

Surveillance System Replacement

<u>Exterior Pathways:</u> An existing fiber optic backbone exists on the Muskogee campus utilizing a star topology distributed infrastructure from Telephone Equipment Room 201B-52 to the various OI&T Rooms. New fiber optic infrastructure will be installed from the OI&T Rooms to the various Telecommunication Rooms/Horizontal Connectors (TR/HC) as defined in the project documents. The new infrastructure will be installed in existing conduits where possible and in new ductbanks where required.

Interior Spaces

A security network head-end room will be required. The room will be located next to the Telephone Equipment Room in Room 201A1-52, Building 52. The purpose of this room is to support security servers and storage racks.

- Where equipment is mounted to the wall, the wall will receive 3/4" fire treated plywood installed 6"to 8'-6" AFF. The rating stamp will be exposed.
- The room will have dedicated power and standard lighting. Dedicated 120 volt and/or 208 volt power receptacles will also be required.
- Doors will be equipped with proximity readers, door status switches, exit devices, and camera locations for entry access.
- New 19" (w) x 7' (h) equipment racks with vertical and horizontal wire management will be installed as required for security equipment.
- Grounding of all equipment to a ground bar located in the entrance room will be required.
- UPS power will be provided for security equipment and network switches.

Intermediate security (FMS) rooms will be required. Each room size will be adequate for door control panels, cable distribution racks, network switches, and power supplies as required for the security system. The location of these rooms will be placed such that the camera cable runs from the closet to the camera will be limited to a maximum of 290 feet. The purpose of these rooms is to support horizontal and backbone building cabling for the CCTV system and the security system, and CCTV and access control equipment.

- Where equipment is mounted to the wall, the wall will receive 3/4" fire treated plywood installed 6"to 8'-6" AFF. The rating stamp will be exposed.
- The room will have dedicated power and standard lighting. Dedicated 120 volt and/or 208 volt power receptacles will also be required
- Selected doors will be equipped with proximity readers, door status switches, exit devices, and camera locations for entry access.
- New 19" (w) x 7' (h) equipment racks with vertical and horizontal wire management will be installed as required.
- Grounding of all equipment to a ground bar located in the room will be required.
- UPS power will be provided for network switches.

Interior Pathways

General: Anywhere that a penetration is required through a corridor, wall or hard ceiling for telecommunications cabling, installation of conduit sleeves will be required. For penetrations serving more than 12 cables, mechanical firestopping will be required.

Access control and CCTV system cable can be installed in existing cable tray or in new conduit. J-hooks may be used per specifications when cable tray is not available. All cabling in exposed areas and walls shall be in conduit.

Category 6 rated cable supports will be installed when cables are not installed in cable tray.

One 1" conduit will be installed from each camera outlet to above the accessible ceiling.

Structured Cabling System

The security infrastructure will be a "structured cabling system" designed and installed to EIA/TIA requirements and the VA Master Construction Specification.

The entire system will be required to be fully tested to CAT 6 performance requirements.

Horizontal Cabling System

All horizontal cabling (i.e., cabling between the cameras and intermediate security rooms) will be Category 6, 4-pair unshielded twisted pair cable for both voice and data. All Category 6 cabling will terminate on modular patch panels on equipment racks in the intermediate security rooms. All horizontal cabling installed in plenum spaces will be plenum rated.

Horizontal cabling will be installed to feed cameras as shown on project drawings.

Each camera location will receive one Category 6 jack (RJ45). The outlet box will be a 4" X 4" box with a single gang plaster ring mounted in the ceiling, unless otherwise noted.

All access control cabling will be provided as recommended by the manufacturer. Cabling from the access control panels to the doors will be installed in conduits.

Security System Backbone Cabling System

An existing fiber optic backbone exists on the Muskogee campus utilizing a star topology distributed infrastructure from Telephone Equipment Room 201B-52 to the various OI&T Rooms. New fiber optic infrastructure will be installed from the OI&T Rooms to the various Telecommunication Rooms/Horizontal Connectors (TR/HC) as defined in the project documents. Six (6) strands of 62.5 micron laser optimized multi-mode fiber optic cable will be installed from the OI&T Rooms to the new TR/HC rooms. Fibers will terminate in rack-mounted fiber panels and will terminate with LC connectors. The Contractor will provide all necessary quantity and lengths of patch cords to cross-connect all strands.

The Surveillance network at the Muskogee campus shall be a stand-alone network for the purposes of this solicitation.

The intent is for the installed system to have the capability for future connection to the VA Federal Bridge/PIV database compliant with referenced standards without massive upgrades or changeout of installed components.

VA shall provide a listing of approximately 1200 employees for this facility. Contractor shall enter all employees into the local Surveillance System PACS database and provide the ability to configure access levels on the badging station. Contractor shall be provided existing hard key assignments for each employee and shall configure the badging station to allow assignment of access based on locations of card readers as shown on the solicitation documents. The intent is for VA employees to configure access levels on individual VA PIV cards with an assignment matrix and interface provided by the contractor.

Security Management System

All security systems including, but not limited to, CCTV, access control, duress, and motion intrusion devices will be connected to the security management system. The system will have the ability to integrate with an RTLS inventory management system. The system will be on its own network and will not be connected to the VA WAN/LAN. The security system network will consist of a core security switch located in Room 201A1 in Building 52 and security network switches located in each intermediate security closet.

Closed Circuit Television (CCTV)

A new video surveillance system will be installed. New cameras will be IP-based with Category 6 cable drops to each camera. New network video recorders (NVR) will be specified as needed.

The NVRs will be capable of recording a minimum of 30 frames-per-second simultaneously across all cameras. Storage will be sized such that 30 days storage retention is possible with motion detection disabled and compression on the "normal" setting. The NVRs will be configured in a distributed manner; each intermediate security closet will receive NVRs for recording cameras fed from that closet. Alternatively, recorders or storage may be located at the head end location in Building 52. Monitoring of the cameras will be in the Security Office (Room 1D125 in Building 53). The monitoring location will receive a minimum of one monitor, video monitor server, and PTZ control through software.

The CCTV system will be fully integrated with the access control system for software-programmed triggering and alarm notification. The access control system will be fully compliant with Homeland Security Presidential Directive 12, HSPD12, and FIPS201-2.

A UPS with 30 minutes of support will be provided for the local camera serving switches and NVRs.

Access Control System

A new access control system will be installed. New smart card readers (HSPD12 and FIPS201-2 compliant), door contacts, electrified hardware, request to exit devices, and control panels will be installed and connected via the new fiber optic cable to the new security system head-end located in Room 201A1, Building 52. Access control smart cards will be provided by the HSPD12 Badge Office. A new badge programming system will be installed in Room 1A104-53. A UPS will be provided for the local access control panels, access control server, and the security network. The system will be fully compliant with Homeland Security Presidential Directive 12, HSPD12, and FIPS201-2. The access control system will have the ability to integrate with the personnel database to update and maintain card user data.

The drawings show selected locations as directed by the Physical Security Design Manual for VA Facilities (Mission Critical Facilities).

<u>Motion Intrusion Detection</u>: Motion intrusion detection will be provided in departments as required (e.g., Pharmacy).

<u>Duress Alarm or Emergency Notification</u>: A panic alarm system will be integrated into the new security management system and will annunciate at the existing Police and Security Operations Control Room. Refer to the floor plans for locations.

DEPARTMENT OF VETERANS AFFAIRS

VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS

Section 00 01 10

	DIVISION 00 - SPECIAL SECTIONS
00 01 15	List of Drawing Sheets
	DIVISION 01 - GENERAL REQUIREMENTS
01 00 00	General Requirements
01 32 16.13	Network Analysis Schedules Phasing Plan
01 33 23	Shop Drawings, Product Data, and Samples
01 42 19	Reference Standards
01 74 19	Construction Waste Management
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION
07 84 00	Firestopping
	DIVISION 08 - OPENINGS
08 71 00	Door Hardware

	DIVISION 09 - FINISHES
09 91 00	Painting
	DIVISION 26 - ELECTRICAL
26 05 11	Requirements for Electrical Installations
26 05 21	Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below)
26 05 26	Grounding and Bonding for Electrical Systems
26 05 33	Raceway and Boxes for Electrical Systems
26 22 00	Low-Voltage Transformers
26 23 00	Low-Voltage Switchgear
26 24 16	Panel boards
26 27 26	Wiring Devices

	DIVISION 27 - COMMUNICATIONS
27 05 11	Requirements for Communications Installations
27 05 26	Grounding and Bonding for Communications Systems
27 05 33	Raceways and Boxes for Communications Systems
27 10 00	Structured Cabling
27 11 00	Communications Equipment Room Fittings
27 15 00	Communications Horizontal Cabling / IRM-70 Wiring Instruction Sheet
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY
28 05 00	Common Work Results for Electronic Safety and Security
28 05 13	Conductors and Cables for Electronic Safety and Security
28 05 26	Grounding and Bonding for Electronic Safety and Security
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security
28 13 00	Physical Access Control Systems
28 16 00	Intrusion Detection System
28 23 00	Video Surveillance

SECTION 00 01 15

LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

DRAWING INDEX

Drawing No. Title

GENERAL		
0 TYCVR	PROJECT COVER SHEET	1 OF 25
	ELECTRICAL	
00 E400	ELECTRICAL POWER FOR COMMUNICATIONS RISER	2 OF 25
00 E401	ELECTRICAL POWER RISER DIAGRAMS	3 OF 25
01 E102	FIRST FLOOR SECTION "C"	4 OF 25
52 E101	SECOND FLOOR - POWER PLAN	5 OF 25
53 E100	BASEMENT FLOOR PLAN	6 OF 25
53 E101	FIRST FLOOR PLAN	7 OF 25
	GENERAL COMMUNICATIONS	
00 TY000	COVERSHEET	8 OF 25
00 TY301	TECHNOLOGY DETAILS	9 OF 25
00 TY400	TECHNOLOGY RISER DIAGRAMS	10 OF 25
00 TY401	TECHNOLOGY RISER DIAGRAMS	11 OF 25
00 TY403	TECHNOLOGY RISER DIAGRAMS	12 OF 25
00 TY500	TECHNOLOGY SCHEDULES	13 OF 25
00 TY502	TECHNOLOGY SCHEDULES	14 OF 25
00 TY503	TECHNOLOGY SCHEDULES	15 OF 25
00 TY600	TECHNOLOGY EQUIPMENT SCHEDULE	16 OF 25
	BUILDING 1 - TELECOMMUNICATIONS	
01 DTY102	FIRST FLOOR - SECTION "C" - DEMO	17 OF 25
01 TY102	FIRST FLOOR - SECTION "C"	18 OF 25
01 TY200	ROOM ENLARGEMENTS	19 OF 25
	BUILDING 52	
52 DTY101	FIRST FLOOR AND=AND SECOND FLOOR - DEMO	20 OF 25
52 TY101	FIRST FLOOR AND SECOND FLOOR	21 OF 25
52 TY200	ROOM ENLARGEMENTS	22 OF 25

BUILDING 53

53 DTY100	BASEMENT - DEMO	23 OF 25
53 TY102	FIRST FLOOR - EAST	24 OF 25
53 TY200	ROOM ENLARGEMENTS	25 OF 25

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

PART 1 - GENERAL	1
1.1 DESCRIPTION	1
1.2 RELATED WORK	2
1.3 APPLICABLE PUBLICATIONS	3
1.4 QUALITY ASSURANCE	4
1.5 SUBMITTALS	5
PART 2 - PRODUCTS	10
2.1 EQUIPMENT AND MATERIALS	10
2.2 EQUIPMENT ITEMS	15
2.3 ENVIRONMENTAL REQUIREMENTS	21
2.4 INSTALLATION KIT	21
PART 3 - EXECUTION	23
3.1 INSTALLATION	23
3.2 TESTS	29
3.3 TRAINING	31
3.4 GUARANTEE PERIOD OF SERVICE	31
PART 1 - GENERAL	66
1.1 DESCRIPTION	66
1.2 RELATED WORK	66
1.3 QUALITY ASSURANCE	67
1.4 DEFINITIONS	67
1.5 SUBMITTALS	68
1.6 APPLICABLE PUBLICATIONS	70
1.7 COORDINATION	71
1.8 EQUIPMENT AND MATERIALS	71
1.9 WARRANTY OF CONSTRUCTION	72
PART 2 - PRODUCTS	72
2.1 FUNCTIONAL DESCRIPTION OF SYSTEM	72
2.2 SYSTEM COMPONENT REQUIREMENTS	74
2.3 ENCLOSURES	75
2.4 EQUIPMENT ITEMS	75
2.5 CONTROL PANEL	75
2.6 KEYPADS	78
2.7 INPUT MODULE	78
2.8 OUTPUT MODULE	78

2.9 INTERIOR DETECTION DEVICES (SENSORS)	79
2.10 TAMPER ALARM SWITCHES	84
2.11 POWER SUPPLY	85
2.12 SECURITY FASTENERS	85
PART 3 - EXECUTION	86
3.1 INSTALLATION	86
3.2 WIRING INSTALLATION	89
3.3 GROUNDING	90
3.4 STARTUP AND TESTING	90
3.5 COMMISIONING	90
3.6 TESTS AND TRAINING	91

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for REPLACING SURVEILLANCE SYSTEMS as required by drawings and specifications.
- B. Visits to the site by Offerors may be made only at the date and time specified in FAR 52.236-27, SITE VISIT (CONSTRUCTION), ALTERNATE I, as noted in the Solicitation.
- C. Offices of 303RD ENGINEERING GROUP, LLC, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the C.O.R. in sufficient time to enable **testing** laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the C.O.R.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access. Contactors are subject to fingerprinting, VA sponsored background checks, and badging as determined by the Medical Center at no additional cost to the Government.

VA escort will be required inside all IT rooms. Contractor shall complete construction to the maximum extent in order to minimize time required for observed access inside IT closets.

F. Prior to commencing work, general contractor shall provide proof that a OSHA certified "competent person" (CP) (29 CFR 1926.20(b)(2) will

maintain a presence at the work site whenever the general or subcontractors are present.

G. Training:

- Beginning July 31, 2005, all employees of the general contractor or subcontractors working on site shall have completed the 10-hour OSHA certified Construction Safety Course and/or other relevant competency training, as determined by the VA Competent Person (CP) with input from the Infection Control Risk Assessment (ICRA) Team. The VA CP shall be the same person appointed as Contracting Officer's Representative (COR). The contractor's project supervisor and the contractor's CP referred to in Paragraph "F" above shall have completed the 30-hour OSHA certified Construction Safety Course.
- 2. Proof that the contractor's supervisor and CP have completed the 30hour OSHA certified Construction Safety Course shall be submitted for approval before the start of work. Contractor's certification that all other employees working under this project have completed the 10-hour OSHA certified Construction Safety course will be required prior to issuance of the Notice to Proceed.
- 3. Any penetrations to walls required to accomplish work under this contract must be repaired with a fire stop approved by the COR. If any work is to be done above drop ceilings the contractor must request an inspection by the COR prior to, and after all work is accomplished. Under no circumstance shall ceiling tiles be put back into place prior to required inspection.
- VHA Directive 2011-36, Safety and Health during Construction, dated 9/22/2011 in its entirety is made a part of this section.

1.2 STATEMENT OF BID ITEM(S)

A. ITEM I, GENERAL CONSTRUCTION: REPLACE SURVEILLANCE SYSTEM:

Work includes alterations, mechanical and electrical work, selective removal of existing construction and certain other items in accordance with plans and specifications for Project 623-12-105 Replace Surveillance Systems at Jack C. Montgomery VA Medical Center, Muskogee OK. Surveillance System replacement includes replacement of interior CCTV, physical access control systems, duress and emergency notification alarms, and motion intrusion systems. New surveillance components will be integrated to a single enterprise server.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, one (1) set of electronic files of the construction documents will be given to the Contractor. No additional sets of printed (non-electronic) specifications and drawings will be furnished.
- B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from reproducible sepia prints furnished by Issuing Office. Such sepia prints shall be returned to the Issuing Office immediately after printing is completed.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
 - 3. No photography of VA premises is allowed without written permission of the Contracting Officer.

- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- 5. Badging/Training

Safety and Infection control training are tentatively scheduled each Monday in the Engineering Conference Room. As workers arrive on site, they shall attend this training on the first Monday that they are on station. COR shall be notified by the prior Friday in order to confirm training staff will be available. Site Superintendents shall be processed through VA background check and be processed for VA Contractor badge. All other contractors shall be processed through VA background check and badge at the discretion of the VA.

- D. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the C.O.R. for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.
- E. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 4. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access

to only those who will need it for the project. Return the information to the Contracting Officer upon request.

- 5. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 6. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 7. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.5 FIRE SAFETY

A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only. 1. American Society for Testing and Materials (ASTM):

E84-2009.....Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

10-2010.....Standard for Portable Fire Extinguishers

30-2008.....Flammable and Combustible Liquids Code

51B-2009..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2011.....National Electrical Code

241-2009.....Standard for Safeguarding Construction, Alteration, and Demolition Operations

3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926.....Safety and Health Regulations for Construction

- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to C.O.R.for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.
- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- E. Temporary Construction Partitions:

- Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
- Install temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with C.O.R.
- H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to C.O.R.
- I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- J. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- L. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.
- M. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch

for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with C.O.R. . All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the C.O.R..

- N. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with C.O.R.
- O. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with C.O.R. Obtain permits from C.O.R. at least 24 hours in advance
- P. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to C.O.R.
- Q. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- R. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- S. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.
- T. If required, submit documentation to the Resident Engineer that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.
- U. All fire rated doors shall maintain their fire rating. Submit UL listed devices for fire rated doors and install and fire caulk per manufacturer's instructions. If the door is not compromised already then no new holes may be drilled into the frame and surface mounted style door contacts must be used. Contact VA Project COR prior to drilling into any door or frame. VA shall provide any required recertifications for fire rated door or frame. VA shall provide any

required re-certifications for fire rated doors that have been previously compromised.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.

VA has no prepared space for a job trailer or conex storage unit to be placed on VA property. Undeveloped space on VA property may be available for development for these purposes at the contractor's discretion on a first come first serve basis. Recommend that the contractor contact the City of Muskogee and/or the Five Civilized Tribes Museum for space they may have available for staging.

Job boxes and ladders may be stored in mechanical rooms where space is available and areas under contractor custody during construction (Primary SCC, Secondary SCC, Server Room). Access to equipment and electrical panels shall be maintained in these spaces and the area cleaned of debris and neatly stowed each day.

C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as determined by the C.O.R.
- E. Workmen are subject to rules of Medical Center & Cemetery applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center & Cemetery as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by C.O.R. where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center & Cemetery areas required to remain in operation.
 - 3. Where access by Medical Center & Cemetery personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to
- G. Phasing: To insure such executions, Contractor shall furnish the C.O.R. with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the C.O.R. two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, Cemetery Director, C.O.R. and Contractor.

H. Building(s) will be occupied during performance of work but immediate areas of extensive alterations will be vacated.

1. Certain areas of Building(s)will be occupied by Medical Center personnel for various periods. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.

2. Work inside the lockdown ward in Building 53 will require a minimum of two contractors. One contractor shall not be directly engaged in construction work and shall keep patients clear of the immediate work area and track tools and equipment to ensure no items are left unattended. Coordinate with VA staff for all work performed in this area.

- I. Utilities Services: Maintain existing utility services for Medical Center & Cemetery at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of C.O.R. Electrical work shall be accomplished with all affected circuits or equipment deenergized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval.

Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.

