the distance required.
 - c. Meets TIA transmission performance requirements of Category 6.
 - d. Technical Characteristics:
 - 1) 0.205 mm2 (24 AWG) 0.326 mm2 (22 AWG) cable
 - 2) Bend Radius: 10 times cable outside diameter.
 - 3) Impedance: 100 Ohms + 15%, BAL.
 - 4) Bandwidth: 250 MHz.
 - 5) DC Resistance: Maximum 9.38 Ohms/100m (328 ft.) at 20 degrees C.
 - 6) Maximum Mutual Capacitance: 5.6 nF per 100 m (328 ft.).
 - 7) Shield Coverage:
 - a) Overall Outside (if OEM specified): 100 percent.
 - b) Individual Pairs (if OEM specified): 100 percent.
 - 8) Maximum attenuation for 100m (328 ft.) at 20° C:

Frequency	Category 5e	Category 6
(MHz)	(dB)	(dB)
1	2.0	2.0
4	4.1	3.8
8	5.8	5.3
10	6.5	6.0
16	8.2	7.6
20	9.3	8.5
25	10.4	9.5
31.25	11.7	10.7
62.5	17.0	15.4
100	22.0	19.8

Frequency	Category 5e	Category 6
(MHz)	(dB)	(dB)
200		29.0
250		32.8
300		
400		
500		

5. Fiber Optic:

- a. Multimode Fiber:
 - 1) Provide OM4 Type general purpose multimode fiber optic cable installed in conduit for system locations with load-bearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 152 mm (6 inches); outer jacket as required.
 - b) Fiber Diameter: 62.5 for Bell System Interconnection Standard requirements microns.
 - c) Cladding: 125 microns.
 - d) Attenuation:
 - 1) 850 nanometer: Maximum 4.0 dB per kilometer.
 - 2) 1,300 nanometer: Maximum 2.0 dB per kilometer.
 - e) Bandwidth:
 - 1) 850 nanometer: Minimum 160 MHz.
 - 2) 1,300 nanometer: Minimum 500 MHz.
 - f) Connectors: Stainless steel.
- b. Single mode Fiber:
 - Provide OS1 Type general purpose single mode fiber optic cable installed in conduit for all system locations with loadbearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 100 mm (4 inches).
 - b) Outer Jacket: PVC.
 - c) Fiber Diameter: 8.7 microns.
 - d) Cladding: 125 microns.

- e) Attenuation at 850 nanometer: 1.0 dBm per kilometer.
- f) Connectors: Ceramic.

C. Outlet Connection Cables:

1. Voice (Telephone):

- a. Provide a connection cable for each TCO voice (telephone) jack in system with 10 percent spares able to connect voice (telephone) connection cable from voice (telephone) instrument to TCO voice (telephone) jack. Do not provide voice (telephone) instruments or equipment.
- b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Voice Grade.
 - 3) Connector: RJ-11/45 compatible male on each end.
 - 4) Size: Minimum 24 AWG.
 - 5) Color Coding: Required, telephone industry standard.

2. Data:

- a. Provide a connection cable for each TCO data jack in system with 10 percent spares to connect a data instrument to TCO data jack. Do not provide data terminals/equipment.
- b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Data grade Category 5E or on a case-by-case basis
 Category 6 for specialized powered systems accepted by SMCS
 0050P2H3 (202) 461-5310, IT and FMS Services and COR.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.

3. Fiber Optic:

- a. Provide a connection cable for each TCO fiber optic connector in system with 10 percent spares. Provide data connection cable to connect a fiber optic instrument to TCO fiber optic jack. Do not provide fiber optic instruments/equipment.
- b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Flexible single conductor with jacket.
 - 3) Connector: LC male on each end.
 - 4) Size: To fit OM1 single mode or OM4 multimode cable.
- D. System Connectors:

- 1. Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5) Leakage: Maximum 100 μA.
 - 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- E. Fiber Optic Terminators:
 - 1. Pre-polished crimp on type that has proper ferrule to terminate fiber optic cable.
 - 2. Technical Characteristics:
 - a. Frequency: Light wave.
 - b. Power Blocking: As required.
 - c. Return Loss: 25 dB.
 - d. Connectors: LC.
 - e. Construction: Ceramic.
- F. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system,

follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.

- e. Maximum 40 percent conduit fill for cable installation.
- 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99
 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission
 Manual for Health Care Facilities, and original equipment
 manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - 2. Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - 3. Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
 - 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Patient Bedside Prefabricated Units (PBPU) Installation:
 - 1. Under no circumstances, proceed with installing PBPU without written approval of PBPU OEM and specific instructions regarding attachment to or modifying of PBPU.
 - 2. Maintain UL integrity of each PBPU. If installation violates UL integrity, obtain on site UL re-certification of violated PBPU at the direction of COR.

E. Labeling:

1. Industry Standard: Provide labeling in accordance with ANSI/TIA-606-

- 2. Print lettering of labels with laser printers; handwritten labels are not acceptable.
- 3. Label both ends of all cables in accordance with industry standard.

 Provide permanent Labels in contrasting colors and identify
 according to system "Record Wiring Diagrams".
- 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

- 1. Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factory-certified representative and witnessed by COR.
- 2. Check each item of installed equipment to ensure appropriate NRTL label.
- 3. Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
- 4. Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
- 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
- 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
- 7. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
- 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.

B. Pretesting:

1. Pretest entire system upon completion of system installation.

- 2. Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
- 3. Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.

C. Microduct Tests:

- Furnish COR, obstruction and pressure test data for each microduct installed. Complete pressure and obstruction tests per manufacturer's recommended procedures prior to installing fiber, and ensure 100 percent of all microducts are compliant with manufacturer.
- 2. Complete microduct pressure testing before proceeding with end-toend microduct obstruction testing.
- 3. Notify COR at least one week in advance of test date so that Government and design professional may be present to witness testing.
- 4. Maintain close contact with chosen and technically-approved OEM and SMCS 0050P2H3 throughout installation, testing and certification process.

D. Acceptance Test:

- 1. After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
- 2. Test only in presence of a COR.
- 3. Test utilizing approved test equipment to certify proof of performance.
- 4. Verify that total system meets the requirements of this section.
- 5. Include expected duration of test time, with notification of the acceptance test.

E. Verification Tests:

- Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
- 2. Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using Method A,

Optical Power Meter and Light Source. Perform verification acceptance test.

3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-7 using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.

F. Performance Testing:

- Perform Category 5E (or on a case by case basis Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, IT and FMS Services and COR) tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- G. Total System Acceptance Test: Perform verification tests for UTP copper cabling systems and multi-mode and single mode fiber optic cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - 1. Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report.
 An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
 - 3. Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

September 2017

- b. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
- 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

September 2017

SECTION 27 17 10 TESTING, IDENTIFICATION AND ADMINISTRATION OF BALANCED TWIST PAIR INFRASTRUCTURE

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Provide all labor, materials, tools, field-test instruments and equipment required for the complete testing, identification and administration of the work called for in the Contract Documents.
- B. In order to conform to the overall project event schedule, the cabling contractor shall survey the work areas and coordinate cabling testing with other applicable trades.
- C. In addition to the tests detailed in this document, the contractor shall notify the Owner or the Owner's representative of any additional tests that are deemed necessary to guarantee a fully functional system. The contractor shall carry out and record any additional measurement results at no additional charge.

1.2 SCOPE

- A. This Section includes the minimum requirements for the test certification, identification and administration of horizontal balanced twisted pair cabling.
- B. This Section includes minimum requirements for:
 - 1. Copper cabling test instruments
 - 2. Copper cabling testing
 - 3. Identification
 - a) Labels and labeling
 - 4. Administration
 - a) Test results documentation
 - b) As-built drawings
- C. Testing shall be carried out in accordance with this document.
- D. Testing shall be performed on each cabling link. (100% testing)
- E. All tests shall be documented.

1.3 QUALITY ASSURANCE

- A. All testing procedures and field-test instruments shall comply with applicable requirements of:
 - 1. ANSI/TIA-1152, Requirements for Field Test Instruments and Measurements for Balanced Twisted-Pair Cabling
 - 2. ANSI/TIA-568-C.0, Generic Telecommunications Cabling for Customer Premises.

September 2017

- 3. ANSI/TIA-568-C.1, Commercial Building Telecommunications Cabling Standard
- 4. ANSI/TIA-568-C.2, Balanced Twisted-Pair Telecommunications Cabling and Components Standards.
- 5. ANSI/TIA-606-B, Administration Standard for Commercial Telecommunications Infrastructure, including the requirements specified by the customer, unless the customer specifies their own labeling requirements.
- B. Trained technicians who have successfully attended an appropriate training program and have obtained a certificate as proof thereof shall execute the tests. These certificates may have been issued by any of the following organizations or an equivalent organization:
 - 1. Manufacturer of the connectors or cable.
 - 2. Manufacturer of the test equipment used for the field certification.
 - 3. Training organizations (e.g., BICSI, A Telecommunications Association headquarters in Tampa, Florida; ACP [Association of Cabling Professionals™] Cabling Business Institute located in Dallas, Texas)
- C. The Owner or the Owner's representative shall be invited to witness and/or review field-testing.
 - 1. The Owner or the Owner's representative shall be notified of the start date of the testing phase five (5) business days before testing commences.
 - 2. The Owner or the Owner's representative will select a random sample of 5% of the installed links. The Owner or the Owner's representative shall test these randomly selected links and the results are to be stored in accordance with Part 3 of this document. The results obtained shall be compared to the data provided by the installation contractor. If more than 2% of the sample results differ in terms of the pass/fail determination, the installation contractor under supervision of the representative shall repeat 100% testing at no cost to the Owner.

1.4 SUBMITTALS

- A. Manufacturers catalog sheets and specifications for the test equipment.
- B. A schedule (list) of all balanced twisted-pair copper links to be tested.
- C. Sample test reports.

1.5 ACCEPTANCE OF TEST RESULTS

- A. Unless otherwise specified by the Owner or the Owners representative, each cabling link shall be in tested for:
 - 1. Wire Map
 - 2. Length
 - 3. Propagation Delay
 - 4. Delay Skew

September 2017

- 5. DC Loop Resistance recorded for information only
- 6. DC Resistance Unbalance recorded for information only
- 7. Insertion Loss
- 8. NEXT (Near-End Crosstalk)
- 9. PS NEXT (Power Sum Near-End Crosstalk)
- 10. ACR-N (Attenuation to Crosstalk Ratio Near-End) recorded for information only
- 11. PS ACR-N (Power Sum Attenuation to Crosstalk Ratio Near-End) recorded for information only
- 12. ACR-F (Attenuation to Crosstalk Ratio Far-End)
- 13. PS ACR-F (Power Sum Attenuation to Crosstalk Ratio Far-End)
- 14. Return Loss
- 15. TCL (Transverse Conversion Loss) recorded for information only
- 16. ELTCTL (Equal Level Transverse Conversion Transfer Loss) recorded for information only
- B. All installed cabling Permanent Links shall be field-tested and pass the test requirements and analysis as described in Part 3. Any Permanent Link that fails these requirements shall be diagnosed and corrected. Any corrective action that must take place shall be documented and followed with a new test to prove that the corrected Permanent Link meets performance requirements. The final and passing result of the tests for all Permanent Links shall be provided in the test results documentation in accordance with Part 3.
- C. Acceptance of the test results shall be given in writing after the project is fully completed and tested in accordance with Contract Documents and to the satisfaction of the Owner.

PART 2 - PRODUCTS

2.1 BALANCED TWISTED-PAIR CABLE TESTERS

- A. The field-test instrument shall be within the calibration period recommended by the manufacturer, typically 12 months.
- B. Certification tester
 - 1. Accuracy
 - a) Level III accuracy in accordance with ANSI/TIA-1152
 - b) Independent verification of accuracy
 - c) Acceptable manufacturers
 - 1) Fluke Networks
 - 2. Permanent Link Adapters
 - a) RJ45 plug must meet the requirements for NEXT, FEXT and Return Loss in accordance with ANSI/TIA-568-C.2 Annex C

- b) Twisted pair Category 5e, 6, 6A, 7 or 7_{A} cords are not permitted as their performance degrades with use and can cause false Return Loss failures
- 3. Results Storage
 - a) Must be capable of storing > 10,000 results for all measurements found in 2.1.B.4 below
- 4. Measurement capabilities
 - a) Wire Map
 - b) Length
 - c) Propagation Delay
 - d) Delay Skew
 - e) DC Loop Resistance
 - f) DC Resistance Unbalance
 - q) Insertion Loss
 - h) NEXT (Near-End Crosstalk)
 - i) PS NEXT (Power Sum Near-End Crosstalk)
 - j) ACR-N (Attenuation to Crosstalk Ratio Near-End)
 - k) PS ACR-N (Power Sum Attenuation to Crosstalk Ratio Near-End)
 - 1) ACR-F (Attenuation to Crosstalk Ratio Far-End)
 - m) PS ACR-F (Power Sum Attenuation to Crosstalk Ratio Far-End)
 - n) Return Loss
 - o) TCL (Transverse Conversion Loss)
 - p) ELTCTL (Equal Level Transverse Conversion Transfer Loss)
 - q) Time Domain Reflectometer
 - r) Time Domain Xtalk Analyzer

C. PC Software

- 1. Windows® based.
- 2. Must show when 3 dB and 4 dB rules are applied
- 3. Re-certification capability, where results must have their Cable IDs suffixed with (RC).
- 4. Built in PDF export no additional third party software permitted.
- 5. Built-in statistical analysis.

September 2017

6. Identification

D. Labels

- 1. Shall meet the legibility, defacement, exposure and adhesion requirements of UL 969.
- 2. Shall be preprinted using a mechanical means of printing (e.g., laser printer).
- 3. Where used for cable marking, provide vinyl substrate with a white printing area and a clear "tail" that self laminates the printed area when wrapped around the cable. If cable jacket is white, provide cable label with printing area that is any other color than white, preferably orange or yellow so that the labels are easily distinguishable.
- 4. Where insert type labels are used provide clear plastic cover over label.
- 5. Provide plastic warning tape 6 inches wide continuously printed and bright colored 18" above all direct buried services, underground conduits and duct-banks.
- 6. Acceptable Manufacturers:
 - a) Brady Corporation
 - b) Silver Fox
 - c) Brothers

2.2 ADMINISTRATION

- A. Administration of the documentation shall include test results of each Permanent Link.
- B. The test result information for each link shall be recorded in the memory of the field-test instrument upon completion of the test.
- C. The test result records saved within the field-test instrument shall be transferred into a Windows® -based database utility that allows for the maintenance, inspection and archiving of these test records.

PART 3 - EXECUTION

3.1 GENERAL

A. All outlets, cables, patch panels and associated components shall be fully assembled and labeled prior to field-testing. Any testing performed on incomplete systems shall be redone on completion of the work.

3.2 BALANCED TWISTED PAIR CABLE TESTING

- A. Field-test instruments shall have the latest software and firmware installed.
- B. Permanent Link test results including the individual frequency measurements from the tester shall be recorded in the test instrument upon completion of each test for subsequent uploading to a PC in which the administrative documentation (reports) may be generated.

- C. Testing shall be performed on each cabling segment (connector to connector). Sampling is not acceptable.
- D. Permanent Link adapters made from twisted pair Category 5e, 6, 6A, 7 or $7_{\rm A}$ cords are not permitted as their performance degrades with use and can cause false Return Loss failures.
- E. The installer shall build a reference link. All components shall be anchored so it is not possible to disturb them. The technician is to conduct a Category 6 Permanent Link test each day to ensure no degradation of the tester or its Permanent Link adapters.

F. Wire Map Measurement

- 1. The wire map test is intended to verify pin-to-pin termination at each end and check for installation connectivity errors. For each of the 8 conductors in the cabling, the wire map indicates:
 - a) Continuity to the remote end
 - b) Shorts between any two or more conductors
 - c) Reversed pairs
 - d) Split pairs
 - e) Transposed pairs
 - f) Distance to open on shield
 - g) Any other miss-wiring
- 2. The correct connectivity of telecommunications outlets/connectors is defined in ANSI/TIA-568-C.2. Two color schemes are permitted. The user shall define which scheme is to be used. The field tester shall document which color scheme was used. Examples are given below:

G. Length Measurement

1. The length of each balanced twisted pair shall be recorded.

- 2. Since physical length is determined from electrical length, the physical length of the link calculated using the pair with the shortest electrical delay shall be reported and used for making the pass or fail determination.
- 3. The pass or fail criteria is based on the maximum length allowed for the Permanent Link as specified in ANSI/TIA-568-C.2 plus the nominal velocity of propagation (NVP) uncertainty of 10%. For a Permanent Link, the length measurement can be 325 ft. (99 m) before a fail is reported.
- H. Propagation Delay measurement
 - 1. Is the time it takes for a signal to reach the end of the link.
 - 2. The measurement shall be made at 10 MHz per ANSI/TIA-1152.
 - 3. The propagation delay of each balanced twisted pair shall be recorded.
 - 4. Is not to exceed 498 ns per ANSI/TIA-568-C.2 Section 6.3.18.
- I. Delay Skew measurement
 - 1. Is the difference in propagation delay @ 10 MHz between the shortest delay and the delays of the other wire pairs.
 - 2. The delay skew of each balanced twisted pair shall be recorded.
 - 3. Is not to exceed 44 ns per ANSI/TIA-568-C.2 Section 6.3.19.
- J. DC Resistance
 - 1. Often reported as Resistance, is the loop resistance of both conductors in the pair.
 - 2. Is not specified in ANSI/TIA-1152, but shall be recorded for all four pairs.
- K. DC Resistance Unbalance
 - 1. Often reported as Resistance Unbalance, is the difference in resistance of the two wires within the pair.
 - 2. Is not specified in ANSI/TIA-1152 for a Permanent Link, but shall be recorded for all four pairs.
- L. Insertion Loss
 - 1. Is the loss of signal strength over the cabling (in dB).
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Worst case shall be reported for all four pairs in one direction only.
 - 4. Reported margins found to be within the accuracy of the field tester shall be marked with an asterisk (*).

September 2017

- 5. Is not to exceed the Category 6 Permanent Link limits found in ANSI/TIA-568-C.2 Section 6.3.7.
- M. NEXT (Near-End Crosstalk)
 - 1. Is the difference in amplitude (in dB) between a transmitted signal and the crosstalk received on other wire pairs at the same end of the cabling.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Shall be measured in both directions. (12 pair to pair possible combinations)
 - 4. Both worst case and worst margins shall be reported.
 - 5. Is not to exceed the Category 6 Permanent Link limits found in ANSI/TIA-568-C.2 Section 6.3.8.
 - 6. Reported margins found to be within the accuracy of the field tester shall be marked with an asterisk (*).
 - 7. The Time Domain Xtalk data shall be stored for any marginal or failing NEXT results.
- N. PS NEXT (Power Sum Near-End Crosstalk)
 - 1. Is the difference (in dB) between the test signal and the crosstalk from the other pairs received at the same end of the cabling.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Shall be measured in both directions. (8 pair possible combinations)
 - 4. Both worst case and worst margins shall be reported.
 - 5. Is not to exceed the Category 6 Permanent Link limits found in ANSI/TIA-568-C.2 Section 6.3.9.
 - 6. Reported margins found to be within the accuracy of the field tester shall be marked with an asterisk (*).
 - 7. The Time Domain Xtalk data shall be stored for any marginal or failing PS NEXT results.
- O. ACR-N (Attenuation Crosstalk Ratio Near-End)
 - 1. Is a calculation of NEXT minus Insertion Loss of the disturbed pair in dB.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz

TESTING, IDENTIFICATION

Construction Documents September 2017

- c) 100 250 MHz: 500 kHz
- 3. Shall be calculated in both directions.
- 4. Is not specified in ANSI/TIA-1152, but shall be recorded for all 12 possible combinations.
- P. PS ACR-N (Power Sum Attenuation Crosstalk Ratio Near-End)
 - 1. Is a calculation of PS NEXT minus Insertion Loss of the disturbed pair in dB.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Shall be calculated in both directions.
 - 4. Is not specified in ANSI/TIA-1152, but shall be recorded for all 8 possible combinations.
- Q. ACR-F (Attenuation Crosstalk Ratio Far-End)
 - 1. Is a calculation of FEXT minus Insertion Loss of the disturbed pair in dB.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Shall be measured in both directions. (24 pair to pair possible combinations)
 - 4. Both worst case and worst margins shall be reported.
 - 5. Is not to exceed the Category 6 Permanent Link limits found in ANSI/TIA-568-C.2 Section 6.3.11.
 - 6. Reported margins found to be within the accuracy of the field tester shall be marked with an asterisk (*).
- R. PS ACR-F (Power Sum Attenuation Crosstalk Ratio Far-End)
 - 1. Is a calculation of PS FEXT minus Insertion Loss of the disturbed pair in dB.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Shall be measured in both directions. (8 pair possible combinations)
 - 4. Both worst case and worst margins shall be reported.
 - 5. Is not to exceed the Category 6 Permanent Link limits found in ANSI/TIA-568-C.2 Section 6.3.13.

September 2017

- 6. Reported margins found to be within the accuracy of the field tester shall be marked with an asterisk (*).
- S. Return Loss
 - 1. Is the difference (in dB) between the power of a transmitted signal and the power of the signals reflected back.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Shall be measured in both directions. (8 pair possible combinations)
 - 4. Both worst case and worst margins shall be reported.
 - 5. Shall be ignored at all frequencies where the Insertion Loss is less than 3 dB for that pair.
 - 6. Is not to exceed the Category 6 Permanent Link limits found in ANSI/TIA-568-C.2 Section 6.3.6.
 - 7. Reported margins found to be within the accuracy of the field tester shall be marked with an asterisk (*).
 - 8. The Time Domain Reflectometer data shall be stored for any marginal or failing Return Loss results.
- T. TCL (Transverse Conversion Loss)
 - Is the ratio (in dB) between a differential mode signal inject at the near-end and the common-mode signal measured at the near-end on the same wire pair.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz
 - 3. Shall be measured in both directions.
 - 4. Is not specified in ANSI/TIA-1152 for a Permanent Link, but shall be recorded for all 8 possible combinations.
- U. ELTCTL (Equal Level Transverse Conversion Transfer Loss)
 - 1. Is the ratio (in dB) between a differential mode signal inject at the near-end and the common-mode signal measured at the far end on the same wire pair minus the Insertion Loss of that pair.
 - 2. The frequency resolution shall be:
 - a) 1 31.25 MHz: 150 kHz
 - b) 31.25 100 MHz: 250 kHz
 - c) 100 250 MHz: 500 kHz

TESTING, IDENTIFICATION

AND ADMINISTRATION OF

Construction Documents September 2017

- 3. Shall be measured in both directions.
- 4. Is not specified in ANSI/TIA-1152 for a Permanent Link, but shall be recorded for all 8 possible combinations.

3.3 ADMINISTRATION

- A. Test results documentation
 - 1. Test results saved within the field-test instrument shall be transferred into a Windows™-based database utility that allows for the maintenance, inspection and archiving of the test records. These test records shall be uploaded to the PC unaltered, i.e., "as saved in the field-test instrument". The file format, CSV (comma separated value), does not provide adequate protection of these records and shall not be used.
 - 2. The test results documentation shall be available for inspection by the Owner or the Owner's representative during the installation period and shall be passed to the Owner's representative within 5 working days of completion of tests on cabling served by a telecommunications room or of backbone cabling. The installer shall retain a copy to aid preparation of as-built information.
 - 3. The database for the complete project, including twisted-pair copper cabling links, if applicable, shall be stored and delivered on CD or DVD prior to Owner acceptance of the building. This CD or DVD shall include the software tools required to view, inspect, and print any selection of the test reports.
 - 4. Circuit IDs reported by the test instrument should match the specified label ID (see Error! Reference source not found. of this Section).
 - 5. The detailed test results documentation data is to be provided in an electronic database for each tested balance twisted-pair and shall contain the following information
 - a) The overall Pass/Fail evaluation of the link-under-test
 - b) The date and time the test results were saved in the memory of the tester
 - c) The identification of the customer site as specified by the end-user
 - d) The name of the test limit selected to execute the stored test results
 - e) The name of the personnel performing the test
 - f) The version of the test software and the version of the test limit database held within the test instrument
 - g) The manufacturer, model and serial number of the field-test instrument
 - h) The adapters used
 - i) The factory calibration date

September 2017

- j) Wire Map
- k) Propagation Delay values, for all four pairs
- 1) Delay Skew values, for all four pairs
- m) DC Resistance values, for all four pairs
- n) DC Resistance Unbalance, values for all four pairs
- o) Insertion Loss, worst case values for all four pairs
- p) NEXT, worst case margin and worst case values, both directions
- q) PS NEXT, worst case margin and worst case values, both directions
- r) ACR-F, worst case margin and worst case values, both directions
- s) PS ACR-F, worst case margin and worst case values, both directions
- t) Return Loss, worst case margin and worst case values, both directions
- u) TCL, worst case values both directions
- v) ELTCTL, worst case values, both directions.
- w) Time Domain Crosstalk data if the link is marginal or fails
- x) Time Domain Reflectometer data if the link is marginal or fails
- B. Record copy and as-built drawings
 - 1. Provide record copy drawings periodically throughout the project as requested by the Construction Manager or Owner, and at end of the project on a CD or DVD. Record copy drawings at the end of the project shall be in CAD format and include notations reflecting the as built conditions of any additions to or variation from the drawings provided such as, but not limited to cable paths and termination point. The as-built drawings shall include, but are not limited to block diagrams, frame and cable labeling, cable termination points, equipment room layouts and frame installation details. The as-builts shall include all field changes made up to construction completion:
 - a) Field directed changes to pull schedule.
 - b) Horizontal cable routing changes.
 - c) Associated detail drawings.

---END---

SECTION 27 17 20

TESTING, IDENTIFICATION AND ADMINISTRATION OF FIBER INFRASTRUCTURE

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Provide all labor, materials, tools, field-test instruments and equipment required for the complete testing, identification and administration of the work called for in the Contract Documents.
- B. In order to conform to the overall project event schedule, the cabling contractor shall survey the work areas and coordinate cabling testing with other applicable trades.
- C. In addition to the tests detailed in this document, the contractor shall notify the Owner or the Owner's representative of any additional tests that are deemed necessary to guarantee a fully functional system. The contractor shall carry out and record any additional measurement results at no additional charge.

1.2 SCOPE

- A. This Section includes the minimum requirements for the test certification, identification and administration of backbone and horizontal optical fiber cabling.
- B. This Section includes minimum requirements for:
 - 1. Fiber optic test instruments
 - 2. Fiber optic testing
 - 3. Identification
 - a) Labels and labeling
 - 4. Administration
 - a) Test results documentation
 - b) As-built drawings
- C. Testing shall be carried out in accordance with this document. This includes testing the attenuation and polarity of the installed cable plant with an optical loss test set (OLTS) and the installed condition of the cabling system and its components with an optical time domain reflectometer (OTDR). The condition of the fiber end faces shall also be verified.

D. Testing shall be performed on each cabling link (connector to connector).

- E. Testing shall be performed on each cabling channel (equipment to equipment) that is identified by the owner.
 - Testing shall not include any active devices or passive devices within the link or channel other than cable, connectors, and splices, i.e. link attenuation does not include such devices as optical bypass switches, couplers, repeaters, or optical amplifiers.
- F. All tests shall be documented including OLTS dual wavelength attenuation measurements and OTDR traces with event tables as well as OTDR maps.
 - 1. Optionally, documentation shall also include optical length measurements and pictures of the connector end face.

1.3 QUALITY ASSURANCE

- A. All testing procedures and field-test instruments shall comply with applicable requirements of:
 - ANSI Z136.2, ANS For Safe Use Of Optical Fiber
 Communication Systems Utilizing Laser Diode And LED Sources
 - 2. ANSI/EIA/TIA-455-50B, Light Launch Conditions For Long-Length Graded-Index Optical Fiber Spectral Attenuation Measurements
 - 3. ANSI/TIA/EIA-455-59A, Measurement of Fiber Point Discontinuities Using an OTDR
 - 4. ANSI/TIA/EIA-455-60A, Measurement of Fiber or Cable Length Using an OTDR
 - 5. ANSI/TIA/EIA-455-61A, Measurement of Fiber or Cable Attenuation Using an OTDR
 - 6. ANSI/TIA/EIA-526-7, Optical Power Loss Measurements of Installed Singlemode Fiber Cable Plant
 - 7. ANSI/TIA-526-14-B, Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant; IEC 61280-4-1 edition 2, Fiber-Optic Communications Subsystem Test Procedure- Part 4-1: Installed cable plant- Multimode attenuation measurement
 - 8. TIA-TSB-4979 Practical Considerations for Implementation of Multimode Launch Conditions in the Field

- 9. ANSI/TIA-568-C.0, Generic Telecommunications Cabling for Customer Premises
- 10. ANSI/TIA-568-C.1, Commercial Building Telecommunications Cabling Standard
- 11. ANSI/TIA-568-C.3, Optical Fiber Cabling Components Standard
- 12. ANSI/TIA-606-B, Administration Standard for Commercial Telecommunications Infrastructure, including the requirements specified by the customer, unless the customer specifies their own labeling requirements
- B. Trained technicians who have successfully attended an appropriate training program, which includes testing with an OLTS and an OTDR and have obtained a certificate as proof thereof shall execute the tests. These certificates may have been issued by any of the following organizations or an equivalent organization:
 - Manufacturer of the fiber optic cable and/or the fiber optic connectors.
 - 2. Manufacturer of the test equipment used for the field certification or representative.
 - 3. Training organization e.g. BICSI
- C. The Owner or the Owner's representative shall be invited to witness and/or review field-testing.
 - 1. The Owner or the Owner's representative shall be notified of the start date of the testing phase five (5) business days before testing commences.
 - 2. The Owner or the Owner's representative will select a random sample of 5% of the installed links. The Owner or the Owner's representative shall test these randomly selected links and the results are to be stored in accordance with Part 3 of this document. The results obtained shall be compared to the data provided by the installation contractor. If more than 2% of the sample results differ in terms of the pass/fail determination, the installation contractor under supervision of the representative shall repeat 100% testing at no cost to the Owner.

1.4 SUBMITTALS

- A. Manufacturers catalog sheets and specifications for fiber optic field-test instruments including optical loss test sets (OLTS; power meter and source), optical time domain reflectometer (OTDR) and video microscope.
- B. A schedule (list) of all optical fibers to be tested.
- C. Sample test reports.

1.5 ACCEPTANCE OF TEST RESULTS

- A. Unless otherwise specified by the Owner or the Owners representative, each cabling link shall be in compliance with the following test limits:
 - 1. Optical loss testing
 - a) Multimode and Singlemode links
 - The link attenuation shall be calculated by the following formulas as specified in ANSI/TIA-568-C.O.
 - (i) Link Attenuation (dB) = Cable_Attn (dB) +
 Connector_Attn (dB) + Splice_Attn (dB)
 - (ii) Cable_Attn (dB) = Attenuation_Coefficient
 (dB/km) * Length (Km)
 - (iii) Connector_Attn (dB) =
 number_of_connector_pairs * connector_loss
 (dB)
 - (iv) Maximum allowable connector_loss = 0.75 dB
 Splice_Attn (dB) = number_of_splices *
 splice loss (dB)
 - (v) Maximum allowable splice_loss = 0.3 dB
 The values for the Attenuation_Coefficient
 (dB/km) are listed in the table below:

Type of Optical Fiber	Wavelength	Attenuation	Wavelength	Attenuation	
	(nm)	coefficient	(nm)	coefficient	
		(dB/km)		(dB/km)	
Multimode 62.5/125 μm	850	3.5	1300	1.5	
Multimode 50/125 μm	850	3.5	1300	1.5	
Single-mode (Inside	1310	1.0	1550	1.0	
plant)					
Single-mode (Outside	1310	0.5	1550	0.5	
plant)					

2. OTDR testing

- a) Reflective events (connections) shall not exceed:
 - 1) 0.75 dB in optical loss when bi-directionally averaged
 - 2) -35 dB Reflectance for multimode connections
 - 3) -40 dB reflectance for UPC singlemode connections
 - 4) -55 dB reflectance for APC singlemode connections
- b) Non-reflective events (splices) shall not exceed 0.3 dB.
- 3. Magnified end face inspection
 - a) Fiber connections shall be visually inspected to IEC 61300-3-35 Edition 1.0 for end face quality.
 - b) Scratched, pitted or dirty connectors shall be diagnosed and corrected.
- B. All installed cabling links and channels shall be field-tested and pass the test requirements and analysis as described in Part 3. Any link or channel that fails these requirements shall be diagnosed and corrected. Any corrective action that must take place shall be documented and followed with a new test to prove that the corrected link or channel meets performance requirements. The final and passing result of the tests for all links and channels shall be provided in the test results documentation in accordance with Part 3.
- C. Acceptance of the test results shall be given in writing after the project is fully completed and tested in accordance with Contract Documents and to the satisfaction of the Owner. Note: High Bandwidth applications such as 1000BASE-SX, 10GBASE-SR, and FC1200 impose stringent channel loss limits. Where practical, certification should consider loss length limits that meet maximum channel (transmitter to receiver) loss. 0.75 dB per connector pair loss may not support the intended application.
- D. Performance specification for multimode fiber links at 850 nm.

Fiber Type		Bandwid th	1000BASE-SX		10GBA	SE-SR	FibreCh	
	μm	(MHz•	Length	Loss	Length	Loss	Length	Loss

September 2017

		Km)	(m)	(dB)	(m)	(dB)	(m)	(dB)
OM1	62. 5	200	275	2.38	33	2.5	33	2.4
OM2	50	500	550	3.56	82	2.3	82	2.2
ОМЗ	50	2000	N/A	N/A	300	2.6	300	2.6
OM4	50	47000	N/A	N/A	400	2.9	N/A	N/A

PART 2 - PRODUCTS

2.1 OPTICAL FIBER CABLE TESTERS

- A. The field-test instrument shall be within the calibration period recommended by the manufacturer and a copy of the calibration certificate made available.
- B. Optical loss test set (OLTS)
 - 1. Multimode optical fiber light source
 - a) Provide dual LED light sources with central wavelengths of 850 nm (± 30 nm) and 1300 nm (± 20 nm). VCSEL sources are not permitted per ANSI/TIA-526-14-B.
 - b) Output power of -20 dBm minimum.
 - c) The launch shall meet the Encircled Flux launch requirements of ANSI/TIA-526-14-B.
 - d) The test reference cords must demonstrate an insertion loss \leq 0.15 dB when mated against each other.
 - e) Acceptable manufacturers
 - 1) Fluke Networks
 - 2. Singlemode optical fiber light source
 - a) Provide dual laser light sources with central wavelengths of 1310 nm (± 20 nm) and 1550 nm (± 20 nm).
 - b) Output power of -10 dBm minimum.
 - c) The test reference cords must demonstrate an insertion loss \leq 0.25 dB when mated against each other.
 - d) Acceptable manufacturers
 - 1) Fluke Networks
 - 3. Power Meter
 - a) Provide 850 nm, 1300 nm, 1310 nm, and 1550 nm wavelength test capability.
 - b) Power measurement uncertainty of \pm 0.25 dB.
 - c) Store reference power measurements.