- Contractor shall submit a request to interrupt any such services to C.O.R., in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center & Cemetery. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Resident Engineer.
- 5. In case of a contract construction emergency, service will be interrupted on approval of Resident Engineer. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- J. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- K. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:

- Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the C.O.R.
- L. Coordinate the work for this contract with other construction operations as directed by C.O.R.. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.
- M. Coordination of Construction with Cemetery Director: The burial activities at a National Cemetery shall take precedence over construction activities. The Contractor must cooperate and coordinate with the Cemetery Director, through the Resident Engineer, in arranging construction schedule to cause the least possible interference with cemetery activities in actual burial areas. Construction noise during the interment services shall not disturb the service. Trucks and workmen shall not pass through the service area during this period:
 - The Contractor is required to discontinue his work sufficiently in advance of Easter Sunday, Mother's Day, Father's Day, Memorial Day, Veteran's Day and/or Federal holidays, to permit him to clean up all areas of operation adjacent to existing burial plots before these dates.
 - Cleaning up shall include the removal of all equipment, tools, materials and debris and leaving the areas in a clean, neat condition.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the C.O.R. and a representative of VA Supply Service, of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by all three, to the Contracting Officer. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of buildings.

- Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and C.O.R.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of C.O.R., to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and Resident Engineer together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.

- Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
- 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 INFECTION PREVENTION MEASURES

- A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded.
- B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to C.O.R.for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- C. Medical center Infection Control personnel shall monitor for airborne disease (e.g. aspergillosis) as appropriate during construction. A baseline of conditions may be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality. In addition:
 - 1. The RE and VAMC Infection Control personnel shall review pressure differential monitoring documentation to verify that pressure differentials in the construction zone and in the patient-care rooms are appropriate for their settings. The requirement for negative air pressure in the construction zone shall depend on the location and type of activity. Upon notification, the contractor shall implement

corrective measures to restore proper pressure differentials as needed.

- In case of any problem, the medical center, along with assistance from the contractor, shall conduct an environmental assessment to find and eliminate the source.
- D. In general, following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by Resident Engineer. Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction.
 - 2. Do not perform dust producing tasks within occupied areas without the approval of the Resident Engineer. For construction in any areas that will remain jointly occupied by the medical Center and Contractor's workers, the Contractor shall:
 - a. Provide dust proof temporary drywall construction barriers to completely separate construction from the operational areas of the hospital in order to contain dirt debris and dust. Barriers shall be sealed and made presentable on hospital occupied side. Install a self-closing rated door in a metal frame, commensurate with the partition, to allow worker access. Maintain negative air at all times. A fire retardant polystyrene, 6-mil thick or greater plastic barrier meeting local fire codes may be used where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center.
 - b. HEPA filtration is required where the exhaust dust may reenter the breathing zone. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. Install HEPA (High Efficiency Particulate Accumulator) filter vacuum system rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. Insure continuous negative air pressures occurring within the work area. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Exhaust hoses shall be

heavy duty, flexible steel reinforced and exhausted so that dust is not reintroduced to the medical center.

- c. Adhesive Walk-off/Carpet Walk-off Mats, minimum 600mm x 900mm (24" x 36"), shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
- d. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as they are created. Transport these outside the construction area in containers with tightly fitting lids.
- e. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
- f. Using a HEPA vacuum, clean inside the barrier and vacuum ceiling tile prior to replacement. Any ceiling access panels opened for investigation beyond sealed areas shall be sealed immediately when unattended.
- g. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- h. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.
- 3. Job Specific Infection Control Measures

- a. Primary and Secondary Security Control Centers 6-mil plastic barrier sheeting properly installed and maintained should be adequate in lieu of drywall construction barriers. Provide engineered vestibule for entry and exit from the construction area (Abatement Technologies Aire Guardian Transition Module or approved equal). HEPA filtered negative air machines will be required in these areas. Pressure monitor with visual digital readout shall be installed at the ingress to the construction area. Provide all other infection control measures as called for in Specification 01 00 00 1.8 General Requirements (i.e. HEPA vacuum, adhesive walk-off mats, blank off ducts and diffusers, etc.)
- b. Engineering spaces and IT closets Infection control containment barriers will typically not be required in Engineering spaces and IT closets. Work shall be performed inside these spaces to prevent introduction of dust to patient care or general traffic areas. A HEPA vacuum will be used at each area of construction at all times to immediately vacuum any dust and debris as it is generated. If dust is not contained then additional infection controls shall be required.
- c. Surveillance end components Cameras, card readers, door switches, intrusion sensors, panic buttons, etc. shall be field located as shown on the project plans. Infection control containment barriers would not be practical for each surveillance device. A HEPA vacuum will be used at each area of construction at all times to immediately vacuum any dust and debris as it is generated. Two ceiling tiles may be removed at any one time in order to run cabling. Any ceiling tile debris or dust shall be immediately HEPA vacuumed. If dust is not contained then additional infection control measures shall be required and/or construction shall be restricted outside of normal working hours.
- d. Installation of access hatches in gypsum board ceilings will be required in selected areas in Bldg 53. Containment of the area shall be required when generating dust. A 2' x 4' engineered containment with negative air will be required or other containment measures as approved by the COR.
- e. Construction that totally impedes general traffic areas, such as the double door installation shown on Drawing 01 AE 101 shall be performed after normal working hours. 6-mil plastic barrier sheeting shall be installed with negative air established and adhesive walk-off mats. Other routes for staff and patients shall be coordinated to the maximum extent, but work shall stop if patients or staff need to transit the area during construction.

E. Final Cleanup:

- Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

1.9 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by Resident Engineer.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center & Cemetery.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.

B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. Refer to FAR clause 52.236-7, "Permits and Responsibilities," which is included in General Conditions. A National Pollutant Discharge Elimination System (NPDES) permit is required for this project. The Contractor is considered an "operator" under the permit and has extensive responsibility for compliance with permit requirements. VA will make the permit application available at the (appropriate medical center) office. The apparent low bidder, contractor and affected subcontractors shall furnish all information and certifications that are required to comply with the permit process and permit requirements. Many of the permit requirements will be satisfied by completing construction as shown and specified. Some requirements involve the Contractor is responsible for employing best management practices. The affected activities often include, but are not limited to the following:
 - Designating areas for equipment maintenance and repair;

- Providing waste receptacles at convenient locations and provide regular collection of wastes;
- Locating equipment wash down areas on site, and provide appropriate control of wash-waters;
- Providing protected storage areas for chemicals, paints, solvents, fertilizers, and other potentially toxic materials; and
- Providing adequately maintained sanitary facilities.

1.11 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the Resident Engineer. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Resident Engineer before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.12 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

1.13 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the C.O.R. within 15 calendar days after each completed phase and after the acceptance of the project by the C.O.R.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.14 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center & Cemetery property and, when authorized by the Resident Engineer, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
- C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

1.15 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - Permission to use each unit or system must be given by Resident Engineer. If the equipment is not installed and maintained in accordance with the following provisions, the Resident Engineer will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.
 - Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.

- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.

1.16 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - Contractor makes all arrangements with the C.O.R. for use of elevators. The C.O.R. will ascertain that elevators are in proper condition. Personnel for operating elevators will not be provided by the Department of Veterans Affairs.
 - 2. Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.
 - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
 - c. Finish flooring.
 - 3. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes.

- If brake lining of elevators are excessively worn or damaged during temporary use, they shall be removed and replaced by new brake lining.
- 5. All parts of main controller, starter, relay panel, selector, etc., worn or damaged during temporary use shall be removed and replaced with new parts, if recommended by elevator inspector after elevator is released by Contractor.
- 6. Place elevator in condition equal, less normal wear, to that existing at time it was placed in service of Contractor as approved by Contracting Officer.

1.17 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by C.O.R., provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.18 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.

- Obtain electricity by connecting to the Medical Center & Cemetery electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center & Cemetery water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at C.O.R.'s discretion) of use of water from Medical Center's & Cemetery's system.

1.19 NEW TELEPHONE EQUIPMENT

The contractor shall coordinate with the work of installation of telephone equipment by others. This work shall be completed before the building is turned over to VA.

1.20 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity,

etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feed water, condensate and other related components.

- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.21 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals (four copies each) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the C.O.R. and shall be considered concluded only when the C.O.R. is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the C.O.R., does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.22 PHOTOGRAPHIC DOCUMENTATION

A. Contractor shall provide CANNON POWERSHOT A480 CAMERA to C.O.R. at the beginning of the project. Alternative camera approved by the VA IT department may be acceptable. Camera shall remain as government property at completion of the project.

1.23 HISTORIC PRESERVATION

Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the Resident Engineer verbally, and then with a written follow up.

- - - E N D - - -

SECTION 01 32 16.13 NETWORK ANALYSIS SCHEDULES / PHASING PLAN

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Network Analysis System (NAS) plan and schedule demonstrating fulfillment of the contract requirements, shall keep the network up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) Precedence Diagramming Method (PDM) technique will be utilized to satisfy both time and cost applications. All schedule data and reports required under this specification section shall be based upon regular total float, not relative total float schedules.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative in the firm who will be responsible for the preparation of the network diagram, review and report progress of the project with and to the Contracting Officer's representative.
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section and such authority shall not be interrupted throughout the duration of the project.

1.3 CONTRACTOR'S CONSULTANT:

- A. To prepare the network diagram, and compact disk(s), which reflects the Contractor's project plan, the Contractor shall engage an independent CPM consultant who is skilled in the time and cost application of scheduling using (PDM) network techniques for construction projects, the cost of which is included in the Contractor's bid. This consultant shall not have any financial or business ties to the Contractor, and shall not be an affiliate or subsidiary company of the Contractor, and shall not be employed by an affiliate or subsidiary company of the Contractor.
- B. Prior to engaging a consultant, and within 10 calendar days after award of the contract, the Contractor shall submit to the Contracting Officer:
 - 1. The name and address of the proposed consultant.

- 2. Sufficient information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
- 3. A list of prior construction projects, along with selected PDM network diagram samples on current projects which the proposed consultant has performed complete project scheduling services. These network diagram samples must show complete project planning for a project of similar size and scope as covered under this contract.
- C. The Contracting Officer has the right to approve or disapprove employment of the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of information. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor must have their CPM Consultant approved prior to completion of contract negotiations.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide to the VA C.O.R., and CPM Schedule Analyst, monthly computer processing of all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of Primavera (P3 or P6) to the contracting officer's representative; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data in Primavera (P3 or P6) batch format; and the resulting monthly updated schedule in a compressed electronic file in Primavera (P3 or P6), (PDM) format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The C.O.R. shall identify the five different report formats that the contractor shall provide based upon the monthly schedule updates.
- B. The contractor is responsible for the correctness and timeliness of the computer-produced reports. The Contractor is also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA shall report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor will reprocess the computer-produced reports

and associated compact disk(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT NETWORK DIAGRAM SUBMITTAL

A. Within 60 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the complete network diagram on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in a compressed Primavera (P3 or P6), (PDM) format. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, duration, predecessor and successor relationships, trade code, area code, description, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start and start-to-start without lead or lag constraints. The lead or lag for the SS relationships may only be allowed in limited basis if justified in writing and must be approved by the Contracting Officer. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the network diagram shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have a zero duration. The complete working network diagram shall reflect the Contractor's approach to scheduling the complete project. The final network diagram in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final network diagram has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract

changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

B. Within 30 calendar days after receipt of the complete project network diagram, the Contracting Officer or his representative, will do one or both of the following:

1. Notify the Contractor concerning his actions, opinions, and objections.

2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised network diagram, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

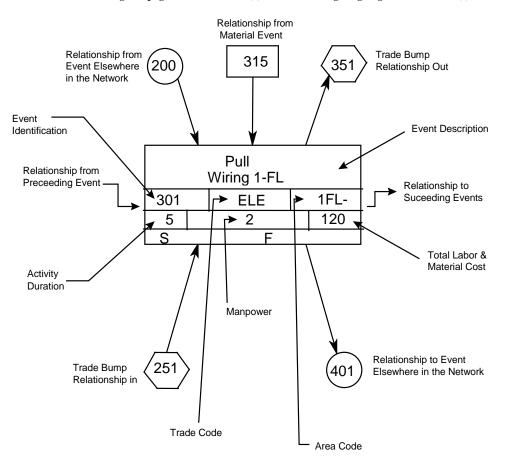
C. The approved baseline network diagram schedule and the corresponding computer-produced schedule(s) shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cost loading shall reflect the appropriate level of effort of the work activities/events. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. In the event of disapproval, the Contractor shall revise and resubmit in accordance with Article, THE COMPLETE PROJECT NETWORK DIAGRAM SUBMITTAL. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in the FAR 52.232 - 5 (PAYMENTS UNDER FIXED-PRICE

CONSTRUCTION), Article, and VAAR 852.236 - 83(PAYMENTS UNDER FIXED-PRICE CONSTRUCTION).

- C. In accordance with Article PERFORMANCE OF WORK BY THE CONTRACTOR in FAR 52.236 - 1 and VAAR 852.236 - 72, the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- E. The Contractor shall cost load work activities/events for all BID ITEMS. The sum of the cost loading for each bid item work activities/events shall equal the value of the item in the Contractors' bid.
 - F. Work activities/events for Contractor bond shall have a trade code and area code of BOND.


A.7 NETWORK DIAGRAM REQUIREMENTS

- A. Show on the network diagram the sequence and interdependence of work activities/events required for complete performance of all items of work. In preparing the network diagram, the Contractor shall:
 - 1. Exercise sufficient care to produce a clear, legible and accurate network diagram, refer to the drawing, CPM-1 (Sample CPM Network). Computer plotted network diagrams shall legibly display and plot all information required by the VA CPM activity/event legend or the computer plotted network diagram will not be acceptable. If the computer plotted network diagram is not found acceptable by the contracting officer's representative, then the network diagram will need to be hand drafted and meet legibility requirements. Group activities related to specific physical areas of the project, on the network diagram for ease of understanding and simplification. Provide a key plan on each network diagram sheet showing the project area associated with the work activities/events shown on that sheet.
 - 2. Show the following on each work activity/event:
 - a. Activity/Event ID number.
 - b. Concise description of the work represented by the activity/event. (35 characters or less including spaces preferred).
 - c. Performance responsibility or trade code (five alpha characters or less): GEN, MECH, ELEC, CARP, PLAST, or other acceptable abbreviations.
 - d. Duration (in work days.)

- e. Cost (in accordance with Article, ACTIVITY/EVENT COST DATA of this section and less than \$9,999,999 per activity).
- f. Work location or area code (five characters or less), descriptive of the area involved.
- g. Manpower required (average number of men per day).
- h. The SYMBOL LEGEND format shown below and on the drawing, CPM-1 (Sample CPM Network) is mandatory and shall be followed in preparing final network diagrams.

Show Network Diagram page number location(s) for all incoming/outgoing node connector(s).

3.

Show activities/events as:

- a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
- b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.

- c. Interruption of VA Medical Center utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.

4. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.

5. Break up the work into activities/events of a duration no longer than 20 work days each, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the Contracting Officer may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals shall not be less than 20 work days. Refer to drawing CPM-1 for VA approval activities/events which will require minimum duration longer than 20 workdays. The construction time as determined by the CPM schedule from early start to late finish for any sub-phase, phase or the entire project shall not exceed the contract time(s) specified or shown.

6. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.

7. Uniquely number each activity/event with numbers ranging from 1 to 99998 only. The network diagram should be generally numbered in such a way to reflect either discipline, phase or location of the work.

- B. Submit the following supporting data in addition to the network diagram, activity/event ID schedule and electronic file (s). Failure of the Contractor to include this data will delay the review of the submittal until the Contracting Officer is in receipt of the missing data:
 - 1. The proposed number of working days per week.
 - The holidays to be observed during the life of the contract (by day, month, and year).
 - 3. The planned number of shifts per day.
 - 4. The number of hours per shift.

5. List the major construction equipment to be used on the site, describing how each piece relates to and will be used in support of the submitted network diagram work activities/events.

6. Provide a typed, doubled spaced, description, at least one page in length, of the plan and your approach to constructing the project.

- C. To the extent that the network diagram or any revised network diagram shows anything not jointly agreed upon, it shall not be deemed to have been approved by the Contracting Officer. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the Contracting Officer's approval of the network diagram.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA (C.O.R. and CPM Schedule Analyst) an electronic file(s) containing one file of the data required to produce a Primavera (P3 or P6), (PDM) produced schedule, reflecting all the activities/events of the complete project network diagram being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

A. Monthly, the contractor shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article FAR 52.232 - 5 (PAYMENTS UNDER FIXED-PRICE CONSTRUCTION), and VAAR 852.236 - 83(PAYMENTS UNDER FIXED-PRICE CONSTRUCTION). The Contractor is entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated computer-produced calendar-dated schedule unless, in special situations, the Contracting Officer permits an exception to this requirement. Monthly payment requests shall include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of Primavera (P3 or P6), (PDM) to the contracting officer's representative; a listing of all project schedule changes, and associated data, made at the update; and an electronic file (s) of the resulting monthly updated schedule in a compressed Primavera (P3 or P6), (PDM) format. These must be submitted with and substantively

support the contractor's monthly application and certificate for payment request documents.

B. When the Contractor fails or refuses to furnish to the Contracting Officer the information and the associated updated Primavera (P3 or P6), (PDM) schedule in electronic format, which, in the sole judgment of the Contracting Officer, is necessary for processing the monthly progress payment, the Contractor shall not be deemed to have provided an estimate and supporting schedule data upon which progress payment may be made.

1.9 PAYMENT AND PROGRESS REPORTING

A. Monthly job site progress meetings shall be held on dates mutually agreed to by the Contracting Officer (or Contracting Officer's representative) and the Contractor. Contractor and the CPM consultant will be required to attend all monthly progress meetings. Presence of Subcontractors during progress meeting is optional unless required by the Contracting Officer (or Contracting Officer's representative). The Contractor shall update the project schedule and all other data required by this section shall be accurately filled in and completed prior to the monthly progress meeting. The Contractor shall provide this information to the Contracting Officer or the VA representative in completed form three work days in advance of the progress meeting. Job progress will be reviewed to verify:

1. Actual start and/or finish dates for updated/completed activities/events.

 Remaining duration, required to complete each activity/event started, or scheduled to start, but not completed.

3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the network diagram and computer-produced schedules. Changes in activity/event sequence and duration which have been made pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.

4. Percentage for completed and partially completed activities/events.

5. Logic and duration revisions required by this section of the specifications.

6. Activity/event duration and percent complete shall be updated independently.

- B. The Contractor shall submit a narrative report as a part of his monthly review and update, in a form agreed upon by the Contractor and the Contracting Officer. The narrative report shall include a description of problem areas; current and anticipated delaying factors and their estimated impact on performance of other activities/events and completion dates; and an explanation of corrective action taken or proposed. This report is in addition to the daily reports pursuant to the provisions of Article, DAILY REPORT OF WORKERS AND MATERIALS in the GENERAL CONDITIONS.
- C. After completion of the joint review and the Contracting Officer's approval of all entries, the contractor will generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- D. After completing the monthly schedule update, the contractor's scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and C.O.R. for the contract change(s). When there is a disagreement on logic and/or durations, the consultant shall use the schedule logic and/or durations provided and approved by the C.O.R. . After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the C.O.R. within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- E. After VA acceptance and approval of the final network diagram, and after each monthly update, the contractor shall submit to the Contracting Officer three blue line copies of a revised complete

network diagram showing all completed and partially completed activities/events, contract changes and logic changes made on the intervening updates or at the first update on the final diagram. The Contracting Officer may elect to have the contractor do this on a less frequent basis, but it shall be done on a quarterly basis as a minimum.

F. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. Whenever it becomes apparent from the current monthly progress review meeting or the monthly computer-produced calendar-dated schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the Contracting Officer for the proposed schedule changes. If such actions are approved, the CPM revisions shall be incorporated by the Contractor into the network diagram before the next update, at no additional cost to the Government.

1.11 CHANGES TO NETWORK DIAGRAM AND SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated computer-produced schedule, the Contractor will submit a revised network diagram, the associated compact disk(s), and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, indicate an extension of the project completion by 20 working days or 10 percent of the remaining project duration, whichever is less. Such delays which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.
 - 4. When there is, or has been, a substantial revision to the activity/event costs of the network diagram regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Medical Center, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, must be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised network diagram and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the network diagram resulting from contract changes will be included in the proposal for changes in work as specified in Article, FAR 52.243 -4 (CHANGES), VAAR 852.236 - 88 (CHANGES - SUPPLEMENTS), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the network diagram not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the Contracting Officer may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computer-produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under Article, FAR 52.243 -4 (CHANGES), VAAR 852.236 88 (CHANGES SUPPLEMENTS). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

1.13 CONSTRUCTION SCHEDULE RISK ANALYSIS / MITIGATION PLAN

A. Schedule Risk Analysis - The contractor shall conduct the statistical schedule risk analysis based on the above detailed construction activities in the Day 1 approved diagram, identifying major schedule risk areas and recommended risk mitigation plans as outlined below.

- B. The risk analysis shall be conducted by a person or firm skilled in the statistical method of schedule risk analysis based on the (PDM) network techniques for major construction projects, preferably in the major health care related projects. The cost of this service shall be included in the Contractor's proposal.
- C. The Contracting Officer has the right to approve or disapprove the Person or firm designated to perform the risk analysis.

1.14 RISK ANALYSIS FORMAT / REQUIREMENTS / SUBMITTALS

- A. Risk Analysis Software / Format Within 60 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; a Risk Analysis software to be utilized, the method of performing the analysis, the format of presenting the data and the reports for VA approval.
- B. Conduct Risk Analysis / Submittals Based on the approved software / format, the consultant shall perform statistical risk analysis on the detailed approved Day 1 diagram. The contractor shall review and utilize any previous Risk analysis performed by the A/E of record based on the "semi-detailed" (yet at an overall level) construction logic and schedule to ensure the continuity of previous schedule risk analysis. The contractor's project manager and Superintendent shall identify the major schedule risk areas and possible risk mitigation strategy/plan and record it in a narrative format, with electronic file submission to the VA. The risk analysis exercise shall be performed or updated at least on a quarterly basis or as directed by the VA Contracting officer.
- C. The submittal shall include three copies of a computer-produced risk analysis results, predicting the various meaningful probability curves of achieving the contract schedules. It shall also include a detailed narrative list of all major and minor potential and specific schedule and cost risk areas, and a contractor's recommendations of mitigating the identified risks which must be addressed by the VA Project and C.O.R. teams to maintain the contract schedule.

1.15 INSTALLATION PHASING (PHASING PLAN)

A. The intent of this phasing schedule is to provide the VA with uninterrupted security at the locations where security devices currently exist (including but not limited to, cameras, door contacts, card readers, and other security devices).

- 1. All work is to be coordinated with the C.O.R. Contractor shall notify the C.O.R. of work in any area a minimum of seven (7) calendar days prior to commencement of work in those areas.
- In locations such as offices where patient treatment takes place, Contractor shall not perform work between 8:00 a.m. and 4:30 p.m. unless prior, written permission has been received from the C.O.R.
- Existing devices shall not be removed until their replacements are installed and activated. Any location with existing access control, surveillance or intrusion system devices shall not be without protection overnight.
- 4. Badging station. Contractor shall provide, install and configure a mock-up card reader on the interior of the Badging Station complete with door strike and all final controller and field configurations to the PACS server. All employees shall have PIV cards processed and checked on the mock-up for functional cards prior to proceeding with installation of additional card readers. Contractor shall be able to query the VA PIV card credential and shall assist in troubleshooting PIV card anomalies.
- 5. The complete infrastructure shall be installed, terminated and configured before any portal devices, sensors or cameras are installed. The intent is to allow replacement of existing devices without downtime. This infrastructure consists of all:
 - a. Racks, enclosures and their associated power
 - b. Network switches
 - c. Servers
 - d. Video storage
 - e. Fiber optic terminations and connections
 - f. Access control panels, including required power
 - g. Complete installation of the Secondary Security Command Center (SCC) located in B22.
 - h. Access panel configurations including device names, locations on maps and input/output functionality.
 - i. Access control database including all access levels, permissions, operator levels and user rights, administrator user rights and all badge holders. Contractor shall procure badging station and coordinate with VA to setup and process all badge holders prior to activation of any new card readers.
 - j. Software configuration including all interactive maps.
 - k. Installation and configuration of one workstation and one large flat panel monitor in the existing Security Command Center in Building 53.
 - 1. Badging station
- 6. All cameras shall be configured prior to their installation. This configuration shall consist of:
 - Being named in the software, placed on maps in the software and I/O configurations complete
 - b. Network addressing information complete
 - c. Configured on the recording platform

When electronically connected and after being detected by the video system server, live images shall be visible at the monitoring station

and recording shall commence according to configuration (ex. Record on motion). When an individual camera is installed, the only major configuration components to be completed at the time of installation are aiming and focusing.

- All access control and intrusion devices shall be completely configured in software prior to their installation. Any configuration on the devices which can be pre-configured prior to installation shall be performed. This includes items such as DIP switches and/or jumper switches.
- 8. Prior to installation of any cameras, devices at portals or I/O devices in their permanent locations, a minimum of two cameras, two door position switches and devices for two access control portals shall be installed in a temporary fashion at the network switches and access control panels. These temporary devices shall be used for an initial training session for each of the shifts of operators. This is required as the existing system and new system shall be operational simultaneously with control from the existing SCC. At this initial training, Contractor shall make available all training materials and manuals per final deliverable requirements. After initial training is complete, Contractor shall install devices and sensors in their permanent locations.
- 9. During installation of devices and sensors in their permanent locations, Contractor shall coordinate with C.O.R. to be available for one hour per week per shift to answer additional training and operational questions. Any training assistance which Owner requires outside of this one hour per week per shift may be invoiced to Owner at standard Contractor hourly rates.
- 10. Beginning of warranty shall not begin until existing SCC upgrades have been completed and complete system has been accepted.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 4. Enter submittals into SUBMITTAL EXCHANGE in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract for required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 5. Submittals will be reviewed for compliance with contract requirements by Transport Consultant, and action thereon will be taken by C.O.R. on behalf of the Contracting Officer.
- 6. Upon entering of submittals into SUBMITTAL EXCHANGE, SUBMITTAL EXCHANGE will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract

price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 9. Submittals must be entered into SUBMITTAL EXCHANGE by Contractor and their Sub-Contractor members. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples required in . in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be entered into SUBMITTAL EXCHANGE and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers, and other information required for exact identification of location for each item, manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.

- Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- C. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
- D. Approved samples will be kept on file by SUBMITTAL EXCHANGE until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.

1. For each drawing required, submit one legible photographic paper or vellum reproducible.

2. Reproducible shall be full size.

Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.

5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.

6. One reproducible print of approved or disapproved shop drawings will be entered into SUBMITTAL EXCHANGE under one cover.

- 10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be entered into SUBMITTAL EXCHANGE for approval.
- 11. At the time of entry into SUBMITTAL EXCHANGE, a copy shall be sent for approval to the Transport Consultant by the C.O.R.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location: DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM 1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council http://www.aabchg.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AGC Associated General Contractors of America http://www.agc.org
- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers
 - http://www.ashrae.org
- ASME American Society of Mechanical Engineers http://www.asme.org
- AWI Architectural Woodwork Institute http://www.awinet.org
- AWWA American Water Works Association
 - http://www.awwa.org
- BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com
- BIA Brick Institute of America
 - http://www.bia.org
- CISCA Ceilings and Interior Systems Construction Association
- DHI Door and Hardware Institute
 - http://www.dhi.org

EEI	Edison Electric Institute
	http://www.eei.org
EPA	Environmental Protection Agency
	http://www.epa.gov
ETL	ETL Testing Laboratories, Inc.
	http://www.etl.com
FM	Factory Mutual Insurance
	http://www.fmglobal.com
GA	Gypsum Association
	http://www.gypsum.org
GSA	General Services Administration
	http://www.gsa.gov
HPVA	Hardwood Plywood & Veneer Association
	http://www.hpva.org
ICBO	International Conference of Building Officials
	http://www.icbo.org
\ICAC	Institute of Clean Air Companies
	http://www.icac.com
IEEE	Institute of Electrical and Electronics Engineers
	http://www.ieee.org\
IPCEA	Insulated Power Cable Engineers Association
MSS	Manufacturers Standardization Society of the Valve and Fittings
	Industry Inc.
	http://www.mss-hq.com
NAPHCC	Plumbing-Heating-Cooling Contractors Association
	http://www.phccweb.org.org
NBS	National Bureau of Standards
	See - NIST
NEC	National Electric Code
	See - NFPA National Fire Protection Association
NEMA	National Electrical Manufacturers Association
	http://www.nema.org
NFPA	National Fire Protection Association
	http://www.nfpa.org
NIH	National Institute of Health
	http://www.nih.gov
NIST	National Institute of Standards and Technology
	http://www.nist.gov

NLMA	Northeastern Lumber Manufacturers Association, Inc.
	http://www.nelma.org
NWWDA	Window and Door Manufacturers Association
	http://www.nwwda.org
OSHA	Occupational Safety and Health Administration
	Department of Labor
	http://www.osha.gov
PPI	The Plastic Pipe Institute
	http://www.plasticpipe.org
RFCI	The Resilient Floor Covering Institute
	http://www.rfci.com
RMA	Rubber Manufacturers Association, Inc.
	http://www.rma.org
SDI	Steel Door Institute
	http://www.steeldoor.org
SJI	Steel Joist Institute
	http://www.steeljoist.org
SMACNA	Sheet Metal and Air-Conditioning Contractors
	National Association, Inc.
	http://www.smacna.org
SSPC	The Society for Protective Coatings
	http://www.sspc.org
TCA	Tile Council of America, Inc.
	http://www.tileusa.com
UBC	The Uniform Building Code
	See ICBO
UL	Underwriters' Laboratories Incorporated
	http://www.ul.com
ULC	Underwriters' Laboratories of Canada
	http://www.ulc.ca
WCLIB	West Coast Lumber Inspection Bureau
	6980 SW Varns Road, P.O. Box 23145
	Portland, OR 97223
	(503) 639-0651
	E N D

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.cwm.wbdg.org provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.

L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.

1. On-site Recycling - Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.

2. Off-site Recycling - Materials hauled to a location and used in an altered form in the manufacture of new products.

- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the C.O.R. a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:

- a. List of each material and quantity to be salvaged, reused, recycled.
- b. List of each material and quantity proposed to be taken to a landfill.

4. Detailed description of the Means/Methods to be used for material handling.

- a. On site: Material separation, storage, protection where applicable.
- b. Off site: Transportation means and destination. Include list of materials.

1) Description of materials to be site-separated and selfhauled to designated facilities.

2) Description of mixed materials to be collected by designated waste haulers and removed from the site.

- c. The names and locations of mixed debris reuse and recycling facilities or sites.
- d. The names and locations of trash disposal landfill facilities or sites.
- e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):

LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. B. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- F. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- G. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck.Provide overhead bridges of tight board or prefabricated metal

construction at dust chutes to protect persons and property from falling debris.

- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:1. No wall or part of wall shall be permitted to fall outwardly from

structures.

2. 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.

4. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.

- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center ; any damaged items shall be repaired or replaced as approved by the C.O.R. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.
- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 1. As required for installation of new utility service lines.
 2. To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.
- D. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to C.O.R. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION

- A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- C. List of FM, UL, or WH classification number of systems installed.
- D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.

1.3 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.4 WARRANTY

Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.5 QUALITY ASSURANCE

FM, UL, or WH or other approved laboratory tested products will be acceptable.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):
 - E84-10.....Surface Burning Characteristics of Building Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

- C. Factory Mutual Engineering and Research Corporation (FM): Annual Issue Approval Guide Building Materials
- D. Underwriters Laboratories, Inc. (UL): Annual Issue Building Materials Directory Annual Issue Fire Resistance Directory 1479-10......Fire Tests of Through-Penetration Firestops E. Warnock Hersey (WH):
 - Annual Issue Certification Listings

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier.
- D. Firestop sealants used for firestopping or smoke sealing shall have following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Have no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties:
 - 1. Classified for use with the particular type of penetrating material used.

- Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant.
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- H. Materials to be asbestos free.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Use silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Use mineral fiber filler and bond breaker behind sealant.
- C. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

- A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.

- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Resident Engineer.
- C. Clean up spills of liquid type materials.

- - - E N D - - -

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES Section 08 34 53, SECURITY DOORS AND FRAMES
- C. Painting: Section 09 91 00, PAINTING.
- D. Card Readers: Section 28 13 11, PHYSICAL ACCESS CONTROL SYSTEMS.
- E. Electrical: Division 26, ELECTRICAL.
- F. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.
 - 4. Exit devices.
 - 5. Floor closers.

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Locks, latchsets, and panic hardware: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

C. Samples and Manufacturers' Literature:

1. Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.

2. Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.

D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to Resident Engineer for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in Resident Engineer's office until all other similar items have been installed in project, at which time the Resident Engineer will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Project Engineer and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

- A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.
- B. Keying: All cylinders shall be keyed into existing Grand Master Key System. Provide removable core cylinders that are removable only with a

special key or tool without disassembly of knob or lockset. Cylinders shall be 7 pin type. Keying information shall be furnished at a later date by the C.O.R.

1.10 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
B. American Society for Testing and Materials (ASTM): F883-04......Padlocks

E2180-07.....Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or Hydrophobic Materials

C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-06.....Butts and Hinges

A156.2-03.....Bored and Pre-assembled Locks and Latches

A156.3-08.....Exit Devices, Coordinators, and Auto Flush Bolts

A156.4-08.....Door Controls (Closers)

A156.5-01.....Auxiliary Locks and Associated Products

A156.6-05.....Architectural Door Trim

A156.8-05.....Door Controls-Overhead Stops and Holders

- A156.12-05Interconnected Locks and Latches
- A156.13-05.....Mortise Locks and Latches Series 1000
- A156.14-07Sliding and Folding Door Hardware
- A156.15-06.....Release Devices-Closer Holder, Electromagnetic and Electromechanical

A156.16-08.....Auxiliary Hardware A156.17-04Self-Closing Hinges and Pivots A156.18-06....Materials and Finishes A156.20-06Strap and Tee Hinges, and Hasps A156.21-09....Thresholds A156.22-05....Door Gasketing and Edge Seal Systems A156.23-04....Electromagnetic Locks A156.24-03....Delayed Egress Locking Systems A156.25-07Electrified Locking Devices A156.26-06....Continuous Hinges A156.28-07Master Keying Systems A156.29-07Exit Locks and Alarms A156.30-03High Security Cylinders A156.31-07Electric Strikes and Frame Mounted Actuators A250.8-03.....Standard Steel Doors and Frames D. National Fire Protection Association (NFPA):

80-10.....Fire Doors and Fire Windows 101-09....Life Safety Code

E. Underwriters Laboratories, Inc. (UL): Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - Exterior Doors: Type A2112/A5112 for doors 900 mm (3 feet) wide or less and Type A2111/A5111 for doors over 900 mm (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins. Hinges for exterior fire-rated doors shall be of stainless steel material.
 - 2. Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc. shall be of stainless steel material.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.
 - 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm x 114 mm (4-1/2 inches x 4-1/2 inches) hinges.
 - 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
 - 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
 - 7. Provide heavy-weight hinges where specified.

- At doors weighing 330 kg (150 lbs.) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

A. ANSI/BHMA A156.26, Grade 1-600.

1. Listed under Category N in BHMA's "Certified Product Directory."

- B. General: Minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete
- C. Continuous, Barrel-Type Hinges: Hinge with knuckles formed around a Teflon-coated 6.35mm (0.25-inch) minimum diameter pin that extends entire length of hinge.
 - 1. Base Metal for Exterior Hinges: Stainless steel.
 - 2. Base Metal for Interior Hinges: Steel.
 - 4. Provide with non-removable pin (hospital tip option) at lockable outswing doors.
 - Where required to clear adjacent casing, trim, and wall conditions and allow full door swing, provide wide throw hinges of minimum width required.
 - 6. Provide with manufacturer's cut-outs for separate mortised power transfers and/or mortised automatic door bottoms where they occur.
 - Where thru-wire power transfers are integral to the hinge, provide hinge with easily removable portion to allow easy access to wiring connections.
 - 8. Where models are specified that provide an integral wrap-around edge guard for the hinge edge of the door, provide manufacturer's adjustable threaded stud and machine screw mechanism to allow the door to be adjusted within the wrap-around edge guard.

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer .

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - 1. The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic

back check effective between 60 degrees and 85 degrees of door opening.

- 2. Where specified, closer shall have hold-open feature.
- 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
- 4. Material of closer body shall be forged or cast.
- 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
- 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
- 7. Closers shall have full size metal cover; plastic covers will not be accepted.
- Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
- 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
- 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
- 11. Provide parallel arm closers with heavy duty rigid arm.
- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 $\frac{1}{2}$ " (38mm) minimum piston diameter.

2.5 N/A

2.6 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of

building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.

- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Provide floor stops (Type L02141 or L02161 in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.
- F. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement.
- G. Omit stops where floor mounted door holders are required and where automatic operated doors occur.
- H. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- J. Provide overhead surface applied stop Type C02541, ANSI A156.8 on patient toilet doors in bedrooms where toilet door could come in contact with the bedroom door.
- K. Provide door stops on doors where combination closer magnetic holders are specified, except where wall stops cannot be used or where floor stops cannot be installed within 4-inches of the wall.
- L. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.7 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed holdopen on/off control at all other doors requiring overhead door stops.

2.8 FLOOR DOOR HOLDERS

A. Conform to ANSI Standard A156.16. Provide extension strikes for Types L01301 and L01311 holders where necessary.

2.9 LOCKS AND LATCHES

- A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall have not less than seven pins. Cylinders for all locksets shall be removable core type. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core of allow opening and closing during construction and prior to the installation of final cores.
- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets, except on designated doors in Psychiatric (Mental Health) areas, shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching existing Stanley-Best 8-in-1 Universal. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in highhumidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.
 - 2. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At

outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Provide lever design to match design selected by Architect or to match existing lever design. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool.)

- 3. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.5.
- 4. Locks on designated doors in Psychiatric (Mental Health) areas shall be paddle type with arrow projection covers and be UL Listed. Provide these locks with paddle in the down position on both sides of the door. Locks shall be fabricated of wrought stainless steel.
- 5. Privacy locks in non-mental-health patient rooms shall have an inside thumbturn for privacy and an outside thumbturn for emergency entrance. Single occupancy patient privacy doors shall typically swing out; where such doors cannot swing out, provide center-pivoted doors with rescue hardware (see HW-2B).

2.10 PUSH-BUTTON COMBINATION LOCKS

- A. ANSI/BHMA A156.13, Grade 1. Battery operated pushbutton entry.
- B. Construction: Heavy duty mortise lock housing conforming to ANSI/BHMA A156.13, Grade 1. Lever handles and operating components in compliance with the UFAS and the ADA Accessibility Guidelines. Match lever handles of locks and latchsets on adjacent doors.
- C. Special Features: Key override to permit a master keyed security system and a pushbutton security code activated passage feature to allow access without using the entry code.

2.11 ELECTROMAGNETIC LOCKS

A. ANSI/BHMA A156.23; electrically powered, of strength and configuration indicated; with electromagnet attached to frame and armature plate attached to door. Listed under Category E in BHMA's "Certified Product Directory."

1. Type: Full exterior or full interior, as required by application indicated.

- 2. Strength Ranking: 1500 lbf.
- 3. Inductive Kickback Peak Voltage: Not more than 53 V.

4. Residual Magnetism: Not more than 4 lbf to separate door from magnet.

B. Delayed-Egress Locks: BHMA A156.24.

1. Means of Egress Doors: Lock releases within 15 seconds after applying a force not more than 15 lbf (67 N) for not more than 3 seconds, as required by NFPA 101.