TESTING, IDENTIFICATION AND

ADMINISTRATION

OF FIBER INFRASTRUCTURE

September 2017

- d) Save at least 10,000 results to internal memory.
- e) PC interface (USB).
- f) Acceptable manufacturers
 - 1) Fluke Networks
- 4. Optional length measurement
 - a) It is preferable to use an OLTS that is capable of measuring the optical length of the fiber using time-offlight techniques. In the case of MPO/MTP trunk cables, this is not possible.
- C. Optical Time Domain Reflectometer (OTDR)
 - 1. Shall have a bright, color LCD display with backlight.
 - 2. Shall have rechargeable Li-Ion battery for 8 hours of normal operation.
 - 3. Weight with battery and module of not more than $4.5~\mathrm{lb}$ and volume of not more $200~\mathrm{in}^3$.
 - 4. Internal non-volatile memory with capacity for storing at least 2,000 OTDR bi-directionally tested fiber links.
 - 5. USB port to transfer data to a PC or thumb drive/memory stick.
 - 6. Multimode OTDR
 - a) Wavelengths of 850 nm (\pm 10 nm) and 1300 nm (+ 35 nm / 15 nm).
 - b) Event dead zones not to exceed 0.7 m at 850 nm and 1300 nm.
 - c) Attenuation dead zones not to exceed 2.5 m at 850 nm and 4.5 m at 1300 nm.
 - d) Distance range not less than 9,000 m.
 - e) Dynamic range at least 28 dB for 850 nm and 30 dB at 1300 nm.
 - f) Allow bi-directional testing without moving the OTDR to the far end.
 - 7. Singlemode OTDR
 - a) Wavelengths of 1310 nm (\pm 25 nm) and 1550 nm (\pm 30 nm).
 - b) Event dead zones not to exceed 0.6 m at 1310 nm and 1550 nm.
 - c) Attenuation dead zones not to exceed 3.7 m at 1310 nm and 1550 nm.

TESTING, IDENTIFICATION AND ADMINISTRATION OF FIBER INFRASTRUCTURE

Construction Documents September 2017

- d) Distance range not less than 80 km at 1310 nm and 130 km at 1550 nm.
- e) Dynamic range at least 32 dB for 1310 nm and 30 dB at 1550 nm.
- f) Allow bi-directional testing without moving the OTDR to the far end.
- 8. Acceptable manufacturers
 - a) Fluke Networks
- D. Fiber Microscope
 - 1. Field of view 420 μm x 320 μm
 - a) Video camera systems are preferred.
 - b) Camera probe tips that permit inspection through adapters are required.
 - c) Test equipment shall be capable of saving and reporting the end face image to IEC 613003-3-35.
 - 2. Acceptable manufacturers
 - a) Fluke Networks
- E. Integrated OLTS, OTDR and fiber microscope
 - Test equipment that combines into one instrument an OLTS, an OTDR and a fiber microscope may be used.
 - 2. Acceptable manufacturers
 - a) Fluke Networks

2.2 IDENTIFICATION

- A. Labels
 - 1. Shall meet the legibility, defacement, exposure and adhesion requirements of UL 969.
 - 2. Shall be preprinted using a mechanical means of printing (e.g., laser printer).
 - 3. Where used for cable marking, provide vinyl substrate with a white printing area and a clear "tail" that self laminates the printed area when wrapped around the cable. If cable jacket is white, provide cable label with printing area that is any other color than white, preferably orange or yellow - so that the labels are easily distinguishable.
 - 4. Where insert type labels are used provide clear plastic cover over label.

- 5. Provide plastic warning tape 6 inches wide continuously printed and bright colored 18" above all direct buried services, underground conduits and duct-banks.
- 6. Acceptable Manufacturers:
 - a) Panduit
 - b) Silver Fox
 - c) W.H. Brady
 - d) d-Tools
 - e) Brothers

2.3 ADMINISTRATION

- A. Administration of the documentation shall include test results of each fiber link and channel.
- B. The test result information for each link shall be recorded in the memory of the field-test instrument upon completion of the test.
- C. The test result records saved within the field-test instrument shall be transferred into a Windows™-based database utility that allows for the maintenance, inspection and archiving of these test records.

PART 3 - EXECUTION

3.1 GENERAL

- A. All tests performed on optical fiber cabling that use a laser or LED in a test set shall be carried out with safety precautions in accordance with ANSI Z136.2.
- B. All outlets, cables, patch panels and associated components shall be fully assembled and labeled prior to field-testing. Any testing performed on incomplete systems shall be redone on completion of the work.

3.2 OPTICAL FIBER CABLE TESTING

- A. Field-test instruments shall have the latest software and firmware installed.
- B. Link and channel test results from the OLTS and OTDR shall be recorded in the test instrument upon completion of each test for subsequent uploading to a PC in which the administrative documentation (reports) may be generated.
- C. Fiber end faces shall be inspected using a video scope with a field of view not less than 425 μm x 320 μm .

TESTING, IDENTIFICATION AND ADMINISTRATION
OF FIBER INFRASTRUCTURE

- 1. It is preferable that the end face images be recorded in the memory of the test instrument for subsequent uploading to a PC and reporting.
- D. Testing shall be performed on each cabling segment (connector to connector).
- E. Testing shall be performed on each cabling channel (equipment to equipment) that is planned for use per the owner's instructions.
- F. Testing of the cabling shall be performed using high-quality test reference cords of the same core size as the cabling under test, terminated with reference grade connectors.

 Reference grade connectors are defined as having a loss not exceeding 0.1 dB for multimode and 0.2 dB for singlemode. The test reference cords for OLTS testing shall be between 2 m and 5 m in length. The length of the launch and tail fibers for multimode OTDR testing shall be at a least 100 m (328 ft.).

 For singlemode, the length of the launch and tail fibers will depend on the link under test. As a guide, the following table can be used for determining the length of the launch and tail fibers.

Maximum Length of Link (km)		Typical Pulse	Minimum Launch
1310 nm	1550 nm only	Width (ns)	and Tail Cord Length (m)
0 to 35	0 to 50	≤ 1,000	130
35 to 45	50 to 65	3,000	400
45 to 50	65 to 75	10,000	1,000
≥ 50	≥ 75	20,000	2400

G. Optical loss testing

- 1. Horizontal/Backbone link
 - a) Multimode links shall be tested in one direction at 850 nm and 1300 nm in accordance with ANSI/TIA-526-14-B, one-cord reference method, with an Encircled Flux compliant launch.
 - b) Singlemode backbone links shall be tested in one direction at 1310 nm and 1550 nm in accordance with

TESTING, IDENTIFICATION AND ADMINISTRATION OF FIBER INFRASTRUCTURE

Construction Documents September 2017

> ANSI/TIA/EIA-526-7, Method A.1 (One-cord reference method).

c) Link attenuation does not include any active devices or passive devices other than cable, connectors, and splices, i.e. link attenuation does not include such devices as optical bypass switches, couplers, repeaters, or optical amplifiers.

H. OTDR Testing

- 1. Fiber links shall be tested at these wavelengths for anomalies and to ensure uniformity of cable attenuation, connector insertion loss and reflectance.
 - a) Multimode: 850 nm and 1300 nm.
 - b) Singlemode: 1310 nm and 1550 nm.
- 2. Each fiber link and channel shall be tested in both directions.
 - a) The launch and tail fibers shall remain in place for the measurement in the opposite direction - failing to do so will result in an increase in measurement uncertainty.
 - b) The use of a loop back fiber at the far end with a tail fiber at the near end on the adjacent fiber is permitted for bi-directional testing, so long as the OTDR is able to split the trace automatically into two traces for the two fibers under test.
- 3. A launch cable shall be installed between the OTDR and the first link connection.
- 4. A tail cable shall be installed after the last link connection.

I. Magnified End face Inspection

- 1. Fibers shall be inspected using a video scope with a minimum field of view 425 μ m x 320 μ m to IEC 61300-3-35 Edition 1.0. The following test limits shall be used:
 - a) Multimode connectors; Table 6 of IEC 61300-3-35 Edition
 - b) Singlemode field polished connectors; Table 5 of IEC 61300-3-35 Edition 1.0
 - c) Singlemode factory polished connectors; Table 3 of IEC 61300-3-35 Edition 1.0

TESTING, IDENTIFICATION AND ADMINISTRATION OF FIBER INFRASTRUCTURE 27 17 20-11

September 2017

- d) Angled Physical Contact (APC) connectors; Table 4 of IEC 61300-3-35 Edition 1.0
- J. Length Measurement
 - 1. The length of each fiber shall be recorded.
 - 2. It is preferable that the optical length be measured using an OLTS or OTDR.
- K. Polarity Testing
 - 1. Paired duplex fibers in multi-fiber cables shall be tested to verify polarity in accordance with Clause E.5.3 of ANSI/TIA-568-C.O. The polarity of the paired duplex fibers shall be verified using an OLTS.

3.3 IDENTIFICATION

- A. Labeling
 - 1. Labeling shall conform to the requirements specified within ANSI/TIA-606-B or to the requirements specified by the Owner or the Owner's representative.

3.4 ADMINISTRATION

- A. Test results documentation
 - 1. Test results saved within the field-test instrument shall be transferred into a Windows™-based database utility that allows for the maintenance, inspection and archiving of the test records. These test records shall be uploaded to the PC unaltered, i.e., "as saved in the field-test instrument". The following formats do not provide adequate protection of these records and shall not be used.
 - a) Portable document format (PDF)
 - b) Word (.doc & .docx)
 - c) Comma separated values (.csv)
 - d) Excel separated values (.xls & .xlsx)
 - e) Text (.txt)
 - 2. The test results documentation shall be available for inspection by the Owner or the Owner's representative during the installation period and shall be passed to the Owner's representative within 5 working days of completion of tests on cabling served by a telecommunications room or of backbone cabling. The installer shall retain a copy to aid preparation of as-built information.

3. The database for the complete project, including twisted-pair copper cabling links, if applicable, shall be stored and delivered on CD/DVD prior to Owner acceptance of the building in the original format used by the cabling vendors' software.

- 4. Circuit IDs reported by the test instrument should match the specified label ID (see 3.3 of this Section).
- 5. The detailed test results documentation data is to be provided in an electronic database for each tested optical fiber and shall contain the following information
 - a) The identification of the customer site as specified by the end-user.
 - b) The name of the test limit selected to execute the stored test results.
 - c) The name of the personnel performing the test.
 - d) The date and time the test results were saved in the memory of the tester.
 - e) The manufacturer, model and serial number of the fieldtest instrument.
 - f) The version of the test software and the version of the test limit database held within the test instrument.
 - q) The fiber identification number.
 - h) The length for each optical fiber.
 - i) The index of refraction used for length calculation when using length capable OLTS.
 - j) The backscatter coefficient of the fiber under test when using an OTDR.
 - k) Test results to include OLTS attenuation link and channel measurements at the appropriate wavelength(s) and the margin (difference between the measured attenuation and the test limit value).
 - Test results to include OTDR link and channel traces, event tables at the appropriate wavelength(s) and a map of the link tested.
 - ${\tt m})$ The length for each optical fiber as calculated by the OTDR.

September 2017

- n) The overall Pass/Fail evaluation of the link-under-test for OLTS and OTDR measurements
- o) Optional
 - 1) A picture or image of each fiber end-face
 - 2) A pass/fail status of the end-face using IEC 61300-3-35 Edition 1.0
- B. Record copy and as-built drawings
 - 1. Provide record copy drawings periodically throughout the project as requested by the Construction Manager or Owner, and at end of the project on CD/DVD. Record copy drawings at the end of the project shall be in CAD format and include notations reflecting the as built conditions of any additions to or variation from the drawings provided such as, but not limited to cable paths and termination point. CAD drawings are to incorporate test data imported from the test instruments.
 - 2. The as-built drawings shall include, but are not limited to block diagrams, frame and cable labeling, cable termination points, equipment room layouts and frame installation details. The as-built shall include all field changes made up to construction completion:
 - a) Field directed changes to pull schedule.
 - b) Field directed changes to cross connect and patching schedule.
 - c) Horizontal cable routing changes.
 - d) Backbone cable routing or location changes.
 - e) Associated detail drawings.

- - - END - - -

September 2017

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, intrusion detection, duress alarms, elevator control interface, video assessment and surveillance, video recording and storage, delayed egress, personal protection system, intercommunication system, fire alarm interface, equipment cabinetry, dedicated photo badging system and associated live camera, report printer, photo badge printer, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

D. Section Includes:

- 1. Description of Work for Electronic Security Systems,
- 2. Electronic security equipment coordination with relating Divisions,
 COMMON WORK RESULTS
 FOR ELECTRONIC
 SAFETY AND SECURITY 28 05 00-1

- 3. Submittal Requirements for Electronic Security,
- 4. Miscellaneous Supporting equipment and materials for Electronic Security,
- 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

 Requirements for connection of high voltage.
- D Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- E. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 13 16 PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.
- J. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.

- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location

- connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.

- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- XX. UTP: Unshielded Twisted Pair
- YY. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Contractor Qualification:

1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of

contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] <insert number> miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- 2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication
 Distribution Designer (RCDD) certified by Building Industry
 Consulting Service International. The staff member shall provide
 consistent oversight of the project cabling throughout design,
 layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations

of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____"
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.

D. The submittals shall include the following:

- Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
- 2. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section.

 Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly

- marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.
- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - 1) Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - 2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if

- not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1) Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.

- c) Description of the function of each principal item of equipment.
- d) Installation and maintenance instructions.
- e) Safety precautions.
- f) Diagrams and illustrations.
- g) Testing methods.
- h) Performance data.
- i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.

j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.

- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information.

 Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.

- 7. Contractor Review: Review submittals prior to transmittal.

 Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return non-conforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- 8. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization.

 Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCADTM drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on

drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD $^{\text{M}}$ drawings. Floor plans shall identify the following:

- 1) Security devices by symbol,
- 2) The associated device point number (derived from the loading sheets),
- 3) Wire & cable types and counts
- 4) Conduit sizing and routing
- 5) Conduit riser systems
- 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components,

- backboard size, wire through size and location, and power circuit requirements.
- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- 6) Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation.

 Equipment room the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and

- Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number
 - 8) Lock Type, Model Number & Power Input/Draw (standby/active)
 - 9) Card Reader Type & Model Number
 - 10) Shunting Device Type & Model Number
 - 11) Sounder Type & Model Number
 - 12) Manufacturer
 - 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device
 - 14) Remarks column indicating special notes or door configurations
- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the Resident Engineer to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage

September 2017

- e. Camera Location
- f. Floor Plan Sheet Number
- g. Camera Type
- h. Mounting Type
- i. Standard Detail Reference
- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
 - d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
 - e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number

September 2017

- 3) First Monitor Point Number
- 4) First Relay Number
- 5) DGP, input or output Location
- 6) DGP Chain Number
- 7) DGP Cabinet Tamper Input Number
- 8) DGP Power Fail Input Number
- 9) Number of Monitor Points Reserved For Expansion Boards
- 10) Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)

- 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
- 7) DGP or input module Input Location
- 8) Date Test
- 9) Date Passed
- 10) Cable Type
- 11) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 5. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and

calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:

- a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 6. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COR.
 - 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)

September 2017

- d. Badge database
- e. System monitoring and reporting (unit level and central control)
- f. Naming conventions and descriptors

H. Group III Technical Data Package

1. Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.

I. Group IV Technical Data Package

- 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the COR for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.

2. Training Documentation

- a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
- b. New Unit Control Room:
 - Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training

documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the COR. Instruction is not to begin until the system is operational as designed.

- 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.
- 3. System Configuration and Data Entry:

- a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,
 - 5) All other security subsystems shown in the contract documents.
- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning quidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each

type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Resident Engineer as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - 1. Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
 - 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
 - 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:

- a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.

September 2017

- c. Limiting conditions.
- d. Performance curves.
- e. Engineering data and test.
- f. Complete nomenclature and number of replacement parts.
- g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
- h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
- i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be

- made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at any time.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:

Construction Documents September 2017

- a. Certificates received instead of labels on bulk products.
- b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the COR a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COR. If, in the opinion of the COR, any redlined notation is not legible, it shall be returned to the Contractor for resubmission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
 - c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record

and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COR. The Contractor shall organize into bound and labeled sets for the COR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

K. FIPS 201 Compliance Certificates

- 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Card Readers
 - b. Facial Image Capturing Camera
 - c. PIV Middelware
 - d. Template Matcher
 - e. Electromagnetically Opaque Sleeve
 - f. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.

1.7 APPLICABLE PUBLICATIONS

A.	The publications listed below (including amendments, addenda,			
	revisions, supplement, and errata) form a part of this specification to			
	the extent referenced. The publications are referenced in the text by			
	the basic designation only.			
В.	American National Standards Institute (ANSI)/ International Code			
	Council (ICC):			
	All7.1Standard on Accessible and Usable Buildings and			
	Facilities			
C.	American National Standards Institute (ANSI)/ Security Industry			
	Association (SIA):			
	AC-03Access Control: Access Control Guideline Dye			
	Sublimation Printing Practices for PVC Access			
	Control Cards			
	CP-01-00Control Panel Standard-Features for False Alarm			
	Reduction			
	PIR-01-00Passive Infrared Motion Detector Standard -			
	Features for Enhancing False Alarm Immunity			
	TVAC-01CCTV to Access Control Standard - Message Set			
	for System Integration			
D.	D. American National Standards Institute (ANSI)/Electronic Industries			
	Alliance (EIA):			
	330-09Electrical Performance Standards for CCTV			
	Cameras			
	375A-76Electrical Performance Standards for CCTV			
	Monitors			
Ε.	American National Standards Institute (ANSI):			
	ANSI S3.2-99 Method for measuring the Intelligibility of			
	Speech over Communications Systems			
F.	American Society for Testing and Materials (ASTM)			
	B1-07Standard Specification for Hard-Drawn Copper			
	Wire			
	B3-07Standard Specification for Soft or Annealed			
	Copper Wire			
	B8-04Standard Specification for Concentric-Lay-			
	Stranded Copper Conductors, Hard, Medium-Hard,			
	or Soft			

~		-	
Construct	ıon	Documen	T C

	C1238-97 (R03)Standard Guide for Installation of Walk-Through
	Metal Detectors
	D2301-04Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical
	Insulating Tape
G.	Architectural Barriers Act (ABA), 1968
Н.	Department of Justice: American Disability Act (ADA)
	28 CFR Part 36-2010 ADA Standards for Accessible Design
I.	Department of Veterans Affairs:
	VHA National CAD Standard Application Guide, 2006
	VA BIM Guide, V1.0 10
J.	Federal Communications Commission (FCC):
	(47 CFR 15) Part 15 Limitations on the Use of Wireless
	Equipment/Systems
К.	Federal Information Processing Standards (FIPS):
	FIPS-201-1Personal Identity Verification (PIV) of Federal
	Employees and Contractors
L.	Federal Specifications (Fed. Spec.):
	A-A-59544-08Cable and Wire, Electrical (Power, Fixed
	Installation)
М.	Government Accountability Office (GAO):
	GAO-03-8-02Security Responsibilities for Federally Owned
	and Leased Facilities
N.	Homeland Security Presidential Directive (HSPD):
	HSPD-12Policy for a Common Identification Standard for
	Federal Employees and Contractors
Ο.	Institute of Electrical and Electronics Engineers (IEEE):
	81-1983 IEEE Guide for Measuring Earth Resistivity,
	Ground Impedance, and Earth Surface Potentials
	of a Ground System
	802.3af-08Power over Ethernet Standard
	802.3at-09Power over Ethernet (PoE) Plus Standard
	C2-07National Electrical Safety Code
	C62.41-02IEEE Recommended Practice on Surge Voltages in
	Low-Voltage AC Power Circuits

Construction Documents September 2017

	C95.1-05	.Standards for Safety Levels with Respect to
		Human Exposure in Radio Frequency
		Electromagnetic Fields
P.	International Organizat	ion for Standardization (ISO):
	7810	.Identification cards - Physical characteristics
	7811	.Physical Characteristics for Magnetic Stripe
		Cards
	7816-1	.Identification cards - Integrated circuit(s)
		cards with contacts - Part 1: Physical
		characteristics
	7816-2	.Identification cards - Integrated circuit cards
		- Part 2: Cards with contacts -Dimensions and
		location of the contacts
	7816-3	.Identification cards - Integrated circuit cards
		- Part 3: Cards with contacts - Electrical
		interface and transmission protocols
	7816-4	.Identification cards - Integrated circuit cards
		- Part 11: Personal verification through
		biometric methods
	7816-10	.Identification cards - Integrated circuit cards
		- Part 4: Organization, security and commands
		for interchange
	14443	.Identification cards - Contactless integrated
		circuit cards; Contactless Proximity Cards
		Operating at 13.56 MHz in up to 5 inches
		distance
	15693	.Identification cards Contactless integrated
		circuit cards - Vicinity cards; Contactless
		Vicinity Cards Operating at 13.56 MHz in up to
		50 inches distance
	19794	.Information technology - Biometric data
		interchange formats
Q.	National Electrical Con	tractors Association
	303-2005	.Installing Closed Circuit Television (CCTV)
		Systems
R.	National Electrical Man	ufactures Association (NEMA):

R. National Electrical Manufactures Association (NEMA):

Construction Documents September 2017

	250-08En	nclosures for Electrical Equipment (1000 Volts
	Ma	aximum)
	TC-3-04	IC Fittings for Use with Rigid PVC Conduit and
	Τι	ubing
	FB1-07F	ittings, Cast Metal Boxes and Conduit Bodies
	fo	or Conduit, Electrical Metallic Tubing and
	Ca	able
S.	National Fire Protection A	Association (NFPA):
	70-11	National Electrical Code (NEC)
	731-08st	andards for the Installation of Electric
	Pi	remises Security Systems
	99-2005не	ealth Care Facilities
т.	National Institute of Just	tice (NIJ)
	0601.02-03st	tandards for Walk-Through Metal Detectors for
	us	se in Weapons Detection
	0602.02-03на	and-Held Metal Detectors for Use in Concealed
	We	eapon and Contraband Detection
U.	National Institute of Star	ndards and Technology (NIST):
	IR 6887 V2.1	overnment Smart Card Interoperability
	Sı	pecification (GSC-IS)
	Special Pub 800-37Gu	uide for Applying the Risk Management
	Fi	ramework to Federal Information Systems
	Special Pub 800-63E	lectronic Authentication Guideline
	Special Pub 800-73-3Ir	nterfaces for Personal Identity Verification
	(4	4 Parts)
	Pt	t. 1- End Point PIV Card Application
	Na	amespace, Data Model & Representation
	Pt	c. 2- PIV Card Application Card Command
	In	nterface
	Pt	c. 3- PIV Client Application Programming
	Ir	nterface
	Pt	t. 4- The PIV Transitional Interfaces & Data
	Мо	odel Specification
	Special Pub 800-76-1B	iometric Data Specification for Personal
	Ic	dentity Verification
	Special Pub 800-78-2Cr	ryptographic Algorithms and Key Sizes for
	Pe	ersonal Identity Verification

September 2017 Construction Documents

	Special Pub 800-79-1Guidelines for the Accreditation of Personal
	Identity Verification Card Issuers
	Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
	Special Pub 800-85A-2PIV Card Application and Middleware Interface
	Test Guidelines (SP 800-73-3 compliance)
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-104AScheme for PIV Visual Card Topography
V.	Occupational and Safety Health Administration (OSHA):
	29 CFR 1910.97Nonionizing radiation
W.	Section 508 of the Rehabilitation Act of 1973
Х.	Security Industry Association (SIA):
	AG-01Security CAD Symbols Standards
Υ.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04Surface Metal Raceway and Fittings
	6-07Rigid Metal Conduit
	44-05Thermoset-Insulated Wires and Cables
	50-07Enclosures for Electrical Equipment
	83-08Thermoplastic-Insulated Wires and Cables
	294-99The Standard of Safety for Access Control
	System Units
	305-08Standard for Panic Hardware
	360-09Liquid-Tight Flexible Steel Conduit
	444-08Safety Communications Cables
	464-09Audible Signal Appliances
	467-07 Electrical Grounding and Bonding Equipment
	486A-03Wire Connectors and Soldering Lugs for Use with
	Copper Conductors
	486C-04Splicing Wire Connectors
	486D-05Insulated Wire Connector Systems for
	Underground Use or in Damp or Wet Locations
	486E-00Equipment Wiring Terminals for Use with
	Aluminum and/or Copper Conductors
	493-07Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
	514A-04Metallic Outlet Boxes
	514B-04Fittings for Cable and Conduit

51-05Schedule 40 and 80 Rigid PVC Conduit		
609-96Local Burglar Alarm Units and Systems		
634-07Standards for Connectors with Burglar-Alarm		
Systems		
636-01Standard for Holdup Alarm Units and Systems		
639-97Standard for Intrusion-Detection Units		
651-05Schedule 40 and 80 Rigid PVC Conduit		
651A-07Type EB and A Rigid PVC Conduit and HDPE		
Conduit		
752-05Standard for Bullet-Resisting Equipment		
797-07 Electrical Metallic Tubing		
827-08Central Station Alarm Services		
1037-09Standard for Anti-theft Alarms and Devices		
1635-10Digital Alarm Communicator System Units		
1076-95 Standards for Proprietary Burglar Alarm Units		
and Systems		
1242-06Intermediate Metal Conduit		
1479-03Fire Tests of Through-Penetration Fire Stops		
1981-03Central Station Automation System		
2058-05High Security Electronic Locks		
60950Safety of Information Technology Equipment		
60950-1Information Technology Equipment - Safety -		
Part 1: General Requirements		
Uniform Federal Accessibility Standards (UFAS) 1984		
United States Department of Commerce:		

- Ζ.
- AA. United States Department of Commerce:

Special Pub 500-101 Care and Handling of Computer Magnetic Storage Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.

- 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

C. Personnel

- 1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work

1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.

E. System Inspections

- 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.

F. Emergency Service

- 1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and non-catastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.

b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

G. Operation

1. Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.

H. Records & Logs

1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.

I. Work Request

1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

J. System Modifications

1. The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

K. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates

shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - 1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - 2. Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
 - 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - 1. Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature

- between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
- 2. Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
- 3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
- 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - 1. Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - 2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.
 - 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
 - 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.

- 5. Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests.

 The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.
- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for 8 hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Emergency Generator
 - a. Report Printers: Unit Control Room
 - b. Video Monitors: Unit Control Room
 - c. Intercom Stations
 - d. Radio System
 - e. Lights: Unit Control Room, Equipment Rooms, & Security Offices
 - f. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
 - g. Security Device Power Supplies (DGP, VASS, Card Access, Lock Power, etc.) powered from the security closets or remotely: various locations
 - h. Telephone/Radio Recording Equipment: Unit Control Room.
 - i. VASS Camera Power Supplies: Security Closets
 - j. VASS Pan/Tilt Units: Various Locations
 - k. VASS Outdoor Housing Heaters and Blowers: Various Sites
 - 1. Intercom Master Control System
 - m. Fiber Optic Receivers/Transmitters
 - n. Security office Weapons Storage

September 2017

- o. Outlets that charge handheld radios
- 2. Uninterruptible Power Supply (UPS) on Emergency Power
 - a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room
 - 3) Communications equipment: Control Equipment Room and various sites.
 - 4) VASS Matrix Switcher: Control Equipment Room
 - 5) VASS: Control Equipment Room
 - 6) Digital Video Recorders, encoders & decoders: Control Room
 - 7) All equipment Room racked equipment.
 - 8) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

- A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.
 - 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - 2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - 3. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
 - 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.
- B. Grounding and Surge Suppression

- The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, under ground-fault conditions.
- 2. Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
- 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
- 4. Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
- 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
- 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - 2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be

- provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
- 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.
 - 1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.
 - b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
 - c. d. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.

2. Console racks:

- a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
- b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.
- C. Tamper Provisions and Tamper Switches:

- 1. Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
- 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.
- 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.
- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.

- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and current-carrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The COR shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the COR stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - 1. Identity of the material or devices specified for which there is a proposed substitution.
 - 2. Description of the segment of the specification where the material or devices are referenced.
 - 3. Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
 - 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-by-feature, between specification requirements and the material or devices called for in the specification; and Price differential.

- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a pointby-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.

All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of its failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] <insert hours> hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - 1. Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 - 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.
 - 3. Controlling devices shall be utilized to interface the SMS with all field devices.

4. The Security control room and security console will be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.

- 5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:
 - a. Security Console Bays and Equipment Racks
 - b. Security Network Server and Workstation
 - c. CCTV Monitoring, Controlling, and Recording Equipment
 - d. PACS Monitoring and Controlling Equipment
 - e. IDS Monitoring and Controlling Equipment
 - f. Security Access Detection Monitoring Equipment
 - g. EPPS Monitoring and Controlling Equipment
 - h. Main Panels for all Security Systems
 - i. Power Supply Units (PSU) for all field devices
 - j. Life safety and power monitoring equipment
 - k. All other building systems deemed necessary by the VA to include, but not limited to, heating, ventilation and air conditioning (HVAC), elevator control, portable radio, fire alarm monitoring, and other potential systems.
 - 1. Police two-way radio control consoles/units.
- B. Security Console Bays shall be EIA 310D compliant and:
 - 1. Utilize stand-up, sit-down, and vertical equipment racks in any combination to monitor and control the security subsystems.
 - 2. Shall be wide enough for equipment that requires a minimum 19 inch (47.5 cm) mounting area.
 - 3. Shall be made of metal, furnished with wire ways, a power strip, a thermostatic controlled bottom or top mounted fan units, a hinge mounted rear door, a hinge mounted front door made of Plexiglas, and a louvered top. When possible, pre-fabricated (standard off-theshelf) security console equipment shall be used in place of customized designed consoles.
 - 4. A wire management system shall be designed and installed so that all cables are mounted in a manner that they do not interfere with day-to-day operations, are labeled for quick identification, and so that

high voltage power cables do not cause signal interference with low voltage and data carrying cables.

- 5. Shall be mounted on lockable casters.
- 6. Shall be ergonomically designed so that all devices requiring repetitive interaction with by the operator can be easily accessed, observed, and accomplished.
- 7. Controls and displays shall be located so that they are not obscured during normal operation. Control and display units installed with a work bench shall be a minimum of 3 in. (7.5 cm) from all edges of the work bench area.
- 8. All security subsystem controls shall be installed within the same operating console bay of their associated equipment.
- 9. Video monitors shall be mounted above all controls within a console bay and positioned in a manner that minimum strain is placed on the operator viewing them at the console.
- 10. At least one workbench for every three (3) console bays shall be provided free of control equipment to allow for appropriate operator workspace.
- 11. All console devices shall be labeled and marked with a minimum of quarter inch bold print.
- 12. All non-security related equipment that is required to be monitored shall be installed in a console bay separate from the security subsystem equipment and clearing be identified as such.
- 13. Console bays and related equipment shall be arranged in priority order and sequenced based upon their pre-defined security subsystem operations criticality established by the Contracting Officer.
- 14. The following minimum console technical characteristics shall be taken into consideration when designing for and installing the security console and equipment racks:

	Stand-Up	Sit-Down	Vertical Equipment Rack
Workstation Height	No Greater than 84 in. (210 cm)	No greater than 72 in. (150 cm)	No greater than 96 in. (240 cm)
Bench board Slope	21 in. (52.5 cm)	25 in. (62.5 cm)	N/A
Bench board Angle	15 degrees	15 degrees	N/A
Depth of Console	24 in. (60 cm)	24 in. (60 cm)	N/A

Leg and Feet Clearance	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front
Distance Between Console Rows	96 in. (240 cm)	96 in. (240 cm)	96 in. (240 cm)
Distance Between Console and Wall	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack

C. Security Console Configuration:

- 1. The size shall be defined by the number of console bays required to house and operate the security subsystems, as well as any other factors that may influence the overall design of the space. A small Access Control System and Database Management shall contain no more than four (4) security console bays. A large Access Control System and Database Management shall contain no less than five (5) and no more than eight (8) security console bays.
- 2. Shall meet the following minimum spacing requirements to ensure that a Access Control System and Database Management is provided to house existing and future security subsystems and other equipment listed in paragraph 2.3.C:
 - a. 500 square feet for a large Access Control System and Database Management.
 - b. 300 square feet for a small Access Control System and Database Management.
 - c. If office, training room and conference space, is a processing area as well as holding cell space is to be located adjacent to the Access Control System and Database Management, these space requirements also need to be considered.
- 3. Shall be located in an area within, at a minimum, the first level/line of security defense defined by the VA. If the Access Control System and Database Management is to be located outside the first level of security, then the area shall be constructed or retrofit to meet or exceed those requirements outlined in associated VA Master Specifications.