2. Security Grade: Activated from secure side of door by initiating device.

3. Movement Grade: Activated by door movement as initiating device.

4. The lock housing shall not project more than 4-inches (101mm) from the underside of the frame head stop.

2.12 ELECTRIC STRIKES

A. ANSI/ BHMA A156.31 Grade 1.

B. General: Use fail-secure electric strikes at fire-rated doors.

2.13 N/A 2.14 N/A

2.15 ARMOR PLATES, KICK PLATES, MOP PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates and door edging as specified below: 1. Kick plates, mop plates and armor plates of metal, Type J100 series. 2. Provide kick plates and mop plates where specified. Kick plates shall be 254 mm (10 inches) or 305 mm (12 inches) high. Mop plates shall be 152 mm (6 inches) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick and mop plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick and mop plates to within 6 mm (1/4 inch) of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.

3. Kick plates and/or mop plates are not required on following door sides:

- a. Armor plate side of doors;
- b. Exterior side of exterior doors;
- c. Closet side of closet doors;
- d. Both sides of aluminum entrance doors.
- Armor plates for doors are listed under Article "Hardware Sets".
 Armor plates shall be thickness as noted in the hardware set, 875 mm (35 inches) high and 38 mm (1-1/2 inches) less than width of doors,

except on pairs of metal doors. Provide armor plates beveled on all 4 edges (B4E). Plates on pairs of metal doors shall be 25 mm (1 inch) less than width of each door. Where top of intermediate rail of door is less than 875 mm (35 inches) from door bottom, extend armor plates to within 13 mm (1/2 inch) of top of intermediate rail. On doors equipped with panic devices, extend armor plates to within 13 mm (1/2 inch) of panic bolt push bar.

- 5. Where louver or grille occurs in lower portion of doors, substitute stretcher plate and kick plate in place of armor plate. Size of stretcher plate and kick plate shall be 254 mm (10 inches) high.
- 6. Provide stainless steel edge guards where so specified at wood doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow. Provide edge guards of bevel and thickness to match wood door. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide fullheight edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front. Forward edge guards to wood door manufacturer for factory installation on doors.

2.16 EXIT DEVICES

- A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging.
- B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels. Do not provide surface vertical rod panics at exterior doors.
- C. Concealed vertical rod panics shall be provided less bottom rod at interior doors, unless lockable or otherwise specified; provide fire pins as required by exit device and door fire labels. Where concealed vertical rod panics are specified at exterior doors, provide with both top and bottom rods.
- D. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature.

- E. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature.
- F. Exit devices for fire doors shall comply with Underwriters Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof of compliance.

2.17 FLUSH BOLTS (LEVER EXTENSION)

- A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
- B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
- C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
- D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.
- E. Provide extension rods for top bolt where door height exceeds 2184 mm (7 feet 2 inches).

2.18 FLUSH BOLTS (AUTOMATIC)

- A. Conform to ANSI A156.3. Dimension of flush bolts shall conform to ANSI A115. Bolts shall conform to Underwriters Laboratories, Inc., requirements for fire door hardware. Flush bolts shall automatically latch and unlatch. Furnish dustproof strikes conforming to ANSI A156.16 for bottom flushbolt. Face plates for dustproof strike shall be rectangular and not less than 38 mm by 90 mm (1-1/2 by 3-1/2 inches).
- B. At interior doors, provide auto flush bolts less bottom bolt, unless otherwise specified, except at wood pairs with fire-rating greater than 20 minutes; provide fire pins as required by auto flush bolt and door fire labels.

2.19 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm (6 inches) high by 19 mm (3/4 inches) diameter with plate Type J302, 90 mm by 350 mm (3-1/2 inches by 14 inches), unless otherwise specified. Provide pull with projection of 70 mm (2 3/4 inches) and a clearance of 51 mm (2 inches). Cut plates of door pull plate for cylinders, or turn pieces where required.

2.20 PUSH PLATES

A. Conform to ANSI A156.6. Metal, Type J302, 200 mm (8 inches) wide by 350 mm (14 inches) high. Provide metal Type J302 plates 100 mm (4 inches wide by 350 mm (14 inches) high) where push plates are specified for

doors with stiles less than 200 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required.

2.21 COMBINATION PUSH AND PULL PLATES

A. Conform to ANSI 156.6. Type J303, stainless steel 3 mm (1/8 inch) thick, 80 mm (3-1/3 inches) wide by 800 mm (16 inches) high), top and bottom edges shall be rounded. Secure plates to wood doors with 38 mm (1-1/2 inch) long No. 12 wood screws. Cut plates for turn pieces, and cylinders where required. Pull shall be mounted down.

2.22 COORDINATORS

A. Conform to ANSI A156.16. Coordinators, when specified for fire doors, shall comply with Underwriters Laboratories, Inc., requirements for fire door hardware. Coordinator may be omitted on exterior pairs of doors where either door will close independently regardless of the position of the other door. Coordinator may be omitted on interior pairs of non-labeled open where open back strike is used. Open back strike shall not be used on labeled doors. Paint coordinators to match door frames, unless coordinators are plated. Provide bar type coordinators, except where gravity coordinators are required at acoustic pairs. For bar type coordinators, provide filler bars for full width and, as required, brackets for push-side surface mounted closers, overhead stops, and vertical rod panic strikes.

2.23 THRESHOLDS

- A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be installed in a bed of sealant with ¼-20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.
- B. For thresholds at elevators entrances see other sections of specifications.
- C. At exterior doors and any interior doors exposed to moisture, provide threshold with non-slip abrasive finish.
- D. Provide with miter returns where threshold extends more than 12 mm (0.5 inch) from fame face.
- 2.24 AUTOMATIC DOOR BOTTOM SEAL AND RUBBER GASKET FOR LIGHT PROOF OR SOUND CONTROL DOORS
 - A. Conform to ANSI A156.22. Provide mortise or under-door type, except where not practical. For mortise automatic door bottoms, provide type specific for door construction (wood or metal).

2.25 WEATHERSTRIPS (FOR EXTERIOR DOORS)

A. Conform to ANSI A156.22. Air leakage shall not to exceed 0.50 CFM per foot of crack length (0.000774m³/s/m).

2.26 MISCELLANEOUS HARDWARE

- A. Access Doors (including Sheet Metal, Screen and Woven Wire Mesh Types): Except for fire-rated doors and doors to Temperature Control Cabinets, equip each single or double metal access door with Lock Type E76213, conforming to ANSI A156.5. Key locks as directed. Ship lock prepaid to the door manufacturer. Hinges shall be provided by door manufacturer.
- B. Cylinders for Various Partitions and Doors: Key cylinders same as entrance doors of area in which partitions and door occur, except as otherwise specified. Provide cylinders to operate locking devices where specified for following partitions and doors:
 - 1. Folding doors and partitions.
 - 2. Wicket door (in roll-up door assemblies).
 - 3. Slide-up doors.
 - 4. Swing-up doors.
 - 5. Fire-rated access doors-Engineer's key set.
 - 6. Doors from corridor to electromagnetic shielded room.
 - 7. Day gate on vault door.
- C. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame.

2.27 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626 or 630.

2. Hinges --interior doors: 652 or 630.

3. Pivots: Match door trim.

4. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.

5. Thresholds: Mill finish aluminum.

- 6. Cover plates for floor hinges and pivots: 630.
- 7. Other primed steel hardware: 600.
- D. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces.
- E. Special Finish: Exposed surfaces of hardware for dark bronze anodized aluminum doors shall have oxidized oil rubbed bronze finish (dark bronze) finish on door closers shall closely match doors.
- F. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.28 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal	
652	Steel	
626	Brass or bronze	
630	Stainless steel	

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA Resident Engineer for approval.
 - B. Hardware Heights from Finished Floor:

1. Exit devices centerline of strike (where applicable) 1024 mm (40-5/16 inches).

2. Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).

3. Deadlocks centerline of strike 1219 mm (48 inches).

4. Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket.

5. Centerline of door pulls to be 1016 mm (40 inches).

6. Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.

7. Push-pull latch to be 1024 mm (40-5/16 inches) to centerline of strike.

8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

- A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors except security bedroom, bathroom and anteroom doors which shall have closer installed parallel arm on exterior side of doors. At exterior doors, closers shall be mounted on interior side. Where closers are mounted on doors they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws.
- B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by Resident Engineer. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.
- E. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm	3 butts

(7 ft 6 in) high	
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- G. After locks have been installed; show in presence of Resident Engineer that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also a copy of the invoice shall be sent to the Resident Engineer for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA C.O.R. that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.

2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.

- 3. Identify items that have deteriorated or failed.
- 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings. B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

ELECTRIC HARDWARE ABBREVIATIONS LEGEND: ADO = Automatic Door Operator EMCH = Electro-Mechanical Closer-Holder MHO = Magnetic Hold-Open (wall- or floor-mounted)

INTERIOR SINGLE DOORS - SEE DRAWINGS

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK: N/A

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- C. Sample Panels:
 - After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.
 - Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
 - 3. Panel to show transparent finishes: Wood of same species and grain pattern as wood approved for use, 100 by 250 by 3 mm (4 inch by 10 inch face by 1/4 inch) thick minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 by 50 mm (2 by 2 inch) minimum or actual wood member to show complete finish.
 - 4. Attach labels to panel stating the following:

- a. Federal Specification Number or manufacturers name and product number of paints used.
- b. Product type and color.
- c. Name of project.

5. Strips showing not less than 50 mm (2 inch) wide strips of

undercoats and 100 mm (4 inch) wide strip of finish coat.

- D. Sample of identity markers if used.
- E. Manufacturers' Certificates indicating compliance with specified requirements:

1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.

- 2. High temperature aluminum paint.
- 3. Epoxy coating.
- 4. Intumescent clear coating or fire retardant paint.
- 5. Plastic floor coating.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:

1. Federal Specification Number, where applicable, and name of material.

- 2. Surface upon which material is to be applied.
- 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.5 MOCK-UP PANEL

- A. Before starting application of water paint mixtures, apply paint as specified to an area, not to exceed 9 m^2 (100 ft²), selected by C.O.R.
- B. Finish and texture approved by C.O.R. will be used as a standard of quality for remainder of work.

1.6 APPLICABLE PUBLICATIONS

A.	Publications listed below form a part of this specification to the
	extent referenced. Publications are referenced in the text by basic
	designation only.
в.	American Conference of Governmental Industrial Hygienists (ACGIH):
	ACGIH TLV-BKLT-2012Threshold Limit Values (TLV) for Chemical
	Substances and Physical Agents and Biological
	Exposure Indices (BEIs)
	ACGIH TLV-DOC-2012Documentation of Threshold Limit Values and
	Biological Exposure Indices, (Seventh Edition)
c.	American National Standards Institute (ANSI):
	A13.1-07 Scheme for the Identification of Piping Systems
D.	American Society for Testing and Materials (ASTM):
	D260-86Boiled Linseed Oil
Е.	Commercial Item Description (CID):
	A-A-1555
	Colors) (WPC) (cancelled)
	A-A-3120
F.	Federal Specifications (Fed Spec):
	TT-P-1411A (For
	Waterproofing Concrete and Masonry Walls) (CEP)
G.	Master Painters Institute (MPI):
	No. 1-12Aluminum Paint (AP)
	No. 4-12 Interior/ Exterior Latex Block Filler
	No. 5-12 Exterior Alkyd Wood Primer
	No. 7-12Exterior Oil Wood Primer
	No. 8-12 Exterior Alkyd, Flat MPI Gloss Level 1 (EO)
	No. 9-12 Exterior Alkyd Enamel MPI Gloss Level 6 (EO)
	No. 10-12Exterior Latex, Flat (AE)
	No. 11-12Exterior Latex, Semi-Gloss (AE)
	No. 18-12Organic Zinc Rich Primer
	No. 22-12Aluminum Paint, High Heat (up to 590% - 1100F)
	No. 22-12
	No. 22-12Aluminum Paint, High Heat (up to 590% - 1100F) (HR)
	No. 22-12Aluminum Paint, High Heat (up to 590% - 1100F) (HR) No. 26-12Cementitious Galvanized Metal Primer
	No. 22-12Aluminum Paint, High Heat (up to 590% - 1100F) (HR) No. 26-12Cementitious Galvanized Metal Primer No. 27-12Exterior / Interior Alkyd Floor Enamel, Gloss
	No. 22-12Aluminum Paint, High Heat (up to 590% - 1100F) (HR) No. 26-12Cementitious Galvanized Metal Primer No. 27-12Exterior / Interior Alkyd Floor Enamel, Gloss (FE)

No. 44-12.....Interior Low Sheen Latex, MPI Gloss Level 2 No. 45-12..... Interior Primer Sealer No. 46-12..... Interior Enamel Undercoat No. 47-12.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK) No. 48-12.....Interior Alkyd, Gloss, MPI Gloss Level 6 (AK) No. 49-12.....Interior Alkyd, Flat, MPI Gloss Level 1 (AK) No. 50-12.....Interior Latex Primer Sealer No. 51-12.....Interior Alkyd, Eggshell, MPI Gloss Level 3 No. 52-12..... Interior Latex, MPI Gloss Level 3 (LE) No. 53-12.....Interior Latex, Flat, MPI Gloss Level 1 (LE) No. 54-12.....Interior Latex, Semi-Gloss, MPI Gloss Level 5 $(\mathbf{T}_{\mathbf{F}})$ No. 59-12..... Interior/Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE) No. 60-12..... Interior/Exterior Latex Porch & Floor Paint, Low Gloss No. 66-12..... Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC) No. 67-12.....Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) No. 68-12.....Interior/ Exterior Latex Porch & Floor Paint, Gloss No. 71-12.....Polyurethane, Moisture Cured, Clear, Flat (PV) No. 74-12.....Interior Alkyd Varnish, Semi-Gloss No. 77-12..... Epoxy Cold Cured, Gloss (EC) No. 79-12.....Marine Alkyd Metal Primer No. 90-12.....Interior Wood Stain, Semi-Transparent (WS) No. 91-12.....Wood Filler Paste No. 94-12..... Exterior Alkyd, Semi-Gloss (EO) No. 95-12.....Fast Drying Metal Primer No. 98-12......High Build Epoxy Coating No. 101-12..... Epoxy Anti-Corrosive Metal Primer No. 108-12......High Build Epoxy Coating, Low Gloss (EC) No. 114-12.....Interior Latex, Gloss (LE) and (LG) No. 119-12..... Exterior Latex, High Gloss (acrylic) (AE) No. 135-12.....Non-Cementitious Galvanized Primer No. 138-12.....Interior High Performance Latex, MPI Gloss Level 2 (LF)

```
No. 139-12.....Interior High Performance Latex, MPI Gloss
Level 3 (LL)
No. 140-12....Interior High Performance Latex, MPI Gloss
Level 4
No. 141-12....Interior High Performance Latex (SG) MPI Gloss
Level 5
H. Steel Structures Painting Council (SSPC):
```

```
SSPC SP 1-04 (R2004)....Solvent Cleaning
SSPC SP 2-04 (R2004)....Hand Tool Cleaning
SSPC SP 3-04 (R2004)....Power Tool Cleaning
```

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Interior Satin Latex: MPI 43.
- B. Interior Primer Sealer: MPI 45.
- C. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.

1. Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.

- 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
- 3. Asbestos: Materials shall not contain asbestos.

- Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
- 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints, where possible.
- 7. VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.

1. Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.

2. Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.

- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.

4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.

- 5. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious

paints are applied to prevent excessive suction and to cool surface.

- 6. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.
 - c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:

1. Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.

2. Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.

3. See other sections of specifications for specified surface conditions and prime coat.

4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.

- C. Wood:
 - 1. Sand to a smooth even surface and then dust off.
 - 2. Sand surfaces showing raised grain smooth between each coat.
 - 3. Wipe surface with a tack rag prior to applying finish.
 - 4. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.
 - 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.
 - Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.

- Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - a. Thin filler in accordance with manufacturer's instructions for application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.
- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
 - Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Gypsum Plaster and Gypsum Board:
 - 1. Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.

3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Resident Engineer.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by Resident Engineer, except in spaces sealed from existing occupied spaces.

1. Apply painting materials specifically required by manufacturer to be applied by spraying.

2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items. I. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- G. Gypsum Board :

1. Surfaces scheduled to have MPI 53 (Interior Latex, Flat), MPI MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) finish: Use MPI 53 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) respectively.
2. Primer: MPI 50(Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer).

3.7 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in finish schedule.
- B. Gypsum Board:

One coat of MPI 45 (Interior Primer Sealer) plus one coat of MPI
 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)).

3.8 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.

- G. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- H. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- I. Sand or dull glossy surfaces prior to painting.
- J. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.9 PAINT COLOR

- A. Color and gloss of finish coats is specified in finish schedule.
- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel,

plastic laminate, or varnished wood.

- - - E N D - - -

APPENDIX

Coordinate the following abbreviations used in Section 09 91 00, PAINTING, with other Sections. Use the same abbreviation and terms consistently.

Paint or coating Abbreviation Acrylic Emulsion AE (MPI 10 - flat/MPI 11 - semigloss/MPI 119 gloss) Alkyd Flat Ak (MPI 49) Alkyd Gloss Enamel G (MPI 48) Alkyd Semigloss Enamel SG (MPI 47) Aluminum Paint AP (MPI 1) Cementitious Paint CEP (TT-P-1411) Exterior Latex EL??(MPI 10 / 11 / 119)?? Exterior Oil EO (MPI 9 - gloss/MPI 8 - flat/MPI 94 semigloss) Epoxy Coating EC (MPI 77 - walls, floors/MPI 108 - CMU, concrete) Fire Retardant Paint FR (MPI 67) Fire Retardant Coating (Clear) FC (MPI 66, intumescent type)

```
Floor Enamel FE (MPI 27 - gloss/MPI 59 - eggshell)
Heat Resistant Paint HR (MPI 22)
Latex Emulsion LE (MPI 53, flat/MPI 52, eggshell/MPI 54,
                             114, gloss Level 6
semigloss/MPI
Latex Flat LF (MPI 138)
Latex Gloss LG (MPI 114)
Latex Semigloss SG (MPI 141)
Latex Low Luster LL (MPI 139)
Plastic Floor Coating PL
Polyurethane Varnish PV (MPI 31 - gloss/MPI 71 - flat)
Rubber Paint RF (CID-A-A-3120 - Paint for Swimming Pools
(RF)).
Water Paint, Cement
                      WPC (CID-A-A-1555 - Water Paint, Powder).
Wood Stain WS (MPI 90)
Verify abbreviations used in the following coating sections:
Section 09 96 59, HIGH-BUILD GLAZED COATINGS GC
Section 09 94 19, MULTICOLOR INTERIOR FINISHING MC
                 - - - E N D - - -
```

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of cable, and other items and arrangements for the specified items are shown on drawings.
- C. D. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as NEMA, or ANSI. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:
 - Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed equipment or materials or periodic evaluation of services, and whose

listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified; equipment or product which:
 - a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory.
 - c. Bears a label, tag, or other record of certification.

4. Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.

2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the C.O.R.a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the C.O.R.prior to final inspection and not more than 90 days after completion of the tests.
 - When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.7 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with Section 00 72 00, GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to switchgear, switchboards, panelboards, transformers, motor control centers, motor controllers, uninterruptible power systems, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories.
 - During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart K in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.

- 2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E.
- 3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used and exit pathways.
- 4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COR.
- D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interferences.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working spaces shall not be less than specified in the NEC for all voltages specified.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers (starters), fused and unfused safety switches, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.

- B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 1/2 inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C.

1.12 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".

2. Submittals shall be marked to show specification reference including the section and paragraph numbers.

- 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.

- 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and/or attached to the equipment.
- 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
- 4. Parts list which shall include those replacement parts recommended by the equipment manufacturer.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.

- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers and replacement frequencies.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the C.O.R. with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

The contractor shall furnish the instruments, materials and labor for field tests.

1.16 TRAINING

- A. Training shall be provided in accordance with Article 1.25, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.

C. A training schedule shall be developed and submitted by the contractor and approved by the C.O.R.at least 30 days prior to the planned training.