- 4. Shall not be located within or near an area with little to no blast mitigation standoff space protection, adjacent to an outside wall exposed to vehicle parking and traffic, within a basement or potential flood zone area, in close approximately to major utility areas, or near an exposed air intake(s).
- 5. Access shall meet UFAS and ADA accessibility requirements.
- 6. Construction shall be slab to slab and free of windows, with the exception of a service window. All penetrations into the room shall be sealed with fire stopping materials. This material shall apply in accordance with Section 07 84 00, FIRESTOPPING.
- 7. A service window shall be installed in the wall next to the main entrance of the Access Control System and Database Management or where it best can be monitored and accessed by the security console operator. The window shall meet all requirements set forth in UL 752, to include at a minimum, Class III ballistic level protection. The windows shall be set in a minimum or four (4) inches (100 mm) solid concrete units to ceiling height with either masonry or gypsum wall board to the underside of the slab above. It shall also contain a service tray constructed in a manner that only objects no larger than 3 inches (7.5 cm) in width may pass through it.
- 8. The walls making up or surrounding the Access Control System and Database Management shall be made of materials that at a minimum offer Class III ballistic level protection for the security console operator(s).
- 9. There will be a main power cut-off button/switch located inside the Access Control System and Database Management in the event of an electrical fire or related event occurs.
- 10. Shall have a fire alarm detection unit that is tied into the main building fire alarm system and have at least two fire extinguishers located within it.
- 11. Shall utilize a fire suppression system similar to that used by the VA's computer and telecommunications room operating areas.
- 12. The floor shall be raised a minimum of 4 inches (10 cm) from the concrete floor base. Wire ways shall be utilized under the raised floor for separation of signal and power wires and cables.
- 13. Access shall be monitored and controlled by the PACS via card reader and fixed camera that utilizes a wide angle lens. A 1 in. (2.5 cm)

- deadbolt shall be utilized as a mechanical override for the door in the event of electrical failure of the PACS, card reader, or locking mechanism.
- 14. There shall only be one point of ingress and egress to and from the Security Control Room. The door shall be made of solid core wood or better. If a window is required for the door, then the window shall be ballistic resistant with a Millar covering.
- 15. A two-way intercom shall be placed at the point of entry into the Security Control Room for access-communication control purposes.
- 16. A remote push-button door unlocking device shall not be installed for the electronic PACS locking mechanism providing access control into the Security Control Room.
- 17. All controlling equipment and power supplies that must be wall mounted shall be mounted in a manner that maximizes usability of the Security Control Room wall space. All equipment shall be mounted to three quarter inch fire retardant plywood. The plywood shall be fastened to the wall from slab to slab and fixed to the existing walls supports.
- D. Security Control Room Ventilation
 - Shall meet or exceed all requirements laid out in VA Master Specification listed in Division 23, HEATING, VENTILATION, AND AIR CONDITIONING.
 - 2. Controls shall be via a separate air handling system that provides an isolated supply and return system. The Security Control Room shall have a dedicated thermostat control unit and cut-off switch to be able to shut off ventilation to the control room in the event of a chemical, biological, or radiological (CBR) event or other related emergency.
 - 3. There shall be a louver installed in the control room door to assist with ventilation of the room. The louver shall be exactly 12×12 inches $(30 \times 30 \text{ cm})$ and closeable.
- E. Security Control Room and Security Console Lighting:
 - 1. The following factors shall be taken into consideration for lighting of the Security Control Room and console area:
 - a. Shadows: To reduce eye strain and fatigue, shadows shall be avoided.

- b. Glare: The readability of all display panels, labels, and equipment shall not be interfered with or create visibility problems.
- 2. The following table shall provide guidance on the amount of footcandles required per work area and type of task performed:

Work Area/Type of Task		Footcandles
Main Operating Panels		50
Secondary Display Panels		50
Seated Workstations		100
Reading	Handwriting	100
	Typed Documents	50
	Visual Display	
	Units	
Logbook Recording		100
Maintenance Area		50
Emergency/Back-up Lighting		10

- F. Remote security console access: For facilities that have a remote, secondary back-up control console or workstation shall apply the following requirements:
 - 1. The secondary stations shall the requirements outlined in Sections 2.2.A-G.
 - Installation of an intercom station or telephone line shall be installed and provide direct one touch call-up for communications between the primary Security Control Console and secondary Security Control Console.
 - 3. Secondary stations shall not have priority over a primary Security Control Console.
 - 4. The primary Access Control System and Database Management shall have the ability to shut off power and a signal to a secondary control station in the event the area has been compromised.
- G. Wires and Cables:
 - 1. Shall meet or exceed the manufactures recommendation for power and signals.
 - 2. Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
 - 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.

- 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
- 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
- 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
- 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
- 9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less than 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 FIBER OPTIC EQUIPMENT

- A. 8 Channel Fiber Optic Transceivers (Video & PTZ Control)
 - The field-located and central-located fiber optic transceivers shall utilize wave division multiplexing to transmit and receive video and data pan-tilt-zoom control signals over two standard 62.5/125 multimode fibers.
 - 2. The units shall be capable of operating over a range of 2 km.
 - 3. The units shall be NTSC color compatible.
 - 4. The units shall support data rates up to 64 Kbps.
 - 5. The units shall be surface or rack mountable.
 - 6. The units shall be UL listed.
 - 7. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Input/Output: 1 volt pk-pk (75 ohms)
 - 2) Input/Output Channels: 8
 - 3) Bandwidth: 10 Hz 6.5 MHZ per channel

NLR IMPROVE SECURITY CONTROL

Construction Documents

September 2017

- 4) Differential Gain: <2%
- 5) Differential Phase: <0.7°
- 6) Tilt: <1%
- 7) Signal to Noise Ratio: 60 dB
- b. Data (Control)
 - 1) Data Channels: 2
 - 2) Data Format: RS-232, RS-422, 2 wire or 4 wire RS-485 with Tri-State Manchester Bi-Phase and Sensornet
 - 3) Data Rate: DC 100 kbps (NRZ)
 - 4) Bit Error Rate: < 1 in 10-9 @ Maximum Optical Loss Budget
 - 5) Operating Mode: Simplex or Full-Duplex
 - 6) Wavelength: 1310/1550 nm, Multimode or Singlemode
 - 7) Optical Emitter: Laser Diode
 - 8) Number of Fibers: 1
- c. Connectors
 - 1) Optical: ST
 - 2) Power and Data: Terminal Block with Screw Clamps
 - 3) Video: BNC (Gold Plated Center-Pin)
- d. Electrical and Mechanical
 - 1) Power: 12 VDC @ 500 mA (stand-alone)
 - 3) Current Protection: Automatic Resettable Solid-State Current Limiters
- e. Environmental
 - 1) MTBF: > 100,000 hours
 - 2) Operating Temp: -40 to 74 deg C (-40 to 165 deg F)
 - 3) Storage Temp: -40 to 85 deg C (-40 to 185 deg F)
 - 4) Relative Humidity: 0% to 95% (non-condensing)
- B. Fiber Optic Transmitters: The central-located fiber optic transmitters shall utilize wave division multiplexing to transmit video and signals over standard 62.5/125 multimode fibers.
 - 1. The units shall be capable of operating over a range of 4.8 km.
 - 2. The units shall be NTSC color compatible.
 - 3. The units shall support data rates up to 64 Kbps.
 - 4. The units shall be surface or rack mountable.
 - 5. The units shall be UL listed.
 - 6. The units shall meet or exceed the following specifications:
 - a. Video

Construction Documents September 2017

1) Input: 1 volt pk-pk (75 ohms)

2) Bandwidth: 5H2 - 10 MHZ

3) Differential Gain: <5%

4) Tilt: <1%

5) Signal-Noise: 60db

6) Wavelength: 850nm

7) Number of Fibers: 1

8) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)

9) Connectors:

a) Power: Female plug with screw clamps

b) Video: BNCc) Optical: ST

10) Power: 12 VDC

- C. Fiber Optic Receivers: The field-located fiber optic receivers shall utilize wave division multiplexing to receive video signals over standard 62.5/125 multimode fiber.
 - 1. The units shall be capable of operating over a range of 4.8 km.
 - 2. The units shall be NTSC color compatible.
 - 3. The units shall support data rates up to 64 Kbps.
 - 4. The units shall be surface or rack mountable.
 - 5. The units shall be UL listed.
 - 6. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Output: 1 volt pk-pk (75 ohms)
 - 2) Bandwidth: 5H2 10 MHZ
 - 3) Differential Gain: <5%
 - 4) Tilt: <1%
 - 5) Signal-Noise: 60dB
 - 6) Wavelength: 850nm
 - 7) Number of Fibers: 1
 - 8) Surface Mount: $106.7 \times 88.9 \times 25.4 \text{ mm} (4.2 \times 3.5 \times 1 \text{ in})$
 - 9) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
 - 10) Connectors:
 - 11) Power: Female plug block with screw clamps
 - 12) Video: BNC
 - 13) Optical: ST

September 2017

14) Power: 12 VAC8 Channel Fiber Optic Transcievers (Video&PTZ

- 14) Power: 12 VAC8 Channel Fiber Optic Transcievers (Video&PT2 Control)
- D. Fiber Optic Sub Rack with Power Supply
 - The Card Cage Rack shall provide high-density racking for fiberoptic modules. The unit shall be designed to mount in standard 483 mm (19 in) instrument racks and to accommodate the equivalent of 15 1-inch modules.
 - a. Specifications
 - 1) Card Orientation: Vertical
 - 2) Construction: Aluminum
 - 3) Current Consumption: 0.99 A
 - 4) Humidity: 95.0 % RH
 - 5) Input Power: 100-240 VAC, 60/50 Hz
 - 6) Mounting: Mounts in standard 483 mm (19 in) rack using four (4) screws (optional wall brackets purchased separately)
 - 7) Number of Outputs: 1.0
 - 8) Number of Slots 15.0
 - 9) Operating Temperature: -40 to +75 deg C (-40.0 to 167.0 deg F)
 - 10) Ouput Voltage: 13.5 V
 - 11) Output Current 6.0 A
 - 12) Power Dissipation: 28.0 W
 - 13) Power Factor: 48.0
 - 14) Power Supply: (built-in)
 - 15) Rack Units: 3RU
 - 16) Redundant Capability: Yes
 - 17) Weight: 2.43 kg (5.35 lb)
 - 18) Width: 483 mm (19.0 in)

2.4 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION

- A. Transient Voltage Surge Suppression
 - 1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and

additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:

- a. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
- d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, noncondensing.
- B. Physical Access Control Systems
 - 1. Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:
 - a. UL1449 2nd Edition, 2007, listed
 - b. UL1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Light(s)
 - d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 µsec)
 - e. Maximum Continuous Current: 15 Amps
 - f. MCOV: 125 VAC
 - g. Service Voltage: 110-120 VAC
 - 2. Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. UL 497B
 - b. Minimum Surge Current Capacity: 2,000 Amps per pair
 - c. Maximum Continuous Current: 5 Amps
 - d. MCOV: 33 Volts
 - e. Service Voltage: 24Volts

September 2017

- 3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. Conforms with UL497B standards (where applicable)
 - b. Clamp level for 12 and 24V power: 18VDC / 38VDC
 - c. Clamp level for Data/LED: 6.8VDC
 - d. Service Voltage for Power: 12VDC/24VDC
 - e. Service Voltage for Data/LED: <5VDC
 - f. Clamp level PoE Access Power: 72V
 - g. Clamp level PoE Access Data: 7.9V
 - h. Service Voltage PoE Access: 48VAC 54VAC
 - i. Service Voltage PoE Data: <5VDC
- D. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, undergroundfault conditions.
 - 2. The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - 3. Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
 - 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- E. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G

4. Warranty: Ten Year Limited Warranty

5. Dimension: $73.7 \times 41.1 \times 52.1 \text{ mm} (2.90 \times 1.62 \times 2.05 \text{ in})$

6. Weight: 2.88 g (0.18 lbs)

7. Housing: ABS

2.5 INSTALLATION KIT

A. General:

1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:

2. System Grounding:

- a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
- b. This includes, but is not limited to:
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire

- wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
- 2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for <insert hours> hours to instruct VA personnel in operation and maintenance of units.

3.4 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.

September 2017

D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.5 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the COR on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the COR has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:
 - a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with COR for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and

- working with the COR to ensure data uploading is performed without incident of loss of function or data loss.
- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of the COR to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
- 2. The Contractor shall identify and request from the COR, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and the CORcoordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

	Description of Tasks							
Descr iptio n of Syste ms	Develop System Loading Sheets	Coordina tion	Initial Set-up Configur ation	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)	
SMS Setup & Confi gurat ion	e.g., program monitori ng stations , programm ing networks , intercon nections between CCTV, intercom s, time synchron ization	e.g., retrieve IP addresse s, naming conventi ons, standard event descript ions, programm ing template s, coordina te special system needs	e.g., Load system Operatin g System and Applicat ion software , general system configur ations	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. , prog ram moni tori ng stat ions , prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s, time sync hron izat ion	e.g., check all system diagno stics (e.g., client s, panels)	Load and set- up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration	

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

	1		T			1	
							e.g., creating
					e.g.		a door, door
							configuration,
					,		adding request
		e.g.,	e.g.,		setu	e.g.,	to exit, door
		confirmi	enter		p of	perfor	monitors and
	e.g.,	ng	data		devi	ming	relays, door
	setup of	device	from		ce,	entry	timers, door
	device,	configur	loading		door	testin	related events
Elect	door	ations,	sheets;		grou	g to	
Entry	groups &	naming	configur		ps &	confir	(e.g., access,
Contr	schedule	conventi	е		sche	m correc	access denied, forced open,
ol Syste	s, REX,	ons,	componen		dule		
ms		event	ts, link		s, t set-	held open),	
	link	descript	events,		REX,	up and	linkages,
		_			Lock	_	controlled
	graphics	ion and	cameras,			config	areas,
		narrativ	and		s,	uratio	advanced door
		es	graphics		link	n	monitoring,
					grap		time zones,
					hics		sequence of
							_
							operations

NLR IMPROVE SECURITY CONTROL

Construction Documents

Intru sion Detec tion Syste ms	e.g., enter door groups & schedule s, link devices - REX, lock, & graphics	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics	e.g. , ente r door grou ps & sche dule s, link devi ces - REX, lock , & grap hics	e.g., walk test, device positi on, and maskin g	e.g., setting up monitoring and control points (e.g., motion sensors, glassbreaks, vibration sensor, strobes, sounders) creating intrusion zones, creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm
						violation,
						activations), LCD reader messages,

NLR IMPROVE SECURITY CONTROL

Construction Documents

September 2017

CCTV Syste ms	Syste call-ups	e.g., confirmi ng device configur ations, naming conventi ons	e.g., enter data from loading sheets; camera naming conventi		e.g. , prog ramm ing call	e.g., confir marea of covera ge, call- up per event	e.g., setting up cameras points, recording ratios (e.g., normal, alarm event) timed recording, linkages, maps placements, call-ups	
			on, sequence s, configur e componen ts)		-ups reco rdin g	genera ted and record ing rates		
Inter coms Syste ms	e.g., programm ing events & call-ups	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics		e.g. , prog ramm ing even ts & call -ups	e.g., confir m operat ion, SMS event genera tion and camera call- up	e.g., setup linkages, events for activations, device troubles, land devices on graphic maps	
Conso le Monit oring Compo nents	N/A	per monitor	per monitor	per graphic map	N/A	per monito r	N/A	
	Note: Programming tasks are supported through the contractor's development of the Technical Data Package Submittals.							

Table 1 Contractor Level of Effort

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

3.6 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the COR at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the conclusion of each phase of testing and prior to COR approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.
- B. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the COR, until completion of the entire project. The results will be compared to the Acceptance Test results.
- C. Contractor's Field Testing (CFT)
 - 1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment,

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to COR approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the COR's acceptance testing procedures. The Contractor shall provide the COR with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to the COR stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

D. Performance Verification Test (PVT)

1. Test team:

- a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test to date and give the COR written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the COR. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- 2. The Contractor shall demonstrate the completed Physical Access
 Control System PACS complies with the contract requirements. In
 addition, the Contractor shall provide written certification that

the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for out-of-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.

- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the COR or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- 4. Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the COR prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - 1) Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for COR approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

6. Partial PVT - At the discretion of COR, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.

E. Endurance Test

- 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the COR notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The COR may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the COR prior to acceptance of the system.
- 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the COR.

3. Phase II (Assessment):

a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

- action taken, results of tests performed, and recommend the point at which testing should be resumed.
- b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after the COR receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase I be repeated.
- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR.
- 5. Phase IV (Assessment):
 - 1. After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the COR receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review

meeting, the COR will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the COR may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

F. Exclusions

- 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the study of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings

CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

Construction Documents

sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - 2. Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer/COR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - 4. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM):

D2301-04......Standard Specification for Vinyl Chloride

Plastic Pressure Sensitive Electrical

Insulating Tape

C. Federal Specifications (Fed. Spec.):

A-A-59544-08......Cable and Wire, Electrical (Power, Fixed Installation)

D. National Fire Protection Association (NFPA):

70-11......National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

Copper Conductors

486C-04.....Splicing Wire Connectors

486D-05......Insulated Wire Connector Systems for

Underground Use or in Damp or Wet Locations

486E-00.....Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

493-07......Thermoplastic-Insulated Underground Feeder and

Branch Circuit Cable

514B-04.....Fittings for Cable and Conduit

1479-03......Fire Tests of Through-Penetration Fire Stops

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical-fiber flashlight or optical loss test set.
 - 2. Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Support of Open Cabling: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars, spools, J-hooks, and D-rings.
 - 3. Straps and other devices.
- B. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems."[Flexible metal conduit shall not be used.]
 - 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, [Category 5e] [Category 6].
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type ${\tt CM}$ or ${\tt CMG}$.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG.
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.

2.3 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare.

 Integral with connector bodies, including plugs and jacks where indicated.

2.4 OPTICAL FIBER CABLE

- A. Description: Multimode, 62.5/125-micrometer, 24-fiber, [nonconductive,] tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG.
 - e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 - f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
 - 5. Conductive cable shall be steel armored type.
 - 6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

B. Jacket:

- 1. Jacket Color: Orange for 62.5/125-micrometer cable.
- 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.5 OPTICAL FIBER CABLE HARDWARE

A. Cable Connecting Hardware: Meet the Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.

- 1. Quick-connect, simplex and duplex, Type SC connectors. Insertion loss shall be not more than 0.75 dB.
- 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.6 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.127 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway or power-limited tray cable, in cable tray complying with UL 83.

CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.8 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.9 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Cable will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

2.10 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.11 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."

- 3. Install 110-style IDC termination hardware unless otherwise indicated.
- 4. Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
- 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - 1. Splices and terminations shall be mechanically and electrically secure.
 - 2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] <Insert dimension> apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- M. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.

- 2. Install cabling after the flooring system has been installed in raised floor areas.
- 3. Coil cable [72 inches (1830 mm)] <Insert size> long shall be neatly coiled not less than [12 inches (300 mm)] <Insert size> in diameter below each feed point.

N. Separation from EMI Sources:

- Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
- 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
- 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

September 2017

6. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.3 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS

 CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.

3.4 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each hand hole, install embossed brass tags to identify the system served and function.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:

CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

- 1. Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
- 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

Construction Documents

3.8 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

Construction Documents September 2017

METALIC CABLE SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 26 41 00 FACILITY LIGHTNING PROTECTION. Requirements for a lightning protection system.
- C. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 - 1. Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

September 2017

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07Stand	lard S	Specification	for	Hard-Drawn	Copper
Wire					

B3-07.....Standard Specification for Soft or Annealed Copper Wire

B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

C2-07.....National Electrical Safety Code

D. National Fire Protection Association (NFPA):

70-11......National Electrical Code (NEC) 99-2005......Health Care Facilities

E. Underwriters Laboratories, Inc. (UL):

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm^2 (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 GROUND RODS

- A. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance.

2.3 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 - 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - 6. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch x } \frac{3}{4} \text{ inch})$.

2.5 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.6 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

2.7 COMPUTER ROOM GROUND

A. Provide 50mm2 (1/0 AWG) bare copper grounding conductors bolted at mesh intersections to form an equipotential grounding grid. The equipotential grounding grid shall form a 600mm (24 inch) mesh pattern. The grid shall be bonded to each of the access floor pedestals.

2.8 SECURITY CONTROL ROOM GROUND

- A. Provide 50mm2 (1/0 AWG) stranded copper grounding conductor(s) color coded with a green jacket, bolted at the Room's Communications System Grounding Electrode Cooper Plate and circulate to each equipment rack ground buss bar through the wire management system. Connect each equipment rack, wire management system's cable tray, ladder, etc. to the circulating ground wire with a minimum 25mm2 (4AWG) stranded Cooper Wire, color coded with a green jacket.
 - 1. Connect each equipment rack ground buss bar to the circulating ground wire a indicated in 2.9.A, and
 - 2. Connect each additional room item to the circulating ground wire as indicated in 2.9.A.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

Construction Documents

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 COMPUTER ROOM/SECURITY EQUIPMENT ROOM GROUNDING

- A. Conduit: Ground and bond metallic conduit systems as follows:
 - Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm² (6AWG) bonding jumpers.
 - 2. Bond at all intermediate metallic enclosures and across all joints using $16\ mm^2$ (6 AWG) bonding jumpers.

3.6 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - 2. Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 - 3. Use insulated 16 mm^2 (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 - 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.7 EXTERIOR LIGHT/CAMERA POLES

A. Provide 20 ft [6.1 M] of No. 4 bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

3.8 GROUND RESISTANCE

A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary

Construction Documents

for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.

- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the COR prior to backfilling. The contractor shall notify the COR 24 hours before the connections are ready for inspection.

3.9 GROUND ROD INSTALLATION

- A. Drive each rod vertically in the earth, not less than 3000 mm (10 feet) in depth.
- B. Where permanently concealed ground connections are required, make the connections by the exothermic process to form solid metal joints. Make accessible ground connections with mechanical pressure type ground connectors.
- C. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

3.10 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 - 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
 - 2. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

September 2017

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.
- C. LFMC: Liquidtight flexible metal conduit.
- D. LFNC: Liquidtight flexible nonmetallic conduit.
- E. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;

- 2. Size and location of panels and pull boxes
- 3. Layout of required conduit penetrations through structural elements.
- 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Resident Engineer/COR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- H. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 16 Section "Electrical Supports and Seismic Restraints." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified [and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event]."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

September 2017

I. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

TC-3-04PVC	Fittings	for	Use	with	Rigid	PVC	Conduit	and
Tubi	.nq							

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

- C. National Fire Protection Association (NFPA):
 - 70-11......National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

1-05.	 Flexible	Metal Conduit

- 5-04.....Surface Metal Raceway and Fittings
- 6-07.....Rigid Metal Conduit
- 50-07.....Enclosures for Electrical Equipment
- 360-09.....Liquid-Tight Flexible Steel Conduit
- 467-07......Grounding and Bonding Equipment
- 514A-04.....Metallic Outlet Boxes
- 514B-04.....Fittings for Cable and Conduit
- 514C-02......Nonmetallic Outlet Boxes, Flush-Device Boxes and
- 651-05......Schedule 40 and 80 Rigid PVC Conduit
- 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit
- 797-07..... Electrical Metallic Tubing
- 1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3.

 Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- C. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - 3. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - 4. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - 5. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- C. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- D. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.

Construction Documents September 2017

- 2. Only steel or malleable iron materials are acceptable.
- Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- E. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- F. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - 2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall.

 Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.

September 2017

- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

2.10 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.11 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: [EPDM] [NBR] <Insert sealing element> interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: [Plastic] [Carbon steel] [Stainless steel]. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: [Carbon steel with corrosion-resistant coating] [Stainless steel] of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.12 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

WIRELINE DATA TRANSMISSION MEDIA FOR SECURITY SYSTEMS

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - 7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit

September 2017

installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.

- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.

B. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

C. Layout and Homeruns:

- 1. Install conduit with wiring, including homeruns, as shown.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COR.

D. Fire Alarm:

1. Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- 4. Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.

- c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper green ground bonding jumper installed.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.

Construction Documents September 2017

- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.

- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends		
Trade Size	mm, Inches		
3/4	150 (6)		
1	230 (9)		
1-1/4	350 (14)		
1-1/2	430 (17)		
2	525 (21)		
2-1/2	635 (25)		
3	775 (31)		
3-1/2	900 (36)		
4	1125 (45)		

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings. Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

September 2017

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

September 2017

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS.
- B. This Section includes a Physical Access Control System consisting of a system server, [one or more networked workstation computers,] operating system and application software, and field-installed Controllers connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors [, gates] [, traffic-control
 bollards] <List other access-control devices>
 - b. Anti-passback
 - c. Visitor assignment
 - d. Surge and tamper protection
 - e. Secondary alarm annunciator
 - f. Credential cards and readers
 - g. Biometric identity verification equipment
 - h. Push-button switches
 - i. RS-232 ASCII interface
 - j. Credential creation and credential holder database and management
 - k. Monitoring of field-installed devices
 - 2. Security:
 - a. Time and attendance.

C. System Architecture:

- Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.
- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Head-End equipment server,

Construction Documents

- 2. One or more networked PC-based workstations,
- 3. Physical Access Control System and Database Management Software,
- 4. Credential validation software/hardware,
- 5. Field installed controllers,
- 6. PIV Middelware,
- 7. Card readers,
- 8. Biometric identification devices,
- 9. PIV <PIV-I>, <Legacy CAC>, <CAC NG>, <CAC EP>, <TWIC>, <FRAC> cards,
- 10. Supportive information system,
- F. Head-End equipment server, workstations and controllers shall be connected by a high-speed electronic data transmission network.
- G. Information system supporting PACS , Head-End equipment server, workstations, network switches, routers and controllers shall comply with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems).
- H. PACS system shall support:
 - 1. Multiple credential authentication modes,
 - 2. Bidirectional communication with the reader,
 - 3. Incident response policy implementation capability; system shall have capability to automatically change access privileges for certain user groups to high security areas in case of incident/emergency.
 - 4. Visitor management,
- I. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- J. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.
- K. System Software: Based on <Insert name of operating system> centralstation, workstation operating system, server operating system, and application software.
- L. Software and controllers shall be capable of matching full 56 bit FASC-N plus minimum of 32 bits of public key certificate data.

- M. Software shall have the following capabilities:
 - 1. Multiuser multitasking to allow for independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Support authentication and enrolment;
 - a. PIV verification,
 - b. Expiration date check,
 - c. Biometric check,
 - d. Digital photo display/check,
 - e. Validate digital signatures of data objects (Objects are signed by the Trusted Authority
 - f. Private key challenge (CAK & PAK to verify private key public key pairs exist and card is not a clone)
 - 3. Support CRL validation via OCSP or SCVP on a scheduled basis and automatically deny access to any revoked credential in the system.
 - 4. Graphical user interface to show pull-down menus and a menu tree format that complies with interface guidelines of Microsoft Windows operating system.
 - 5. System license shall be for the entire system and shall include capability for future additions that are within the indicated system size limits specified in this Section.
 - 6. System shall have open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with <insert operating system> operating system.
 - 7. Operator login and access shall be utilized via integrated smart card reader and password protection.
- N. Systems Networks:
 - A standalone system network shall interconnect all components of the system. This network shall include communications between a central station and any peer or subordinate workstations, enrollment stations, local annunciation stations, portal control stations or redundant central stations.
- O. Security Management System Server Redundancy:
 - 1. The SMS shall support multiple levels of fault tolerance and SMS redundancy listed and described below:
 - a. Hot Standby Servers
 - b. Clustering
 - c. Disk Mirroring
 - d. RAID Level 10

- e. Distributed Intelligence
- P. Number of points:
 - 1. PACS shall support multiple autonomous regional servers that can connect to a master command and controller server.
 - Unlimited number of access control readers, unlimited number of inputs or outputs, unlimited number of client workstations, unlimited number of cardholders.
 - 3. Total system solution to enable enterprise-wide, networked, multiuser access to all system resources via a wide range of options for connectivity with the customer's existing LAN and WAN.

Q. Console Network:

- 1. Console network, if required, shall provide communication between a central station and any subordinate or separate stations of the system. Where redundant central or parallel stations are required, the console network shall allow the configuration of stations as master and slave. The console network may be a part of the field device network or may be separate depending upon the manufacturer's system configuration.
- R. Network(s) connecting PCs and Controllers shall comply with NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems) and consist of one or more of the following:
 - 1. Local area, IEEE 802.3 Fast Ethernet [10 BASE-T] [100 BASE-TX], star topology network based on TCP/IP.
 - 2. Direct-connected, RS-232 cable from the COM port of the Central Station to the first Controller, then RS-485 to interconnect the remainder of the Controllers at that Location.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

 Requirements for connection of high voltage.
- D. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.

- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the PACS as shown. The Contractor shall also provide certification as required.
- B. The security system will be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- D. Product Qualifications:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

E. Contractor Qualifications:

1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as

the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- a. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- b. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- F. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, Section 02 41 00, DEMOLITION, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a complete and thorough pre-installation and as-built design package in both electronic format and on paper, minimum size 48×48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a complete list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all individual security systems that are applicable to the design package that will:
 - 1) Outline all general and job specific work required within the design package.
 - 2) Provide a detailed device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - 2. Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Clearly define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.

- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A detailed riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A detailed system drawing for each applicable security system shall:
 - a. Clearly identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A detailed schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the PACS, provide the door ID, door type (e.g. wood or metal), locking mechanism (e.g. strike or electromagnetic lock) and control device (e.g. card reader or biometrics).
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.

- E. Pre-installation design packages shall go through a full review process conducted by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per Section 01 00 00, GENERAL REQUIREMENTS, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- H. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- I. General: Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. Additional general provisions are as follows:
 - 1. The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 DESIGN SUBMITTAL PROCEDURES, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - 2. The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which

- may be detrimental to successful performance of the completed work or system.
- 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.
- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - 1) Where two (2) or more binders are necessary to accommodate data, correlate data in each binder into related groupings according to the Project Manual table of contents. Cross-referencing other binders where necessary to provide essential information for communication of proper operation and or maintenance of the component or system.
 - 2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.

- b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
- c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
- d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: In each manual include information specified in the individual Specification section, and the following information for each major component of building equipment and controls:
 - 1) General system or equipment description.
 - 2) Design factors and assumptions.
 - 3) Copies of applicable Shop Drawings and Product Data.
 - 4) System or equipment identification including: manufacturer, model and serial numbers of each component, operating instructions, emergency instructions, wiring diagrams, inspection and test procedures, maintenance procedures and schedules, precautions against improper use and maintenance, repair instructions, sources of required maintenance materials and related services, and a manual index.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product

Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.

- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the

- installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information.

 Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal.

 Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return non-conforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- 8. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.

- J. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA Special Conditions and CAD Standards Documents. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD $^{\mathrm{M}}$ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) security devices by symbol,
 - 2) the associated device point number (derived from the loading sheets),
 - 3) wire & cable types and counts
 - 4) conduit sizing and routing
 - 5) conduit riser systems
 - 6) device and area detail call outs
 - e. Architectural details Architectural details shall be produced for each device mounting type (door details for doors with physical access control, reader pedestals and mounts, security panel and power supply details).
 - f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the physical access control system throughout the facility (or area in scope).
 - g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g.,

physical access control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.

h. Interconnection Diagrams - Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.

i. Security Details:

- 1) Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
- 2) Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- 6) Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.

- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation.

 Equipment room the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number
 - 8) Lock Type, Model Number & Power Input/Draw (standby/active)
 - 9) Card Reader Type & Model Number
 - 10) Shunting Device Type & Model Number
 - 11) Sounder Type & Model Number
 - 12) Manufacturer
 - 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device

- 14) Remarks column indicating special notes or door configurations
- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage
 - e. Camera Location
 - f. Floor Plan Sheet Number
 - g. Camera Type
 - h. Mounting Type
 - i. Standard Detail Reference
 - j. Power Input & Draw
 - k. Power Panel Location
 - 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet

shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.

- d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
- e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number
 - 4) First Relay Number
 - 5) DGP, input or output Location
 - 6) DGP Chain Number
 - 7) DGP Cabinet Tamper Input Number
 - 8) DGP Power Fail Input Number
 - 9) Number of Monitor Points Reserved For Expansion Boards
 - 10) Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field

- 7) DGP Input Location
- 8) Date Test
- 9) Date Passed
- 10) Cable Type
- 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 6) DGP or input module Input Location
 - 7) Date Test
 - 8) Date Passed
 - 9) Cable Type
 - 10) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer

- a) File Name
- b) Date Printed
- c) Page Number
- 4. Section III Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 5. Section IV System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
 - b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
 - c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
 - 6. Section V Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- K. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its

- performance. The Contractor shall not correct any deficiency without written permission from the COR.
- 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- L. Group III Technical Data Package
 - 1. Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.
- M. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the Resident Engineer for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations,

turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.

b. New Unit Control Room:

- 1) Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the Resident Engineer. Instruction is not to begin until the system is operational as designed.
- 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's

manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.

- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,
 - 5) All other security subsystems shown in the contract documents.
 - b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
 - c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent

information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

- N. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Resident Engineer as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - 1. Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
 - 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration

procedures; manufacturer's repair list indicating sources of supply; and interface definition.

- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the Resident Engineer a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.

- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
 - j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the Resident Engineer or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master

Redline document to the Resident Engineer for review and approval of all changes or modifications to the documents. Each sheet shall have Resident Engineer initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".

- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COR. As with master relines, Contractor shall maintain record specifications for Resident Engineer review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes.

 Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous

following:

records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the

- a. Certificates received instead of labels on bulk products.
- b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the Resident Engineer prior to development of Record construction documents. The Resident Engineer shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the Resident Engineer, the Resident Engineer will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the Resident Engineer a complete set of "as-built" drawings and original master redlined marked "asbuilt" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COR. If, in the opinion of the COR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.

- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COR. The Contractor shall organize into bound and labeled sets for the COR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).
- O. FIPS 201 Compliance Certificates
 - 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Card Readers
 - b. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- P. Approvals will be based on complete submission of manuals together with shop drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/ Security Industry Association (SIA):
 - AC-03......Access Control: Access Control Guideline Dye

 Sublimation Printing Practices for PVC Access

 Control Cards
 - TVAC-01......CCTV to Access Control Standard Message Set for System Integration

C. American National Standards Institute (ANSI)/ International Code
Council (ICC):
Al17.1Standard on Accessible and Usable Buildings and
Facilities
D. Department of Justice American Disability Act (ADA)
28 CFR Part 36ADA Standards for Accessible Design 2010
E. Department of Veterans Affairs (VA):
PACS-R: Physical Access Control System (PACS) Requirements
VA Handbook 0730 Security and Law Enforcement
F. Government Accountability Office (GAO):
GAO-03-8-02 Security Responsibilities for Federally Owned and Leased
Facilities
G. National Electrical Contractors Association
303-2005Installing Closed Circuit Television (CCTV)
Systems
H. National Electrical Manufactures Association (NEMA):
250-08Enclosures for Electrical Equipment (1000 Volts
Maximum)
I. National Fire Protection Association (NFPA):
70-11 National Electrical Code
J. Underwriters Laboratories, Inc. (UL):
294-99The Standard of Safety for Access Control
System Units
305-08Standard for Panic Hardware
639-97Standard for Intrusion-Detection Units
752-05Standard for Bullet-Resisting Equipment
827-08Central Station Alarm Services
1076-95Standards for Proprietary Burglar Alarm Units
and Systems
1981-03Central Station Automation System
2058-05High Security Electronic Locks
K. Homeland Security Presidential Directive (HSPD):
HSPD-12Policy for a Common Identification Standard for
Federal Employees and Contractors
L. Federal Communications Commission (FCC):
(47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems
M. Federal Information Processing Standards (FIPS):

FIPS-201-1Personal Identity Verification (PIV) of Federal
Employees and Contractors
N. National Institute of Standards and Technology (NIST):
IR 6887 V2.1Government Smart Card Interoperability
Specification (GSC-IS)
Special Pub 800-63Electronic Authentication Guideline
Special Pub 800-96PIV Card Reader Interoperability Guidelines
Special Pub 800-73-3Interfaces for Personal Identity Verification
(4 Parts)
Namespace, Data Model & Representation
Interface
Pt. 3- PIV Client Application Programming
Interface
Pt. 4- The PIV Transitional Interfaces & Data
Model Specification
Special Pub 800-76-1Biometric Data Specification for Personal
Identity Verification
Special Pub 800-78-2Cryptographic Algorithms and Key Sizes for
Personal Identity Verification
Special Pub 800-79-1Guidelines for the Accreditation of Personal
Identity Verification Card Issuers
Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
Special Pub 800-85A-2PIV Card Application and Middleware Interface
Test Guidelines (SP 800-73-3 compliance)
Special Pub 800-96PIV Card Reader Interoperability Guidelines
Special Pub 800-37Guide for Applying the Risk Management
Framework to Federal Information Systems
Special Pub 800-96PIV Card Reader Interoperability Guidelines
Special Pub 800-96PIV Card Reader Interoperability Guidelines
Special Pub 800-104AScheme for PIV Visual Card Topography
Special Pub 800-116Recommendation for the Use of PIV Credentials
in Physical Access Control Systems (PACS)
O. Institute of Electrical and Electronics Engineers (IEEE):
C62.41IEEE Recommended Practice on Surge Voltages in
Low-Voltage AC Power Circuits
P. International Organization for Standardization (ISO):

Construction Documents

7810	.Identification cards - Physical characteristics
7811	.Physical Characteristics for Magnetic Stripe
	Cards
7816-1	.Identification cards - Integrated circuit(s)
	cards with contacts - Part 1: Physical
	characteristics
7816-2	.Identification cards - Integrated circuit cards
	- Part 2: Cards with contacts -Dimensions and
	location of the contacts
7816-3	.Identification cards - Integrated circuit cards
	- Part 3: Cards with contacts - Electrical
	interface and transmission protocols
7816-4	.Identification cards - Integrated circuit cards
	- Part 11: Personal verification through
	biometric methods
7816-10	.Identification cards - Integrated circuit cards
	- Part 4: Organization, security and commands
	for interchange
14443	.Identification cards - Contactless integrated
	circuit cards; Contactless Proximity Cards
	Operating at 13.56 MHz in up to 5 inches
	distance
15693	.Identification cards Contactless integrated
	circuit cards - Vicinity cards; Contactless
	Vicinity Cards Operating at 13.56 MHz in up to
	50 inches distance
19794	.Information technology - Biometric data
	interchange formats

- Q. Uniform Federal Accessibility Standards (UFAS) 1984
- R. ADA Standards for Accessible Design 2010
- S. Section 508 of the Rehabilitation Act of 1973

1.6 DEFINITIONS

- A. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16-character set.
- B. Access Control List: A list of (identifier, permissions) pairs associated with a resource or an asset. As an expression of security policy, a person may perform an operation on a resource or asset if and

only if the person's identifier is present in the access control list (explicitly or implicitly), and the permissions in the (identifier, permissions) pair include the permission to perform the requested operation.

- C. Access Control: A function or a system that restricts access to authorized persons only.
- D. API Application Programming Interface
- E. Assurance Level (or E-Authentication Assurance Level): A measure of trust or confidence in an authentication mechanism defined in OMB Memorandum M-04-04 and NIST Special Publication (SP) 800-63, in terms of four levels: [M-04-04]
 - 1. Level 1: LITTLE OR NO confidence
 - 2. Level 2: SOME confidence
 - 3. Level 3: HIGH confidence
 - 4. Level 4: VERY HIGH confidence
- F. Authentication: A process that establishes the origin of information, or determines an entity's identity. In this publication, authentication often means the performance of a PIV authentication mechanism.
- G. Authenticator: A memory, possession, or quality of a person that can serve as proof of identity, when presented to a verifier of the appropriate kind. For example, passwords, cryptographic keys, and fingerprints are authenticators.
- H. Authorization: A process that associates permission to access a resource or asset with a person and the person's identifier(s).
- I. BIO or BIO-A: A FIPS 201 authentication mechanism that is implemented by using a Fingerprint data object sent from the PIV Card to the PACS. Note that the short-hand "BIO (-A)" is used throughout the document to represent both BIO and BIO-A authentication mechanisms.
- J. Biometric: An authenticator produced from measurable qualities of a living person.
- K. CAC EP CAC End Point with end point PIV applet
- L. CAC NG CAC Next Generation with transitional PIV applet
- M. Card Authentication Key (CAK): A PIV authentication mechanism (or the PIV Card key of the same name) that is implemented by an asymmetric or symmetric key challenge/response protocol. The CAK is an optional mechanism defined in NIST SP 800-73. [SP800-73] NIST strongly recommends that every PIV Card contain an asymmetric CAK and corresponding certificate, and that agencies use the asymmetric CAK

- protocol, rather than a symmetric CAK protocol, whenever the CAK authentication mechanism is used with PACS.
- N. CCTV: Closed-circuit television.
- O. Central Station: A PC with software designated as the main controlling PC of the PACS. Where this term is presented with initial capital letters, this definition applies.
- P. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- Q. CPU: Central processing unit.
- R. Credential: Data assigned to an entity and used to identify that entity.
- S. File Server: A PC in a network that stores the programs and data files shared by users.
- T. FIPS Federal Information Processing Standards
- U. FRAC First Responder Authentication Credential
- V. HSPD Homeland Security Presidential Directive
- W. I/O: Input/Output.
- X. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- Y. IEC International Electrotechnical Commission
- Z. ISO International Organization for Standardization
- AA. KB Kilobyte
- BB. kbit/s Kilobits / second
- CC. LAN: Local area network.
- DD. LED: Light-emitting diode.
- EE. Legacy CAC Contact only Common Access Card with v1 and v2 applets
- FF. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- GG. NIST: National Institute of Standards and Technology
- HH. PACS: Physical Access Control System
- II. PC/SC: Personal Computer / Smart Card

- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. PIV: Personal Identification Verification
- NN. PIV-I PIV Interoperable credential
- 00. PPS: Protocol and Parameters Selection
- PP. RF: Radio frequency.
- QQ. ROM: Read-only memory. ROM data are maintained through losses of power.
- RR. RS-232: A TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- SS. RS-485: An TIA/EIA standard for multipoint communications.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. TPDU: Transport Protocol Data Unit
- VV. TWIC Transportation Worker Identification Credential
- WW. UPS: Uninterruptible power supply.
- XX. Vcc: Voltage at the Common Collector
- YY. WAN: Wide area network.
- ZZ. WAV: The digital audio format used in Microsoft Windows.
- AAA. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.
- BBB. Windows: Operating system by Microsoft Corporation.
- CCC. Workstation: A PC with software that is configured for specific limited security system functions.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.

- 3. To allow right of way for piping and conduit installed at required slope.
- 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

C. Personnel

- 1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Resident Engineer shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Resident Engineer shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work

- 1. The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a) The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.

E. Emergency Service

- 1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and non-catastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

F. Operation

1. Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.

G. Records & Logs

1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.

H. Work Request

1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

I. System Modifications

1. The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

J. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's

September 2017

warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe
- C. Physical Access Control System shall provide access to following Security Areas:
 - 1. Controlled
 - 2. Limited
 - 3. Exclusion
- D. PACS shall provide:
 - 1. One authentication factor for access to Controlled security areas
 - 2. Two authentication factors for access to Limited security areas
 - 3. Three authentication factors for access to Exclusion security areas
- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - 4. Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.

G. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for physical access control. If communications to Central Station are lost, all Controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.

H. Data Capacity:

- 1. [130] <Insert number> different card-reader formats.
- 2. [999] <Insert number> comments.
- 3. [16] <Insert number> graphic file types for importing maps.

I. Location Capacity:

- 1. [128] <Insert number> reader-controlled doors.
- 2. [50,000] <Insert number> total access credentials.
- 3. [2048] <Insert number> supervised alarm inputs.
- 4. [2048] <Insert number> programmable outputs.
- 5. [32,000] <Insert number> custom action messages per Location to instruct operator on action required when alarm is received.

J. System Network Requirements:

- 1. Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
- 2. Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.
- 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.
- 4. Communications Controller may be used as an interface between the Central Station display systems and the field device network.

 Communications Controller shall provide functions required to attain the specified network communications performance.
- K. Central Station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central Station shall control system networks to interconnect all system components, including workstations and field-installed Controllers.

- L. Field equipment shall include Controllers, sensors, and controls.

 Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records.

 Controllers are classified as alarm-annunciation or entry-control type.
- M. System Response to Alarms: Field device network shall provide a system end-to-end response time of [1] <Insert number> second(s) or less for every device connected to the system. Alarms shall be annunciated at the Central Station within 1 second of the alarm occurring at a Controller or device controlled by a local Controller, and within 100 ms if the alarm occurs at the Central Station. Alarm and status changes shall be displayed within 100 ms after receipt of data by the Central Station. All graphics shall be displayed, including graphics-generated map displays, on the console monitor within 5 seconds of alarm receipt at the security console. [This response time shall be maintained during system heavy load.]
- N. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- O. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect single-and double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multibit and burst error conditions.

 Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.
- P. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.

- Q. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- R. References to industry and trade association standards and codes are minimum installation requirement standards.
- S. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.10 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.

September 2017

3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Physical Access Control System
 - 2. Application Software
 - 3. System Database
 - 4. Surge and Tamper Protection
 - 5. Standard Workstation Hardware
 - 6. Communications Workstation

September 2017

- 7. Controllers (Data Gathering Panel)
- 8. Secondary Alarm Annunciator
- 9. Keypads
- 10. Card Readers
- 11. Credential Cards
- 12. Biometric Identity Verification Equipment
- 13. Enrolment Center (To be provided in accordance with the VA PIV enrollment and issuance system.)
- 14. System Sensors and Related Equipment
- 15. Push Button Switches
- 16. Interfaces
- 17. Door and Gate Hardware interface
- 18. RS-232 ASCII Interface
- 19. Floor Select Elevator Control
- 20. After-Hours HVAC Control
- 21. Real Time Guard Tour
- 22. Video and Camera Control
- 23. Cables
- 24. Transformers

2.2 SECURITY MANAGEMENT SYSTEM (SMS)

- A. Shall allow the configuration of an enrollment and badging, alarm monitoring, administrative, asset management, digital video management, intrusion detection, visitor enrollment, remote access level management, and integrated client workstations or any combination of all or some.
- B. Shall be expandable to support an unlimited number of individual module or integrated client workstations. All access control field hardware, including Data Gathering Panels (DGP), shall be connected to all physical access control system workstation on the network.
- C. Shall have the ability to compose, file, maintain, update, and print reports for either individuals or the system as follows.
 - Individual reports that consist of an employee's name, office location, phone number or direct extension, and normal hours of operation. The report shall provide a detail listing of the employee's daily events in relation to accessing points within a facility.

- 2. System reports shall be able to produce information on a daily/weekly/monthly basis for all events, alarms, and any other activity associated with a system user.
- D. All reports shall be in a date/time format and all information shall be clearly presented. Shall be designed to allow it to work with any industry standard network protocol and topology listed below:
 - 1. Transmission Control Protocol (TCP)/IP
 - 2. Novell Netware (IPX/SPX)
 - 3. Banyan VINES
 - 4. IBM LAN Server (NetBEUI)
 - 5. Microsoft LAN Manager (NetBEUI)
 - 6. Network File System (NFS) Networks
 - 7. Remote Access Service (RAS) via ISDN, x.25, and standard phone lines.
- E. Shall provide full interface and control of the PACS to include the following subsystems within the PACS:
 - 1. Public Key Infrastructure
 - 2. Card Management
 - 3. Identity and Access Management
 - 4. Personal Identity Verification
- F. Shall have the following features or compatibilities:
 - 1. The ability to be operated locally or remotely via a LAN, WAN, internet, or intranet.
 - 2. Event and Alarm Monitoring
 - 3. Database Partitioning
 - 4. Ability to fully integrate with all other security subsystems
 - 5. Enhanced Monitoring Station with Split Screen Views
 - 6. Alternate and Extended Shunt by Door
 - 7. Escort Management
 - 8. Enhanced IT-based Password Protection
 - 10. N-man Rule and Occupancy Restrictions
 - 11. Open Journal Data Format for Enhanced Reporting
 - 12. Automated Personnel Import
 - 13. ODBC Support
 - 14. Windows 2000 Professional, Windows Server 2003, Windows XP Professionals for Servers, Windows 7
 - 15. Field-Level Audit Trail
 - 16. Cardholder Access Events

2.3 APPLICATION SOFTWARE

- A. System Software: Based on [32] <Insert number>-bit, [Microsoft Windows] <Insert name of operating system> central-station and workstation operating system and application software. Software shall have the following features:
 - Multiuser multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Graphical user interface to show pull-down menus and a menu tree format.
 - 3. Capability for future additions within the indicated system size limits.
 - 4. Open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with operating system.
 - 5. Password-protected operator and smart card login and access.
- B. Peer Computer Control Software: Shall detect a failure of a central computer, and shall cause the other central computer to assume control of all system functions without interruption of operation. Drivers shall be provided in both central computers to support this mode of operation.
- C. Application Software: Interface between the alarm annunciation and entry-control Controllers, to monitor sensors [and DTS links], operate displays, report alarms, generate reports, and help train system operators. Software shall have the following functions:
 - 1. Resides at the Central Station, workstations, and Controllers as required to perform specified functions.
 - 2. Operate and manage peripheral devices.
 - 3. Manage files for disk I/O, including creating, deleting, and copying files; and automatically maintain a directory of all files, including size and location of each sequential and random-ordered record
 - 4. Import custom icons into graphics views to represent alarms and I/O devices.
 - 5. Globally link I/O so that any I/O can link to any other I/O within the same Location, without requiring interaction with the host PC. This operation shall be at the Controller.

- 6. Globally code I/O links so that any access-granted event can link to any I/O with the same Location without requiring interaction with the host PC. This operation shall be at the Controller.
- 7. Messages from PC to Controllers and Controllers to Controllers shall be on a polled network that utilizes check summing and acknowledgment of each message. Communication shall be automatically verified, buffered, and retransmitted if message is not acknowledged.
- 8. Selectable poll frequency and message time-out settings shall handle bandwidth and latency issues for TCP/IP, RF, and other PC-to-Controller communications methods by changing the polling frequency and the amount of time the system waits for a response.
- 9. Automatic and encrypted backups for database and history backups shall be automatically stored at [the central control PC] [a selected workstation] and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
- 10. Operator audit trail for recording and reporting all changes made to database and system software.

D. Workstation Software:

- 1. Password levels shall be individually customized at each workstation to allow or disallow operator access to program functions for each Location.
- 2. Workstation event filtering shall allow user to define events and alarms that will be displayed at each workstation. If an alarm is unacknowledged (not handled by another workstation) for a preset amount of time, the alarm will automatically appear on the filtered workstation.

E. Controller Software:

1. Controllers shall operate as an autonomous intelligent processing unit. Controllers shall make decisions about physical access control, alarm monitoring, linking functions, and door locking schedules for its operation, independent of other system components. Controllers shall be part of a fully distributed processing control network. The portion of the database associated with a Controller and consisting of parameters, constraints, and the latest value or status of points connected to that Controller, shall be maintained in the Controller.

- 2. Functions: The following functions shall be fully implemented and operational within each Controller:
 - a. Monitoring inputs.
 - b. Controlling outputs.
 - c. Automatically reporting alarms to the Central Station.
 - d. Reporting of sensor and output status to Central Station on request.
 - e. Maintaining real time, automatically updated by the Central Station at least once a day.
 - f. Communicating with the Central Station.
 - g. Executing Controller resident programs.
 - h. Diagnosing.
 - i. Downloading and uploading data to and from the Central Station.
- 3. Controller Operations at a Location:
 - a. Location: Up to [64] <Insert number> Controllers connected to RS-485 communications loop. Globally operating I/O linking and anti-passback functions between Controllers within the same Location without central-station or workstation intervention. Linking and anti-passback shall remain fully functional within the same Location even when the Central Station or workstations are off line.
 - b. In the event of communications failure between the Central Station and a Location, there shall be no degradation in operations at the Controllers at that Location. The Controllers at each Location shall be connected to a memory buffer with a capacity to store up to 10,000 events; there shall be no loss of transactions in system history files until the buffer overflows.
 - c. Buffered events shall be handled in a first-in-first-out mode of operation.
- 4. Individual Controller Operation:
 - a. Controllers shall transmit alarms, status changes, and other data to the Central Station when communications circuits are operable. If communications are not available, Controllers shall function in a stand-alone mode and operational data, including the status and alarm data normally transmitted to the Central Station, shall be stored for later transmission to the Central Station. Storage capacity for the latest 1024 events shall be provided at each Controller.

- b. Card-reader ports of a Controller shall be custom configurable for at least [120] <Insert number> different card-reader or keypad formats. Multiple reader or keypad formats may be used simultaneously at different Controllers or within the same Controller.
- c. Controllers shall provide a response to card-readers or keypad entries in less than 0.25 seconds, regardless of system size.
- d. Controllers that are reset, or powered up from a nonpowered state, shall automatically request a parameter download and reboot to its proper working state. This shall happen without any operator intervention.
- e. Initial Startup: When Controllers are brought on-line, database parameters shall be automatically downloaded to them. After initial download is completed, only database changes shall be downloaded to each Controller.
- f. Failure Mode: On failure for any reason, Controllers shall perform an orderly shutdown and force Controller outputs to a predetermined failure mode state, consistent with the failure modes shown and the associated control device.
- g. Startup After Power Failure: After power is restored, startup software shall initiate self-test diagnostic routines, after which Controllers shall resume normal operation.
- h. Startup After Controller Failure: On failure, if the database and application software are no longer resident, Controllers shall not restart, but shall remain in the failure mode until repaired. If database and application programs are resident, Controllers shall immediately resume operation. If not, software shall be restored automatically from the Central Station.

5. Communications Monitoring:

- a. System shall monitor and report status of RS-485 communications loop [TCP/IP communication status] of each Location.
- b. Communication status window shall display which Controllers are currently communicating, a total count of missed polls since midnight, and which Controller last missed a poll.
- c. Communication status window shall show the type of CPU, the type of I/O board, and the amount of RAM memory for each Controller.
- 6. Operating systems shall include a real-time clock function that maintains seconds, minutes, hours, day, date, and month. The real-

time clock shall be automatically synchronized with the Central Station at least once a day to plus or minus 10 seconds. The time synchronization shall be automatic, without operator action and without requiring system shutdown.

- F. PC-to-Controller Communications:
 - 1. Central-station or workstation communications shall use the following:
 - a. Direct connection using serial ports of the PC.
 - b. TCP/IP LAN network interface cards.
 - c. Dial-up modems for connections to Locations.
 - 2. Serial Port Configuration: Each serial port used for communications shall be individually configurable for "direct communications," "modem communications incoming and outgoing," or "modem communications incoming only"; or as an ASCII output port.
 - 3. Multiport Communications Board: Use if more than two serial ports are needed.
 - a. Expandable and modular design. Use a 4-, 8-, or 16-serial port configuration that is expandable to 32 or 64 serial ports.
 - b. Connect the first board to an internal PCI bus adapter card.
 - 4. Direct serial, TCP/IP, and dial-up communications shall be alike in the monitoring or control of system, except for the connection that must first be made to a dial-up Location.
 - 5. TCP/IP network interface card shall have an option to set the poll frequency and message response time-out settings.
 - 6. PC-to-Controller and Controller-to-Controller communications (direct, dial-up, or TCP/IP) shall use a polled-communication protocol that checks sum and acknowledges each message. All communications shall be verified and buffered and retransmitted if not acknowledged.
- G. Direct Serial or TCP/IP PC-to-Controller Communications:
 - 1. Communication software on the PC shall supervise the PC-to-Controller communications link.
 - 2. Loss of communications to any Controller shall result in an alarm at all PCs running the communications software.
 - 3. When communications are restored, all buffered events shall automatically upload to the PC, and any database changes shall be automatically sent to the Controller.
- H. Controller-to-Controller Communications:

- 1. Controller-to-Controller Communications: RS-485, 4-wire, point-to-point, regenerative (repeater) communications network methodology.
- 2. RS-485 communications signal shall be regenerated at each Controller.

I. Database Downloads:

- All data transmissions from PCs to a Location, and between Controllers at a Location, shall include a complete database checksum to check the integrity of the transmission. If the data checksum does not match, a full data download shall be automatically retransmitted.
- 2. If a Controller is reset for any reason, it shall automatically request and receive a database download from the PC. The download shall restore data stored at the Controller to their normal working state and shall take place with no operator intervention.
- 3. Software shall provide for setting downloads via dial-up connection to once per 24-hour period, with time selected by the operator.
- 4. Software shall provide for setting delays of database downloads for dial-up connections. Delays change the download from immediately to a delay ranging from 1 to 999 minutes.

J. Operator Interface:

- 1. Inputs in system shall have two icon representations, one for the normal state and one for the abnormal state.
- 2. When viewing and controlling inputs, displayed icons shall automatically change to the proper icon to display the current system state in real time. Icons shall also display the input's state, whether armed or bypassed, and if the input is in the armed or bypassed state due to a time zone or a manual command.
- 3. Outputs in system shall have two icon representations, one for the secure (locked) state and one for the open (unlocked) state.
- 4. Icons displaying status of the I/O points shall be constantly updated to show their current real-time condition without prompting by the operator.
- 5. The operator shall be able to scroll the list of I/Os and press the appropriate toolbar button, or right click, to command the system to perform the desired function.
- 6. Graphic maps or drawings containing inputs, outputs, and override groups shall include the following:

a. Database to import and store full-color maps or drawings and allow for input, output, and override group icons to be placed on maps.

- b. Maps to provide real-time display animation and allow for control of points assigned to them.
- c. System to allow inputs, outputs, and override groups to be placed on different maps.
- d. Software to allow changing the order or priority in which maps will be displayed.

7. Override Groups Containing I/Os:

- a. System shall incorporate override groups that provide the operator with the status and control over user-defined "sets" of I/Os with a single icon.
- b. Icon shall change automatically to show the live summary status of points in that group.
- c. Override group icon shall provide a method to manually control or set to time zone points in the group.
- d. Override group icon shall allow the expanding of the group to show icons representing the live status for each point in the group, individual control over each point, and the ability to compress the individual icons back into one summary icon.

8. Schedule Overrides of I/Os and Override Groups:

- a. To accommodate temporary schedule changes that do not fall within the holiday parameters, the operator shall have the ability to override schedules individually for each input, output, or override group.
- b. Each schedule shall be composed of a minimum of two dates with separate times for each date.
- c. The first time and date shall be assigned the override state that the point shall advance to, when the time and date become current.
- d. The second time and date shall be assigned the state that the point shall return to, when the time and date become current.
- Copy command in database shall allow for like data to be copied and then edited for specific requirements, to reduce redundant data entry.

K. Operator Access Control:

- 1. Control operator access to system controls through [three] <Insert number> password-protected operator levels. System operators and managers with appropriate password clearances shall be able to change operator levels for operators.
- 2. Three successive attempts by an operator to execute functions beyond their defined level during a 24-hour period shall initiate a software tamper alarm.
- 3. A minimum of [32] <Insert number> passwords shall be available with the system software. System shall display the operator's name or initials in the console's first field. System shall print the operator's name or initials, action, date, and time on the system printer at login and logoff.
- 4. The password shall not be displayed or printed.
- 5. Each password shall be definable and assignable for the following:
 - a. Commands usable.
 - b. Access to system software.
 - c. Access to application software.
 - d. Individual zones that are to be accessed.
 - e. Access to database.

L. Operator Commands:

- Command Input: Plain-language words and acronyms shall allow operators to use the system without extensive training or dataprocessing backgrounds. System prompts shall be a word, a phrase, or an acronym.
- 2. Command inputs shall be acknowledged and processing shall start in not less than [1] <Insert number> second(s).
- 3. Tasks that are executed by operator's commands shall include the following:
 - a. Acknowledge Alarms: Used to acknowledge that the operator has observed the alarm message.
 - b. Place Zone in Access: Used to remotely disable intrusion alarm circuits emanating from a specific zone. System shall be structured so that console operator cannot disable tamper circuits.
 - c. Place Zone in Secure: Used to remotely activate intrusion alarm circuits emanating from a specific zone.
 - d. System Test: Allows the operator to initiate a system-wide operational test.

- e. Zone Test: Allows the operator to initiate an operational test for a specific zone.
- f. Print reports.
- g. Change Operator: Used for changing operators.
- h. Security Lighting Controls: Allows the operator to remotely turn on/off security lights.
- i. Display Graphics: Used to display any graphic displays implemented in the system. Graphic displays shall be completed within 20 seconds from time of operator command.
- j. Run system tests.
- k. Generate and format reports.
- 1. Request help with the system operation.
 - 1) Include in main menus.
 - 2) Provide unique, descriptive, context-sensitive help for selections and functions with the press of one function key.
 - 3) Provide navigation to specific topic from within the first help window.
 - 4) Help shall be accessible outside the applications program.
- m. Entry-Control Commands:
 - 1) Lock (secure) or unlock (open) each controlled entry and exit up to four times a day through time-zone programming.
 - 2) Arm or disarm each monitored input up to four times a day through time-zone programming.
 - 3) Enable or disable readers or keypads up to twice a day through time-zone programming.
 - 4) Enable or disable cards or codes up to four times per day per entry point through access-level programming.
- 4. Command Input Errors: Show operator input assistance when a command cannot be executed because of operator input errors. Assistance screen shall use plain-language words and phrases to explain why the command cannot be executed. Error responses that require an operator to look up a code in a manual or other document are not acceptable. Conditions causing operator assistance messages include the following:
 - a. Command entered is incorrect or incomplete.
 - b. Operator is restricted from using that command.
 - c. Command addresses a point that is disabled or out of service.
 - d. Command addresses a point that does not exist.

e. Command is outside the system's capacity.

M. Alarms:

1. System Setup:

- a. Assign manual and automatic responses to incoming point status change or alarms.
- b. Automatically respond to input with a link to other inputs, outputs, operator-response plans, unique sound with use of WAV files, and maps or images that graphically represent the point location.
- c. 60-character message field for each alarm.
- d. Operator-response-action messages shall allow message length of at least 65,000 characters, with database storage capacity of up to 32,000 messages. Setup shall assign messages to [access point] [zone] [sensor] <other alarm originating device>.
- e. Secondary messages shall be assignable by the operator for printing to provide further information and shall be editable by the operator.
- f. Allow 25 secondary messages with a field of 4 lines of 60 characters each.
- g. Store the most recent 1000 alarms for recall by the operator using the report generator.

2. Software Tamper:

- a. Annunciate a tamper alarm when unauthorized changes to system database files are attempted. Three consecutive unsuccessful attempts to log onto system shall generate a software tamper alarm.
- b. Annunciate a software tamper alarm when an operator or other individual makes three consecutive unsuccessful attempts to invoke functions beyond their authorization level.
- c. Maintain a transcript file of the last 5000 commands entered at the each Central Station to serve as an audit trail. System shall not allow write access to system transcript files by any person, regardless of their authorization level.
- $\ensuremath{\text{d.}}$ Allow only acknowledgment of software tamper alarms.
- Read access to system transcript files shall be reserved for operators with the highest password authorization level available in system.

- 4. Animated Response Graphics: Highlight alarms with flashing icons on graphic maps; display and constantly update the current status of alarm inputs and outputs in real time through animated icons.
- 5. Multimedia Alarm Annunciation: WAV files to be associated with alarm events for audio annunciation or instructions.
- 6. Alarm Handling: Each input may be configured so that an alarm cannot be cleared unless it has returned to normal, with options of requiring the operator to enter a comment about disposition of alarm. Allow operator to silence alarm sound when alarm is acknowledged.
- 7. Alarm Automation Interface: High-level interface to Central Station alarm automation software systems. Allows input alarms to be passed to and handled by automation systems in same manner as burglar alarms, using an RS-232 ASCII interface.
- 8. CCTV Alarm Interface: Allow commands to be sent to CCTV systems during alarms (or input change of state) through serial ports.
- 9. Camera Control: Provides operator ability to select and control cameras from graphic maps.
- N. Alarm Monitoring: Monitor sensors, Controllers, and DTS circuits and notify operators of an alarm condition. Display higher-priority alarms first and, within alarm priorities, display the oldest unacknowledged alarm first. Operator acknowledgment of one alarm shall not be considered acknowledgment of other alarms nor shall it inhibit reporting of subsequent alarms.
 - 1. Displayed alarm data shall include type of alarm, location of alarm, and secondary alarm messages.
 - Printed alarm data shall include type of alarm, location of alarm, date and time (to nearest second) of occurrence, and operator responses.
 - 3. Maps shall automatically display the alarm condition for each input assigned to that map, if that option is selected for that input location
 - 4. Alarms initiate a status of "pending" and require the following two handling steps by operators:
 - a. First Operator Step: "Acknowledged." This action shall silence sounds associated with the alarm. The alarm remains in the system "Acknowledged" but "Un-Resolved."

- b. Second Operator Step: Operators enter the resolution or operator comment, giving the disposition of the alarm event. The alarm shall then clear.
- 5. Each workstation shall display the total pending alarms and total unresolved alarms.
- 6. Each alarm point shall be programmable to disallow the resolution of alarms until the alarm point has returned to its normal state.
- 7. Alarms shall transmit to Central Station in real time, except for allowing connection time for dial-up locations.
- 8. Alarms shall be displayed and managed from a minimum of four different windows.
 - a. Input Status Window: Overlay status icon with a large red blinking icon. Selecting the icon will acknowledge the alarm.
 - b. History Log Transaction Window: Display name, time, and date in red text. Selecting red text will acknowledge the alarm.
 - c. Alarm Log Transaction Window: Display name, time, and date in red. Selecting red text will acknowledge the alarm.
 - d. Graphic Map Display: Display a steady colored icon representing each alarm input location. Change icon to flashing red when the alarm occurs. Change icon from flashing red to steady red when the alarm is acknowledged.
- 9. Once an alarm is acknowledged, the operator shall be prompted to enter comments about the nature of the alarm and actions taken.

 Operator's comments may be manually entered or selected from a programmed predefined list, or a combination of both.
- 10. For locations where there are regular alarm occurrences, provide programmed comments. Selecting that comment shall clear the alarm.
- 11. The time and name of the operator who acknowledged and resolved the alarm shall be recorded in the database.
- 12. Identical alarms from same alarm point shall be acknowledged at same time the operator acknowledges the first alarm. Identical alarms shall be resolved when the first alarm is resolved.
- 13. Alarm functions shall have priority over downloading, retrieving, and updating database from workstations and Controllers.
- 14. When a reader-controlled output (relay) is opened, the corresponding alarm point shall be automatically bypassed.
- O. Monitor Display: Display text and graphic maps that include zone status integrated into the display. Colors are used for the various

components and current data. Colors shall be uniform throughout the system.

1. Color Code:

- a. FLASHING RED: Alerts operator that a zone has gone into an alarm or that primary power has failed.
- b. STEADY RED: Alerts operator that a zone is in alarm and alarm has been acknowledged.
- c. YELLOW: Advises operator that a zone is in access.
- d. GREEN: Indicates that a zone is secure and that power is on.

2. Graphics:

- a. Support 32,000 graphic display maps and allow import of maps from a minimum of 16 standard formats from another drawing or graphics program.
- b. Allow ${\rm I/O}$ to be placed on graphic maps by the drag-and-drop method.
- c. Operators shall be able to view the inputs, outputs, and the point's name by moving the mouse cursor over the point on graphic map.
- d. Inputs or outputs may be placed on multiple graphic maps. The operator shall be able to toggle to view graphic map associated with inputs or outputs.
- e. Each graphic map shall have a display-order sequence number associated with it to provide a predetermined order when toggled to different views.
- f. Camera icons shall have the ability to be placed on graphic maps that, when selected by an operator, will open a video window, display the camera associated with that icon, and provide pantilt-zoom control.
- g. Input, output, or camera placed on a map shall allow the ability to arm or bypass an input, open or secure an output, or control the pan-tilt-zoom function of the selected camera.
- P. System test software enables operators to initiate a test of the entire system or of a particular portion of the system.
 - 1. Test Report: The results of each test shall be stored for future display or printout. The report shall document the operational status of system components.
- Q. Report Generator Software: Include commands to generate reports for displaying, printing, and storing on disk and tape. Reports shall be

stored by type, date, and time. Report printing shall be the lowest priority activity. Report generation mode shall be operator selectable but set up initially as periodic, automatic, or on request. Include time and date printed and the name of operator generating the report. Report formats may be configured by operators.

- Automatic Printing: Setup shall specify, modify, or inhibit the report to be generated; the time the initial report is to be generated; the time interval between reports; the end of period; and the default printer.
- 2. Printing on Requests: An operator may request a printout of any report.
- 3. Alarm Reports: Reporting shall be automatic as initially set up.

 Include alarms recorded by system over the selected time and
 information about the type of alarm [(such as door alarm, intrusion
 alarm, tamper alarm, etc.)] <Insert alarm types>, the type of
 sensor, the location, the time, and the action taken.
- 4. Access and Secure Reports: Document zones placed in access, the time placed in access, and the time placed in secure mode.
- 5. Custom Reports: Reports tailored to exact requirements of who, what, when, and where. As an option, custom report formats may be stored for future printing.
- 6. Automatic History Reports: Named, saved, and scheduled for automatic generation.
- 7. Cardholder Reports: Include data, or selected parts of the data, as well as the ability to be sorted by name, card number, imprinted number, or by any of the user-defined fields.
- 8. Cardholder by Reader Reports: Based on who has access to a specific reader or group of readers by selecting the readers from a list.
- 9. Cardholder by Access-Level Reports: Display everyone that has been assigned to the specified access level.
- 10. Who Is In (Muster) Report:
 - a. Emergency Muster Report: One click operation on toolbar launches report.
 - b. Cardholder Report. Contain a count of persons that are "In" at a selected Location and a count with detailed listing of name, date, and time of last use, sorted by the last reader used or by the group assignment.