- - - E N D - - -

SECTION 26 05 21

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW)

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of the low voltage power and lighting wiring.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section.
- C.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

Low voltage cables shall be thoroughly tested at the factory per NEMA WC-70 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- Manufacturer's Literature and Data: Showing each cable type and rating.
- 2. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the C.O.R.:
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.

B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Fire Protection Association (NFPA): D. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy E. Underwriters Laboratories, Inc. (UL): 44-05..... Thermoset-Insulated Wires and Cables 83-08..... Wires and Cables 467-071.....Electrical Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05.....Sealed Wire Connector Systems 486E-94......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Conduit, Tubing, and Cable Fittings 1479-03.....Fire Tests of Through-Penetration Fire Stops

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA WC-70 and as specified herein.
- B. Single Conductor:
 - 1. Shall be annealed copper.
 - 2. Shall be stranded for sizes No. 8 AWG and larger, solid for sizes No. 10 AWG and smaller.

3. Shall be minimum size No. 12 AWG, except where smaller sizes are allowed herein.

C. Insulation:

1. XHHW-2 or THHN-THWN shall be in accordance with NEMA WC-70, UL 44, and UL 83.

D. Color Code:

1. Secondary service feeder and branch circuit conductors shall be color-coded as follows:

208/120 volt	Phase	480/277 volt
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

- Use solid color insulation or solid color coating for No. 12 AWG and No. 10 AWG branch circuit phase, neutral, and ground conductors.
- 3. Conductors No. 8 AWG and larger shall be color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified above.
 - c. Color as specified using 0.75 in [19 mm] wide tape. Apply tape in half-overlapping turns for a minimum of 3 in [75 mm] for terminal points, and in junction boxes, pull-boxes, troughs, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.
- For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

2.2 SPLICES AND JOINTS

- A. In accordance with UL 486A, C, D, E, and NEC.
- B. Aboveground Circuits (No. 10 AWG and smaller):
 - Connectors: Solderless, screw-on, reusable pressure cable type, rated 600 V, 220° F [105° C], with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped wires.
 - 3. The number, size, and combination of conductors, as listed on the manufacturer's packaging, shall be strictly followed.

2.3 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified for power and lighting wiring, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.4 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install in accordance with the NEC, and as specified.
- B. Install all wiring in raceway systems.
- C. Splice cables and wires only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Wires of different systems (e.g., 120 V, 277 V) shall not be installed in the same conduit or junction box system.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. For panel boards, cabinets, wireways, switches, and equipment assemblies, neatly form, train, and tie the cables in individual circuits.
- G. Seal cable and wire entering a building from underground between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- H. Wire Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables. Use lubricants approved for the cable.
 - 2. Use nonmetallic ropes for pulling feeders.
 - Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the C.O.R.
 - 4. All cables in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- I. No more than three single-phase branch circuits shall be installed in any one conduit.
- J. Fireproofing:
 - Install fireproofing on low-voltage cables where the low-voltage cables are installed in the same manholes with medium-voltage cables; also cover the low-voltage cables with arcproof and fireproof tape.

- 2. Use tape of the same type used for the medium-voltage cables, and apply the tape in a single layer, half-lapped, or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 1 in [25 mm] into each duct.
- 3. Secure the tape in place by a random wrap of glass cloth tape.

3.3 SPLICE INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure.
- B. Tighten electrical connectors and terminals according to manufacturer's published torque values.
- C. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

3.5 EXISTING WIRING

Unless specifically indicated on the plans, existing wiring shall not be reused for a new installation.

3.6 CONTROL AND SIGNAL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.

3.7 CONTROL AND SIGNAL SYSTEM WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 ACCEPTANCE CHECKS AND TESTS

A. Feeders and branch circuits shall have their insulation tested after installation and before connection to utilization devices, such as fixtures, motors, or appliances. Test each conductor with respect to adjacent conductors and to ground. Existing conductors to be reused shall also be tested.

- B. Applied voltage shall be 500VDC for 300-volt rated cable, and 1000VDC for 600-volt rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300-volt rated cable and 100 megohms for 600-volt rated cable.
- C. Perform phase rotation test on all three-phase circuits.
- D. The contractor shall furnish the instruments, materials, and labor for all tests.

- - - E N D - - -

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the general grounding and bonding requirements for electrical equipment and operations to provide a low impedance path for possible ground fault currents.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low Voltage power and lighting wiring.
- C. Section 26 13 00, MEDIUM-VOLTAGE SWITCHGEAR: Medium voltage distribution switchgear.
- D. Section 26 13 13, GENERATOR PARALLELING CONTROLS: Generator paralleling controls.
- E. Section 26 18 41, MEDIUM-VOLTAGE SWITCHES: Medium voltage switches.
- F. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low voltage transformers.
- G. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low voltage switchgear.
- H. Section 26 24 11, DISTRIBUTION SWITCHBOARDS: Low voltage distribution switchboards.
- I. Section 26 24 16, PANELBOARDS: Low voltage panelboards.
- J. Section 26 24 19, MOTOR CONTROL CENTERS: Low voltage motor control centers.
- K. Section 26 24 21, MOTOR CONTROL PANELBOARDS: Low voltage motor control panelboards.
- L. Section 26 32 13, ENGINE-GENERATORS: Engine-generators.
- M. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.
- N. Section 26 41 00, FACILITY LIGHTNING PROTECTION: Requirements for lightning protection.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the C.O.R.
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

A. American Society for Testing and Materials (ASTM):

B1-07.....for Hard-Drawn Copper Wire

B3-07..... Standard Specification for Soft or Annealed Copper Wire

B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

C2-07.....National Electrical Safety Code

C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC) 99-2005.....Health Care Facilities

D. Underwriters Laboratories, Inc. (UL):

44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 44 or UL 83 insulated stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG [25 mm²] and larger shall be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be ASTM B1 solid bare copper wire.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Isolated Power System: Type XHHW-2 insulation with a dielectric constant of 3.5 or less.

2.2 GROUND RODS

- A. Steel or copper clad steel, 0.75 in [19 mm] diameter by 10 ft [30 M] long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance, as shown on the drawings.

2.3 CONCRETE ENCASED ELECTRODE

Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 MEDIUM VOLTAGE SPLICES AND TERMINATIONS

Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.5 GROUND CONNECTIONS

- A. Below Grade: Exothermic-welded type connectors.
- B. Above Grade:

1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.

2. Connection to Building Steel: Exothermic-welded type connectors.

3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.

4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.

2.6 EQUIPMENT RACK AND CABINET GROUND BARS

Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 0.375 in [4 mm] thick x 0.75 in [19 mm] wide.

2.7 GROUND TERMINAL BLOCKS

At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.8 GROUNDING BUS

Pre-drilled rectangular copper bar with stand-off insulators, minimum 0.25 in [6.3 mm] thick x 4 in [100 mm] high in cross-section, length as shown on drawings, with 0.281 in [7.1 mm] holes spaced 1.125 in [28 mm] apart.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
 - Isolation transformers and isolated power systems shall not be system grounded
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. Special Grounding: For patient care area electrical power system grounding, conform to NFPA 99 and NEC.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

Make grounding connections, which are normally buried or otherwise inaccessible (except connections for which access for periodic testing is required), by exothermic weld.

3.3 MEDIUM VOLTAGE EQUIPMENT AND CIRCUITS

A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.

- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium voltage conductors, sized per NEC except that minimum size shall be 2 AWG [25 mm²]. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole hardware and ground rods, to the cable shielding grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- C. Pad-Mounted Transformers:

1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.

- 2. Ground the secondary neutral.
- D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building steel, and supplemental or made electrodes. Provide jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.
 - 2. Provide a supplemental ground electrode and bond to the grounding electrode system.
- C. Service Disconnect (Separate Individual Enclosure): Provide a ground bar bolted to the enclosure with lugs for connecting the various grounding conductors.
- D. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers and Panelboards, Engine-Generators, and Automatic Transfer Switches:
 - 1. Connect the various feeder equipment grounding conductors to the ground bus in the enclosure with suitable pressure connectors.
 - 2. For service entrance equipment, connect the grounding electrode conductor to the ground bus.
 - 3. Provide ground bars, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
 - Connect metallic conduits that terminate without mechanical connection to the housing, by grounding bushings and grounding conductor to the equipment ground bus.

- E. Transformers:
 - Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary.
 Provide a grounding electrode at the transformer.
 - 2. Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system the ground bar at the service equipment.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a bare grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide 100% electrical continuity throughout the wireway system, by connecting a No. 6 AWG [16 mm²] bonding jumper at all intermediate metallic enclosures and across all section junctions.

- Install insulated No. 6 AWG [16 mm²] bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 50 ft [16 M].
- 3. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 49 ft [15 M].
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG [16 mm²]. These conductors shall be installed in rigid metal conduit.

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT

A. Outdoor Metallic Fences Around Electrical Equipment: Fences shall be grounded with a ground rod at each fixed gate post and at each corner post. Drive ground rods until the top is 12 in [300 mm] below grade. Attach a No. 4 AWG [25 mm²] copper conductor by exothermic weld to the ground rods, and extend underground to the immediate vicinity of fence post. Lace the conductor vertically into 12 in [300 mm] of fence mesh and fasten by two approved bronze compression fittings, one to bond the wire to post and the other to bond the wire to fence. Each gate section shall be bonded to its gatepost by a 0.375 in x 1 in [3 mm x 25 mm] flexible, braided copper strap and ground post clamps. Clamps shall be of the anti-electrolysis type.

3.7 CORROSION INHIBITORS

When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.8 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the gases and suction piping at the outlets directly to the room or patient ground bus.

3.9 LIGHTNING PROTECTION SYSTEM

Bond the lightning protection system to the electrical grounding electrode system.

3.10 ELECTRICAL ROOM GROUNDING

Building Earth Ground Busbars: Provide ground busbar and mounting hardware at each electrical room and connect to pigtail extensions of the building grounding ring.

3.11 EXTERIOR LIGHT POLES

Provide 20 ft [6.1 M] of No. 4 bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

3.12 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.

D. Below-grade connections shall be visually inspected by the C.O.R. prior to backfilling. The contractor shall notify the C.O.R. 24 hours before the connections are ready for inspection.

3.12 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 24 in [609 mm] below final grade.
- B. For indoor installations, leave 4 in [100 mm] of rod exposed.
- C. Where permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressure-type ground connectors.
- D. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

- - - E N D - - -

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- H. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- I. Section 31 20 00, EARTH MOVING: Bedding of conduits.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull-boxes.
 - 3. Layout of required conduit penetrations through structural elements.
- C. Certifications:
 - Two weeks prior to the final inspection, submit four copies of the following certifications to the C.O.R.:
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):
 C80.1-05.....Electrical Rigid Steel Conduit
 C80.3-05....Steel Electrical Metal Tubing
 C80.6-05....Electrical Intermediate Metal Conduit
 C. National Fire Protection Association (NFPA):
- D. Underwriters Laboratories, Inc. (UL):

651A-00.....Type EB and A Rigid PVC Conduit and HDPE Conduit

797-07.....Electrical Metallic Tubing

1242-06.....Electrical Intermediate Metal Conduit - Steel

E. National Electrical Manufacturers Association (NEMA):

TC-2-03.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
 - 2. Rigid aluminum: Shall conform to UL 6A and ANSI C80.5.
 - 3. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
 - 5. Flexible galvanized steel conduit: Shall conform to UL 1.
 - 6. Liquid-tight flexible metal conduit: Shall conform to UL 360.
 - Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
 - 8. Surface metal raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.

- c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
- d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
- e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Rigid aluminum conduit fittings:
 - a. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4% copper are prohibited.
 - b. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - c. Set screw fittings: Not permitted for use with aluminum conduit.
 - 3. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew couplings and connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 4. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.

- 5. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct burial plastic conduit fittings:

Fittings shall meet the requirements of UL 514C and NEMA TC3.

- 7. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.

- 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the C.O.R.prior to drilling through structural elements.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the C.O.R.as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.

- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
- Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
- Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- 13. Do not use aluminum conduits in wet locations.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the C.O.R.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.

- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the C.O.R. prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Conduit for conductors 600 V and below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 6 ft [1.8 M] of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the system is prohibited.

- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- G. Surface metal raceways: Use only where shown.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

3.5 DIRECT BURIAL INSTALLATION

Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only, notwithstanding requirements otherwise specified in this or other sections of these specifications.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel or IMC.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

3.8 MOTORS AND VIBRATING EQUIPMENT

A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission. B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.
- C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].

- c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- G. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of dry-type general-purpose transformers.

1.2 RELATED WORK

- A.Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include electrical ratings, impedance, dimensions, weight, mounting details, decibel rating, terminations, temperature rise, no load and full load losses, and connection diagrams.
 - Complete nameplate data, including manufacturer's name and catalog number.
- C. Manuals:
 - When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.
 - If changes have been made to the maintenance and operating manuals originally submitted, then submit four copies of the updated maintenance and operating manuals to the C.O.R. two weeks prior to final inspection.

D. Certifications: Two weeks prior to the final inspection, submit four copies of the following to the C.O.R.:
1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
2. Certification by the contractor that the equipment has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC)
- C. National Electrical Manufacturers Association (NEMA): ST20-92.....Dry-Type Transformers for General Applications TP1-02....Guide for Determining Energy Efficiency for Distribution Transformers

TR1-00...... Transformers, Regulators, and Reactors

PART 2 - PRODUCTS

2.1 GENERAL PURPOSE DRY-TYPE TRANSFORMERS

- A. Unless otherwise specified, dry-type transformers shall be in accordance with NEMA, NEC, and as shown on the drawings. Transformers shall be UL-listed and labeled.
- B. Dry-type transformers shall have the following features:
 - Transformers shall be self-cooled by natural convection, isolating windings, indoor dry-type. Autotransformers will not be accepted.
 Rating and winding connections shall be as shown on the drawings.
 Transformers shall have copper windings.
 - 4. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
 - 5. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220 $^\circ$ C system with an average maximum rise by resistance of 150 $^\circ$ C in a maximum ambient of 40 $^\circ$ C.
 - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 $^\circ$ C system with an average maximum rise by resistance of 115 $^\circ$ C in a maximum ambient of 40 $^\circ$ C.

- 6. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.
 - b. Cores shall be grain-oriented, non-aging, and silicon steel.
 - c. Coils shall be continuous windings without splices except for taps.
 - d. Coil loss and core loss shall be minimized for efficient operation.
 - e. Primary and secondary tap connections shall be brazed or pressure type.
 - f. Coil windings shall have end filters or tie-downs for maximum strength.

7. Certified sound levels determined in accordance with NEMA, shall not exceed the following:

Transformer Rating	Sound Level Rating
0 – 9 KVA	40 dB
10 - 50 KVA	45 dB
51 - 150 KVA	50 dB
151 - 300 KVA	55 dB
301 - 500 KVA	60 dB

- If not shown on drawings, nominal impedance shall be as permitted by NEMA.
- 9. Single phase transformers rated 15 kVA through 25 kVA shall have two 5% full capacity taps below normal rated primary voltage. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage.
- 10. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.
- 11. Enclosures:
 - a. Comprised of not less than code gauge steel.
 - b. Outdoor enclosures shall be NEMA 3R.
 - c. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service.

- d. Ventilation openings shall prevent accidental access to live components.
- e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.
- 12. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated on it.
- 13. Dimensions and configurations shall conform to the spaces designated for their installations.
- 14. Transformers shall meet the minimum energy efficiency values per NEMA TP1 as listed below:

kVA Rating	Output efficiency (%)
15	97
30	97.5
45	97.7
75	98
112.5	98.2
150	98.3
225	98.5
300	98.6
500	98.7
750	98.8

2.2 NONLINEAR TRANSFORMERS

- A. Shall be as specified in Paragraph 2.1, with additional features as specified below.
- B. Transformers shall be designed to withstand the overheating effects caused by harmonics resulting from non-linear (non-sinusoidal) loads.
- C. Neutral rating shall be 200% of rated secondary phase current.
- D. Minimum efficiency designed to supply circuits with a harmonic profile equal to or less than a K factor of 13, without exceeding specified temperature rise. Transformers with K factor of 13 shall be provided, if K factor is not shown on contract drawings. Table below applies to K-13 transformers only.

Harmonic	K-13 (%)
Fundamental	100
3rd	70
5^{th}	42
$7^{\rm th}$	5
9 th	3
11^{th}	3
13^{th}	1
15^{th}	0.7
17^{th}	0.6

2.3 ENERGY SAVING HARMONIC CANCELLATION TRANSFORMERS

- A. Shall be as specified in Paragraph 2.1, with additional features as specified below.
- B. The 3^{rd} , 9^{th} , and other zero sequence currents shall be treated via flux cancellation in the secondary windings.
- C. Each winding shall be independently single-shielded with a full-width copper electrostatic shield.
- D. Provide two sets of normally-open dry contacts: 170° C and 200°C.
- E. Neutral rating shall be 200% of rated secondary phase current.

2.4 BUCK-BOOST TRANSFORMERS

Shall be as specified in Paragraph 2.1, with additional features as specified below.

- Self-cooled, indoor, dry-type, and suitable for connection as auto transformers to provide the percentages of voltage buck or boost as shown on the drawings.
- 2. Continuous duty.
- 3. Insulation system to be 220° C.
- 4. Sound levels shall not exceed 36 dB.
- 5. Core assemblies grounded to enclosure.
- 6. Enclosures cleaned and painted at the factory with primer and manufacturer's standard finish.
- 7. Vibration isolators.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.

- B. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 6 in [150 mm].
- C. Install transformers on vibration pads designed to suppress transformer noise and vibrations.
- D. Use flexible metal conduit to enclose the conductors from the transformer to the raceway systems.

3.2 ACCEPTANCE CHECKS AND TESTS

Perform tests in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections.

- Compare equipment nameplate data with specifications and approved shop drawings.
- 2. Inspect physical and mechanical condition.
- Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
- 4. Perform specific inspections and mechanical tests as recommended by manufacturer.
- 5. Verify correct equipment grounding.
- 6. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 23 00 LOW-VOLTAGE SWITCHGEAR

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of the low voltage indoor switchgear.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and Wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and outlet boxes.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Low-voltage switchgear shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects. Tests shall be conducted as per UL and ANSI Standards. Factory tests shall be certified.
- B. Thoroughly test the switchgear at the factory with the circuit breakers in the connected position in their cubicles. The factory tests shall be in accordance with C37.20 and ANSI C37.51 and shall include the following tests:
 - 1. Design Tests
 - 2. Production Tests
 - 3. Conformance Tests
- C. The following additional tests shall be performed:
 - Verify that circuit breaker sizes and types correspond to drawings and coordination study.
 - Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.

- 3. Confirm correct operation and sequencing of electrical and mechanical interlock systems by attempting closure on locked-open devices, and attempting to open locked-closed devices, and making key exchange with devices operated in off-normal positions.
- 4. Verify correct barrier and shutter installation and operation.
- 5. Exercise all active components.
- 6. Inspect indicating devices for correct operation.
- Perform a dielectric withstand voltage test on each bus section, each phase-to-ground with phases not under test grounded, in accordance with manufacturer's published data.
- 8. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 volts dc for 300-volt rated cable and 1000 volts dc for 600-volt rated cable, or as required if solid-state components or control devices cannot tolerate the applied voltage.
- 9. If applicable, verify correct function of control transfer relays located in the switchgear with multiple control power sources.
- Perform phasing checks on double-ended or dual-source switchgear to insure correct bus phasing from each source.
- D. Furnish four (4) copies of certified manufacturer's factory test reports to the Resident Engineer prior to shipment of the switchgear to ensure that the switchgear has been successfully tested as specified.
- E. The Government shall have an option to witness the factory tests. All expenses of the Government Representative's trips to witness the testing will be paid by the Government. Notify the C.O.R. not less than 30 days prior to making tests at the factory.

1.5 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, wiring and connection diagrams, plan, front, side, and rear elevations, sectional views, bus work, circuit breaker frame sizes, trip and short-circuit rating, long-time, short-time, instantaneous and ground fault settings, coordinated breaker and fuse curves, accessories, and device nameplate data.

- 3. Show the size, ampere-rating, number of bars per phase and neutral in each bus run (horizontal and vertical), bus spacing, equipment ground bus, and bus material.
- C. Manuals:
 - Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnection between the items of equipment.
 - c. Provide a clear and concise description of operation, which gives, in detail, the information required to properly operate the equipment.
 - d. Approvals will be based on complete submissions of manuals together with shop drawings.
 - Two weeks prior to final inspection, deliver four copies of the final updated maintenance and operating manuals to the Resident Engineer.
 - a. The manuals shall be updated to include any information necessitated by shop drawing approval.
 - b. Complete "As Installed" wiring and schematic diagrams shall be included which show all items of equipment and their interconnecting wiring.
 - c. Show all terminal identification.
 - d. Include information for testing, repair, trouble shooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - e. Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - f. Furnish manuals in loose-leaf binder or manufacturer's standard binder.
- D. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following to the C.O.R.:
 - a. Certification by the Contractor that the assemblies have been properly installed, adjusted and tested, including circuit breaker settings.

b. Certified copies of all of the factory design and production tests, field test data sheets and reports for the assemblies.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata), form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE):
 - C37.13.....Low Voltage AC Power Circuit Breakers Used in Enclosures
 - C37.20.1.....Standard for Metal-Enclosed Low-Voltage Power Circuit-Breaker Switchgear

C57.13.....Instrument Transformers

C62.41.....Surge Voltage in Low Voltage AC Power Circuits

C. National Electrical Manufacturers Association (NEMA):

SG-3..... Breakers.

- SG-5.....Power Switchgear Assemblies.
- D. National Fire Protection Association (NFPA):

E. Underwriters Laboratories, Inc. (UL):

UL 891Dead-Front Switchboards

- 977.....Safety Fused Power Circuit Devices
- 1053..... and Relaying Equipment

Breaker Switchgear

PART 2 - PRODUCTS

2.1 GENERAL

- A. Low voltage switchgear shall be in accordance with IEEE, NEMA, NFPA and UL.
- B. Provide complete switchgear including, but not limited to housing, buses, draw out air circuit breakers, instruments and related transformers, relays fuses and wiring.
- C. Switchgear dimensions shall not exceed the dimensions shown on the drawings.
- D. Manufacturer's nameplate shall include complete ratings of switchgear in addition to date of manufacture.

2.2 HOUSING

A. Construction: Provide housing of structural or formed steel frame braced to maintain alignment and resist damage during shipment, erection, and by stresses resulting from short circuits. Enclose the frame on all sides, top, and bottom (except cable compartment) with sheet steel covers, doors and panels and equip with interior barriers. Provide rear access panels of the hinged type with provisions for padlocking. Provide ventilating louvers where required to limit the temperature rise of current carrying parts. Provide breakers with hinged covers and cutouts for control mechanism. Protect all openings against entrance of falling dirt, water or foreign matter. Isolate each breaker in its own compartment. Metering transformers and instruments shall be similarly isolated.

- B. Painting: Enclosure shall be thoroughly cleaned, phosphate treated and primed by a phosphate or similar treatment, and followed immediately with a rust-inhibiting paint. Final finish coat shall be the manufacturers standard gray.
- C. Breaker Compartments: The breaker compartments shall include stationary primary contacts, stationary secondary contacts as required, barriers, and rails for the drawout elements.
- D. Auxiliary Compartments: Match and align with basic switchgear assembly. Include the following:
 - 1. Utility metering compartment that complies with utility company requirements.
 - 2. Bus transition sections.
 - 3. Incoming-line pull sections.
 - Hinged front panels for access to metering, accessory, and blank compartments.
 - 5. Pull box on top of switchgear for extra room for pulling cable, with removable top, front, and side covers and ventilation provisions adequate to maintain air temperature in pull box within same limits as switchgear.
 - a. Set pull box back from front to clear circuit-breaker lifting mechanism.
 - b. Bottom: Insulating, fire-resistant material with separate holes for cable drops into switchgear.
 - c. Cable Supports: Arranged to ease cabling and adequate to support cables indicated, including those for future installation.

2.3 BUSES

A. General: Arrange buses for 3 phase, 4 wire distribution. The phase buses (through bus), neutral bus, and ground bus shall be full capacity

and shall extend the entire length of the switchgear. Make provisions for future extensions by means of bolt holes or other approved method. Brace bus to withstand short circuit current available at the particular location.

- B. Material and Size: Buses and connections shall be hard-drawn copper of 98 percent conductivity. Bus size and arrangement shall be such that the temperature rise of the buses shall not exceed IEEE standards. Bus connections to circuit breakers shall be copper. Size feeder busing to the line side of breakers based on IEEE. Bus laminations shall have a minimum of 1/4 inch [6mm] spacing.
- C. Bus Connections: Provide bolted or welded connections. All contact surfaces are of copper. A minimum of two plated bolts per splice or connection is required for nonwelded bus except where physical bus size permits only one bolt; the joint shall include an approved means, other than friction, to prevent turning, twisting, or bending. Bolts shall be torqued to the values recommended by the manufacturer.
- D. Neutral Bus: Provide bare neutral bus mounted on insulated bus supports. Provide neutral disconnect links to permit isolation of the neutral bus from the common ground bus and service entrance conductors.
- E. Ground Bus: Provide an uninsulated 6 mm by 50 mm (1/4 inch by 2 inch) copper equipment ground bus bar the length of the switchgear and secure to each unit frame.
- F. Main Bonding Jumper: An uninsulated 6 mm by 50 mm (1/4 inch by 2 inch) copper bus shall interconnect the neutral and ground buses, when the secondary service equipment is incorporated within the switchgear to establish the system common ground point.

2.4 NAMEPLATES AND MIMIC BUS

- A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 1/2 inch [12mm] engraved lettered nameplates next to each circuit breaker. For Essential Electrical System, provide laminated red phenolic resin with white core with 1/2 inch [12mm] engraved lettered nameplates next to each circuit breaker. Nameplates shall indicate equipment served, spaces, or spares in accordance with one line diagram shown on drawings. Nameplates shall be mounted with plated screws on front of breakers or on equipment enclosure next to breakers. Mounting nameplates only with adhesive is not acceptable.
- B. Mimic Bus: Provide an approved mimic bus on front of each switchgear assembly. Color shall be black for the Normal Power system and red for the Essential Electrical System, either factory-painted plastic or

metal strips. Plastic tape shall not be used. Use symbols similar to one line diagram shown on drawings. Plastic or metal strips shall be mounted with plated screws.

2.7 SPACE FOR FUTURE

Where "provision for", "future", or "space" is noted on drawings, equip the compartment with rails, mounting brackets, supports, bus connections, and any appurtenances necessary for ready insertion of a future breaker. A blank door shall close off the front of the compartment. Design buses for the breaker ampere rating as indicated on the drawings.

2.8 BREAKER REMOVAL EQUIPMENT

Furnish a portable elevating carriage or permanent top-mounted device for installation and removal of circuit breakers.

2.9 CONTROL WIRING

Switchgear control wiring shall be 600 volt Class B stranded SIS. Install all control wiring complete at the factory, adequately bundled and protected. All conductors size No. 8 and smaller, all conductors across hinges, and all conductors for interconnection between shipping units shall be Class C stranded. Size conductors in accordance with the NEC. Provide separate control circuit fuses in each breaker compartment and locate for ease of access and maintenance.

2.10 LOW VOLTAGE POWER CIRCUIT BREAKERS

- A. General: Circuit breakers shall be dead front, drawout, stored energy type with solid state trip devices. Arcing contacts shall be renewable. Circuit breakers shall be UL listed (Category PAQX).
- B. Rating: Circuit breakers shall be 3 pole, 600 volts AC and below, 60 cycle with indicated frame size, trip rating and system voltage. Breakers shall have 30 cycle short time current ratings.
- C. Drawout Mounting: Provide a racking mechanism to position and hold the breaker in the connected, test, or disconnected position. Provide an interlock to prevent movement of the breaker into or out of the connected position unless the breaker is tripped open.
- D. Trip Devices: Breakers shall be electrically and mechanically trip free and shall have trip devices in each pole. Unless otherwise indicated, each breaker shall have overcurrent, short-circuit and integral ground fault trip devices. Trip devices shall be of the solid state type with adjustable pick-up settings, with both long time and short time elements, and integral trip unit testing provisions. Devices shall have

time-delay band adjustment of minimum, intermediate, and maximum setting. Long-time delay element shall have inverse time characteristics. Main circuit breakers shall have short-time trips, in lieu of instantaneous trips. Final settings, of pick-up and time bands shall be as recommended by the manufacturer as reflected by the Electric System Protective Device Study as shown on the drawings.

- E. Position Indicator: Provide a mechanical indicator visible from the front of the unit to indicate whether the breaker is open or closed.
- F. Trip Button: Equip each breaker with a mechanical trip button accessible from the front of the door, which shall permit tripping of the breaker.
- G. Padlocking: Provisions shall be included for padlocking the breaker in the open position.
- H. Operation: Unless otherwise indicated on the drawings, breakers 1600 ampere frame size and less shall be manually operated. Breakers larger than 1600 ampere frame size shall be electrically operated.
- I. Fused Circuit Breakers: The fuses used with combination fused breakers shall be high-interrupting capacity current-limiting type and coordinated with the circuit breaker. Fuses shall be on the line side of the breaker on a common drawout carriage (except 3000 and 4000 ampere breakers). Circuit breakers of 3000 and 4000 ampere frame size may have their fuses in a separate compartment with drawout mounting. A feature shall be included which trips the breaker when any fuse blows. An interlock shall prevent the reclosure of the breaker until the blown fuse is replaced. A blown fuse indicator shall be provided on the front of the breaker. In the case of fuses in a separate compartment, an interlock shall be provided to require the breaker to be open before it is possible to open the fuse compartment door.

2.11 ACCESSORY SET

- A. Furnish tools and miscellaneous items required for circuit-breaker and switchgear test, inspection, maintenance, and operation.
 - 1. Racking handle to manually move circuit breaker between connected and disconnected positions.
 - Portable test set for testing all functions of circuit-breaker, solid-state trip devices without removal from switchgear.
 - 3. Relay and meter test plugs suitable for testing switchgear meters and switchgear class relays.

B. Circuit-Breaker Removal Apparatus: Portable, floor-supported, rollerbase, elevating carriage arranged for moving circuit breakers in and out of compartments.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install the switchgear in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Anchor switchgear to the slab with plated 1/2 inch [12.5mm] minimum anchor bolts, or as recommended by the manufacturer.
- C. Exterior Location. Mount switchgear on concrete slab. Unless otherwise indicated, the slab shall be at least 8 inches [200mm] thick, reinforced with a 6 by 6 inch [150 by 150 mm] No. 6 mesh placed uniformly 4 inches [100mm] from the top of the slab. Slab shall be placed on a 6 inch [150mm] thick, well-compacted gravel base. The top of the concrete slab shall be approximately 4 inches [100mm] above the finished grade. Edges above grade shall have 1/2 inch [15mm] chamfer. The slab shall be of adequate size to project at least 8 inches [200mm] beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 3 inches [75mm] above slab surface. Concrete.
- D. Interior Location. Mount switchgear on concrete slab. Unless otherwise indicated, the slab shall be at least 4 inches [100mm] thick. The top of the concrete slab shall be approximately 4 inches [100mm] above finished floor. Edges above floor shall have 1/2 inch [15mm] chamfer. The slab shall be of adequate size to project at least 100 mm 8 inches beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 3 inches [75mm] above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:
 - 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.

- c. Confirm correct application of manufacturer's recommended lubricants.
- d. Verify appropriate anchorage, required area clearances, and correct alignment.
- e. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- f. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
- g. Confirm correct operation and sequencing of electrical and mechanical interlock systems.
- h. Clean switchgear.
- i. Inspect insulators for evidence of physical damage or contaminated surfaces.
- j. Verify correct shutter installation and operation.
- k. Exercise all active components.
- Verify the correct operation of all sensing devices, alarms, and indicating devices.
- m. Verify that vents are clear.
- n. Inspect control power transformers.
- 2. Electrical Tests
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform over potential tests.
 - c. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.
 - d. Perform phasing check on double-ended switchgear to ensure correct bus phasing from each source.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the switchgear is in good operating condition and properly performing the intended function. Circuit breakers shall be tripped by operation of each protective device.

3.4 INSTRUCTION

Furnish the services of a factory certified instructor for one 4 hour period for instructing personnel in the operation and maintenance of the switchgear and related equipment on the date requested by the Resident Engineer.

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Identification and painting of panelboards.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
- D. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
 (600 VOLTS AND BELOW): Cables and wiring.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.
- H. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, shall be clearly presented to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting details, materials, wiring diagrams, accessories, and weights of equipment. Complete nameplate data, including manufacturer's name and catalog number.

C. Manuals:

- When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.
- 2. If changes have been made to the maintenance and operating manuals that were originally submitted, then submit four copies of updated

maintenance and operating manuals to the C.O.R. two weeks prior to final inspection.

- D. Certification: Two weeks prior to final inspection, submit four copies of the following to the C.O.R.:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

B. National Electrical Manufacturers Association (NEMA): PB-1-06.....Panelboards 250-08....Enclosures for Electrical Equipment (1000V Maximum)

C. National Fire Protection Association (NFPA): 70-2005National Electrical Code (NEC) 70E-2004.....Standard for Electrical Life Safety in the

Workplace

D. Underwriters Laboratories, Inc. (UL):

50-95.....Enclosures for Electrical Equipment

67-09.....Panelboards

489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 PANELBOARDS

- A. Panelboards shall be in accordance with UL, NEMA, NEC, and as shown on the drawings.
- B. Panelboards shall be standard manufactured products.
- C. All panelboards shall be hinged "door in door" type with:
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - Outer hinged door shall be securely mounted to the panelboard box with factory bolts, screws, clips, or other fasteners, requiring a tool for entry. Hand-operated latches are not acceptable.

3. Push inner and outer doors shall open left to right.

- D. All panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories, such as surge protective devices, metering devices as scheduled on the drawings or specified herein. Include one-piece removable, inner dead front cover, independent of the panelboard cover.
- E. Panelboards shall have main breaker or main lugs, bus size, voltage, phase, top or bottom feed, and flush or surface mounting as scheduled on the drawings.
- F. Panelboards shall conform to NEMA PB-1, NEMA AB-1, and UL 67 and have the following features:
 - Non-reduced size copper bus bars with current ratings as shown on the panel schedules, rigidly supported on molded insulators.
 - Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
 - Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys of sizes suitable for the conductors to which they will be connected.
 - Neutral bus shall be //100%//200%//rated, mounted on insulated supports.
 - 5. Grounding bus bar shall be equipped with screws or lugs for the connection of grounding wires.
 - 6. Buses shall be braced for the available short-circuit current. Bracing shall not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
 - Branch circuit panelboards shall have buses fabricated for bolt-on type circuit breakers.
 - Protective devices shall be designed so that they can easily be replaced.
 - 9. Where designated on panel schedule "spaces," include all necessary bussing, device support, and connections. Provide blank cover for each space.
 - 10. In two section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on

the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have cable connections to the second section. Panelboard sections with tapped bus or crossover bus are not acceptable.

11. Series-rated panelboards are not permitted.

2.2 CABINETS AND TRIMS

Cabinets:

- Provide galvanized steel cabinets to house panelboards. Cabinets for outdoor panelboards shall be factory primed and suitably treated with a corrosion-resisting paint finish meeting UL 50 and UL 67.
- 2. Cabinet enclosure shall not have ventilating openings.
- Cabinets for panelboards may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.

2.3 MOLDED CASE CIRCUIT BREAKERS FOR PANELBOARDS

- A. Circuit breakers shall be per UL 489, in accordance with the NEC, as shown on the drawings, and as specified.
- B. Circuit breakers in panelboards shall be bolt-on type.
- C. Molded case circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Molded case circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for 100 A frame or lower. Magnetic trip shall be adjustable from 3x to 10x for breakers with 600 A frames and higher. Breaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY Factory setting shall be HI, unless otherwise noted .
- E. Breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.

- 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
- 6. Electrically and mechanically trip free.
- 7. An operating handle which indicates ON, TRIPPED, and OFF positions.
- 8. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.
- 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where indicated.
- 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SURGE SUPPRESSION

Where shown on drawings, furnish panelboard with integral transient voltage surge suppression device.

2.5 SEPARATELY ENCLOSED MOLDED CASE CIRCUIT BREAKERS

- A. Where separately enclosed molded case circuit breakers are shown on the drawings, provide circuit breakers in accordance with the applicable requirements of those specified for panelboards.
- B. Enclosures are to be of the NEMA types shown on the drawings. Where the types are not shown, they are to be the NEMA type most suitable for the environmental conditions where the circuit breakers are being installed.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the C.O.R. Schedules shall be printed on the panelboard directory cards, installed in the appropriate panelboards, and incorporate all applicable contract changes. Information shall indicate outlets, lights, devices, or other equipment controlled by each circuit, and the final room numbers served by each circuit.
- D. Mount the fully-aligned panelboard such that the maximum height of the top circuit breaker above the finished floor shall not exceed 78 in

[1980 mm]. Mount panelboards that are too high such that the bottom of the cabinets will not be less than 6 in [150 mm] above the finished floor.

- E. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims, doors, and boxes with finishes to match surrounding surfaces after the panelboards have been installed.
- F. Rust and scale shall be removed from the inside of existing backboxes where new panelboards are to be installed. Paint inside of backboxes with rust-preventive paint before the new panelboard interior is installed. Provide new trim and doors for these panelboards. Covers shall fit tight to the box with no gaps between the cover and the box.

3.2 ACCEPTANCE CHECKS AND TESTS

Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:

- 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Clean panelboard.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlets boxes.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:

1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.

2. Include electrical ratings, dimensions, mounting details, construction materials, grade and termination information.

- C. Manuals: Two weeks prior to final inspection, deliver four copies of the following to the C.O.R.: Technical data sheets and information for ordering replacement units.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the C.O.R.: Certification by the Contractor that the devices comply with the drawings and specifications, and have been properly installed, aligned, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent

referenced. Publications are referenced in the text by basic designation only.

B. National Fire Protection Association (NFPA):

70.....National Electrical Code (NEC)

- C. National Electrical Manufacturers Association (NEMA): WD 1.....General Color Requirements for Wiring Devices WD 6Wiring Devices - Dimensional Requirements
- D. Underwriter's Laboratories, Inc. (UL):

5.....Surface Metal Raceways and Fittings

20.....General-Use Snap Switches

231.....Power Outlets

467..... Bonding Equipment

498.....Attachment Plugs and Receptacles

943.....Ground-Fault Circuit-Interrupters

PART 2 - PRODUCTS

2.1 RECEPTACLES

A. General: All receptacles shall be listed by Underwriters Laboratories, Inc., and conform to NEMA WD 6.

1. Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four min.) and side wiring from four captively held binding screws.

- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, and conform to the NEMA 5-20R configuration in NEMA WD The duplex type shall have break-off feature for two-circuit operation. The ungrounded pole of each receptacle shall be provided with a separate terminal.
 - 1. Bodies shall be ivory in color.

2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The remaining receptacle shall be unswitched.

- 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.

4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box.

a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit

interrupter switch. Device shall have nominal sensitivity to ground leakage current of five milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliamp) on the load side of the device. Device shall have a minimum nominal tripping time of 1/30th of a second.

- b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the "hospital-grade" listing.
- 5. Safety Type Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - 2) Screws exposed while the wall plates are in place shall be the tamperproof type.

6. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the "hospital grade" listing and as follows.