- 11. Panel Labels Reports: Printout of control-panel field documentation including the actual location of equipment, programming parameters, and wiring identification. Maintain system installation data within system database so that they are available on-site at all times.
- 12. Activity and Alarm On-Line Printing: Activity printers for use at workstations; prints all events or alarms only.
- 13. History Reports: Custom reports that allows the operator to select any date, time, event type, device, output, input, operator, Location, name, or cardholder to be included or excluded from the report.
 - a. Initially store history on the hard disk of the host PC.
 - b. Permit viewing of the history on workstations or print history to any system printer.
 - c. The report shall be definable by a range of dates and times with the ability to have a daily start and stop time over a given date range.
 - d. Each report shall depict the date, time, event type, event description, device, or I/O name, cardholder group assignment, and cardholder name or code number.
 - e. Each line of a printed report shall be numbered to ensure that the integrity of the report has not been compromised.
 - f. Total number of lines of the report shall be given at the end of the report. If the report is run for a single event such as "Alarms," the total shall reflect how many alarms occurred during that period.
- 14. Reports shall have the following four options:
 - a. View on screen.
 - b. Print to system printer. Include automatic print spooling and "Print To" options if more than one printer is connected to system.
 - c. "Save to File" with full path statement.
 - d. System shall have the ability to produce a report indicating status of system inputs and outputs or of inputs and outputs that are abnormal, out of time zone, manually overridden, not reporting, or in alarm.
- 15. Custom Code List Subroutine: Allow the access codes of system to be sorted and printed according to the following criteria:
 - a. Active, inactive, or future activate or deactivate.

September 2017

- b. Code number, name, or imprinted card number.
- c. Group, Location, access levels.
- d. Start and stop code range.
- e. Codes that have not been used since a selectable number of days.
- f. In, out, or either status.
- g. Codes with trace designation.
- 16. The reports of system database shall allow options so that every data field may be printed.
- 17. The reports of system database shall be constructed so that the actual position of the printed data shall closely match the position of the data on the data-entry windows.

R. Anti-Passback:

- System shall have global and local anti-passback features, selectable by Location. System shall support hard and soft antipassback.
- 2. Hard Anti-Passback: Once a credential holder is granted access through a reader with one type of designation (IN or OUT), the credential holder may not pass through that type of reader designation until the credential holder passes though a reader of opposite designation.
- 3. Soft Anti-Passback: Should a violation of the proper IN or OUT sequence occur, access shall be granted, but a unique alarm shall be transmitted to the control station, reporting the credential holder and the door involved in the violation. A separate report may be run on this event.
- 4. Timed Anti-Passback: A Controller capability that prevents an access code from being used twice at the same device (door) within a user-defined amount of time.
- 5. Provide four separate zones per Location that can operate without requiring interaction with the host PC (done at Controller). Each reader shall be assignable to one or all four anti-passback zones. In addition, each anti-passback reader can be further designated as "Hard," "Soft," or "Timed" in each of the four anti-passback zones. The four anti-passback zones shall operate independently.
- 6. The anti-passback schemes shall be definable for each individual door.
- 7. The Master Access Level shall override anti-passback.

8. System shall have the ability to forgive (or reset) an individual credential holder or the entire credential holder population antipassback status to a neutral status.

S. Visitor Assignment:

- Provide for and allow an operator to be restricted to only working with visitors. The visitor badging subsystem shall assign credentials and enroll visitors. Allow only access levels that have been designated as approved for visitors.
- Provide an automated log of visitor name, time and doors accessed, and whom visitor contacted.
- 3. Allow a visitor designation to be assigned to a credential holder.
- 4. PACS shall be able to restrict the access levels that may be assigned to credentials that are issued to visitors.
- 5. Allow operator to recall visitors' credential holder file, once a visitor is enrolled in the system.
- 6. The operator may designate any reader as one that deactivates the credential after use at that reader. The history log shall show the return of the credential.
- 7. System shall have the ability to use the visitor designation in searches and reports. Reports shall be able to print all or any visitor activity.

T. Time and Attendance:

- 1. Time and attendance reporting shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length of the report.
- 2. Shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length of the report.
- 3. System software setup shall allow designation of selected accesscontrol readers as time and attendance hardware to gather the clockin and clock-out times of the users at these readers.
 - a. Reports shall show in and out times for each day, total in time for each day, and a total in time for period specified by the user.
 - b. Allow the operator to view and print the reports, or save the report to a file.

- c. Alphabetically sort reports on the person's last name, by Location or location group. Include all credential holders or optionally select individual credential holders for the report.
- U. Training Software: Enables operators to practice system operation including alarm acknowledgment, alarm assessment, response force deployment, and response force communications. System shall continue normal operation during training exercises and shall terminate exercises when an alarm signal is received at the console.
- V. Entry-Control Enrollment Software: Database management functions that allow operators to add, delete, and modify access data as needed.
 - 1. The enrollment station shall not have alarm response or acknowledgment functions.
 - 2. Provide multiple, password-protected access levels. Database management and modification functions shall require a higher operator access level than personnel enrollment functions.
 - 3. The program shall provide means to disable the enrollment station when it is unattended to prevent unauthorized use.
 - 4. The program shall provide a method to enter personnel identifying information into the entry-control database files through enrollment stations. In the case of personnel identity verification subsystems, this shall include biometric data. Allow entry of personnel identifying information into the system database using menu selections and data fields. The data field names shall be customized during setup to suit user and site needs. Personnel identity verification subsystems selected for use with the system shall fully support the enrollment function and shall be compatible with the entry-control database files.
 - 5. Cardholder Data: Provide 99 user-defined fields. System shall have the ability to run searches and reports using any combination of these fields. Each user-defined field shall be configurable, using any combination of the following features:
 - a. MASK: Determines a specific format that data must comply with.
 - b. REQUIRED: Operator is required to enter data into field before saving.
 - c. UNIQUE: Data entered must be unique.
 - d. DEACTIVATE DATE: Data entered will be evaluated as an additional deactivate date for all cards assigned to this cardholder.

- e. NAME ID: Data entered will be considered a unique ID for the cardholder.
- 6. Personnel Search Engine: A report generator with capabilities such as search by last name, first name, group, or any predetermined user-defined data field; by codes not used in definable number of days; by skills; or by seven other methods.
- 7. Multiple Deactivate Dates for Cards: User-defined fields to be configured as additional stop dates to deactivate any cards assigned to the cardholder.
- 8. Batch card printing.
- 9. Default card data can be programmed to speed data entry for sites where most card data are similar.
- 10. Enhanced ACSII File Import Utility: Allows the importing of cardholder data and images.
- 11. Card Expire Function: Allows readers to be configured to deactivate cards when a card is used at selected devices.
- W. System Redundancy & High Availability: The system shall provide multiple levels of communications redundancy and failover for all PACS hosted controllers, digital video recorders, and client workstations. The PACS shall be capable of automatically re-routing communications to alternate computers across the system without operator intervention.
 - 1. PACS system configuration with a single application/ database server shall provide at a minimum the following redundancy and failover capability:
 - a. The PACS shall provide communications redundancy and failover for network-attached devices. Each network attached device shall have one or more alternative communication sever(s) that can provide hosting in case of primary communications server failure.
 - b. In case of primary communications server failure, the system shall automatically re-route network-attached devices to their designated backup communications servers to allow continuous system operations without loss of alarm and event transaction processing during failover.
 - c. Network-attached devices which transition to backup communications servers, shall be able to be redirected back to their default primary servers, once the primary communications servers have been restored.

- 2. PACS system configuration with multiple regional application/ database servers shall provide at a minimum the following redundancy and failover capability:
 - a) The PACS shall support the same level of communications redundancy and failover for network-attached devices per regional application/database server, allowable to span across regional application/database servers in the event of a regional application/database server failure.
 - b) In case of a regional application/database server failure, client workstations shall be able to failover to their designated backup regional application/database server to allow continuous system operations.
 - c) In case of a regional application/database server failure, upon server restoration, the ISMS shall automatically update and synchronize the regional application/database server.
 - d) Client workstations which transition to a backup regional application/database server, shall be able to be redirected back to their default regional application/database server, once the regional application/database server functions have been restored.

2.4 SURGE AND TAMPER PROTECTION

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor-entry connection to components.
 - Minimum Protection for Power Connections 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits."
 - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Connections: Comply with requirements in Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits" as recommended by manufacturer for type of line being protected.
- B. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially

disassembled. Control-station control-unit alarm display shall identify tamper alarms and indicate locations.

2.5 PACS Server Hardware

- A. SMS Server Computer: Standard unmodified PC of modular design. The CPU word size shall be [64] <Insert number> bytes or larger; the CPU operating speed shall be at least [3.4] <Insert number> [GHz].
 - 1. Processor family: [Intel® Xeon® E5640 (4 core, 2.66 GHz, 12MB L3, 80W)] <Insert text>.
 - 2. Number of processors: 2
 - 3. Memory: [12] <Insert number> GB RAM, expandable to a minimum of [192] <Insert number> GB without additional chassis or power supplies. Memory protection [Mirrored Memory, Online Spare, Advanced ECC, Memory Lock Step Mode] <Insert text>.
 - 4. Input/Output: 2 expansions slots, Network Controller (2) 1GbE NC382i Multifunction 4 Ports.
 - 5. Power Supply: Dual minimum capacity of [460] <Insert number> W hot plug.
 - 6. Real-Time Clock:
 - a. Accuracy: Plus or minus 1 minute per month.
 - b. Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
 - c. Clock shall function for 1 year without power.
 - d. Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
 - 7. Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
 - 8. Parallel Port: An enhanced parallel port.
 - 9. The server shall have a 1 GB NIC or greater network card, rated at $100/1000 \ \mathrm{MB/sec}$.
 - 10. The server shall have dual [100] GB hard disk drives at [7200] RPM, minimum
 - 11. The server shall have a CD / DVD combo drive.
 - 12. The server operating system shall be either:
 - a. Windows 2003 Server, 32 bit native mode, with Service Pack 2 or later with default services enabled.

Construction Documents

- b. Windows XP Professional Service Pack 2 or later and default services enabled.
- c. Windows 2008.
- d. System as specified by the VA
- 13. The Web Server shall be [IIS 7.0] or better.
- 14. The Database shall be [SQL Server 2005 (Express, Standard, Data Center, or Enterprise).
- 15. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.
- 16. Color Monitor: [17"] or larger SVGA (1024 x 768) monitor with true color support. The server shall have a dedicated 256 MB SVGA accelerated video card with at least 64 MB onboard RAM.
- 17. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
- 18. Mouse: Standard, compatible with the installed software.
- 19. Special function keyboard attachments or special function keys to facilitate data input of the following operator tasks:
 - a. Help.
 - b. Alarm Acknowledge.
 - c. Place Zone in Access.
 - d. Place Zone in Secure.
 - e. System Test.
 - f. Print Reports.
 - g. Change Operator.
- 20. CD-ROM Drive:
 - a. Nominal storage capacity of [650] MB, minimum.
 - b. Data Transfer Rate: [1.2] Mbps, minimum.
 - c. Average Access Time: [150] ms, minimum.
 - d. Cache Memory: [256] KB, minimum.
 - e. Data Throughput: [1] MB/second, minimum.
- 21. Report Printer:
 - a. Connected to the Central Station and designated workstations.
 - b. Laser printer with minimum resolution of [1200] dpi, minimum.
 - c. RAM: [2] MB, minimum.
 - d. Printing Speed: Minimum [12] pages per minute, minimum.
 - e. Interface: Bidirectional parallel and universal serial bus.
- B. Redundant Central Computer: One identical redundant central computer, connected in a hot standby, peer configuration. This computer shall

automatically maintain its own copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant computer in near real-time. If central computer fails, redundant computer shall assume control immediately and automatically.

- C. PACS controllers clustering shall support the following features:
 - 1. Assignment of Master and alternate master controllers for cluster communication to the SMS server
 - 2. Primary and backup communication paths to the SMS server
 - 3. Encrypted communications
 - 4. Up to [16] controllers per cluster
 - 5. Logical event linking between controllers in a cluster independent of SMS server communication
 - 6. Asynchronous communication via TCP/IP (Polled devices shall not be acceptable)
- D. UPS: Self-contained; complying with requirements in Division 26 Section "Static Uninterruptible Power Supply."
 - 1. Size: Provide a minimum of [15] hours of operation of the central-station equipment, including 2 hours of alarm printer operation.
 - 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.
 - k. Remote battery monitoring.

2.6 STANDARD WORKSTATION HARDWARE

- A. Workstation shall consist of a standard unmodified PC, with accessories and peripherals that configure the workstation for a specific duty.
- B. Workstation Computer: Standard unmodified PC of modular design. The CPU word size shall be [32] <Insert number> bytes or larger; the CPU operating speed shall be at least [66] <Insert number> [MHz] [GHz].

- 1. Memory: [256] <Insert number> MB of usable installed memory, expandable to a minimum of [1024] <Insert number> MB without additional chassis or power supplies.
- 2. Power Supply: Minimum capacity of [250] < Insert number > W.
- 3. Real-Time Clock:
 - a. Accuracy: Plus or minus 1 minute per month.
 - b. Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
 - c. Provide automatic time correction once every [24 hours] <Insert number of hours or minutes> by synchronizing clock with the Central Station.
- 4. Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- 5. Parallel Port: An enhanced parallel port.
- 6. LAN Adapter Card: [10/100] < Insert number > Mbps PCI bus, internal network interface card.
- 7. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.
- 8. Color Monitor: Not less than [17 inches (430 mm)] <Insert inches (mm)>, with a minimum resolution of [1280 by 1024] <Insert numbers> pixels, noninterlaced, and a maximum dot pitch of [0.28] <Insert number> mm. The video card shall support at least [256] <Insert number> colors at a resolution of [1280 by 1024] <Insert numbers> at a minimum refresh rate of [70] <Insert number> Hz.
- 9. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
- 10. Mouse: Standard, compatible with the installed software.
- 11. Disk storage shall include the following, each with appropriate controller:
 - a. Minimum [10] <Insert number> GB hard disk, maximum average access time of [10] <Insert number> ms.
 - b. Floppy Disk Drive: High density, 3-1/2-inch (90-mm) size.
 - c. <Insert disk drives.>
- 12. CD-ROM Drive:
 - a. Nominal storage capacity of [650] < Insert number > MB.
 - b. Data Transfer Rate: [1.2] <Insert number> Mbps.
 - c. Average Access Time: [150] < Insert number > ms.

Construction Documents

- d. Cache Memory: [256] <Insert number> KB.
- e. Data Throughput: [1] <Insert number> MB/second, minimum.

13. Printer:

- a. Connected to the Central Station and designated workstations.
- b. Laser printer with minimum resolution of [600] <Insert number> dpi.
- c. RAM: [2] <Insert number> MB, minimum.
- d. Printing Speed: Minimum [12] <Insert number> pages per minute.
- e. Paper Handling: Automatic sheet feeder with [250] <Insert number>-sheet paper cassette and with automatic feed.
- 14. Interface: Bidirectional parallel, and universal serial bus.
- 15. LAN Adapter Card: [10/100] < Insert number > Mbps internal network interface card.
- C. Redundant Workstation: One identical redundant workstation, connected in a hot standby, peer configuration. This workstation shall automatically maintain its own copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant workstation in near real time. If its associated workstation fails, redundant workstation shall assume control immediately and automatically.
- D. UPS: Self-contained, complying with requirements in Division 26 Section "Static Uninterruptible Power Supply."
 - 1. Size: Provide a minimum of [6] <Insert number> hours of operation of the central-station equipment, including 2 hours of alarm printer operation.
 - 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.

September 2017

k. Remote battery monitoring.

2.7 COMMUNICATIONS WORKSTATION

- A. Standard workstation, modified as follows:
 - 1. Additional RS-232-F serial ports, as specified by the VA. The CPU word size shall be [32] bytes or larger; the CPU operating speed shall be at least [66] MHz, or as specified by the VA. Multiplexed serial ports shall be expandable with [8] character transmit and receive buffers for each port. Total buffer size shall be a minimum of [1] MB, or as specified by the VA.
 - 2. Redundant workstation is [not] required.

2.8 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the Central Station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - 1. The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network [with dc line supervision on each of its alarm inputs].
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - 1) Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal, and for conditions as described in UL 1076 for line security equipment] [by monitoring for abnormal open, grounded, or shorted conditions] using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of [5] [10] percent or more for longer than 500 ms.
 - 2) Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.

- c. Outputs: Managed by Central Station software.
- 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.

E. Entry-Control Controller:

- Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - 2) Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.

2. Inputs:

- a. Data from entry-control devices; use this input to change modes between access and secure.
- b. Database downloads and updates from the Central Station that include enrollment and privilege information.

3. Outputs

- a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
- b. Grant or deny entry by sending control signals to portal-control devices [and mask intrusion alarm annunciation from sensors stimulated by authorized entries].

c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.

- d. Door Prop Alarm: If a portal is held open for longer than [20 seconds] [time listed in a schedule], alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.
 - a. Store up to [1000] <Insert number> transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Premium, valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full 1-year warranty and a pro rata 19-year warranty. With single-stage, constant-voltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltagecurrent, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - c. Backup Power Supply Capacity: [5] [90] minutes of battery supply. Submit battery and charger calculations.
 - d. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal

September 2017

power on and battery charger on trickle charge. Indicate and report the following:

- 1) Trouble Alarm: Normal power off load assumed by battery.
- 2) Trouble Alarm: Low battery.
- 3) Alarm: Power off.

2.9 PIV MIDDLEWARE

- A. PIV Middleware shall provide three-factor authentication, including biometric matching using a fingerprint capture device capable of single fingerprint capture. Unit shall enable digital certificates can to be verified by security personnel using the issuer's certificate authority, SCVP, OCSP responder/repeater, or the TSA hot list for TWIC cardholders. All cards shall be validated using FIPS-201 challenge-response protocol in order to identify forged or cloned cards. PIV Middleware solution shall validate all PIV, TWIC, NG CAC, and FRAC cards. TWIC card FASC-Ns shall also be verified against a live or cached TSA hot list.
- B. PIV Middleware shall have ability to:
 - 1. Verify cardholder identity and validates FIPS 201-compliant PIV-II, next-generation (NG) CAC, TWIC, or FRAC credentials in real-time
 - Perform three-factor authentication of cardholder using PIN, biometrics, and certificate (or serial numbers) detecting forged or cloned cards
 - 3. Enroll FASC-N, photo, and pertinent cardholder information into PACS software
 - 4. Automatically suspend a cardholder's badge if his or her PIV, TWIC, or CAC card certificate serial number is on the Certificate Revocation List (CRL)
 - 5. Upload a cardholder transaction audit trail to central database or exports it to a .csv file for centralized transaction management
 - 6. Be compatible with biometric mobile terminal for off-site verification and enrollment
 - 7. Re-validate imported cardholder certificates on a periodic basis via the Internet
 - 8. Operate with commercial, off-the-shelf (COTS) FIPS 201 PIV-II and ANSI INCITS 378-compliant fingerprint capture devices
 - 9. Revalidate imported cardholder certificates at regular intervals, ensuring that the credentials used in PACS system are backed by a valid set of digital certificates. Digital certificates are verified

- against local OCSP repeater/validation authority using the issuer's validation authority, or Microsoft Crypto Application Programming Interface (API) on Windows XP SP3 or Vista.
- 10. Certificate Manager shall fully support SCVP and OCSP for fast, online validation.
- 11. Provide verification of TWIC credentials against a live TSA hot
- 12. Support uploading local transactions to a central database for consolidated activity reporting. This application shall support a variety of ODBC- or ADO-compliant databases, including Oracle, SQL Server 2005, Informix, DB2, and Firebird.
- 13. Provide user with ability to produce canned transaction log queries as well as creating queries directly from the SQL database.
- C. PIV Middleware PC requirements:
 - PIV Middleware software shall operate on Intel-based PC with minimum 1.8 GHz CPU, 1 GB RAM, 40 GB hard disk, and Microsoft Windows XP SP2 with Microsoft .NET Framework 2.0
 - 2. Unit shall fingerprint capture devices and smart card reader.
- D. PIV Middleware shall be FIPS 201 approved product.

2.10 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be [800] ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting.
 Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
 - 3. Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- D. Display: LED or other type of visual indicator display shall provide visual [and audible] status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.

- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, card and/or PIN, card and/or biometrics, card and/or pin and/or biometrics, supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.
- J. Shall be housed in an aluminum bezel with a wide lead-in for easy card entry.
- K. Shall contain read head electronics, and a sender to encode digital door control signals.
- L. LED's shall be utilized to indicate card reader status and access status.
- M. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- N. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied.

 All keypad buttons shall provide tactile audible feedback.
- O. Shall have a minimum of two programmable inputs and two programmable outputs.
- P. All card readers that utilize keypad controls along with a reader and shall meet the following specifications:
 - 1. Entry control keypads shall use a unique combination of alphanumeric and other symbols as an identifier. Keypads shall contain an

integral alphanumeric/special symbols keyboard with symbols arranged in ascending ASCII code ordinal sequence. Communications protocol shall be compatible with the local processor.

- Q. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected. The design of the keypad display or keypad enclosure shall limit the maximum horizontal and vertical viewing angles of the keypad. The maximum horizontal viewing angle shall be plus and minus five (5) degrees or less off a vertical plane perpendicular to the plane of the face of the keypad display. The maximum vertical viewing angle shall be plus and minus 15 degrees or less off a horizontal plane perpendicular to the plane of the face of the keypad display.
 - Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
 - 2. Shall be powered from the source as designed and shall not dissipate more than 150 Watts.
 - 3. Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
 - 4. Shall provide a means for users to indicate a duress situation by entering a special code.

R. PIV Contact Card Reader

- Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
- 2. Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.
- 3. Programming Voltage: PIV Readers shall not generate a Programming Voltage.

- 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
- 5. Retrieval Time: Retrieval time for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
- 6. Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.
- 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read character TA1 of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.

S. Contactless Smart Cards and Readers

- Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
- 2. The readers shall have "flash" download capability to accommodate card format changes.
- 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
- 4. The card reader shall be contactless and meet or exceed the following technical characteristics:
 - a. Data Output Formats: FIPS 201 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 200 bits. FIPS 201 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 232 bits. All Wiegand formats or the upgradeability from Low to Medium Levels can be field configured with the use of a command card.
 - b. FIPS 201 readers shall be able to read, but not be limited to, DESfire and iCLASS cards.
 - c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1" to 2" (2.5 5 cm).
 - d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command

Construction Documents September 2017

Interface of SP 800-73-1, Interfaces for Personal Identity Verification.

- e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
- f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.
- g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B communication signal interfaces as defined in ISO/IEC 14443-2:2001.
- h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
- i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.
- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.
- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (\sim 106 kbits/s), fc/64(\sim 212 kbits/s), and configurable to allow activation/deactivation.
- l. Readibility Range: The reader shall not be able to read PIV card more than $10\,\mathrm{cm}$ (4inch) from the reader

2.10 KEYPADS

- A. Designed for use with unique combinations of alphanumeric and other symbols as an Identifier. Keys of keypads shall contain an integral alphanumeric/special symbol keyboard with symbols arranged in [ascending ASCII-code ordinal sequence] [random scrambled order]. Communications protocol shall be compatible with Controller.
 - 1. Keypad display or enclosure shall limit viewing angles of the keypad as follows:
 - a. Maximum Horizontal Viewing Angle: 5 degrees or less off in either direction of a vertical plane perpendicular to the plane of the face of the keypad display.

- b. Maximum Vertical Viewing Angle: 15 degrees or less off in either direction of a horizontal plane perpendicular to the plane of the face of the keypad display.
- 2. Duress Codes: Provide duress situation indication by entering a special code.

2.11 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201.
- B. Visual Card Topography shall be compliant with NIST 800-104.
- C. PIV logical credentials shall contain multiple data elements for the purpose of verifying the cardholder's identity at graduated assurance levels. These mandatory data elements shall collectively comprise the data model for PIV logical credentials, and include the following:
 - 1. CHUID
 - 2. PIN
 - 3. PIV authentication data (one asymmetric key pair and corresponding certificate)
- D. The credential card (PIV) shall be an ISO 14443 type smart card with contactless interface that operates at 13.56 MHZ.
- E. The credential card (PIV) shall be an ISO 7816 type smart card.

2.12 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - 1. Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (± 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The

motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D $(1.5 \times 6.25 \times 1.5 \text{ in})$. The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

C. Guard tour stations:

 The guard tour station shall be single gang brushed steel plate flush mounted in a single gang box. The switch shall be a normally open momentary keyed switch.

D. Delayed Egress (DE)

1. General:

- a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.
- 2. The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode
 - 1) The delayed egress device shall be a SDC 101V Series Exit
 Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle

the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

- 2) Delayed egress doors will have bond sensors.
- 3) Delayed egress activation shall also trigger CCTV call -up.

b. Fire Alarm Mode

1) Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.

c. Reset Mode

- 1) The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
- 2) The delay egress device shall automatically reset upon fire alarm system reset.
- 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.
- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.

- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs
 - 1) The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read:

EMERGENCY EXIT.

PUSH UNTIL

ALARM SOUNDS

DOOR CAN BE OPENED,

IN 30 SECONDS.

- 2) Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- 4) In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control interface shall support extended periods of automated and/or manual lock and unlock cycles.

September 2017

E. Crash Bar:

- 1. Emergency Exit with Alarm (Panic):
 - a. Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one (1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
 - e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
 - f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.

g. Normal Exit:

- 1) Entry control portals shall include panic bar non-emergency exit hardware as designed.
- 2) Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
- 3) Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
- 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
- 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a

forced entry to the system in the event the door is left open or accessed without the identification credentials.

F. Key Bypass:

- 1. Shall be utilized for all doors that have a mortise or rim mounted door hardware
- 2. Each door shall be individually keyed with one master key per secured area.
- 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
- 4. All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
- 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.

G. Automatic Door Opener and Closer:

- 1. Shall be low energy operators.
- 2. Door closing force shall be adjustable to ensure adequate closing control.
- 3. Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
- 4. Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
- 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
- 6. Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards Al17.1.
- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.

- d. Have push button controls for setting door close and door open positions.
- e. Have open obstruction detection and close obstruction detection built into the unit.
- f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
- g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
- h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.

H. Door Status Indicators:

- 1. Shall monitor and report door status to the SMS.
- 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in place of a DPDT switch.
 - d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
 - e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.13 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:

- a. Minimum continuous current rating of [10] <Insert number> A at 120 V ac or [5] <Insert number> A at 240-V ac.
- b. Contacts that will make 720 VA at [60] <Insert number> A and that will break at 720 VA at [10] <Insert number> A.
- 2. Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
- 3. Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
 - b. Indoors, uncontrolled environment.
 - c. Outdoors.
- 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.14 PORTAL CONTROL DEVICES

- A. Shall be used to assist the PACS.
- B. Such devices shall:
 - 1. Provide a means of monitoring the doors status.
 - Allow for exiting a space via either a push button, request to exit, or panic/crash bar.
 - 3. Provide a means of override to the PACS via a keypad or key bypass.
 - 4. Assist door operations utilizing automatic openers and closures.
 - 5. Provide a secondary means of access to a space via a keypad.
- C. Shall be connected to and monitored by the main PACS panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall provide a secondary means of physical access control within a secure area.
- F. Push-Button Switches:
 - 1. Shall be momentary contact, back lighted push buttons, and stainless steel switch enclosures for each push button as shown. Buttons are to be utilized for secondary means of releasing a locking mechanism.
 - a. In an area where a push button is being utilized for remote access of the locking device then no more than two (2) buttons shall operate one door from within one secure space. Buttons will not be wired in series with one other.

- b. In an area where locally stationed guards control entry to multiple secure points via remote switches. An interface board shall be designed and constructed for only the amount of buttons it shall house. These buttons shall be flush mounted and clearly labeled for ease of use. All buttons shall be connected to the PACS and SMS system for monitoring purposes.
- c. Shall have double-break silver contacts that will make 720 VA at 60 amperes and break 720 VA at 10 amperes.

G. Entry Control Devices:

- 1. Shall be hardwired to the PACS main control panel and operated by either a card reader or a biometric device via a relay on the main control panel.
- 2. Shall be fail-safe in the event of power failure to the PACS system.
- 3. Shall operate at 24 VCD, with the exception of turnstiles and be powered by a separate power supply dedicated to the door control system. Each power supply shall be rated to operate a minimum of two doors simultaneously without error to the system or overload the power supply unit.
- 4. Shall have a diode or metal-oxide veristor (MOV) to protect the controller and power supply from reverse current surges or backcheck.
- 5. Electric Strikes/Bolts: Shall be:
 - a. Made of heavy-duty construction and tamper resistant design.
 - b. Tested to over one million cycles.
 - c. Rated for a minimum of 1000 lbs. holding strength.
 - d. Utilize an actuating solenoid for the strike/bolt. The solenoid shall move from fully open to fully closed position and back in not more than 500 milliseconds and be rated for continuous duty.
 - e. Utilize a signal switch that will indicate to the system if the strike/bolt is not engaged or is unlocked when it should be secured.
 - f. Flush mounted within the door frame.
- 6. Electric Mortise Locks: Shall be installed within the door and an electric transfer hinge shall be utilized to allow the wires to be transferred from the door frame to the lock. If utilized with a double door then the lock shall be installed inside the active leaf. Electric Mortise Locks shall:

- a. These locks shall be provided and installed by the Division 8 "DOOR HARDWARE" Contractor.
- b. Provide integration of the Electric Mortise Locks with the PACS for:
 - 1) Lock Power
 - 2) Request to Exit switch.

7. Electromagnetic Locks:

- a. These locks shall be without mechanical linkage utilizing no moving parts, and securing the door to its frame solely on electromagnetic force.
- b. Shall be comprised of two pieces, the mag-lock and the door plate. The electromagnetic locks shall be surface mounted to the door frame and the door plate shall be surface mounted to the door.
- c. Ensure a diode is installed in line with the DC voltage supplying power to the unit in order to prevent back-check on the system when the electromagnetic lock is powered.
- d. Shall utilize a magnetic bonding sensor (MBS) to monitor the door status and report that status to the SMS.
- e. Electromagnetic locks shall meet the following minimum technical characteristics:

Operating Voltage		24 VDC
Current Draw		.5A
Holding Force	Swing Doors	675 kg (1500 lbs)
	Sliding Doors	225 kg (500 lbs)

8. Turnstiles:

- a. Shall operate at 110 VAC, 60 Hz or 220 VAC, 50 Hz supplied from a dedicated circuit breaker on a security power panel. This device does not require a back-up power source.
- b. Shall be utilized as a means of monitoring and controlling access in a lobby.
- c. Shall meet the following minimum requirements:
 - 1) Be UFAS compliant.
 - 2) Provide either an audible or visual confirmation that access has been granted to a cleared individual.
 - 3) Provide an audible alarm in the event a non-cleared individual is attempting to gain access.

- 4) Interface with the SMS and utilize a card reader for accessing and exiting a facility, and provide a recorded event of personnel accessing these points.
- 5) Have a built-in step-down transformer to provide power to a card reader unit.
- 6) Have built-in signal wiring chassis to allow for plug and play capabilities with the PACS.
- 7) Have the ability to detect tailgating within one quarter on an inch to prevent unauthorized access to a facility.
- 9. Vehicle Gate Operator: Interface electrical operation of gate with controls of this Section. Vehicle gate operators shall be connected, monitored, and controlled, by the security access Controllers. Vehicle gate and accessories are specified in Division 32 Section "Chain Link Fences and Gates."

2.15 SECONDARY ALARM ANNUNCIATOR

A. Secondary Alarm Annunciation Site: A workstation with limited I/O capacity, consisting of a secondary alarm annunciation workstation [to allow the operator to duplicate functions of the main operator interface, and to show system status changes] [to display alarms or system status changes only].

2.16 INTERFACES

- A. CCTV System Interface
 - 1. An RS232 [Ethernet] interface associated driver, and controller shall be provided for connection of the SMS Central Computer to the CCTV Alarm interface and switcher. The interface shall provide alarm data to the CCTV Alarm interface for automatic camera call-up. If required the Security Contractor shall be responsible for programming the command strings into the SMS Server.
- B. Intercom System Interface
 - The CCTV call-up from intercom stations shall be through the intercom unit via RS232 [Ethernet] communications interface to the SMS system, then through the matrix switcher.
 - a. Application Software
 - 1) Provides the interface between the Alarm Annunciation System and Operator; all sensors, local processors and data links, drive displays, report alarms, and report generation.
 - 2) Software is categorized as System Software and Application Software. System Software must consist of software to support

set-up, operation, hard drive back-ups and maintenance processor. Application Software must consist of software to provide the completion of Physical Access Control System.

C. Power Supplies:

- 1. Shall be UL rated and able to adequately power (enter number) entry control devices on a continuous base without failure.
- 2. Shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ (enter amperage)A	
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)	
	24 VDC Nominal (27.6 VDC)	
	Filtered and Regulated	
BATTERY	Dependant on Output Voltage shall provide up to <> Ah	
OUTPUT CURRENT	[10] amp max. [@ 13.8] VDC	
	[5] amp max. [@ 27.6] VDC	
PRIMARY FUSE SIZE	6.3 amp (non-removable)	
BATTERY FUSE SIZE	12 amp, 3AG	
CHARGING CIRCUIT	Built-in standard	

2.17 FLOOR SELECT ELEVATOR CONTROL

- A. Elevator access control shall be integral to security access.
 - 1. System shall be capable of providing full elevator security and control through dedicated Controllers without relying on the control-station host PC for elevator control decisions.
 - 2. Access-control system shall enable and disable car calls on each floor and floor select buttons in each elevator car, restricting passengers' access to the floors where they have been given access.
 - 3. System setup shall, through programming, automatically secure and unsecure each floor select button of a car individually by time and day. Each floor select button within a car shall be separately controlled so that some floors may be secure while others remain unsecure.
 - 4. When a floor select button is secure, it shall require the passenger to use his/her access code and have access to that floor before the floor select button will operate. The passenger's credential shall determine which car call and floor select buttons are to be enabled, restricting access to floors unless authorized by system's access

code database. Floor select button shall be enabled only in the car where the credential holder is the passenger.