- a. Bodies shall be brown phenolic compound supported by a plated steel mounting strap having plaster ears.
- C. Receptacles; 20, 30 and 50 ampere, 250 volts: Shall be complete with appropriate cord grip plug. Devices shall meet UL 231.
- E. TVSS Receptacles. Shall comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 1449, with integral TVSS in line to ground, line to neutral, and neutral to ground.

1. TVSS Components: Multiple metal-oxide variators; with a nominal clamp-level rating of 400 volts and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.

2. Active TVSS Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type smooth nylon.
 Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
- C. Standard NEMA design, so that products of different manufacturers will be interchangeable. Dimensions for openings in wall plates shall be accordance with NEMA WD 6.

- D. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- E. F. Wall plates for data, telephone or other communication outlets shall be as specified in the associated specification.
- G. Duplex Receptacles on Emergency Circuit:1. Bodies shall be red in color. Wall plates shall be red with the word "EMERGENCY" engraved in 6 mm, (1/4 inch) white letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Ground terminal of each receptacle shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the green equipment grounding conductor.
- C. Outlet boxes for light and dimmer switches shall be mounted on the strike side of doors.
- D. Provide barriers in multigang outlet boxes to separate systems of different voltages, Normal Power and Emergency Power systems, and in compliance with the NEC.
- E. Coordinate with other work, including painting, electrical boxes and wiring installations, as necessary to interface installation of wiring devices with other work. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- F. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades. In addition, check for exact direction of door swings so that local switches are properly located on the strike side.
- I. Install convenience receptacles 18 inches [450mm] above floor, and 6 inches [152mm] above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- J. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

- K. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- L. Test GFCI devices for tripping values specified in UL 1436 and UL 943.

- - - E N D - - -

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
- B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings.

1.2 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.

2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.
- D. A GSA Certified Qualified HSPD-12 Service Provider is preferred.

1.4 MANUFACTURED PRODUCTS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.

- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:

1. Components of an assembled unit need not be products of the same manufacturer.

2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.

3. Components shall be compatible with each other and with the total assembly for the intended service.

4. Constituent parts which are similar shall be the product of a single manufacturer.

- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:

1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Contracting Officer Representative (COR) a minimum of 15 working days prior to the manufacturers making the factory tests.

2. Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.

3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.5 EQUIPMENT REQUIREMENTS

A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.6 EQUIPMENT PROTECTION

A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:

1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.

2. Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.

3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.

4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.7 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Inaccessible Equipment:

1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.

2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.9 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer

as a standard catalog item, or where other method of identification is herein specified, are exceptions.

1.10 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.

1. Mark the submittals, "SUBMITTED UNDER SECTION_____".

2. Submittals shall be marked to show specification reference including the section and paragraph numbers.

- 3. Submit each section separately.
- E. The submittals shall include the following:

1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.

2. Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.

3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.

F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.

2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.

3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.

4. The manuals shall include:

- a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
- b. A control sequence describing start-up, operation, and shutdown.
- c. Description of the function of each principal item of equipment.
- d. Installation and maintenance instructions.
- e. Safety precautions.
- f. Diagrams and illustrations.
- g. Testing methods.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:

1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.

2. Each type of conduit and pathway coupling, bushing and termination fitting.

- 3. Raceway and pathway hangers, clamps and supports.
- 4. Duct sealing compound.

1.11 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.12 TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies general grounding and bonding requirements of telecommunication installations for equipment operations.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes.
- D. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 27.
- B. Section 27 10 00, STRUCTURED CABLING: Low Voltage power and lighting wiring.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Shop Drawings:

1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.

2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.

- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Contracting Officer Representative (COR):

1. Certification that the materials and installation is in accordance with the drawings and specifications.

2. Certification, by the Contractor, that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

A. American Society for Testing and Materials (ASTM):

B1-2001.....Standard Specification for Hard-Drawn Copper Wire B8-2004.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

- B. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 - 81-1983..... EEEE Guide for Measuring Earth Resistivity,

Ground Impedance, and Earth Surface Potentials

- of a Ground System
- C. National Fire Protection Association (NFPA): 70-2005.....National Electrical Code (NEC)
- E. Telecommunications Industry Association, (TIA) J-STO-607-A-2002.....Commercial Building Grounding (Earthing) and

Bonding Requirements for Telecommunications

E. Underwriters Laboratories, Inc. (UL):

44-2005Thermoset-Insulated Wires and Cables 83-2003Thermoplastic-Insulated Wires and Cables 467-2004Grounding and Bonding Equipment 486A-486B-2003Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.
- C. Isolated Power System: Type XHHW-2 insulation with a dielectric constant of 3.5 or less.
- D. Telecom System Grounding Riser Conductor: Telecommunications Grounding Riser shall be in accordance with J STO-607A. Use a minimum 50mm² (1/0 AWG) insulated stranded copper grounding conductor unless indicated otherwise.

2.2 SPLICES AND TERMINATION COMPONENTS

A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.3 TELECOMMUNICATION SYSTEM GROUND BUSBARS

- A. Provide solid copper busbar, pre-drilled from two-hole lug connections with a minimum thickness of 6 mm (1/4 inch) for wall and backboard mounting using standard insulators sized as follows:
 - 1. Room Signal Grounding: 300 mm x 100 mm (12 inches x 4 inch).
 - 2. Master Signal Ground: 600 mm x 100 mm (24 inches x 4 inch).

2.4 GROUND CONNECTIONS

A. Above Grade:

1. Bonding Jumpers: compression type connectors, using zinc-plated fasteners and external tooth lockwashers.

2. Ground Busbars: Two-hole compression type lugs using tin-plated copper or copper alloy bolts and nuts.

3. Rack and Cabinet Ground Bars: one-hole compression-type lugs using zinc-plated or copper alloy fasteners.

B. Cable Shields: Make ground connections to multipair communications cables with metallic shields using shield bonding connectors with screw stud connection.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch } x \frac{3}{4} \text{ inch})$.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.7 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified.
- B. System Grounding:

1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.

2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.

3. Isolation transformers and isolated power systems shall not be system grounded.

C. Equipment Grounding: Metallic structures (including ductwork and building steel), enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 SECONDARY EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Steel, and Supplemental Electrode(s):

 Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water and gas pipe systems, building steel, and supplemental or made electrodes. Install a bonding jumper around insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.

2. Provide a supplemental ground electrode and bond to the grounding electrode system.

C. Conduit Systems:

1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.

2. Non-metallic conduit systems shall contain an equipment grounding conductor, except that non-metallic feeder conduits which carry a grounded conductor from exterior transformers to interior or buildingmounted service entrance equipment need not contain an equipment grounding conductor.

3. Conduit containing only a grounding conductor, and which is provided for mechanical protection of the conductor, shall be bonded to that conductor at the entrance and exit from the conduit.

- D. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- E. Boxes, Cabinets, Enclosures, and Panelboards:

1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through

which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).

2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

3. Provide ground bars in panelboards, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.

F. Receptacles shall not be grounded through their mounting screws. Ground with a jumper from the receptacle green ground terminal to the device box ground screw and the branch circuit equipment grounding conductor.

3.4 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.5 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.6 TELECOMMUNICATIONS SYSTEM

- A. Bond telecommunications system grounding equipment to the electrical grounding electrode system.
- B. Furnish and install all wire and hardware required to properly ground, bond and connect communications raceway, cable tray, metallic cable shields, and equipment to a ground source.
- C. Ground bonding jumpers shall be continuous with no splices. Use the shortest length of bonding jumper possible.
- D. Provide ground paths that are permanent and continuous with a resistance of 1 ohm or less from raceway, cable tray, and equipment connections to the building grounding electrode. The resistance across individual bonding connections shall be 10 milli ohms or less.
- E. Above-Grade Grounding Connections: When making bolted or screwed connections to attach bonding jumpers, remove paint to expose the entire contact surface by grinding where necessary; thoroughly clean all connector, plate and other contact surfaces; and apply an appropriate corrosion inhibitor to all surfaces before joining.
- F. Bonding Jumpers:
 - Use insulated ground wire of the size and type shown on the Drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire.

- 2. Assemble bonding jumpers using insulated ground wire terminated with compression connectors.
- Use compression connectors of proper size for conductors specified.
 Use connector manufacturer's compression tool.
- G. Bonding Jumper Fasteners:
 - 1. Conduit: Fasten bonding jumpers using screw lugs on grounding bushings or conduit strut clamps, or the clamp pads on push-type conduit fasteners. When screw lug connection to a conduit strut clamp is not possible, fasten the plain end of a bonding jumper wire by slipping the plain end under the conduit strut clamp pad; tighten the clamp screw firmly. Where appropriate, use zinc-plated external tooth lockwashers.
 - 2. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers, and nuts. Install protective cover, e.g., zinc-plated acorn nuts on any bolts extending into wireway or cable tray to prevent cable damage.
 - Ground Plates and Busbars: Fasten bonding jumpers using two-hole compression lugs. Use tin-plated copper or copper alloy bolts, external tooth lockwashers, and nuts.
 - 4. Unistrut and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and external tooth lockwashers.

3.7 COMMUNICATION ROOM GROUNDING

- A. Telecommunications Ground Busbars:
 - Provide communications room telecommunications ground busbar hardware at 950 mm (37 inches) at locations indicated on the Drawings.
 - 2. Connect the telecommunications room ground busbars to other room grounding busbars as indicated on the Grounding Riser diagram.
- B. Telephone-Type Cable Rack Systems: aluminum pan installed on telephonetype cable rack serves as the primary ground conductor within the communications room. Make ground connections by installing the following bonding jumpers:
 - Install a 16 mm² (6 AWG) bonding between the telecommunications ground busbar and the nearest access to the aluminum pan installed on the cable rack.

2. Use 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.C. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:

- When ground bars are provided at the rear of lineup of bolted together equipment racks, bond the copper ground bars together using solid copper splice plates supplied by the ground bar manufacturer.
- Bond together nonadjacent ground bars on equip. racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end w/compression-type connectors and mounting bolts.
- 3. Provide a 16 mm² (6 AWG) bonding jumper between the rack and/or cabinet ground busbar and the aluminum pan of an overhead cable tray or the raised floor stringer as appropriate.
- D. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near the top of backboards used for communications cross-connect systems. Connect backboard ground terminals to the aluminum pan in the telephone-type cable tray using an insulated 16 mm² (16 AWG) bonding jumper.
- E. Other Communication Room Ground Systems: Ground all metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to the cable tray pan or the telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.

3.8 COMMUNICATIONS CABLE GROUNDING

- A. Bond all metallic cable sheaths in multipair communications cables together at each splicing and/or terminating location to provide 100 percent metallic sheath continuity throughout the communications distribution system.
 - At terminal points, install a cable shield bonding connector provide a screw stud connection for ground wire. Use a bonding jumper to connect the cable shield connector to an appropriate ground source like the rack or cabinet ground bar.
 - 2. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or the splice case grounding and bonding accessories provided by the splice case manufacturer. When an external ground connection is provided as part of splice closure, connect to an approved ground source and all other metallic components and equipment at that location.

3.9 COMMUNICATIONS CABLE TRAY SYSTEMS:

A. Bond the metallic structures of one cable tray in each tray run following the same path to provide 100 percent electrical continuity throughout this cable tray systems as follows:

- Splice plates provided by the cable tray manufacturer can be used for providing a ground bonding connection between cable tray sections when the resistance across a bolted connection is 10 milliohms or less. The Subcontractor shall verify this loss by testing across one slice plate connection in the presence of the Contractor.
- Install a 16 mm² (6 AWG) bonding jumper across each cable tray splice or junction where splice plates cannot be used.
- When cable tray terminations to cable rack, install 16 mm² (6 AWG) bonding jumper between cable tray and cable rank pan.

3.10 COMMUNCIATIONS RACEWAY GROUNDING

- A. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to ground metallic conduit at each end and to bond at all intermediate metallic enclosures.
- B. Wireway: use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and across all section junctions.
- C. Cable Tray Systems: Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 16 meters (50 feet).

3.11 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make necessary modifications or additions to the grounding electrode system for compliance without additional cost to the Government. Final tests shall assure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Mounting board for communication closets: Section 06 10 00, ROUGH CARPENTRY.
- B. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Fabrications for the deflection of water away from the building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- D. Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building: Section 07 92 00, JOINT SEALANTS.
- E. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- F. General electrical requirements and items that is common to more than one section of Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

- A. Shop Drawings:
 - 1. Size and location of panels and pull boxes
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Certification: Prior to final inspection, deliver to the Contracting Officer Representative (COR) four (4) copies of the certification that

the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC)
- C. Underwriters Laboratories, Inc. (UL):

	1-03	Flexible Metal Conduit
	5-01	Surface Metal Raceway and Fittings
	6-03	Rigid Metal Conduit
	50-03	Enclosures for Electrical Equipment
	360-03	Liquid-Tight Flexible Steel Conduit
	467-01	Grounding and Bonding Equipment
	514A-01	Metallic Outlet Boxes
	514B-02	Fittings for Cable and Conduit
	514C-05	Nonmetallic Outlet Boxes, Flush-Device Boxes
		and Covers
	651-02	Schedule 40 and 80 Rigid PVC Conduit
	651A-03	Type EB and A Rigid PVC Conduit and HDPE
		Conduit
	797-03	Electrical Metallic Tubing
	1242-00	Intermediate Metal Conduit
D.	National Electrical Manu	facturers Association (NEMA):
	TC-3-04	PVC Fittings for Use with Rigid PVC Conduit and
		Tubing
	FB1-03	Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing and
		Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (1/2 inch) unless otherwise shown. Where permitted by the NEC, 13 mm (1/2 inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.

- 2. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- 3. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.
- 5. Flexible galvanized steel conduit: Shall Conform to UL 1.
- 6. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- 8. Surface metal raceway: Shall Conform to UL 5.

C. Conduit Fittings:

- 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Rigid aluminum conduit fittings:
 - a. Standard threaded couplings, locknuts, bushings, and elbows:Malleable iron, steel or aluminum alloy materials; Zinc or

cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.

- b. Locknuts and bushings: As specified for rigid steel and IMC conduit.
- c. Set screw fittings: Not permitted for use with aluminum conduit.
- 3. Electrical metallic tubing fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - d. Indent type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp type, with insulated throat.
- 5. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct burial plastic conduit fittings:
 - a. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - b. As recommended by the conduit manufacturer.
- 7. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- 8. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.

- b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
- c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.
- G. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".

PART 3 - EXECUTION

3.1 PENETRATIONS

A. Cutting or Holes:

1. Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.

2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.

- B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure,

made up wrench tight. Do not make conduit connections to junction box covers.

- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:

1. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (six feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for conductors above 600 volts:
 - 1. Rigid steel or rigid aluminum.
 - 2. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.

C. Conduit for Conductors 600 volts and below:

1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.

- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- G. Surface metal raceways: Use only where shown.
- H. Painting:

1. Paint exposed conduit as specified in Section 09 91 00, PAINTING. 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of

the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

3.8 COMMUNICATION SYSTEM CONDUIT

- A. Install the communication raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor. K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 27 10 00 STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of the structured cabling system to provide a comprehensive telecommunications infrastructure.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain the integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

1. Manufacturer's Literature and Data: Showing each cable type and rating.

2. Certificates: Two weeks prior to final inspection, deliver to the Contracting Officer Representative (COR) four (4) copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape

D. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-02..... Thermoset-Insulated Wires and Cables 83-03..... Wires and Cables 467-01.....Electrical Grounding and Bonding Equipment 486A-01......Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-02.....Splicing Wire Connectors 486D-02..... Systems for Underground Use or in Damp or Wet Locations 486E-00......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-01..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-02.....Fittings for Cable and Conduit

1479-03.....Fire Tests of Through-Penetration Fire Stops

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Unless otherwise specified in other sections of these specifications, control wiring shall be as specified for power and lighting wiring, except the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough so that the voltage drop under inrush conditions does not adversely affect operation of the controls.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Shall conform to the recommendations of the manufacturers of the communication and signal systems; however, not less than what is shown.
- B. Wiring shown is for typical systems. Provide wiring as required for the systems being furnished.
- C. Multi-conductor cables shall have the conductors color coded.

2.3 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.4 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.

- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install all wiring in raceway systems.
- B. Wire Pulling:

1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.

2. Use ropes made of nonmetallic material for pulling feeders.

3. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.

4. Pull in multiple cables together in a single conduit.

3.2 CONTROL, COMMUNICATION AND SIGNAL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panelboards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- D. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- E. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.

3.3 CONTROL, COMMUNICATION AND SIGNAL SYSTEM IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.4 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 27 11 00 COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Medical Center, here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic, distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- D. The Voice and Digital Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum, the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

E. The Contracting Officer Representative (COR) the approving authority for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the COR before proceeding with the change.

F. System Performance:

- 1. At a minimum, the System shall be able to support the following data operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities:
 - 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN:
 - 1) Narrow Band BRI:
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
 - c. ATM operation and interface: ATM 155 mBps.
 - d. Frame Relay: All stated compliances.
 - e. Integrated Data Communications Utility (IDCU) operation and interface.
 - f. Government Open Systems Interconnection Profile (GOSSIP) compliant.
 - g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed (shall be Synchronous Optical Network compliant).
- 2. At a minimum the System shall support the following operating parameters:
 - a. Telecommunications Outlet (TCO):
 - 1) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.
- E. Specification Section 26 27 26, WIRING DEVICES.
- F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
- B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)	
75	Protection of Electronic Computer/Data Processing Equipment	
77	Recommended Practice on Static Electricity	
	Standard for Health Care Facilities	
101	Life Safety Code	
1221	Emergency Services Communication Systems	

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets	
96	Lightning Protection Components	
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS	
467	Grounding and Bonding Equipment	
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS	
884	Underfloor Raceways and Fittings	

D. ANSI/EIA/TIA Publications:

568C	Commercial Building Telecommunications Wiring Standard
569B	Commercial Building Standard for Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the System.

1.5 SUBMITTALS

- A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The COR shall retain one copy for review and approval.
 - If the submittal is approved the COR shall retain one copy for Official Records and return three (3) copies to the Contractor.
 - 2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The COR shall retain one copy for Official Records.
- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
 - 5. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
 - Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
 - 7. Proposed floor plan.
 - 8. Conduit size requirement (between main TC, computer, and console rooms).
 - 9. Main trunk line and riser pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.
 - b. Contractor's name, address, and telephone (including FAX) numbers.
 - c. Date of Submittal.
 - d. VA Project No.
 - 2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 - a. Installation Location and Name.

- b. Owner's or User's name, address, and telephone (including FAX) numbers.
- c. Date of Project Start and Date of Final Acceptance by Owner.
- d. System Project Number.
- e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
- 3. Narrative Description of the system.
- 4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system and edit between the // - //. Delete equipment items that are not required add additional items required, and renumber section as per system design. The following is the minimum equipment required by the system:

QUANTITY	UNIT	
//As required//	Cabinet Assembly(s)	
//As required//	Environmental Cabinet	
//As required//	Distribution/Interface Cabinet	
//As required//	Equipment (Radio Relay) Rack	
//As required//	Cross Connection (CCS) Systems	
//As required//	Audio Alarm Panel	
//As required//	TROUBLE ANNUNCIATOR PANEL	
//As required//	Lightning Protection System	
//As required//	Wire Management System/Equipment	
//As required//	Telecommunications Outlets (TCO)	
//As Required//	Distribution Cables	
//As required//	TCO Connection Cables	
//As required//	System Connectors	
//As required//	Terminators	
//As required//	Distribution Frames	
//As required//	Telecommunications Closets (TC)	
//As required//	Environmental Requirements	
1 ea.	Installation Kit	
//As-required//	Separate List Containing Each Equipment Spare(s)	

- 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- 6. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.

- 7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin, fiberoptic jack.
- 8. List of test equipment as per paragraph 1.5.D. below.
- 9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:
 - The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
 - 2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
 - e. Bit Error Test Set (BERT).
 - f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
- E. Samples: A sample of each of the following items shall be furnished to the COR for approval prior to installation.
 - 1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 - a. One each multi pin data rj45 jacks installed.
 - b. Cover Plate installed.
 - c. Fiber optic ST jack(s) installed.
 - 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
 - 3. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
 - 4. Six hundred ten (610) mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.