- B. PACS shall record which call button is pressed, along with credential and time information.
 - 1. System Controller shall record elevator access data.
 - 2. The Controller shall reset all additional call buttons that may have been enabled by the user's credential.
 - 3. The floor select elevator control shall allow for manual override either individually by floor or by cab as a group from a workstation PC.

2.18 AFTER-HOURS HVAC CONTROL

- A. After-Hours HVAC Control: Provide for any credential read to activate or control individual HVAC zones based on access level. This control module shall control and record the after-hours use of the heating and cooling system in zones or tenant space.
 - This control shall give the administrator the ability to determine how much extra energy consumption each tenant is responsible for.
 This information can be used in billing tenants for the extra afterhour usage.
 - 2. At the specified time every day, the HVAC shall automatically go into its after-hours mode. It shall then revert into its normal business hours mode by a tenant using an access code or card at a designated keypad or reader.
 - 3. Once enabled, the tenant's HVAC zone shall be under thermostat control for a preset amount of time. When the preset amount of time elapses, the HVAC for that zone shall revert back to after-hours mode unless a tenant uses his/her code or card again. This shall continue until the unit automatically returns to its normal business hours operation.
- B. Control module activates the HVAC system after a valid access by any of three methods; however, the HVAC control shall always allow for manual override from the PC.
 - 1. By time expiration after access of an adjustable period from 1 second to 546 minutes (9.1 hours).
 - By use of the card or code again at the same or different reader or keypad.
 - 3. By system returning to its normal business hours operation.

C. After-hours HVAC control shall operate with all other features running simultaneously and use the central-station PC that controls access for the building but shall not rely on the host PC for any HVAC control decisions.

2.19 REAL TIME GUARD TOUR

- A. Guard tour module shall provide the ability to plan, track, and route tours. Module shall input an alarm during tour if guard fails to make a station. Tours can be programmed for sequential or random tourstation order.
 - 1. Guard tour setup shall define specific routes or tours for the guard to take, with time restrictions in which to reach every predefined tour station.
 - 2. Guard tour activity shall be automatically logged to the centralstation PC's hard drive.
 - 3. If the guard is early or late to a tour station, a unique alarm per station shall appear at the Central Station to indicate the time and station.
 - 4. Guard tour setup shall allow the tours to be executed sequentially or in a random order with an overall time limit set for the entire tour instead of individual times for each tour station.
 - 5. Setup shall allow recording of predefined responses that will display for the operator at the control station should a "Failed to Check-in" alarm occur.
- B. A tour station is a physical location a guard shall reach and perform an action indicating that the guard has arrived. This action, performed at the tour station, shall be 1 of 13 different events with any combination of station types within the same tour. A tour station shall be one of the following event types:
 - 1. Access Granted.
 - 2. Access Denied Code.
 - 3. Access Denied Card plus PIN.
 - 4. Access Denied Time Zone.
 - 5. Access Denied Level.
 - 6. Access Denied Facility.
 - 7. Access Denied Code Timer.
 - 8. Access Denied Anti-Passback.
 - 9. Access Granted Passback Violation.
 - 10. Alarm.

- 11. Restored.
- 12. Input Normal.
- 13. Input Abnormal.
- C. Guard tour and other system features shall operate simultaneously with no interference.
- D. Guard Tour Module Capacity: 999 possible guard tour definitions with each tour having up to 99 tour stations. System shall allow all 999 tours to be running at same time.

2.20 VIDEO AND CAMERA CONTROL

- A. Control station or designated workstation displays live video from a CCTV source.
 - 1. Control Buttons: On the display window, with separate control buttons to represent Left, Right, Up, Down, Zoom In, Zoom Out, Scan, and a minimum of two custom command auxiliary controls.
 - Provide at least seven icons to represent different types of cameras, with ability to import custom icons. Provide option for display of icons on graphic maps to represent their physical location.
 - 3. Provide the alarm-handling window with a command button that will display the camera associated with the alarm point.
- B. Display mouse-selectable icons representing each camera source, to select source to be displayed. For CCTV sources that are connected to a video switcher, control station shall automatically send control commands through a COM port to display the requested camera when the camera icon is selected.
- C. Allow cameras with preset positioning to be defined by displaying a different icon for each of the presets. Provide control with Next and Previous buttons to allow operator to cycle quickly through the preset positions.

2.21 WIRES AND CABLES

- A. Comply with Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- B. PVC-Jacketed, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; PVC jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CM.

September 2017

- 2. Flame Resistance: UL 1581 Vertical Tray.
- C. Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- D. RS-485 communications require 2 twisted pairs, with a distance limitation of 4000 feet (1220 m).
- E. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
- F. Plenum-Type, RS-485 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- G. Multiconductor, Readers and Wiegand Keypads Cables: No. 22 AWG, paired and twisted multiple conductors, stranded (7x30) tinned copper conductors, semirigid PVC insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage, plus tinned copper braid shield with 65 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
 - 3. For TIA/EIA-RS-232 applications.
- H. Paired Readers and Wiegand Keypads Cables: Paired, 3 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- I. Paired Readers and Wiegand Keypads Cable: Paired, 3 pairs, twisted, No. 20 AWG, stranded (7x28) tinned copper conductors, polyethylene (polyolefin) insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded (19x34) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.

- 1. NFPA 70, Type CM.
- 2. Flame Resistance: UL 1581 Vertical Tray.
- J. Plenum-Type, Paired, Readers and Wiegand Keypads Cable: Paired, 3 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, individual aluminum foil-polypropylene tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- K. Plenum-Type, Multiconductor, Readers and Keypads Cable: 6 conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinatedethylene-propylene insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage plus tinned copper braid shield with 85 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- L. Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- M. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- N. Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- O. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- P. Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, overall aluminum

foil-polyester tape shield with No. 22 AWG, stranded (7x30) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.

- 1. NFPA 70, Type CMR.
- 2. Flame Resistance: UL 1666 Riser Flame Test.
- Q. Plenum-Type, Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, aluminum foil-polyester tape shield (foil side out), with No. 22 AWG drain wire, 100 percent shield coverage, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- R. Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (7x26) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
- S. Plenum-Type, Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- T. Elevator Travel Cable: Steel center core, with shielded, twisted pairs, No. 20 AWG conductor size.
 - Steel Center Core Support: Preformed, flexible, low-torsion, zinccoated, steel wire rope; insulated with 60 deg C flame-resistant PVC and covered with a nylon or cotton braid.
 - 2. Shielded Pairs: Insulated copper conductors; color-coded, insulated with 60 deg C flame-resistant PVC; each pair shielded with bare copper braid for 85 percent coverage.
 - 3. Jute Filler: Electrical grade, dry.
 - 4. Binder: Helically wound synthetic fiber.
 - 5. Braid: Rayon or cotton braid applied with 95 percent coverage.
 - 6. Jacket: 60 deg C PVC specifically compounded for flexibility and abrasion resistance. UL VW-1 and CSA FT1 flame rated.
- U. LAN (Ethernet) Cabling: Comply with Division 28 Section "Conductors and Cables for Electronic Safety and Security."

PART 3 - EXECUTION

3.1 GENERAL

A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall

furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.

- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data

available from Project plans and specifications and publish as Project planning documents for review and approval.

- 1. Record setup data for control station and workstations.
- 2. For each Location, record setup of Controller features and access requirements.
- 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
- 4. Set up groups, linking, and list inputs and outputs for each Controller.
- 5. Assign action message names and compose messages.
- 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
- 7. Prepare and install alarm graphic maps.
- 8. Develop user-defined fields.
- 9. Develop screen layout formats.
- 10. Propose setups for guard tours and key control.
- 11. Discuss badge layout options; design badges.
- 12. Complete system diagnostics and operation verification.
- 13. Prepare a specific plan for system testing, startup, and demonstration.
- 14. Develop acceptance test concept and, on approval, develop specifics of the test.
- 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- D. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring

- method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- E. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- F. Install cables without damaging conductors, shield, or jacket.
- G. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- H. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet $(75\ m)$, and install No. 20 AWG wire if maximum distance is 500 feet $(150\ m)$.
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed [250 feet (75 m)] [500 feet (150 m)] <Insert distance>.

G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of [25 feet (8 m)] <Insert distance>.

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - 1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems: 1. CCTV:

- a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings. As well as all emergency exits utilizing a fixed color camera.
- b. Be able to monitor, control and record cameras on a 24 hours basis.
- c. Be programmed automatically call up a camera when an access point is but into an alarm state.
- d. For additional PACS system requirements as they relate to the CCTV, refer to Section 28 23 00, VIDEO SURVEILLANCE.

2. IDS:

- a. Be able monitor door control sensors.
- b. Be able to monitor and control the IDS on a 24 hours basis.
- c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the operator via an audible alarm.
- d. For additional PACS system requirements as they relate to the IDS, refer to Section 28 16 11, INTRUSION DETECTION SYSTEM.

3. Security Access Detection:

- a. Be able to monitor all objects that have been screened with an x-ray machine and be able to monitor all data acquired by the bomb detection unit.
- b. For additional PACS system requirements as they relate to the Security Access Detection, refer to Section 28 13 53, SECURITY ACCESS DETECTION.

4. EPPS:

- a. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
- b. For additional PACS requirements as they relate to the EPPS, refer to Section 28 26 00, ELECTRONIC PERSONAL PROTECTION SYSTEM.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.

- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.

J. Existing Equipment:

- 1. The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
- 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible.

The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.

- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.

M. Control Panels:

- 1. Connect power and signal lines to the controller.
- 2. Program the panel as outlined by the design and per the manufacturer's programming guidelines.

N. SMS:

- Coordinate with the VA agency's IT personnel to place the computer on the local LAN or Intranet and provide the security system protection levels required to insure only authorized VA personnel have access to the system.
- 2. Program and set-up the SMS to ensure it is in fully operation.

O. Card Readers:

- 1. Connect all signal inputs and outputs as shown and specified.
- 2. Terminate input signals as required.
- 3. Program and address the reader as per the design package.
- 4. Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.

P. Biometrics:

1. Connect all signal input and output cables along with all power cables.

- 2. Program and ensure the device is in operating order.
- Q. Portal Control Devices:
 - 1. Install all signal input and output cables as well as all power cables.
 - 2. Devices shall be surface or flush mounted as per the design package.
 - 3. Program all devices and ensure they are working.
- R. Door Status Indicators:
 - 1. Install all signal input and output cables as well as all power cables.
 - 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
 - 3. Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).
- S. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- T. System Start-Up:
 - 1. The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
 - b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - c. System wiring has been tested and verified as correctly connected as indicated.
 - d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.

- Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

U. Supplemental Contractor Quality Control:

- The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
- The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect [test, and adjust] field-assembled components and equipment installation, including connections [, and to assist in field testing]. Report results in writing.
- B. Testing Agency: [Owner will engage] [Engage] a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - 1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2,

- bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
- 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
- 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements.

 Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

Construction Documents

- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.
- D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

Construction Documents September 2017

SECTION 28 13 16 PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operation Physical Access Control Database Management System, hereinafter referred to as the PACMS.
- B. This Section includes a Physical Security Access System Database Management consisting of database management software.

 Requirements for hardware supporting database management are described in Section 28 13 00 PHYSICAL ACCESS CONTROL, Part 2.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding and bonding.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. For requirements for commissioning and systems readiness checklists.
- G. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system.
- H. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the Access Control System and Database Management as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated

PHYSICAL ACCESS
CONTROL SYSTEM

- with all associated security subsystems, whether the security system is stand-alone or a part of an Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. The manufacturers of all hardware and software components employed in the SMS shall be established vendors to the access control/security monitoring industry for no less than five (5) years and shall have successfully implemented at least 5 systems of similar size and complexity.
- E. Contractor / Integrator Qualifications
 - 1. The security system integrator shall have been regularly engaged in the installation and maintenance of integrated access control systems and have a proven track record with similar systems of the same size, scope, and complexity.
 - 2. The security system integrator shall supply information attesting to the fact that their firm is an authorized product integrator certified with the SMS. A minimum of one technician shall be an installer certified by the SMS manufacturer.
 - 3. The security system integrator shall supply information attesting to the fact that their installation and service technicians are competent factory trained and certified personnel capable of maintaining the system and providing reasonable service time.
 - 4. The security system integrator shall provide a minimum of three (3) references whose systems are of similar complexity and have been installed and maintained by the security system integrator in the last five (5) years.
 - 5. There shall be a local representative and factory authorized local service organization that shall carry a complete stock of parts and provide maintenance for these systems.
- F. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 48 x 48 inches (1220mm x 1220mm); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - 1) Outline all general and job specific work required within the design package.
 - 2) Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - 2. Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.

Construction Documents

- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from point-to-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the CCTV Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has

Construction Documents

been completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:

- 1. 35 percent
- 2. 65 percent
- 3. 90 percent
- 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/ Security Industry
 Association (SIA):
 - AC-03......Access Control: Access Control Guideline

 Dye Sublimation Printing Practices for

 PVC Access Control Cards
 - TVAC-01......CCTV to Access Control Standard Message

 Set for System Integration
- C. American National Standards Institute (ANSI)/ International Code
 Council (ICC):
 - Al17.1.....Standard on Accessible and Usable
 Buildings and Facilities
- D. Department of Justice American Disability Act (ADA)

 28 CFR Part 36......2010 ADA Standards for Accessible Design
- E. Federal Communications Commission (FCC):
 - (47 CFR 15) Part 15....Limitations on the Use of Wireless Equipment/Systems
- F. Government Accountability Office (GAO):

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

September 2017

	GAO-03-8-02SecurityResponsibilities for Federally Owned and
	Leased Facilities
G.	National Electrical Contractors Association
	303-2005Installing Closed Circuit Television
	(CCTV) Systems
н.	National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000
	Volts Maximum)
I.	National Fire Protection Association (NFPA):
	70-11 National Electrical Code
J.	Underwriters Laboratories, Inc. (UL):
	294-99The Standard of Safety for Access Control
	System Units
	305-08Standard for Panic Hardware
	639-97Standard for Intrusion-Detection Units
	752-05Standard for Bullet-Resisting Equipment
	827-08Central Station Alarm Services
	1076-95 Standards for Proprietary Burglar Alarm
	Units and Systems
	1981-03Central Station Automation System
	2058-05High Security Electronic Locks
К.	Homeland Security Presidential Directive (HSPD):
	HSPD-12Policy for a Common Identification
	Standard for Federal Employees and
	Contractors
L.	Federal Information Processing Standards (FIPS):
	FIPS-201-1Personal Identity Verification (PIV) of
	Federal Employees and Contractors
Μ.	National Institute of Standards and Technology (NIST):
	IR 6887 V2.1Government Smart Card Interoperability
	Specification (GSC-IS)
	Special Pub 800-37Guide for Applying the Risk Management
	Framework to Federal Information Systems
	Special Pub 800-63Electronic Authentication Guideline
	Special Pub 800-73-3Interfaces for Personal Identity
	Verification (4 Parts)
	Pt. 1- End Point PIV Card Application
	Namespace, Data Model & Representation

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

Pt. 2- PIV Card Application Card Command
Interface
Interface
Pt. 4- The PIV Transitional Interfaces &
Data Model Specification
Special Pub 800-76-1Biometric Data Specification for Personal
Identity Verification
Special Pub 800-78-2Cryptographic Algorithms and Key Sizes
for Personal Identity Verification
Special Pub 800-79-1 Guidelines for the Accreditation of
Personal Identity Verification Card
Issuers
Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
Special Pub 800-85A-2PIV Card Application and Middleware
Interface Test Guidelines (SP 800-73-3
compliance)
Special Pub 800-96PIV Card Reader Interoperability
Guidelines
Special Pub 800-104AScheme for PIV Visual Card Topography
Special Pub 800-116Recommendation for the Use of PIV
Credentials in Physical Access Control
Systems (PACS)
N. International Organization for Standardization (ISO):
7810Identification cards - Physical
characteristics
7811Physical Characteristics for Magnetic
Stripe Cards
7816-1Identification cards - Integrated
circuit(s) cards with contacts - Part 1:
Physical characteristics
7816-2Identification cards - Integrated circuit
cards - Part 2: Cards with contacts -
Dimensions and location of the contacts
7816-3Identification cards - Integrated circuit
cards - Part 3: Cards with contacts -
Electrical interface and transmission
protocols

September 2017

7816-4	Identification cards - Integrated circuit
	cards - Part 11: Personal verification
	through biometric methods
7816-10	Identification cards - Integrated circuit
	cards - Part 4: Organization, security
	and commands for interchange
14443	Identification cards - Contactless
	integrated circuit cards; Contactless
	Proximity Cards Operating at 13.56 MHz in
	up to 5 inches distance
15693	Identification cards Contactless
	integrated circuit cards - Vicinity
	cards; Contactless Vicinity Cards

distance

19794......Information technology - Biometric data
interchange formats

Operating at 13.56 MHz in up to 50 inches

- O. Uniform Federal Accessibility Standards (UFAS) 1984
- P. Section 508 of the Rehabilitation Act of 1973

1.6 WARRANTY OF CONSTRUCTION.

- A. Warrant PACMS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21 and Section 280500.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 SYSTEM DATABASE

- A. Database and database management software shall be HSPD-12 and FIPS compliant. Database and database management software shall define and modify each point in database using operator commands. Definition shall include parameters and constraints associated with each system device.
- B. Database Operations:
 - System data management shall be in a hierarchical menu tree format, with navigation through expandable menu branches and manipulated with use of menus and icons in a main menu and system toolbar.
 - 2. Navigational Aids:

Construction Documents

- a. Toolbar icons for add, delete, copy, print, capture image, activate, deactivate, and muster report.
- b. Point and click feature to facilitate data manipulation.
- c. Next and previous command buttons visible when editing database fields to facilitate navigation from one record to the next.
- d. Copy command and copy tool in the toolbar to copy data from one record to create a new similar record.
- All data entry shall be automatically checked for duplicate and illegal data and shall verify that data are in a valid format.
- 4. Provide a memo or note field for each item that is stored in database, allowing the storing of information about any defining characteristics of the item. Memo field is used for noting the purpose the item was entered for, reasons for changes that were made, and the like.

C. File Management:

- Provide database backup and restoration system, allowing selection of storage media, including hard discs, optical media, flash drives, and designated network resources.
- 2. Provide manual and automatic mode of backup operations. The number of automatic sequential backups before the oldest backup becomes overwritten; FIFO mode shall be operator selectable.
- 3. Backup program shall provide manual operation from any PC on the LAN and shall operate while system remains operational.

D. Database Segmentation:

- 1. The System shall employ advanced database segmentation functionality. Each segment shall be allowed to have its own unique set of cardholders, hardware, and system parameters including access control field hardware, time zones, access levels, etc., which shall allow System Administrators to expand upon current hardware constraints. As such, only credentials that are assigned access levels to card readers in a segment need to be downloaded to the Data Gathering Panels in that segment.
- 2. Cardholders shall be allowed to belong to one segment, many segments, or all segments.

- 3. The database segmentation functionality shall also provide a capability to object records in the system, where segment System Administrators and Operators can only view, add, modify, delete, and manipulate cardholders, system parameters and access control field hardware that belong to their respective segments.
- 4. System Administrators and System Operators shall be assigned the segments they are allowed to view and control. System Administrators and System Operators may be assigned to more than one segment and a segment may be assigned to more than one System Administrator and System Operator. A one-to-many relationship shall exist for System Administrators and System Operators with respect to segments. The SYSTEM shall support a minimum of [65,000] <insert number> segments.

E. Bi-Directional Data Exchange

- 1. The System shall support a real time, bi directional data interface to external databases such as Human Resources, Time and Attendance, Food Service Systems. The interface shall allow data to be imported into or exported out of the SYSTEM in real time or in a batch mode basis. Data used for import shall be retrieved directly from an external database or through an import file. Data provided for export shall be applied directly to an external database or through an export file. Any data shall be imported or exported including image data. The file used for import or created by export shall have the ability to be structured in a wide variety of ways, but shall always be in ASCII text format.
- 2. The System shall also support a one-step download and distribution process of cardholder and security information from the external database to the SYSTEM database, all the way down to the Intelligent Field Controller (ISC) database. This shall be a guaranteed process, even if the communication path between the SYSTEM database server and the ISC is broken. If the communication path is broken, the data shall be stored in a temporary queue and shall be automatically downloaded once the communication path is restored.

F. Database connectivity:

Construction Documents

- 1. The SMS database shall support open direct database connectivity for importing cardholder and card ID data from external systems and/or database applications. The PACS SMS shall facilitate interfacing by providing the following capabilities:
 - a. Real time and batch processing of data via ODBC, JDBC or OLE DB over a network connection.
 - b. Insert, update, and delete record information.
 - c. Automatic download of data to control panels (data gathering panels) based on database changes.
 - d. Provide audit trail in the operator history/archive database for all database changes initiated by the interface.

G. Operator Passwords:

- 1. Software shall support up to [32,000] <insert number> individual system operators, each with a unique password.
- 3. Allow passwords to be case sensitive.
- 4. Allow use of Single sign-off (SSO) password.
- 5. Passwords shall not be displayed when entered.
- 6. Provide each password with a unique and customizable password profile, and allow several operators to share a password profile. Include the following features in the password profile:
 - a. Allow for at least [32,000] < Insert number > operator password profiles.
 - b. Predetermine the highest-level password profile for access to all functions and areas of program.
 - c. Allow or disallow operator access to any program operation, including the functions of View, Add, Edit, and Delete.
 - d. Restrict which doors an operator can assign access to.
- 7. Operators shall use a user name and password to log on to system.
 - a. This user name and password is used to access database areas and programs as determined by the associated profile.
- 8. Make provision to allow the operator to log off without fully exiting program. User may be logged off but program will

remain running while displaying the login window for the next operator.

- H. Access Card/Code Operation and Management: Access authorization shall be by card /, by a manually entered code (PIN), by a combination of both (card plus PIN), by a biometric, by combination of PIN and biometric/.
 - Access authorization shall verify the card or card-and-PIN validation, and the access level (time of day, day of week, date), anti-passback status, and number of uses last.
 - Use data-entry windows to view, edit, and issue access levels.
 Access authorization entry management system shall maintain and coordinate all access levels to prevent duplication or the incorrect creation of levels.
 - 3. Allow assignment of multiple cards/codes to a cardholder.
 - 4. Allow assignment of at least four access levels for each Location to a cardholder. Each access level may contain any combination of doors.
 - 5. Each door may be assigned four time zones.
 - 6. Access codes may be up to 11 digits in length.
 - 7. Software shall allow the grouping of locations so cardholder data can be shared by all locations in the group.
 - 8. Visitor Access: Issue a visitor badge, without assigning that person a card or code, for data tracking or photo ID purposes.
 - 9. Cardholder Tracing: Allow for selection of cardholder for tracing. Make a special audible and visual annunciation at control station when a selected card or code is used at a designated code reader. Annunciation shall include an automatic display of the cardholder image.
 - 10. Allow option for each cardholder to be given either an unlimited number of uses or a number from 1 to 9998 that regulates the number of times the card can be used before it is automatically deactivated.
 - 11. Provide for cards and codes to be activated and deactivated manually or automatically by date. Provide for multiple deactivate dates to be preprogrammed.
- I. Security Access Integration:
 - 1. Photo ID badging and photo verification shall use same database as the security access and may query data from

- cardholder, group, and other personal information to build a custom ID badge.
- 2. The SMS shall provide a means for manually importing and exporting selected data in XML format. This mechanism shall support the import and export of any and all classes or types of data in the system. Specific data validation and logging requirements shall be met.
- 3. The system shall also support importing from CSV files.
- 4. The SMS shall provide an automated import mechanism (preferably XML-based). This mechanism shall support the import of most classes or types of data into the system. Specific data validation and logging requirements shall be met.
- 5. The SMS shall provide a Data Mapping feature that provides field mapping information using the XSLT file based on the input data or an external XSLT file.
- 6. Automatic or manual image recall and manual access based on photo verification shall also be a means of access verification and entry.
- 7. System shall allow sorting of cardholders together by group or other characteristic for a fast and efficient method of reporting on, and enabling or disabling, cards or codes.
- J. Key control and tracking shall be an integrated function of cardholder data.
 - 1. Provide the ability to store information about which conventional metal keys are issued and to whom, along with key construction information.
 - 2. Reports shall be designed to list everyone that has possession of a specified key.

K. Operator Comments:

- 1. With the press of one appropriate button on toolbar, the user shall be permitted to make operator comments into history at any time.
- 2. Automatic prompting of operator comment shall occur before the resolution of each alarm.
- 3. Operator comments shall be recorded by time, date, and operator number.

- 4. Comments shall be sorted and viewed through reports and history.
- 5. The operator may enter comments in two ways; either or both may be used:
 - a. Manually entered through keyboard data entry (typed), up to 65,000 characters per each alarm.
 - b. Predefined and stored in database for retrieval on request.
- 6. System shall have a minimum of 999 predefined operator comments with up to 30 characters per comment.

L. Group:

- Group names may be used to sort cardholders into groups that allow the operator to determine the tenant, vendor, contractor, department, division, or any other designation of a group to which the person belongs.
- 2. System software shall have the capacity to assign 1 of 32,000 group names to an access authorization.
- 3. Make provision in software to deactivate and reactivate all access authorizations assigned to a particular group.
- 4. Allow sorting of history reports and code list printouts by group name.

M. Time Zones:

- 1. Each zone consists of a start and stop time for 7 days of the week and three holiday schedules. A time zone is assigned to inputs, outputs, or access levels to determine when an input shall automatically arm or disarm, when an output automatically opens or secures, or when access authorization assigned to an access level will be denied or granted.
- 2. Up to four time zones may be assigned to inputs and outputs to allow up to four arm or disarm periods per day or four lock or unlock periods per day; up to three holiday override schedules may be assigned to a time zone.
- 3. Data-entry window shall display a dynamically linked bar graph showing active and inactive times for each day and holiday, as start and stop times are entered or edited.
- 4. System shall have the capacity for [2048] <Insert number> time zones for each Location.

N. Holidays:

- 1. Three different holiday schedules may be assigned to a time zone. Holiday schedule consists of date in format MM/DD/YYYY and a description. When the holiday date matches the current date of the time zone, the holiday schedule replaces the time zone schedule for that 24-hour period.
- System shall have the capacity for [32,000] <Insert number> holidays.
- 3. Three separate holiday schedules may be applied to a time zone.
- 4. Holidays have an option to be designated as occurring on the designated date each year. These holidays remain in system and will not be purged.
- 5. Holidays not designated to occur each year shall be automatically purged from database after the date expires.

O. Access Levels:

- 1. System shall allow for the creation at least [32,000] <Insert number> access levels.
- 2. System shall allow for access to be restricted to any area by reader and by time. Access levels shall determine when and where an Identifier is authorized.
- 3. System shall be able to create multiple door and time zone combinations under same access level so that an Identifier may be valid during different time periods at different readers even if the readers are on the same Controller.

P. User-Defined Fields:

- System shall provide a minimum of 99 user-defined fields, each with up to 50 characters, for specific information about each credential holder.
- 2. System shall accommodate a title for each field; field length shall be 20 characters.
- 3. A "Required" option may be applied to each user-defined field that, when selected, forces the operator to enter data in the user-defined field before the credential can be saved.
- 4. A "Unique" option may be applied to each user-defined field that, when selected, will not allow duplicate data from different credential holders to be entered.

- 5. Data format option may be assigned to each user-defined field that will require the data to be entered with certain character types in specific spots in the field entry window.
- 6. A user-defined field, if selected, will define the field as a deactivate date. The selection shall automatically cause the data to be formatted with the windows MM/DD/YYYY date format. The credential of the holder will be deactivated on that date.
- 7. A search function shall allow any one user-defined field or combination of user-defined fields to be searched to find the appropriate cardholder. The search function shall include search for a character string.
- 8. System shall have the ability to print cardholders based on and organized by the user-defined fields.

Q. Code Tracing:

- 1. System shall perform code tracing selectable by cardholder and by reader.
- 2. Any code may be designated as a "traced code" with no limit to how many codes can be traced.
- 3. Any reader may be designated as a "trace reader" with no limit to which or how many readers can be used for code tracing.
- 4. When a traced code is used at a trace reader, the access-granted message that usually appears on the monitor window of the Central Station shall be highlighted with a different color than regular messages. A short singular beep shall occur at the same time the highlighted message is displayed on the window.
- 5. The traced cardholder image (if image exists) shall appear on workstations when used at a trace reader.

R. Database and File Replication:

- 1. The Security Management System shall be capable of supporting database and file replication using [Microsoft SQL Server Replication Services and Microsoft File Replication Services] <insert database and file replication services> for providing distributed database replication across multiple PACS application servers allowing for system expansion and delivering N tiers of server redundancy.
- 2. Database and file replication shall not require any proprietary database or file replication software.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. System installation shall be in accordance with manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. All software shall be installed per the design package and the manufacturer's installation specifications.

3.2 TESTING AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- B. Perform testing and system certification as outlined in section28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- C. The software shall be entered into the SMS computer systems and debugged. The Contractor shall be responsible for documenting and entering the initial database into the system. The Contractor shall provide the necessary blank forms with instructions to fill in all the required data information that will make up the database. The database shall then be reviewed by the Contractor and entered into the system. Prior to full operation, a complete demonstration of the computer real time functions shall be performed. A printed validation log shall be provided as proof of operation for each software application package. In addition, a point utilization report shall be furnished listing each point, the associated programs utilizing that point as an input or output and the programs which that point initiates.
- D. Upon satisfactory on line operation of the system software, the entire installation including all subsystems shall be inspected. The Contractor shall perform all tests, furnish all test equipment and consumable supplies necessary and perform any work as required to establish performance levels for the system in accordance with the specifications. Each device shall be tested as a working component of the completed system. All system controls shall be inspected for proper operation and response.
- E. Tests shall demonstrate the response time and display format of each different type of input sensor and output control device.

 Response time shall be measured with the system functioning at

- full capacity. Computer operation shall be tested with the complete data file.
- F. The Contractor shall provide a competent trainer who has extensive experience on the installed systems and in delivering training to provide the instruction. As an alternative, the Contractor may propose the use of factory training personnel and coordinate the number of personnel to be trained.

3.3 MAINTENANCE

- A. The Contractor shall offer a Support Agreement (SSA) in order for Technical Support Specialists to reactively troubleshoot system problems.
- B. As part of the agreement, 5x9 telephone support (Standard and Enhanced SSA) will be provided to the Contractor by Certified Technicians. An option of 7x24 Standby telephone support (Enhanced SSA) shall be offered.
- C. As part of the agreement, Flashable and Non-Flashable (Chips) firmware and documentation shall be provided.
- D. As part of the agreement, access to Security Management System (SMS)software patches and software release updates shall be provided.
- E. The Support Agreement shall cover the current version of the SMS software release one full version back, and associated controller hardware.

----END----

VIDEO SURVEILLANCE AND SECURITY PLATFORM IP-VIDEO SURVEILLANCE AND SECURITY PLATFORM

PART 1 GENERAL

1.01 SUMMARY

Section includes an IP-Video Surveillance and Security Platform (IPVSSP).

- A. Product An IP-video surveillance and security platform that combines full video management system functionality with centralized event, user rights and video distribution management; and coordination/management of integrated physical security, content analytic, environmental detection, transaction and other enterprise systems.
- B. Related Requirements
 - 1. 28 23 00 Video Surveillance

1.02 REFERENCES

- A. Abbreviations
 - 1. CCTV Closed Circuit Television
 - 2. VMS Video Management System
 - 3. IPVSSP IP-Video Surveillance and Security Platform
 - 4. IPVSSP Base IPVSSP Base Software
 - 5. GUI Graphical User Interface
- B. Reference Standards
 - 1. Institute of Electronic and Electrical Engineers (IEEE) 802.3 standards
 - 2. International Telecommunication Union (ITU) H.263 Video coding for low bit rate communication
 - 3. ITU H.264 Advanced video coding for generic audiovisual services
 - 4. ISO/IEC 14496 MPEG-4
 - 5. ISO/IEC 14496-10 MPEG-4, Part 10 (H.264)
 - 6. ISO/IEC 10918 JPEG

1.03 SUBMITTALS

- A. Product Data
 - 1. Manufacturer's printed or electronic data sheets
 - 2. Server technical specifications
 - 3. Manufacturer's installation and operation manuals

1.04 QUALIFICATIONS

A. Manufacturer of system shall have a minimum of three years' experience of successful installation of systems equivalent in function to the system proposed herein.

September 2017

B. The IPVSSP software vendor shall provide a certified partner program, whereby training and certification programs shall qualify the suitability of the installers.

1.05 WARRANTY

A. Manufacturer shall provide warrant the system to be free of any defect that causes the Software to not perform in compliance with the applicable published functional specifications for a period of twelve (12) months from the date of shipment to the Contractor

PART 2 PRODUCTS

2.01 PLATFORM

A. Manufacturer: On-Net Surveillance Systems Inc.

One Blue Hill Plaza

7th Floor

PO Box 1555

Phone: (845) 732-7900 | Fax: (845) 732-7999

Web: www.onssi.com

E-mail: sales@onssi.com

B. Model: Ocularis Enterprise

C. Alternates: None

2.02 GENERAL DESCRIPTION

- A. The IP-Video Surveillance and Security Platform (IPVSSP) shall be a comprehensive, distributed platform which combines:
 - 1. Full VMS functionality;
 - Centralized camera, recorder, event, user rights and video distribution management;
 - Coordination/management of integrated physical security, content analytic, environmental detection, transaction and other enterprise systems.
- B. The IPVSSP shall enable the user to view, manage, and record video from an unlimited number of IP and non-IP video surveillance cameras at multiple sites, manage short— and long-term video storage, and combine video with non-video alerts, resulting in automatic video delivery to subscribers of interest.
- C. The IPVSSP shall allow the use of multiple different recorder software applications (Mix & Match) under the same Base software application with no additional federation or interconnection licenses required.

- D. The IPVSSP shall allow the use of Axis and Samsung camera-based recording applications.
- E. The IPVSSP shall not require the use of device MAC addresses for licensing or any other type of device registration.
- F. The IPVSSP shall provide 256-bit AES encryption of all commands, authentication and communications between Recorder(s), management servers and Video Client(s).
- G. The IPVSSP shall allow for the utilization of off-the-shelf hardware, and shall facilitate the integration of new technologies, thus combining the detection and distribution of video events with data and alerts received from a host of physical security and transaction systems.
- H. The IPVSSP shall offer optional add-on components via integration tools including Data Link Integration events, API commands, Contact Closure and more. An optional Software Development Kit (SDK) enables integration of 3rdparty components at no additional cost.
- I. The IPVSSP System shall support the use of separate or common networks, VLANS or switches for connecting cameras to the recording servers and video clients. This shall provide physical network separation between the camera and servers/clients.
- J. The IPVSSP System shall support the use of virtualization technologies to run recording servers and IPVSSP Base components on virtual computers, servers, and networks.
- K. The IP-Video Surveillance and Security Platform (IPVSSP) shall be a unified, modular software platform that consists of the following components:
 - 1. IPVSSP Base Software (herein 'IPVSSP Base') Provides system-wide management, user access, shared event management, alarm and event correlation, video access, and distribution rights. The IPVSSP Base regulates and manages the flow of data between Video Client users, connected recording servers and integrated alerting applications. This includes:
 - a. Creating composite events from multiple detection systems
 - b. Sharing resources between video client users
 - c. Shared bookmarking and event handling among multiple video client users at multiple sites
 - d. Management of all user and authorization data
 - e. Management of Privacy Masks for any fixed video source

- f. Coordination for on-event, push live video alerting ('blank screen
 monitoring')
- g. Metadata management for all investigative tools
- h. Central hub/repository for all system configurations and shared resources:
 - 1) Navigation map resources for Video Clients and video wall management, including:
 - a) Map images
 - b) Positioning and target of hyperlinks on maps
 - c) Icons for linked cameras
 - d) Icons for linked camera groups and carousels
 - 2) Views (arrays of cameras, carousel, push-video alerting, hotspot and HTML content panes) shared by all Video Client users
 - 3) Bookmark information for designated segments of video, as generated by video client operators
 - 4) Event coordination information, including:
 - a) Event details event type, time/date, camera that triggered the event
 - b) Classifications and tags, which are shared by authorized operators
 - c) Event acknowledgement process
- 2. Video Recorder Software (herein, 'The Recorder'), providing
 - a. Video and audio recording and data management
 - ${\tt b.}$ Video delivery to users, depending on authorizations as configured in the Base application
 - c. Camera detection, setup and configuration (per camera, for all image, streaming and storage attributes)
- 3. Video Client unified video client software, for desktop and control room video wall environments, providing
 - a. Access to live and recorded video, digital PTZ and optical PTZ in live monitoring mode
 - b. Investigation of recorded events
 - c. Management of alerts
 - d. Shared event handling by multiple operators
- 4. Add-Ons and Integrated Applications
 - a. Video Wall operation and management
 - b. Integrated physical security solutions, including but not limited to:

September 2017

- 1) Access control
- 2) Radiation detection
- 3) Contact closure
- 4) License plate recognition
- 5) Video content analytics

2.03 MAJOR COMPONENT - IPVSSP BASE APPLICATION

- A. The IPVSSP Base Application shall manage the flow of event, user and system status data from the various system components recording servers, video clients, video wall management systems, video analytics systems, access control, [and other related systems].
- B. Event Management and Automatic Push Video Alerting ('Blank Screen
 Monitoring')
 - 1. Events shall include exceptions detected by core IPVSSP components and signals received from external devices and systems.
 - a. The IPVSSP Base Application shall be able to receive events from Recorders belonging to other IPVSSP Base installations.
 - b. Events may optionally be saved to a database or announced via Push Video Alerting.
 - 2. The IPVSSP shall allow assigning an on-event Push-Video Alert of either a specific camera or multiple cameras, sent to users and/or Video Walls (local and remote) based on group permissions, and distribution lists.
 - 3. Video Client users shall be able to automatically receive Push-Video Alerts.
 - 4. Push-Video Alerts shall be assignable to:
 - a. I/O messages received by the Recorder
 - b. Camera Events, as configured in and generated by the Recorder based on:
 - 1) Tampering
 - 2) Detected motion
 - 3) An event received from a Data Link integrated source
 - 4) An alert or other data received by the recorder
 - c. Events, enabled/disabled in the Recorder, shall include:
 - 1) Data Link events
 - 2) Other events
 - 5. Composite Events
 - a. Users shall be able to create Composite Events, made of two or more Camera Events or Alerts. Upon meeting the parameters of the events, a Push Video alert shall be sent automatically to users' video clients.

- b. Composite Events shall be capable of being combined with other simple or composite events.
- c. The process of compositing events shall allow for logical conditioning:
 - 1) Sequence of events:
 - a) Event A occurred prior to Event B, within a specific time frame
 - b) Event B occurred prior to Event A, within a specific time frame
 - 2) Both events occurring within a specific time period, regardless of sequence
 - 3) One event but not the other within a specific time period.
 - a) Event A has occurred, but Event B hasn't, within a specific time frame
 - b) Event B has occurred, but Event A hasn't, within a specific time frame
- d. A Priority setting shall be available for all Events, so that if two or more events are triggered simultaneously, the higher-priority event will take precedence.
- e. Individual and customizable audio alerts shall configurable for each event.
- f. The number of events triggered by a specific camera that are registered in the events list (and displayed in the video client event counter), based on:
 - 1) Age (time since event)
 - 2) Absolute number (based on a first-in-first-out scheme)
 - 3) Frequency (number of events per time unit, whereas only the first event within a set time interval is registered)

6. Actions

- 1) The following actions shall be configurable to be performed on events:
 - a) Move a camera to a PTZ preset without requiring the event source to be from the same Recorder as the camera to be moved.
 - b) Send an Email to any number of recipients with customer subject and message
 - c) Send a configurable payload via either HTTP GET or POST to a preconfigured web address.
 - d) Send a custom data packet (ASCII or binary) to a specific IP address and port via either TCP or UDP
- C. Administrator Application

1. An Administrator application shall provide for management of users, user groups, cameras, camera groups, and authorizations.

2. Authorizations

- a. Authorizations shall be configured for access to the following system elements, by assigning rights to user groups and populating groups with users:
 - 1) Individual cameras in the system
 - 2) Camera groups as defined by system administrator
 - 3) Specific camera operations (e.g. optical PTZ control)
 - 4) Specific video wall sites
 - 5) Modify local settings within the Video Client
 - 6) Video Client's Circular Control menu (per-component access)
 - 7) Event filtering
- b. Users added to a group shall inherit the authorizations of that group. Inherited authorizations shall be alterable per user and may differ from the parent group's authorizations
- 3. Camera privileges shall be configurable on a group basis with multiple camera groups per group of users. Cameras added to a group shall inherit that group's privileges, which include:
 - a. Optical PTZ control (for PTZ-enabled cameras)
 - b. Optical PTZ preset control (for PTZ-enabled cameras)
 - c. Browsing recorded video
 - d. Triggering video recording directly from the Video Client
 - e. Audio functionality
 - f. Export of evidence (both individual frames and video)
 - g. Bookmarking segments of video (discrete settings for create, view and delete)
- 4. Playback browse limitation
 - a. The administrator shall be able to set an hourly limit for browsing video on a per camera group basis in the administrator application.
 - b. The browse limit shall be set on a user group basis when a user views recorded video in the video client.
 - c. If a user does not have browsing privileges for a specific camera, the navigation buttons (pause, forward, rewind) will not appear on the video client interface in live monitoring mode. In browse mode, any camera that does not have browse privilege will not be displayed at all.

- d. The Limit Browse feature shall apply also to events, bookmarks, and video walls.
- 5. Users shall be assigned unique user names and passwords or authenticate via an Active Directory User or Active Directory Group.
- 6. Users shall be assigned rights to minimize and/or log off the client application.
- 7. User rights to the context menu (Circular Control) in the client application shall be assigned on a group and user basis.
- 8. Users shall inherit the privileges assigned to the group.
- 9. The IPVSSP shall support Active Directory.
- D. Distribution of Alerts to Users and Video Walls, based on Authorization and Schedules
 - 1. Distribution of Alerts shall be based on Distribution Groups.
 - a. A Distribution Group shall consist of at least one (but Individual users may contain any number of) Events and individual Users.
 - b. A Distribution Group may optionally also include any number of Actions and Remote Video Walls.
 - 1) A Distribution Group shall be able to take any number of the following actions:
 - a) Move a camera to a PTZ preset without requiring the event source to be from the same Recorder as the camera to be moved.
 - b) Send an Email to any number of recipients with customer subject and message
 - c) Send a configurable payload via either HTTP GET or POST to a preconfigured web address
 - d) Send a custom data packet (ASCII or binary) to a specific IP address and port via either TCP or UDP
 - 2) A Distribution Group shall be able to push video to any number of Remote Video Walls
 - 2. The IPVSSP shall provide a simple GUI for associating Distribution Groups to Events, and Individual Users, Remote Video Walls, and Actions to Distribution Groups.
 - 3. Distribution of Events to Distribution Groups shall be subject to regular and holiday scheduling.
 - a. The weekly schedule shall allow configuring multiple activity ranges for each day of the week, through a simple GUI and/or time-range form.

Construction Documents September 2017

b. The Holiday Scheduler will override the Weekly Schedule, and shall allow:

- 1) Configuring multiple holidays
- 2) Setting holidays years in advance.
- 3) Configuration of time ranges, within the Holiday Scheduler, in the same manner as in the Weekly Schedule.
- 4) Local time zone support
- 4. The system shall enable configuring custom audio alerts for individual events.
- E. Creation of Camera Views for Video Client Users
 - 1. The IPVSSP framework shall enable configuring Views containing visual elements and sharing among Video Client users by authorization based on group permissions.
 - 2. Array Views shall be created in View Groups (Folders), which themselves may contain View Group subfolders.
 - 3. Views shall be configured within layouts. Available layouts include:
 - a. 'Square' Views: 1x1, 2x2, 3x3, 4x4, 5x5, 6x6, 7x7 and 8x8 cameras
 - b. 'Non-Square' View: 4x3 wide;
 - c. Views of different size panes: 2x1, 1+3 wide, 1+5, 2+4 wide, 1 + 7, 1 + 8 wide
 - d. '3x1' view, which displays three adjacent vertical aspect-ratio (16x9)
 'corridor' camera.
 - 4. The following elements shall be available for populating panes within the chosen layout:
 - a. Cameras (live and recorded video) Provide access to live and recorded video, as well as optical PTZ controls (for PTZ cameras; authorization required.)
 - 1) Configurable views in individual panes for:
 - a) Aspect ratio: original, fit-to-window
 - b. Camera carousels, configurable for:
 - 1) Aspect ratio: original , fit-to-window
 - 2) Universal Dwell Time between camera views, with override capability for individual cameras.
 - 3) Carousel views to include the following sequence controls, in addition to all controls inherited by the camera view, such as optical PTZ controls for PTZ cameras and special controls for 360degree cameras:

- a) Pause/resume
- b) Next camera
- c) Previous camera
- 4) Continuation of rotating between cameras upon displaying the carousel in full-screen mode in the Video Client.

c. Hotspots

- 1) Ability to send a camera stream from one pane to a hotspot pane
- 2) For each hotspot configured in each view, configuration shall be available for
 - a) Displaying the image pushed to the hotspot at a different resolution (image quality) with option to apply image quality to both Browse and Live Mode.
 - b) Displaying the image pushed to the hotspot at a different frame rate
- 3) Hotspots to provide all controls inherited by the camera view, such as optical PTZ controls for PTZ cameras and special controls for 360-degree cameras.
- 4) Hotspot locking
 - a) Hotspot panes shall be able to be toggled between a state in which they refuse new streams ("locked") and a state in which they accept new streams ("unlocked").
 - b) The lock state shall be easily changed via on-screen controls that appear only when a hotspot pane is used.
- d. HTML content, static images, including jpg, png, bmp, gif, and other rich media file types.
 - 1) The Video Client browser pane may not include certain controls that are available in full-fledged web browsers.
- e. Push Video (manual push live video from operator to operator)
 - Push Video panes shall display video alerts initiated by other Video Client users, upon selecting the destination user from a drop-down list.
 - 2) Push Video panes shall provide all of the controls inherited by the camera view (i.e., optical PTZ controls for PTZ cameras and special controls for 360-degree cameras)
- f. 'Blank Screen' (automated push-live video alerts)
 - 1) Blank Screen panes shall display alerts generated automatically upon events (upon authorization configured in the Distribution

- Groups tab). When not displaying an alert, these panes shall remain blank (black).
- 2) Blank screen panes shall allow the operator to acknowledge and clear the alert without having to change views
- 3) Blank Screen panes shall be configurable for:
 - a) Aspect ratio: original , fit-to-window
 - b) Dwell Time until camera stream is removed from the pane
- F. Support for cameras equipped with 360-degree lenses
 - 1. Definitions shall be available for 360-degree lens-equipped cameras for the Administrator to include:
 - a. Type of camera
 - b. Orientation: [ceiling, wall-mounted]
 - c. Specific type of 360-degree lens used.
 - 2. The IPVSSP shall support de-warping of 360 degree cameras from the following manufacturers:
 - a. OnCam Grandeye
 - b. Samsung
 - c. Sentry360
 - d. Cameras equipped with ImmerVision Panamorph lenses
- G. Privacy Masking
 - 1. Any fixed camera shall be configurable with multiple free-form polygon privacy masks to block operators from seeing portions of the field of view.
 - 2. The full field of view shall still be recorded by the Recorder and available by removal of the privacy masks
 - 3. Privacy masks shall affect all users in all groups.
- H. Critical Camera Failover
 - 1. The IPVSSP shall allow assignment of alternate live camera streams to be displayed in real-time in response to the failure or disconnect of a specific camera and/or the Recorder on which the camera is hosted.
 - 2. The interval between the detection and automatic failover shall be configurable from 0-120 seconds.
 - 3. The IPVSSP shall automatically fail back to the original camera stream once connectivity is restored.
- I. Alternate Camera Labels and Descriptions
 - 1. Cameras may be assigned alternate labels that will appear to users in the client

- J. Recording Server Editing
 - 1. Users shall be able to edit recording server information through the IPVSSP Administrator, to reflect login and addressing changes in the recording server and eliminate the need to delete and re-assign an NVR server following a change in the recording servers login and/or addressing information.
 - 2. An Edit Recording Server Information feature shall support network address translation (NAT). For recording servers operating behind a firewall, this shall allow local internal IP/subnets to be added, deleted or edited.
 - 3. Information for all connected recording servers, including list of cameras and camera attributes, shall cached in the IPVSSP database, allowing for quicker startup of the software.
 - 4. Recording servers shall be able to connect to the IPVSSP Base using hostname or IP address.
- K. System-Wide Shared Assets Shared Assets managed by IPVSSP Base shall include:
 - 1. Bookmarking (Tag/Case/Classification) Table Management
 - a. Allows Administrators to create and manage descriptors and classifiers, that are utilized by users upon bookmarking or exporting evidence:
 - 1) Cases (pertaining to a specific incident)
 - 2) Classes (describing type of incident)
 - 3) Tags (used as keywords and for associative classification)
 - b. Administrators may purge closed events and batch handle events
 - 1) Graphics Repository for Navigation Maps
 - 2) All map graphics and camera icon graphics, used for navigation maps (for desktop monitoring as well as video wall-based operation), are stored and managed within IPVSSP Base
 - 2. Navigation Map Creation and Repository
 - a. Access to maps is based on User Group authorization
 - b. Maps graphics may be very large, and allow for zooming and dragging
 - c. A simple GUI is used for populating maps with cameras from any recording servers. Multiple, user-configurable icons are available for distinguishing between types of cameras (e.g. PTZ, megapixel, etc.)
 - d. Multiple regions on maps can be hyperlinked to regions on other maps, for easy navigation between maps

e. The IPVSSP navigation maps shall allow automatic updates to references to cameras, views, and resources represented as links on navigation maps, upon changes in these resources, so that the links are not severed. Such changes include changing the camera name in a recorder, changing view names, deleting a 'pin' (point of interest) from the database, etc.

L. Audit Logging

- 1. The IPVSSP shall have the option enable logging of all user activity in the client application
- 2. Audit logging shall include logging of the following user actions:
 - a. Authentication
 - b. Client setup
 - c. View selection
 - d. View streaming information
 - e. Pause live video
 - f. Play reverse in live view
 - g. Play forward in live view
 - h. Create snapshot
 - i. Digital PTZ
 - j. Access speaker and/or microphone
 - k. Hotspot usage
 - 1. Enter Browse mode
 - m. Use Smart Search
 - n. Timeslicing
 - o. All context menu functions including:
 - 1) Send to recipient
 - 2) Camera selection
 - 3) Create Snapshot
 - 4) Start recording
 - 5) Clear view pane
 - 6) Copy to clipboard
 - p. Export functions including
 - 1) Export to AVI file
 - 2) Database export
 - 3) Bookmark
 - 4) Printed report
 - 5) Individual frames

3. Audit logging shall provide a query tool for investigation

- a. Query filters shall include:
 - 1) Group
 - 2) User
 - 3) User location
 - 4) Action type
 - 5) Session ID
 - 6) Start and end date and time
- b. Query results shall sortable ascending or descending by column
- c. Query results shall be color coded for quick and easy identification of like items
- 4. Audit logging shall allow for data to be retained with options for hours, days and months
- 5. Audit logging shall allow for a maximum database size to be configured in megabytes
- 6. Audit logging shall allow for exporting of data to a comma separated value (CSV) file
- M. IPVSSP Base Licensing
 - 1. The licensing mechanism shall be automatic and immediate and shall not require review/approval by manufacturer personnel.
 - 2. The license shall be easily transferable between computers.
- N. Hardware requirements for IPVSSP Base and IPVSSP Administrator applications
 - 1. IPVSSP Base:
 - a. Install location: The IPVSSP Base application should be installed on a dedicated, limited-access server, typically at a central location.
 - b. Hardware specifications
 - 1) CPU: Intel® Xeon®, (Dual Core or better recommended) or Intel® Core™ i5 or better (if running on a workstation)
 - 2) RAM: Minimum 4 GB (8GB if running 64 bit OS)
 - 3) Hard Drive: 500 GB or more, more for large systems utilizing extensive video database Bookmarking
 - 4) Operating System: Windows Vista Business, Ultimate, Enterprise (32 & 64 Bit), Windows® 7 (Professional or Ultimate), Windows® 8 and 8.1, Server 2008 R2 (32 bit or 64 bit) or Windows Server 2012 R2 (32-bit or 64-bit).

5) Software: Microsoft, .NET 4.0 Framework, and Internet Information Services (IIS) 6.0 or newer, SQL Express 2008 or SQL Server 2008/2012

2. IPVSSP Admin:

- a. Install Location: The IPVSSP Admin application shall not require a dedicated computer and shall be capable of being installed on computers running a video client.
- b. Hardware specifications
 - 1) CPU: Intel® Core2 Duo
 - 2) RAM: Minimum 4 GB (8GB if running 64 bit OS)
 - 3) Operating System: Windows Vista Business, Ultimate, Enterprise (32 & 64 Bit), or Windows 7 Professional, Ultimate or Enterprise (32 & 64 Bit), Windows 8 and 8.1
 - 4) Graphics Adapter: PCI-Express, 128 MB RAM, Direct 3D supported

3. IPVSSP SQL Server

a. The IPVSSP Base module shall require the included Microsoft SQL Express 2008 database or use an existing instance of Microsoft SQL Server 2008 or SQL Server 2012 to store user information, views, events, maps and other configuration data.

2.04 MAJOR COMPONENT - IPVSSP RECORDER APPLICATION

A. General

- 1. The Recorder shall provide multi-site, multi-server distributed recording of video and audio.
- 2. The Recorder shall allow management of all recording servers and connected hardware from a single Recorder Server Manager application.
- 3. The Recorder shall include fully redundant management services without requiring clustering or high availability technologies.
- 4. The Recorder system shall support an unlimited number of recording servers, cameras and users, across the organizational network and shall allow monitoring and investigation from anywhere on the network via the Video Client.
 - a. Each recording server shall support the connection of an unlimited quantity of cameras or video encoder channels, with no software-imposed limitations.
 - b. The actual number of cameras connecting to each recording server shall be determined by the cameras attributes (e.g. resolution, multistreaming, frame rate, etc.) and recorder hardware capabilities.

September 2017

- c. Each IP camera shall require a license per device.
 - 1) Multi-stream and multi-head cameras shall only require a single license regardless of the number of streams used.
- d. Digital input/output devices shall not require a license.
 - 1) An unlimited number of digital input/out devices shall be supported.
 - 2) The Recorder shall include a virtual input/output module configurable for any number of virtual inputs and outputs.
- 5. The Recorder shall not require the MAC address of the device for licensing purposes.
- 6. The Recorder shall not require the use of hardware or software dongles for operation.
- 7. The Recorder shall include an automatic patch update service.
- 8. The Recorder shall support the use of virtualization to run recording servers on virtual computers, servers, and networks.
- 9. The Recorder shall include an automatic patch update service.
- 10. The Recorder servers shall be used for recording video feeds and for communicating with cameras and other devices
- 11. . The Recorder shall include server-based motion detection.
- 12. The Recorder servers shall communicate with the IPVSSP Base Server; however, the recording servers, once configured, shall run independently of the IPVSSP Base and continue to operate in the event that the IPVSSP Base is off-line.
- 13. The Recorder shall run in the background as a Windows® service, with no need for user login. The recorder service can be stopped/started, and shall provide system status and logging information.
- B. Recorder Architecture (Components)
 - 1. The Recorder shall consist of the following software components which may reside on a single server, or be installed on multiple servers within an overall IPVSSP system:
 - a. Device managers, each including a multimedia database for recording and distribution of video.
 - b. Core server with optional redundant slave core server to manage and maintain system configuration.
 - c. Recorder Manager Application for management of cameras, I/O devices, events and recording parameters. The Recorder Manager Application shall provide a feature-rich administration interface, for specific system administration setup and functionality. This shall include:

September 2017

- 1) A Service Manager
- 2) General Camera Settings:
 - a) Camera recording parameters
 - b) PTZ controls, including presets, patrols and move-to-preset on event
 - c) Recorded 1-way audio configuration (camera-connected microphone)
 - d) Server-based motion detection
- 3) Add/Edit/Remove a Device
- 4) I/O Setup and Control
- 5) Event Setup route messages and alerts including email, SMS messaging setup, and SNMP
 - a) SNMP v1, v2 and v3 supported
- 6) Alarm scenarios
- 7) Event Buttons for manually triggered events
- 2. The Recorder shall allow subdivision of the administrative rights levels and division into a control center and as many branches as required. The branches are defined as logical subunits with their own configuration context and cannot be nested.
 - 1) Users or other entities such as device manager servers or cameras that belong to a branch are restricted to their associations only, so that users only receive access to video data and the configuration of the associated branches.
 - 2) Users or other entities such as device managers or cameras that belong to the control center are also able to interact with branches. Users that belong to the control center are explicitly assigned administration rights for the applicable branches.
- C. Supported Devices and Compression Formats
 - 1. At a minimum, the Recorder (and the entire IPVSSP system) shall support devices from the following manufacturers/standards:

NOTE: Specifier should select those systems from the list below that are relevant to this installation. Should a system of interest not appear on the list, please check www.onssi.com for a full, up-to-date list of manufacturers, specific supported models and characteristics of each device.

1. ACTi	5. ARH	9. Bosch
2. Advantech	6. Axis	10. Canon
3. American Dynamics	7. Basler	11. Commend
4. Arecont Vision	8. Behnke	12. Convision

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents September 2017

13. D-Link	24. LG Electronics	35. Riva
14. Dallmeier	25. LILIN	36. Samsung
15. Etrovision	26. Lumenera	37. Sanyo

 16. Flir
 27. Mobotix
 38. Sentry 360

 17. Ganz
 28. Oncam Grandeye
 39. Siemens

 18. Grundig
 29. OnSSI
 40. Siqura

 19. HikVision
 30. ONVIF
 41. Sony

20. IDS 31. ONVIF Profile S 42. UDP Technology 21. Interlogix 32. Panasonic 43. Vista

22. IQinVision 33. PCS
23. JVC 34. Pelco

- 2. The Recorder shall include generic drivers for use with other cameras and encoders:
 - a. Generic RTSP driver
 - b. Generic MJPEG driver
 - c. Manufacturer-specific universal drivers for Arecont, Axis, HikVision, Samsung and Sony IP cameras
- 3. The Recorder shall support, at minimum, the following video compression formats for the video stream from all devices connected to encoders, and IP cameras connected to the system:
 - a. H.264
 - b. MPEG-4
 - c. PEG
 - d. MxPEG
- 4. The Recorder shall support motion detection in the camera as a recording trigger.
- 5. The Recorder shall support SSL encryption of camera connections.
- 6. The Recorder shall support multiple streams from compatible devices.
 - a. The Recorder shall allow each stream to be configured with a video classification for use within the IPVSSP system. The classifications shall include:
 - 1) Analytics
 - 2) HD quality
 - 3) Mobile
 - 4) Standard quality
 - 5) Web
- D. Backup of Recorder configuration data

- 1. The recorder shall allow export/import of configuration data, towards backing up of recorder configuration files for fast recovery.
- 2. The Recorder shall include an automatic scheduled backup of configuration data
- 3. The Recorder shall allow manual backups of configuration data
- E. Device Discovery and Setup
 - 1. Device Discovery and Detection: Cameras and other devices shall be automatically discovered using the following technologies:
 - a. Universal Plug and Play (UPnP)
 - b. ONVIF
 - c. Bonjour
 - 2. Consistency Check:
 - a. The Recorder shall have the option to verify the following settings when adding a device:
 - 1) IP address
 - 2) User name and password
 - 3) Camera driver
 - 3. Batch Device Configuration: Settings for cameras shall allow configuration as a batch action for multiple cameras simultaneously.
- F. Scheduled Export of Video Data
 - 1. The Recorder shall include the ability to automatically export video data per camera with settings for:
 - a. Standard or alarm recording export
 - b. Time period to be exported
 - c. Option to display camera name and time in the video
 - d. Resolution
 - e. Maximum duration of export
 - f. Reduced frame rate
 - 2. Path for exported video data shall be configurable per Device Manager
 - 3. Exported video data shall be secured using a password
 - 4. Exported video shall be playable via an Archive Camera
 - a. Archive Cameras shall not require additional device licenses
- G. Device Management and Activity Logging
 - 1. The Recorder shall provide:
 - a. Clear graphical representation of all devices at each recording server (cameras, audio inputs, audio outputs, I/O, etc.)
 - b. A report function to for queries relating to:
 - 1) User events (display of events that concern specific users)

Construction Documents

- 2) Alarm events (events that have occurred)
- 3) Camera usage (display of events that a specific camera)
- 4) System messages (display of events that concern specific services)
- c. Logging:
 - 1) Overall System log
 - 2) Event log
 - 3) Audit log
- H. Video Streaming The Recorder shall support the following:
 - 1. 256-bit AES encryption of all communications, commands and video streams between the Recorder and the Video Client
 - 2. Unicast to multiple clients Multiple unicast streams can be sent to multiple Video Client users (rather than limited to a single user).
 - 3. Synchronous multi-stream playback (within the same view), even when the cameras are using varying frame compression (H.264, MPEG-4, MJPEG and MxPEG)
 - 4. Fully integrated Matrix functionality for distributed viewing of any camera in the system from any computer to video clients across the network

I. Networking

- 1. NAT Firewall Support The Recorder shall support port forwarding, to allow clients from outside of a Network Address Translation (NAT) firewall to connect to recording servers without using a VPN.
- 2. Multi-Network Support The Recorder shall allow users to manage all cameras, recorders and clients on the same network, or on separate networks.
- 3. Network Topology The Recorder System shall support the use of segmented (VLAN or dedicated network) or shared networks. This shall provide physical network separation between the camera and the Recorder servers and video clients.
- J. Recording Management
 - 1. The Recorder shall support local and external data storage including:
 - a. Direct attached storage (DAS)
 - b. Network attached storage (NAS)
 - c. Storage area network (SAN)
 - 2. For each camera connected to a Recorder server, the following parameters shall be configurable on a per-camera basis:
 - a. Compression format (for multiple format cameras)
 - b. Frame rate per second

September 2017

- c. Image resolution
- d. Image Settings including settings for (dependent on camera model):
 - 1) Compression Level
 - 2) Image resolution
 - 3) Rotate image
 - 4) Bandwidth Control for H.264 and MPEG4 cameras: unlimited or specified bit rate
 - 5) Option to stream video via HTTPS (where supported by video device)
- e. Recording options:
 - 1) Continuous recording
 - 2) Record on camera or encoder based motion detection
 - 3) Record on server-based motion detection
 - 4) Record on event from camera or other supported device which may include:
 - a) Camera or encoder based video content analytics
 - b) Relay inputs on cameras or encoders
 - c) Dedicated or virtual input/output modules
 - 5) Alarm recording with options for:
 - a) Separate retention period for alarm recordings from regular recordings
 - b) Time of day and day of week
 - c) Speedup (for MJPEG encoded cameras)
 - d) Scheduled recording on event from camera or $3^{\rm rd}$ party device or system
 - e) Pre- and post-recording on motion/event. The pre- and post-recording time period shall be selectable in seconds.
 - 6) Recording priority:
 - a) The Recorder shall have the option to prioritize camera recordings in the event of low available disk space.
 - b) Recording priority shall be configurable per-camera.
- f. PTZ preset management (for PTZ cameras)
- g. PTZ patrol management
- h. Audio inclusion in recording
- i. Server-based motion detection:
 - 1) The Recorder shall include server-based motion detection with the ability to configure up to 16 Regions of Interest
 - 2) Each region of interest shall be a polygon

- 3) Each Region of Interest shall include the following configuration parameters:
 - a) Motion sensitivity
 - b) Motion threshold
- 4) The Recorder shall allow the use of each Region of Interest an event trigger
 - a) Region of Interest event triggers may be used to initiate recording with configurable load pre and post buffer periods
- j. The Recorder server-based motion detection shall include an Idle Timer to reduce CPU I/O Setup including the ability to configure I/O events:
 - 1) Add I/O event
 - 2) Edit I/O event name
 - 3) Enable/Disable I/O Events
 - 4) Assign timers to end an event sequence
- k. Tampering alerts
 - 1) Alerts from devices that feature tampering detection
 - 2) Server based tampering detection
 - 3) Server based reference image comparison
- K. Automatic Patch Update Service:
 - 1. The Recorder shall include an patch update service with the following options:
 - a. Download patches from the Internet and install automatically without user intervention
 - b. Download patches from the Internet automatically and save for manual installation
 - c. Download patches from a remote (FTP) site and install automatically without user intervention
 - d. Download patches from a remote (FTP) site and save for manual installation
 - e. Do not download or install patches (manual update)
- L. Hardware Requirements for IPVSSP Recorder Services:
 - 1. The Recorder System shall allow the use of off-the-shelf computers, servers, storage and switches from any manufacturer with components that meet the minimum requirements, as follows:
 - 2. Hardware for core management services:
 - a. RAM: 8 GB (16 or more GB recommended)

September 2017

- b. CPU: Intel Core i7-4930K @ 3.40GHz or Intel Xeon E5-2640 v3 @ $2.60\mathrm{GHz}$
- c. Available hard disk space: min. 50 GB and additional storage space for image recordings (HDD with 7200 RPM or faster recommended)
- d. Network: Gigabit or faster Ethernet Connection
- e. Operating Systems
 - 1) Windows® 7 (Home Premium, Professional, Ultimate, Enterprise)
 - 2) Windows® 8 (Standard, Professional, Enterprise)
 - 3) Windows Server® 2008 (Standard, Enterprise)
 - 4) Windows Server® 2008 R2 (Standard, Enterprise)
 - 5) Windows Server® 2012 (Standard, Datacenter)
- 3. Hardware for device manager services:
 - a. RAM: 8 GB (16 GB recommended)
 - b. CPU: Intel Core i7-4930K @ 3.40GHz or Intel Xeon E5-2640 v3 @ $2.60\mathrm{GHz}$
 - c. Available hard disk space: min. 50 GB and additional storage space for image recordings (HDD with 7200 RPM or faster recommended)
 - d. Network: Gigabit or faster Ethernet Connection
 - e. Operating Systems
 - 1) Windows® 7 (Home Premium, Professional, Ultimate, Enterprise)
 - 2) Windows® 8 (Standard, Professional, Enterprise)
 - 3) Windows Server® 2008 (Standard, Enterprise)
 - 4) Windows Server® 2008 R2 (Standard, Enterprise)
 - 5) Windows Server® 2012 (Standard, Datacenter)
- M. IPVSSP Recorder Manager Client Application:
 - 1. Install Location: The IPVSSP Recorder Manager application shall not require a dedicated computer and shall be capable of being installed on computers running a video client.
 - 2. Hardware specifications
 - a. CPU: Intel® Core i3[™]
 - b. RAM: Minimum 4 GB (8GB if running 64 bit OS)
 - c. Operating System:
 - 1) Windows Vista Business, Ultimate, Enterprise (32 & 64 Bit)
 - 2) Windows 7 Professional, Ultimate or Enterprise (32 & 64 Bit)
 - 3) Windows 8 and 8.1
 - d. Graphics Adapter: PCI-Express, 128 MB RAM, Direct 3D supported

2.05 MAJOR COMPONENT - VIDEO CLIENT

A. General

- 1. The Video Client shall be the main end-user interface for the IPVSSP platform.
- 2. The Video Client shall be a scalable solution that is backwards compatible with an entire line of Recorders.
- 3. The Video Client shall support up to 8 connected displays, each display providing independent operation of functions and tasks.
- 4. The Video Client shall support Privacy Masks as configured on the camera and IPVSSP Base.
- 5. The Video Client is a unified interface for all IPVSSP non-administrative functions, including:
 - a. Live monitoring
 - b. Receiving automatic, on-event push video alerting
 - c. Peer-to-peer alerting
 - d. Investigating recorded incidents
 - e. Bookmarking segments of video that are of interest
 - f. Shared event management among multiple users
 - g. Export of evidence
 - h. Map navigation
- 6. The Video Client shall also serve as the user interface for Video Wall operation
- B. Log-on and Authentication
 - 1. The Video Client log-on shall provide the option to select either Basic or Windows based authentication.
 - a. Basic Authentication The Video Client shall support logon using an account database which requires user name and password credentials.
 - b. The Video Client shall support logon using the NTLM (NT LAN Manager) challenge handshake with Microsoft Active Directory Domain Controllers in conjunction with a local Microsoft Windows user account database.
- C. Graphical User Interface (GUI) and Menu
 - 1. The Video Client shall provide a user-friendly operating environment, through an intuitive, touch screen-enabled GUI that reacts to the user's actions, presenting only the controls and tools required by the current mode of operation.
 - 2. The Video Client menus allow localization for multiple languages, selectable during installation via the Client setup menu, to include [languages]:

Construction Documents

- 3. The main GUI menu shall enable switching between the basic functions supported by the Video Client:
 - a. Selection of Views and navigation maps
 - b. Triggers for operating external devices ('soft buttons')
 - c. Selection of audio sources
 - d. Toggle between Live and Browse modes
 - e. Export evidence
 - f. Select Video Walls
 - g. View multiple export jobs' progress, as well as cancel jobs
- 4. The Video Client shall provide a visual alert in the form of an onscreen icon in the event that events and alerts are not received from the base application.
- 5. In addition to the main camera view, the Video Client main GUI menu shall provide the end-user the following controls when "mouse" over occurs:
 - a. Minimize
 - b. Exit
 - c. Help
 - d. Memory usage indicator (for both RAM and graphics card resources usage)
 - e. Loss of connection to Event Coordinator

D. Live Monitoring Mode

- 1. The Video Client shall enable live monitoring of privileged cameras from the entire network, regardless of which recording server each camera is connected to.
- 2. Live monitoring shall be assisted by controls for the following operations, at the minimum, all without transitioning to a different mode of operation:
 - a. Digital PTZ
 - b. Optical PTZ
 - c. Playback
 - d. Pause video
 - e. Change camera in current view
 - f. Audio routing
 - g. Send manual (peer-to-peer) push video alerts
 - h. Remove camera from view

- i. Copy current frame image to clipboard; optionally copy and paste only zoomed-in portion of video pane
- j. Lock/unlock hotspot
- k. Create snapshot
- 3. Users shall be able to choose among unlimited shared and private views, configurable for up to 64 view-panes per monitor from multiple servers (in multiple server installations).
- 4. All camera controls, including playback, optical & digital PTZ, change cameras on-the-fly, etc. are available in all options for populated view panes (camera, carousel, push video, hotspot).
- 5. Immediately upon losing connection to a camera, a prominent 'X' shall overlay an image of the last frame received from the camera. This indicator will appear also upon selecting the camera from the camera list or selecting a view which includes the camera. Once reconnected, the connection alert will be automatically removed.
- 6. View panes in View Arrays shall consist of the following:
 - a. Camera views, with controls for:
 - 1) Playback/pause
 - 2) Digital PTZ
 - 3) Optical PTZ (for PTZ cameras)
 - 4) Optical PTZ presets (for PTZ cameras)
 - 5) Stream selection
 - b. Carousel views with controls for:
 - 1) Previous/next camera in sequence
 - 2) Pause/resume carousel
 - 3) Playback
 - 4) Optical PTZ and optical PTZ presets
 - 5) Digital PTZ
 - c. Push-Video views
 - 1) Push video alerts will be displayed, upon authorization, in userconfigured dedicated camera panes within camera views.
 - 2) Automated (generated on-event) or manual (peer-to-peer) push live video.
 - 3) Once sent to a client, the push video can be controlled by the operator for:
 - a) Digital PTZ
 - b) Optical PTZ and optical PTZ presets

- c) Playback and additional investigation controls, just like any other camera displayed.
- d. Views for displaying web pages and static images
- e. Multiple hotspots
- 7. For each View Pane, a top menu bar shall enable:
 - a. Toggle camera view between Pane and Full Screen views.
 - b. Camera status indicator for each View pane, displaying:
 - 1) Camera name
 - 2) Event name (associated with specific camera)
 - 3) Live/paused video stream
- E. Critical Camera Failover
 - 1. The Video Client shall support camera failover as configured in the IPVSSP Base and automatically switch the live view pane to the designated alternate camera upon failure or disconnect of the specific camera and/or the Recorder on which the camera is hosted.
 - 2. Camera failover shall be supported in all live monitoring modes in the Video Client:
 - a. Any and all view panes in view arrays
 - b. Blank screen alert panes
 - c. Alert handling window
 - d. Live preview window in a map view
 - e. Push-video panes
- F. Instantaneous Investigation during live monitoring:
 - 1. Playback control in live monitoring mode
 - a. Users can instantly investigate video during live monitoring using:
 - 1) Play
 - 2) Backwards play
 - 3) Toggle pause/live controls
 - b. Playback during live monitoring is a-synchronous, i.e. only the selected camera within the View is played back or paused.
 - 2. PTZ Controls both optical PTZ (if the camera is a PTZ camera) and digital PTZ controls shall be provided, including:
 - a. A unified method and toolset for optical PTZ control.
 - b. Optical PTZ is controlled by:
 - 1) Mouse wheel (zoom in/out)
 - 2) Variable zoom ribbon
 - 3) Zoom in and out buttons

- 4) Click to a location to re-center the pan-tilt field of view
- 5) Virtual joystick
- 6) Physical joystick
- c. Up to 50 optical PTZ presets can be configured for each PTZ cameras.
 Presets list will appear as overlay.
- d. Digital PTZ control:
 - 1) Digital PTZ controls shall be provided for both fixed cameras and PTZ cameras.
 - 2) Digital PTZ controls shall include instant investigation in live monitoring mode as well as for stored video.
 - 3) A window-in-window view shall be provided to show both the zoomed in area, as well as the full field of view of the camera.
 - 4) Digital PTZ is controlled by:
 - a) Drag-draw a rectangle within the current field of view to zoom into for supported devices
 - b) Drag-grab the zoom image for pan and tilt
 - c) Mouse-wheel zoom in and out.
 - 5) Special controls shall be provided for cameras equipped with 360° ('panamorphic') lens to accomplish:
 - a) The original semi-spherical camera view parsed to resemble a regular camera's view.
 - b) The parsed view can be digitally panned, tilted and zoomed, emulating a multi-camera 360° coverage.
 - c) Virtual and/or physical joysticks may be used to digitally control pan and tilt.
 - d) Quad view displaying 4 areas of the view in non-panamorphic mode
- 3. Context Menu (Circular Control)
 - a. Based on privileges assigned per group and per user in the Administrator application, operators shall have access to the following functions.
 - 1) Context menu (Circular Control) shall be accessed by right-clicking or, for touch screens, by pressing for 3 seconds in a selected pane in a view.
 - 2) Toggle (start/stop) PTZ patrolling for the selected camera

- 3) Single camera snapshot user shall be able to save a JPEG image of the current camera view to a designated folder on the user's PC with time and date included on the image
- 4) Instant camera change users shall be able to instantly replace the camera in any given view pane by choosing another camera from a drop-down list. This will not change the configuration of the View array.
 - a) When the camera list is displayed, users shall be able to instantly access camera names by typing any combination of letters and/or numbers. This will filter the camera names to display only those that include the entered text.
 - b) Users shall be able to click the desired camera or use the Enter key to select the top camera in the list
 - c) The camera selection list shall retain previously entered information and shall have the option to automatically clear this information via the client setup menu
- 5) A Camera view can be instantly removed from the displayed view, leaving its view pane (within the View Array) blank.
- 6) Copy current frame image to clipboard
- 7) Push live video alert users are able to push a live video stream to another user's video client. The recipient is selected from a drop down list.
- 8) Manually activate surveillance system events.
- 9) Manually activate external outputs (e.g. sirens or lights).
- 10) Use sound notifications for attracting attention to detected motion or system events.

G. Browse (Investigation) Mode

- Upon transitioning from Live Monitoring mode to Browse mode, the entire View array shall carry into Browse mode. All means of interaction with camera panes, for digital PTZ, changing cameras on-the-fly, removing camera from pane, and copying frame image to clipboard, shall be retained
- 2. In Browse mode, camera playback shall be synchronous, enabling following an incident as it unfolds through different camera views.
- 3. Operators shall not be required to know the location of video data for any time period, camera or device. Retrieval of video shall be seamless to the operator.

Construction Documents September 2017

4. Multiple tools for playback and investigation shall be provided in this mode, as follows:

- a. Playback
 - 1) Forward and backward playback
 - 2) Frame by frame forward and reverse
 - 3) Skip to end or beginning of recording database
 - 4) Skip to next/previous event sequence
 - 5) Go to time/date
- b. Motion detection may be applied to the selected camera within the view, with calibration for:
 - 1) Percentage of changed pixels (within the motion detection zone)
 - 2) Sensitivity (Low, Medium, High)
 - 3) Detection sampling interval (frame-by-frame to 5 seconds)
- 5. Skip to Previous/Next detected motion event.
- 6. Kinetic Horizontal Motion Timeline:
 - a. In each Camera View array, a 'main' timeline shall be associated with the selected camera pane; all other camera panes will display a non-interactive, limited-functionality timeline.
 - b. Kinetic variability (i.e., via the momentum and speed of mouse movement) of the speed that the recorded video timescale is moved forward/backward in time. The faster the mouse is "swiped", the faster the timeline will move.
 - c. The timeline GUI shall provide controls for controlling forward, reverse, pause, etc. controls with pop-up help labels.
 - d. The timeline GUI shall provide simple "+" and "-" controls to quickly change the scale of the timeline.
 - e. The timeline GUI controls shall provide an intuitive "odometer" like numerical interface for reading and changing the recorded time viewed.
 - f. The Timeline shall be color coded, indicating periods of (a) no recorded video, (b) recorded video, (c) video recorded on detected motion or event
- 7. "Timeslicer" The Video Client shall provide for instant video playback and analysis of video content/events by providing autogenerated thumbnails for quick end-user analysis.
 - a. The user shall have the ability to vary the thumbnail based on:
 1) Time:

Construction Documents September 2017

- a) auto-generated thumbnails in intervals of:
 - i. 10 seconds
 - ii. 1 minute
 - iii. 10 minutes
 - iv. 1 hour
 - v. 6 hours
 - vi. 1 day.
- b) Selecting an interval will shift the timeline to the time of the interval; from this point, another series of intervals can be generated.
- 2) Motion:
 - a) Series of thumbnails representing motion detection events, configured by percentage of changed pixels and sampling interval.
 - b) Sampling interval is variable from frame-by-frame to 5 seconds.
- 3) Alerts Series of thumbnails representing alerts, as configured in the IPVSSP
- 4) Sequences Series of thumbnails shall be based on pre-configured sequences of detected motion.
- b. All Timeslicer modes shall enable the application of digital PTZ to all slices, by drawing a region in the Timeslicer main pane.
- c. Timeslicing may be performed forward or backward from the time displayed in the timeline
- H. Shared Event Handling
 - 1. The IPVSSP platform shall provide the workflow and the tools to allow efficient shared event handling among multiple users at multiple locations.
 - 2. Upon login, the Video Client shall display the number of unhandled events.
 - 3. In the event that alerts and events are not received, an icon will appear on screen to notify the operator that the event utility (proxy) is not functioning properly.
 - 4. The number of events triggered by a specific camera that are registered in the events list (and displayed in the video client event counter) can be capped by the IPVSSP administrator application, based on:
 - a. Age (time since event)
 - b. Absolute number (based on a first-in-first-out scheme)

- c. Frequency (number of events per time unit, whereas only the first event within a set time interval is registered)
- 5. A dedicated Alert-Handling window shall be accessible via the event counter or through the menu bar. The Alert Handling window shall display the following panes:
 - a. Unhandled Events list. This list shall be dynamically updated and shared among all users logged in to the IPVSSP Base application. For each event listed, the following details shall be presented:
 - Priority indicated by color code, corresponding to the alert levels set in the IPVSSP Base Administrator from a low priority (1 with corresponding green color) to high priority (10 with corresponding red color) with intermediate steps (numbers and colors) in between.
 - 2) Date and time of the event
 - 3) Camera name
 - 4) Camera event name
 - 5) Alert rule activated
 - 6) Alerts may be sorted by:
 - a) Priority
 - b) Alert Level
 - c) Time
 - d) Camera
 - e) Location
 - f) Rule Activated.
 - b. A pane showing a pre-buffered recording of the event (buffer time can be configured in the recorder). This pane shall, upon interaction, enable and display controls for:
 - 1) Playback (forward, backward and toggle live/pause)
 - 2) Digital PTZ (mouse wheel, draw region)
 - 3) Optical PTZ, for PTZ cameras (virtual joystick, physical joystick, zoom ribbon, zoom control, mouse wheel, click to center)
 - 4) Optical PTZ Presets, for PTZ cameras
 - 5) Special controls for cameras equipped with 360-degree (panamorphic) lenses
 - c. A live view from the same camera or cameras, shall be presented in the video panes, alongside the pre-buffered recorded video pane.

 This pane shall, upon interaction, enable and display controls for:

Construction Documents

- 1) Playback (forward, backward and toggle live/pause)
- 2) Digital PTZ (mouse wheel, draw region)
- 3) Optical PTZ, for PTZ cameras (virtual joystick, physical joystick, zoom ribbon, zoom control, mouse wheel, click to center)
- 4) Optical PTZ Presets, for PTZ cameras
- 5) Special controls for cameras equipped with 360-degree (panamorphic) lenses
- d. A dedicated map pane shall center on the primary camera which had triggered the alert. The camera icon shall be prominently highlighted. The map in the map pane shall allow:
 - 1) Dragging around in the pane
 - 2) Scaling (zooming in and out)
 - 3) Linking to other maps.
- e. A tool bar shall provide easy access to Event handling tools:
 - 1) Acknowledge Acknowledge alert
 - 2) Locate Locate alert on map (if map is displayed)
 - 3) Send Live -- Send live video stream to a remote Video Wall
 - 4) Remote Loop Send a 10 second loop of the event to a remote Video Wall
 - 5) Filter Acknowledge/handle multiple events at once
 - 6) Toggle panes between:
 - a) Pane 1 showing prebuffered recording and pane 2 showing live video
 - b) Pane 1 and 2 (merged) showing prebuffered recording
 - c) Pane 1 and 2 (merged) showing live video

6. Events

- a. Events shall be handled through a dialog box launched through the Event Handling page, displaying the following fields:
 - 1) Operator selected from drop-down list
 - 2) Classification selected from drop-down list
 - 3) Case selected from drop-down list with an option to add a new case
 - 4) Tags free text
 - 5) Operator's comments
- b. Handled Events shall be removed from the Alerts List, and shall be accessed only by the administrator through the IPVSSP Base Administration application, for review or batch-handling.

- c. The Video Client shall alert logged-in users if the IPVSSP Base cannot receive new events.
- I. Bookmarking and Export of Evidence
 - 1. Users shall be able to bookmark and/or export segments of video, from one or more cameras.
 - 2. A segment of video shall be selected, for both bookmarking and export of evidence, by setting start and end points on the Kinetic Timeline.
 - 3. The following options are available for bookmarking and exporting evidence:
 - a. Still Image report, displaying:
 - 1) Time/date of the event (capture time)
 - 2) Camera name
 - 3) Operator Name
 - 4) Operator workstation
 - 5) Operator's comments.
 - 6) Still image the first frame in the selected Timeline range
 - b. Export of individual still frames.
 - 1) Users shall be able to choose between exporting:
 - a) A single frame (first frame in Timeline range), or
 - b) All frames in the Timeline range.
 - 2) Options for export shall include:
 - a) Image Quality (Original, Medium and Low}
 - b) Inclusion of Time Stamp
 - c) Inclusion of Camera Name
 - c. Export of a video database:
 - 1) The video database shall offer an option for:
 - a) The export path for the exported video database
 - b) Filename
 - c) Checkboxes for inclusion of one, some or all cameras within the current View in the video database and any associated audio recordings
 - d) Adding password protection for both opening the database
 - e) Encrypting the video data.
 - i. Encryption options shall include both 128-bit and 256-bit AES encryption
 - 2) Exported video databases shall be available for playback/review on any computer, without the requirement for a Video Client

- software to be installed on the viewing computer (e.g. when reviewing the database on a courtroom computer.)
- a) A standalone viewer application, loaded onto the same portable storage medium (CD/DVD/USB Drive/Other) as the video database, will enable playback directly from the portable storage medium.
- b) The standalone viewer shall be available free of charge, for unlimited use.
- c) Features of the Video Database Viewer include:
 - i. Three video quality setting (Low, Medium and High) to optimize performance.
 - ii. Comprehensive set of playback controls: play, frame-byframe, skip to end/beginning of video or go to specific time stamp. Playback is synchronous for all cameras displayed.
 - iii. Scalable timeline, color coded for motion activity and areas of recorded video. The timeline can be dragged to control multi-camera synchronous playback.
 - iv. Digital PTZ (pan, tilt & zoom).
 - v. Export video of selected camera as AVI file, optionally preceded by a preamble including video and camera data as well as user's annotations.
 - vi. Export still-image (.jpg) annotated incident report, or multiple-frame still-image folder
- d. Export of audio-included AVI file. Options include:
 - 1) Appending a preamble 'slide' including:
 - a) Export date
 - b) Workstation that initiated the export
 - c) Operator (user)
 - d) Operator's comments
 - 2) Setting the video codec and encoding quality.
 - 3) Limit exported video to zoomed-in portion of video pane.
- e. Bookmark for cameras within the current View
 - 1) The bookmarked segment of video, for all cameras, will be copied into a separate video database.
 - 2) Bookmarks shall allow entries for:

- a) Classification (from drop down list of administratorconfigured classes; users may create their own upon authorization)
- b) Case File (from drop down list of administrator-configured classes)
- c) Tags (either existing or new tags)
- d) Operator's comments (free text).
- 3) Bookmarks shall be retrieved through the Bookmarks Window, accessible via the menu bar. The Bookmarks Window shall allow sorting entries by:
 - a) Date/Time Created
 - b) Classification
 - c) Case
 - d) Time of Event
 - e) Duration (in seconds)
 - f) Camera name
- 4) The Bookmarks Window shall present thumbnails of the first frame in the selected range, for each of the cameras included in each bookmark.
- 5) The Bookmarks window shall include two hotspot panes for playback of bookmarked video. Both hotspots shall allow playback and investigation of video, including:
 - a) Playback (forward, backward and toggle live/pause)
 - b) Digital PTZ (mouse wheel, draw region)
 - c) Optical PTZ, for PTZ cameras (virtual joystick, physical joystick, zoom ribbon, zoom control, mouse wheel, click to center)
 - d) Optical PTZ Presets, for PTZ cameras
 - e) Special controls for cameras equipped with 360-degree (panamorphic) lenses
 - f) Change Camera
- 6) The Bookmarks page shall also display a color-coded, scalable, kinetic horizontal motion timeline. 'Swiping' the timeline will play back the video, in both panes (synchronously) at a speed corresponding to the velocity of the 'swipe'. The color-coding shall indicate periods of:
 - a) No recorded video

Construction Documents September 2017

- b) Recorded video
- c) Video recorded on detected motion
- J. Map-Based Access to Video and Video Wall Control
 - 1. The Video Client shall enable accessing and displaying cameras and camera arrays ('Views') through a map-based interface. The same interface shall be used for local (for multiple-screen video clients) and remote (requires optional add-on) Video Wall management.
 - 2. Navigation maps shall be created in the IPVSSP Base administration application; Video client operators shall, upon logging into the Base Server, have access to both Shared maps and those maps associated with operator's user group.
 - 3. Navigation maps shall allow automatic updates to references to cameras, views, and resources represented as links on navigation maps, upon changes in these resources, so that the links are not severed. Such changes include changing the camera name in a recorder, changing view names, deleting a 'pin' (point of interest) from the database, etc.
 - 4. There is no limit on the number of maps available to users.
 - 5. Images for maps (geographical, aerial photo, floor plan or any graphic) shall be created in an image format supported by the client machine, including but not limited to:
 - a. JPEG
 - b. PNG
 - c. BMP
 - d. TIFF
 - e. GIF
 - 6. Map images shall be scalable. Increasing and decreasing the size of the map image (creating a zoom in/out effect) shall be done via dedicated controls.
 - 7. The mapping interface shall allow dragging map images that exceed in size the map window.
 - 8. Maps shall include the following elements:
 - a. Camera icons, representing a single camera. Multiple icons, representing different types of cameras, may be incorporated in a single map. Icons are scalable and can be rotated.
 - b. Camera View icons, representing entire view array as created for the client application. View arrays included in maps shall may include:
 - 1) Cameras

- 2) Camera carousels
- 3) Alert panes for on-event automatic push-video alerts
- 4) Alert panes for manual (peer-to-peer) push-video alerts
- 5) HTML pages
- 6) Static HTML images
- c. Labels: The font size for each individual Camera icon and Camera View icon label shall be able to be set through IPVSSP Base administration application.
- d. Hyperlinks to other maps. Hyperlinks shall be configured either as embedded within each map or as floating GUI buttons that stay visible within the video client's Map GUI. The IPVSSP Base Administrator may assign one of five different colors to a hyperlink at the time it is created.
- e. 'Back' button to last map displayed.
- 9. A live preview window will pop up upon clicking and holding a camera or camera array icon. Camera and Camera Array preview windows shall allow:
 - a. Launching multiple preview windows on a single map
 - b. Docking a preview window to the map
 - c. Resizing the preview window
 - d. All interactive features as in live monitoring mode, including:
 - 1) Playback control
 - 2) Digital PTZ
 - 3) Optical PTZ
 - 4) PTZ presets (for PTZ cameras)
 - 5) 360-degree lens parsing (for cameras equipped with 360-degree lens)
 - e. Arranging multiple docked preview windows at the bottom of the screen, via dedicated controls; preview windows shall resize based on the number of preview windows docked.
- 10. The map interface shall allow pushing cameras and camera arrays to local (for multiple-screen video clients) and remote (video wall; requires optional add-on application) video displays.
 - a. A menu bar item shall list the available video walls (including local displays). Video walls shall be graphically represented in a drop-down video wall menu.
 - b. The user shall be able to adjust the number of video panes on each display represented in the video wall: 1x1, 2x2 or 3x3.

- c. Cameras shall be pushed to video walls by highlighting the desired video wall graphic or pane within a video wall graphic, and clicking on a camera icon. Alternately, a camera icon can be dragged into a video wall or video wall pane.
- d. Camera arrays are pushed to video wall displays in the same manner; in such a case, the video wall display shall assume the pushed camera group's array structure.
- e. The mapping interface shall allow for collaborative control of the video displayed on local and remote video walls, including:
 - 1) Toggle between live and playback
 - 2) Playback (forward and backward), Frame-by-Frame (forward and backward) and Pause
 - 3) Digital zoom of a specific are of a camera view
 - 4) Ability to rearrange and change view arrays on the local and remote video walls
- f. A camera locator control shall display the location of the camera icon, centered within a map.
- 11. Users operating the Client application as a video wall controller, shall be able to control the associations with specific video walls directly from the Client setup utility. For each authorized remote or local video wall display, settings shall include:
 - a. Association with entire sites
 - b. Control over the position of each video wall screen representation within the drop-down video wall tab in the Client.
- K. Camera Array (Camera View) Setup (Limited Mode)
 - 1. Video client operators, upon logging in directly to the Recorder, shall be able to create and edit views that are stored on the Recorder via simple drag and drop GUI.
 - 2. Camera matrix view setup options shall include: 1 x 1, 2 x 2, 3 x 3 and 4 x 4 camera views.
- L. Client User Preferences Setup
 - 1. The Video client shall include a setup feature, which allows on-the-fly configuration of:
 - a. display mode (full-screen or windowed)
 - b. screen selection allows displaying the client on all or on specified local screens.
 - c. interface language selection

Construction Documents

d. enable snapshot feature and specify directory for snapshots

- e. automatically clear text from camera selection list.
- f. enable synchronous playback when viewing multiple cameras (not skipping over areas on the timeline that do not have video).
- g. enable push-to-talk functionality for workstation microphone.
- h. menu bar auto-hide when enabled, the menu bar will disappear when not in use and reappear on mouse-over.
- i. frame rate setting (reduced or full frame rate) for cameras either than the selected (highlighted) camera in Browse mode. In both options, the selected camera will display in full frame rate.
- j. video quality setup for H.264/MPEG4 streams: the user is given the option to skip to next I-frame (complete image frame) in the event of incomplete video data between I-frames.
- k. joystick Sensitivity (virtual and physical) setup This setting determines the threshold for response to joystick movement, to unintended joystick movement caused by physical vibration or random minute pan/tilt signals sent by the joystick.
- 1. joystick button setup joystick buttons may be configured with control shortcuts for the following operations:
 - 1) PTZ Up
 - 2) PTZ Down
 - 3) PTZ Left
 - 4) PTZ Right
 - 5) PTZ Up Left
 - 6) PTZ Up Right
 - 7) PTZ Down Left
 - 8) PTZ Down Right
 - 9) PTZ Zoom In
 - 10) PTZ Zoom Out
 - 11) PTZ Presets (9 shortcuts available)
 - 12) Start Recording
 - 13) Show Live
 - 14) Show Browse
 - 15) Next Image
 - 16) Previous Image
 - 17) Playback
 - 18) Minimize/Maximize View

September 2017

- 19) Minimize Application
- 20) Log Out
- 21) Close Application
- 22) Show Client Setup
- 23) Show Shortcut Keys
- M. Keyboards Shortcuts for Client Operations
 - 1. Keyboard shortcuts shall be available for many the following Client controls:
 - a. PTZ Up
 - b. PTZ Down
 - c. PTZ Left
 - d. PTZ Right
 - e. PTZ Up Left
 - f. PTZ Up Right
 - g. PTZ Down Left
 - h. PTZ Down Right
 - i. PTZ Zoom In
 - j. PTZ Zoom Out
 - k. PTZ Presets (9 shortcuts available)
 - 1. Start Recording
 - m. Show Live
 - n. Show Browse
 - o. Next Image
 - p. Previous Image
 - q. Playback
 - r. Minimize/Maximize View
 - s. Minimize Application
 - t. Log Out
 - u. Close Application
 - v. Show Client Setup
 - w. Show Shortcut Keys
 - 2. All shortcuts shall be a combination of the [Alt, Control or Shift keys] + [any number of letter key].
- N. Access to the Client setup menu shall be granted on a per group and per user basis as configured in the Administrator program.
- O. Hardware Requirements for Video Client Application

September 2017

1. The Video Client shall allow the use of Windows based computer, servers, storage and switches from any manufacturer with components

- that meet the following requirements.
 - a. CPU Intel Core i5™ or better
 - b. RAM 4 GB (8GB if using 64 bit OS)
 - 1) Operating system Operating System: Windows Vista Business, Ultimate, Enterprise (32 & 64 Bit), or Windows 7 Professional, Ultimate or Enterprise (32 & 64 Bit), Windows 8 and 8.1
 - c. Software DirectX 9.0 or newer
 - d. Graphics Adapter PCI-Express, minimum 256 MB RAM, Direct 3D supported.
 - e. Video RAM Requirements:
 - 1) 20 simultaneous Video Channels: 512 MB
 - 2) 35 simultaneous Video Channels: 1 GB
 - 3) 50 simultaneous Video Channels: 1.5 GB
 - 4) 64 simultaneous Video Channels: 2 GB

2.06 Major Component - Web and Mobile Client

- A. The IPVSSP shall include two options for web access:
 - 1. High Definition Interactive Streaming (HDIS) web service to allow for browser-based access to privileged cameras over low bandwidth connections.
 - a. Supported browsers:
 - 1) Google Chrome version 40 or later
 - 2) Apple Safari version 8 or later
 - 3) Mozilla Firefox version 40 or later
 - 4) Microsoft Internet Explorer version 10 or later
 - 2. Standard web service to allow for browser-based access to privileged cameras over high bandwidth (local LAN) connections.
 - a. Supported browsers:
 - 1) Microsoft Internet Explorer version 10 or later
- B. The web services shall allow streaming of up to 16 megapixel, HD or SD resolution cameras at up to 30 frames per second.
- C. The web client shall allow for unlimited views creation in the browser as well as access to shared views as configured in the IPVSSP Base.
 - 1. Available views shall include:
 - a. 1x1
 - b. 2x2

- c. 3x3
- d. 4x4
- D. Users have the ability to change cameras in a view by a simple drag-anddrop operation from a list of available cameras
- E. Cameras may be viewed in a grid or full screen by clicking the title bar of the camera
- F. Web client users have the ability to digitally zoom any camera
- G. Web client users have the ability to control PTZ cameras via the following methods:
 - 1. Click to center
 - 2. Access to PTZ presets
- H. The web client shall include synchronized playback of all camera in a view with forward and reverse speed control as well as frame-by-frame controls
- I. The HDIS component shall include administration tools for:
 - 1. Bandwidth limitation
 - 2. Frames per second control
 - 3. Client view resolution
 - 4. Concurrent logins
- J. Portable (handheld) clients The IPVSSP system shall enable access to live and recorded video via the HDIS service, from any camera, through the following:
 - 1. Free Apple® iOS app
 - a. iOS 6.0 or later supported
 - b. iPad 2 and later supported
 - c. iPhone 4 or later supported
 - 2. Free Android® app
 - a. Android 4.0 or later supported

2.07 Add-on Applications

- A. General
 - 1. The IPVSSP shall enable the incorporation of optional add-on applications to enhance the overall functionality of the IPVSSP system.
 - 2. Add-on applications include, but are not limited to:
 - a. Video Wall Management
- B. Video Wall
 - The Video Wall add-on shall enable pushing single cameras or entire camera arrays to multiple remote displays (video walls, public displays, users' video client screens), across the network.

- 2. The Video Wall add-on shall be operated through the unified Video Client interface.
- 3. Video Walls will be controlled via the Video Client's map-based navigation interface, by means of:
 - a. Selecting a map from a list, or linking to a map via another map
 - b. Selecting a video wall, from a drop-down list. A representation of the selected video wall will appear on a dedicated Video Walls panel, depicting the number of screens and their relative layout (e.g. a 1x4 layout vs. a 2x2 layout, for a 4-screen video wall).
- 4. Cameras and/or camera arrays are pushed to screens in two ways:
 - a. Drag-and-drop
 - 1) For single cameras, the representative icon is dragged to the desired segment of a video wall screen.
 - 2) For camera arrays, the representative icon is dragged to the desired screen; the camera array will populate the entire screen.
 - b. Highlight and select
 - 1) A segment of a video wall is highlighted (by clicking); clicking on a camera icon will push the camera to the selected segment; clicking on a camera array icon will cause the array to populate the entire screen.
- 5. The Video Wall add-on shall enable accessing and displaying cameras and camera arrays ('Views') through the Video Client's map-based interface.
- 6. Navigation maps for navigating to cameras shall be created in the IPVSSP Base administration application; Video client operators shall have access to maps upon logging in to the Base Server.
- 7. There is no limit on the number of maps available to users.
- 8. Images for maps (geographical, aerial photo, floor plan or any graphic) shall be created in an image format supported by the client machine, including but not limited to:
 - a. JPEG
 - b. PNG
 - c. BMP
 - d. TIFF
 - e. GIF
- 9. Map images shall be scalable. Increasing and decreasing the size of the map image (creating a zoom in/out effect) shall be done via dedicated controls.

- 10. The mapping interface shall allow dragging map images that exceed the size of the map window.
- 11. Maps shall include the following elements:
 - a. Camera icons, representing a single camera. Multiple icons, representing different types of cameras, may be incorporated in a single map.
 - b. Camera View icons, representing entire view array as created for the client application. View arrays included in maps shall may include:
 - 1) Cameras
 - 2) Camera carousels
 - 3) Alert panes for on-event automatic push-video alerts
 - 4) Alert panes for manual (peer-to-peer) push-video alerts
 - 5) HTML pages
 - 6) Static HTML images.
 - c. Hyperlinks to other maps
 - d. 'Back' button to last map displayed.
- 12. A live preview window will pop up upon clicking and holding on a camera or camera array icon. Camera and Camera Array preview windows shall allow:
 - a. Launching multiple preview windows on a single map
 - b. Docking a preview window to the map
 - c. Resizing the preview window
 - d. All interactive features as in live monitoring mode, including playback control, digital PTZ, optical PTZ and PTZ presets (for PTZ cameras), 360-degree lens parsing (for cameras equipped with 360degree lens)
 - e. Arranging multiple docked preview windows at the bottom of the screen, via dedicated controls; preview windows shall resize based on the number of preview windows docked.
- 13. The map interface shall allow pushing cameras and camera arrays to local (for multiple-screen video clients) and remote (video wall; requires optional add-on application) video displays.
 - a. A menu bar item shall list the available video walls (including local displays). Video walls shall be graphically represented in a drop-down video wall menu.
 - b. The user shall be able to adjust the number of video panes on each display: 1x1, 2x2 or 3x3.

Construction Documents

- c. Cameras shall be pushed to video walls by highlighting the desired video wall graphic or pane within a video wall graphic, and clicking on a camera icon. Alternately, a camera icon can be dragged into a video wall or video wall pane.
- d. Camera arrays are pushed to video wall displays in the same manner; in such a case, the video wall display shall assume the pushed camera group's array structure.
- e. The mapping interface shall allow collaborative control of the video displayed on local and remote video walls, including:
 - 1) Toggle between live and playback
 - 2) Playback (forward and backward), Frame-by-Frame (forward and backward) and Pause
 - 3) Digital zoom of a specific are of a camera view
 - 4) Ability to rearrange and change view arrays on the local and remote video walls
- f. A camera pane panel shall allow viewing and controlling the camera sent to a video wall, independent of the video wall playback controls, with all supported camera control functions:
 - 1) Playback control
 - 2) Digital PTZ
 - 3) Optical PTZ
 - 4) PTZ presets (for PTZ cameras)
 - 5) 360-degree lens parsing (for cameras equipped with 360-degree lens).
 - 6) With the exception of Optical PTZ controls, operations on this panel shall not affect the image on the video wall.
- g. A camera locator control shall display the location of the camera icon, centered within a map.

PART 3 EXECUTION

3.01 INSTALLERS

A. The Contractor's installers and technicians shall be factory trained and certified to install, service and maintain the system.

3.02 INSTALLATION

A. Before permanent installation of the system, the system shall be tested in conjunction with all other systems to which there is planned inbound or outbound communication with the Platform.

NLR IMPROVE SECURITY CONTROL

CENTRAL ARKANSAS VETERANS HCS

Construction Documents

September 2017

B. Install location: The IPVSSP Base application shall be installed on a dedicated, limited-access server, typically at a central location.

- - - END - - -