- 5. Six hundred ten (610) mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- F. Certifications:
 - Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
 - 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
 - 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the COR. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
- H. Record Wiring Diagrams:
 - Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the COR. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
 - 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The COR shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.
- I. Surveys Required As A Part Of The Technical Submittal: The Contractor shall provide the following surveys that depict various system features and capacities are required in addition to the on site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal survey requirements), as a minimum:

1. Cable Distribution System Design Plan: A design plan for the entire cable distribution systems requirements shall be provided with this document. A specific cable count shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems entire cable requirements and engineer a distribution system requirement plan using the format of the following paragraph(s), at a minimum:

Column	Explanation
FROM BUILDING	Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from
BUILDING	Identifies the building by number, title, or location cabling is to be provided in
TO BUILDING IMC	Identifies building main terminal signal closet, by room number or location, to which cabling is provided too, in, and from
FLOOR	Identifies the floor by number (i.e. 1st, 2nd, etc.) cabling and TCOs are to be provided
TC ROOM NUMBER	Identifies the floor signal closet room, by room number, which cabling shall be provided
ROOM NUMBER	Identifies the room, by number, from which cabling and TCOs shall be provided
NUMBER OF CABLE PAIR	Identifies the number of cable pair required to be provided on each floor designated OR the number of cable pair (VA Owned) to be retained
NUMBER OF STRANDS USED/SPARE	Identifies the number of strands provided in each run

a. UTP (and/or STP) Requirements/Column Explanation:

b.	Fiber	Optic	Cabling	Requirements/Column	Explanation:
		-	_	-	_

Column	Explanation
FROM BUILDING	Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from
TO BUILDING IMC	Identifies building, by number, title, or location, to which cabling is provided
FLOOR	Identifies the floor by number (i.e. 1st, 2nd, etc.)
TC ROOM NUMBER	Identifies the room, by number, from which cabling shall be installed
NUMBER OF STRANDS	Identifies the number of strands in each run of fiber optic cable
INSTALLED METHOD	Identifies the method of installation in

	accordance with as designated herein
NOTES	Identifies a note number for a special feature or equipment
BUILDING MTC	Identifies the building by number or title

2. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. System Requirements:
 - 1. The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility data, service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:
 - a. Be a data cable distribution system that is based on a physical "Star". b. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.
 - 2. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional digital telecommunications cabling system: "Main" (MTC), "intermediate" (IMTC), and "riser" (RTC) TC's; "vertical" (or "riser") trunk cabling system; vertical cross-connection (VCC) cabling systems,

and TCO's with a minimum of three (3) RJ-45 jacks for the appropriate Data connections, connectors, drop and patch cords, terminators, and adapters provided.

- a. Telecommunication Closet (TC):
 - 1) There shall be a minimum of one TC for the MTC, each building IMTC, and each RTC per building floor location. However, in large building(s), where the horizontal distance to the farthest voice and digital work area may exceed 90 Meters (M) (or 295 feet), additional TC's shall be provided as described herein. The maximum DC resistance per cable pair shall be no more than 28.6 Ohms per 305 M (1,000 feet). Each TC shall be centrally located to cover the maximum amount of local floor space. The TC's house in cabinets or enclosures, on relay racks, and/or on backboards, various telecommunication data equipment, controllers, multiplexers, bridges, routers, LAN hub(s), telephone cross-connecting, active and passive equipment.
 - 2) Additionally, the TC's may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all vertical copper and fiber optic cables shall be terminated on appropriate cross-connection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.
 - a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with "U" grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every 800M² (or 8,000 ft²) of useable floor space. Additional outlets shall be equally spaced along the wall.
 - b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications. The COR is responsible for informing the Contractor regarding the minimum climate control requirements.

- At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities:
 - 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN:
 - 1) Narrow Band BRI.
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band:
 - a) All channels: 140 mega (m)-Bps, minimum, capable to 565 mBps at "T" reference.
 - c. ATM operation and interface: ATM 155 mBps.
 - d. Frame Relay: All stated compliances.
 - e. Integrated Data Communications Utility (IDCU) operation and interface.
 - f. Government Open Systems Interconnection Profile (GOSSIP) compliant.
 - g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed (shall be Synchronous Optical Network compliant).
- 2. At a minimum the System shall support the following operating parameters:
 - a. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.
 - 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
 - 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.

- c) System speed: 540 mBps, minimum.
- d) System data error: 10 to the -6 BPS, minimum.

C. General:

- All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - a. Maintains a stock of replacement parts for the item submitted.
 - b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
 - c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
- 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
- 3. The Contractor shall provide written verification, in writing to the COR at the time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
- 4. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone equipment, systems, and service.
- 5. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
- 6. All interconnecting twisted pair, fiber-optic cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiberoptic, cable unterminated, unconnected, loose or unsecured.
- 7. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures,

wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 27 10 00, STRUCTURED CABLING and Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.

- 8. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with COR regarding a suitable circuit location prior to bidding.
- 9. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.
- 10. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
- 11. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.

Underground warning tape shall be standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

D. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
POWER LINE FREQUENCY	60 HZ ±2.0 HZ
Operating Temperature	O to 50 degrees (°) Centigrade (C)
Humidity	80 percent (%) minimum rating

- E. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum,

the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.

- 2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.
- 3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the COR approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
- 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 EQUIPMENT ITEMS

- A. Cabinet with Internal Equipment Mounting Rack:
 - 1. The provided equipment cabinet shall be lockable, fabricated of heavy 16 gauge (ga) steel, and have fully adjustable internal equipment mounting racks or rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief. It shall be floor or wall mounted with knock-out holes for cable entrance and conduit connection, contain ventilation ports and a quiet fan with non disposable air filter for equipment cooling. Two keys shall be provided to the COR for each lock when the VA accepts the System.
 - 2. A minimum of one cabinet shall be provided with blank rack space, for additional equipment. Blank panels shall be installed to cover any open or unused rack space. In addition, provide two 120 VAC power strips connected to surge protectors, a ventilation fan with non-disposable air filter, and a conduit or cable duct interfaced to adjacent cabinet(s), as part of this cabinet.
 - 3. Blank panels shall be color matched to the cabinet, 3.175 mm (1/8in.) aluminum with vertical dimensions in increments of one rack unit 45 mm (or 1.75in.) with mounting holes spaced to correspond to EIA 480 mm (or 19in.) rack dimensions. Single standard size blank panels shall be used

to fill unused panel or rack spaces in lieu of numerous 45 mm (1.75in.) types. One blank 45 mm (1.75in.) high blank panel shall be installed between each item of equipment.

4. Technical Characteristics:

Overall Height	2180 mm (85 7/8in.), maximum
Overall Depth	650 mm (25 1/2in.), maximum
Overall Width	535 mm (21 1/16in.), maximum
Front Panel Opening Width	480 mm (19in.), EIA horizontal
Hole Spacing	per EIA and Industry Standards

- 5. Internal Cabinet Components (minimum required):
 - a. AC power outlet strip(s):
 - 1) Power outlet strip(s) shall be provided as directed by the COR or the IRM. The additional equipment cabinet with no installed items in the cabinet, shall contain strip(s) with a minimum of 12 ea. AC power outlets. Each strip shall be mounted inside and at the rear of the cabinet. It shall contain "U" grounded AC outlets for distributing AC power to the installed electronic equipment. The strip shall be self-contained in a metal enclosure and may be provided with a 2 M (6 ft.) long (maximum) connecting cord with three prong plug.
 - 2) Technical Characteristics:
 - a) Power capacity20 Ampere (AMP), 120 VAC continuous duty.
 - b) Wire gauge: Three conductor, #12 AWG copper.
 - b. Cabinet AC Power Line Surge Protector and Filter:
 - 1) Each cabinet shall be equipped with a AC Surge Protector and Filter. The Protector and Filter shall be housed in one single enclosure. The Protector and Filter shall perform instantaneous regulation of the AC input voltage and isolate and filter any noise present on the AC input line. The unit shall be equipped with AC voltage and current surge protectors to prevent damage to the electronic equipment from power line induced voltage spikes, surges, lightning, etc. It shall be cabinet mounted and the cabinet AC power strip (maximum of two strips) may be connected to it as long as the system design is met.
 - 2) Technical Characteristics:

Input Voltage range	120 VAC <u>+</u> 15%
Power capacity	20 AMP, 120 VAC
Voltage output regulation	<u>+</u> 3.0%
Circuit breaker	15 AMP, may be self contain

Noise filtering	Greater than -45 dB
AC outlets	Four duplex grounded types, minimum
Response time	5.0 ns
Surge suppression	10,000 AMPS
Noise suppression	
Common	-40 dB
Differential	-45 dB

- 3) Specific requirements for current and surge protection shall include:
 - a) Voltage protection threshold, line to neutral, starts at no more than 220 Volts peak. The transient voltage shall not exceed 300 volts peak. The Contractor shall furnish documentation on peak clamping voltage as a function of transient AMP.
 - b) Peak power dissipation minimum 35 Joules per phase, as measured for 1.0 mS at sub branch panels, 100 Joules per phase at branch panels and 300 Joules per phase at service entrance panels. The Contractor shall furnish an explanation of how the ratings were measured or empirically derived.
 - c) Surge protector must not short circuit the AC power line at any time.

(1) The primary surge protection components must be silicon semiconductors. Secondary stages, if used, may include other types of devices.

(2) Surge protectors shall incorporate a visual device which indicates whether the surge suppression component(s) is (are) functioning.

- (3) Surge protection devices shall be UL listed.
- (4) Voltage and current surge protectors shall be provided on all ancillary equipment provided by the Contractor.
- d) Power dissipation 12,000 Watts (W) for 1.0 mS (or 12 Joules).
- e) Voltage protection threshold starts at not more than 100 VAC.
- B. Distribution or System Interface Cabinet:
 - 1. The cabinet shall be constructed of heavy 16 gauge cold rolled steel, have top and side panels and hinged front and rear (front door only if wall mounted) doors. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the COR, contain integral and adjustable predrilled rack mounting rails or frame that allows front panel equipment mounting and access. When all equipment, doors and panels are installed, snap-in-place chrome trim strip covers are required to be installed that will cover all front panel screw fasteners. It shall be equipped the same as the equipment cabinet.

2. Technical Characteristics:

Overall height	2180 mm (85 7/8in.), maximum
Overall depth	650 mm (25 1/2in.), maximum
Overall width	535 mm (21 1/16in.), maximum
Equipment vertical mounting space	1960 mm (77 1/8in.), maximum
Front panel horizontal	484 mm (19 1/16in.), maximum width

- C. Stand Alone Equipment (or sometimes called Radio Relay) Rack:
 - 1. The rack shall be constructed of heavy 16 gauge cold rolled steel and have fully adjustable equipment front mounting rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the COR. It shall be floor or wall mounted or mounted on casters as directed by the COR.
 - 2. Technical Characteristics:

Overall Height	2180 mm (85 7/8in.), maximum
Overall Depth	650 mm (25 1/2in.), maximum
Overall Width	535 mm (21 1/16in.), maximum
Front Panel Opening	480 mm (19in.), EIA horizontal width
Hole Spacing	per EIA and Industry Standards

- E. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - 1. The connector panel(s) shall be made of flat smooth 3.175 mm (1/8 in.) thick solid aluminum, custom designed, fitted and installed in the cabinet. Bulkhead equipment connectors shall be mounted on the panel to enable all cabinet equipment's signal, control, and coaxial cables to be connected through the panel. Each panel shall be color matched to the cabinet installed.
 - a. Voice (or Telephone):
 - 1) The CSS for voice or telephone service shall be Industry Standard type 110 (minimum) punch blocks for voice or telephone, and control wiring in lieu of patch panels, each being certified for category six service. IDC punch blocks (with internal RJ45 jacks) are acceptable for use in all CCS and shall be specifically designed for category six telecommunications service and the size and type of UTP cable used as described herein. As a minimum, punch block strips shall be secured to an OEM designed physical anchoring unit on a wall location in the MTC, IMTC, RTC, and TC. However, console, cabinet, rail, panel, etc. mounting is allowed at the OEM recommendation and as approved by the COR. Punch blocks shall not be used for Class II or 120 VAC power wiring.

2) Technical Characteristics:

Number of horizontal rows	100, MINIMUM
Number of terminals per row	4, minimum
Terminal protector	required for each used or unused terminal
Insulation splicing	required between each row of terminals

- b. Digital or High Speed Data:
 - 1) The CSS for digital or high-speed data service shall be a patch panel with modular female RJ45 jacks installed in rows. Patch panels and RJ45 jacks shall be specifically designed for category six telecommunications service and the size and type of UTP or STP cable used. Each panel shall be 480 mm (19in.) horizontal EIA rack mountable dimensions with EIA standard spaced vertical mounting holes.
 - 2) Technical Characteristics:

Number of horizontal rows	2, minimum
Number of jacks per row	24, MINIMUM
Type of jacks	RJ45
Terminal protector	required for each used or unused jack
Insulation	required between each row of jacks

- c. Fiber optic:
 - Product reference of a Government Approved (US State Department) type is Telewire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel may be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with the proper connectors. This panel is not allowed to be used for 120 VAC power connections.
 - 2) Technical Characteristics:

Height	Two rack units (RUs), 88 mm (3.5in.) minimum
Width	484 mm (19 1/16in.), EIA minimum
Number of connections	12 pairs, minimum
Connectors	
Audio Service	Use RCA 6.35 mm (1/4in.) Phono, XL or Barrier Strips, surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and COR approved)

Control Signal Service	Barrier strips surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and COR approved)
Low voltage power (class II)	Barrier strips with spade lugs and clear full length plastic cover, surfaced mounted
Fiber optic	"ST" Stainless steel, female

- d. Mounting Strips and Blocks:
 - 1) Barrier Strips: Barrier strips are approved for AC power, data, voice, and control cable or wires. Barrier strips shall accommodate the size and type of audio spade (or fork type) lugs used with insulating and separating strips between the terminals for securing separate wires in a neat and orderly fashion. Each cable or wire end shall be provided with an audio spade lug, which is connected to an individual screw terminal on the barrier strip. The barrier strips shall be surface secured to a console, cabinet, rail, panel, etc. 120 VAC power wires shall not be connected to signal barrier strips.

Terminal size	6-32, minimum
Terminal Count	ANY COMBINATION
Wire size	20 AWG, minimum
Voltage handling	100 V, minimum
Protective connector cover	Required for Class II and 120 VAC power connections

2) Technical Characteristics:

- Solderless Connectors: The connectors (or fork connectors) shall be crimp-on insulated lug to fit a 6-32 minimum screw terminal. The fork connector shall be installed using a standard lug-crimping tool.
- 3. Punch Blocks: As a minimum, Industry Standard 110 type punch blocks are approved for data, voice, and control wiring. Punch blocks shall be specifically designed for the size and type of wire used. Punch block strips shall be secured to a console, cabinet, rail, panel, etc. Punch blocks shall not be used for Class II or 120 VAC power wiring.
- 4. Wire Wrap Strips: Industry Standard wire wrap strips (16.5 mm (0.065in.) wire wrap minimum) are approved for data, voice and control wiring. Wire wrap strips shall be secured to a cabinet, rail, panel, etc. Wire wrap strips shall not be used for Class II or 120 VAC power wiring.
- E. Wire Management System and Equipment:
 - Wire Management System: The system(s) shall be provided as the management center of the respective cable system, CCS, and TC it is incorporated. It shall perform as a platform to house peripheral equipment in a standard

relay rack or equipment cabinet. It shall be arranged in a manner as to provide convenient access to all installed management and other equipment. All cables and connections shall be at the rear of each system interface to IDC and/or patch panels, punch blocks, wire wrap strips, and/or barrier strip.

2. Wire Management Equipment: The wire management equipment shall be the focal point of each wire management system. It shall provide an orderly interface between outside and inside wires and cables (where used), distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide a uniform connection media for all system fire retardant wires and cables and other subsystems. It shall be fully compatible and interface to each cable tray, duct, wireway, or conduit used in the system. All interconnection or distribution wires and cables shall enter the system at the top (or from a wireway in the floor) via a overhead protection system and be uniformly routed down either side (or both at the same time) of the frames side protection system then laterally via a anchoring or routing shelf for termination on the rear of each respective terminating assembly. Each system shall be custom configured to meet the System design and user needs.

2.3 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

- A. Floor loading for batteries and cabinets.
- B. Minimum floor space and ceiling heights.
- C. Minimum size of doors for equipment passage.
- D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
- E. Air conditioning, heating, and humidity requirements. The bidder shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
- F. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
- G. Proposed floor plan based on the expanded system configuration of the bidder's proposed EPBX for this Facility.
- H. Conduit size requirement (between equipment room and console room).

2.4 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or

wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the COR all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

- A. System Grounding:
 - The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields.
 - b. Control Cable Shields.
 - c. Data Cable Shields.
 - d. Equipment Racks.
 - e. Equipment Cabinets.
 - f. Conduits.
 - g. Duct.
 - h. Cable Trays.
 - i. Power Panels.
 - j. Connector Panels.
 - k. Grounding Blocks.
- B. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- C. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- D. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- E. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.

F. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The COR may inventory the cable, patch panels, and related equipment.
 - 2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the COR.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the COR.
 - 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
 - 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass data and signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
 - 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
 - 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.

- 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
- All vertical copper and fiber optic cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
- 8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair, and lightwave cables carrying data in data and lightwave systems.
- 9. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- 10. Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the COR if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 - c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the

conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.

- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the COR.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The COR shall approve width and height dimensions.
- D. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
 - 1. Wires:
 - a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
 - b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
 - Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
 - 3. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved

installation tool. Install the connector's to provide and maintain the following audio signal polarity:

- a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
- b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or 1/8" phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
- c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.
- 4. Speaker Line Audio:
 - a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM's approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.
 - b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.
- E. AC Power: AC power wiring shall be run separately from signal cable.
- F. Grounding:
 - General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
 - a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
 - b. Gas protection devices shall be provided on all circuits and cable pairs serving building distribution frames located in buildings other than the building in which the MCR is located or in any area served by an unprotected distribution system (manhole, aerial, etc.). The Contractor shall install the gas protection devices at the nearest point of entrance in buildings where protection is required and on the same circuits on the MDF in the telephone switch room.
 - c. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.

- d. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
- 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
- 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
- 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
- G. Equipment Assembly:
 - 1. Cabinets:
 - a. Each enclosure shall be: floor or wall mounted with standard knockout holes for conduit connections or cable entrance; provide for ventilation of the equipment; have front and rear locking doors (except wall mounted cabinets that require only a front locking door); power outlet strip(s), and connector or patch panel(s).
 - b. Rack (including freestanding radio relay) mounted equipment shall be installed in the enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustment(s) can be conveniently made. Heavy equipment shall be mounted with rack slides or rails allowing servicing from the front of the enclosure. Heavy equipment shall not depend only upon front panel mounting screws for support. Equipment shall be provided with sufficient cable slack to permit servicing by removal of the installed equipment from the front of the enclosure. A color matched

blank panel (spacer) of 44 mm (1.75 in.) high, shall be installed between each piece of equipment (active or passive) to insure adequate air circulation. The enclosure shall be designed for efficient equipment cooling and air ventilation. Each console or cabinet shall be equipped with a quiet fan and nondisposable air filter.

- c. Enclosures and racks shall be installed plumb and square. Each shall be permanently attached to the building structure and held firmly in place. Fifteen inches of front vertical space opening shall be provided for additional equipment.
- d. Signal connector, patch, and bulkhead panels (i.e.: audio, data, control, analog video, etc.) shall be connected so that outputs from each source, device or system component shall enter the panel at the top row of jacks, beginning left to right as viewed from the front, which will be called "inputs". Each connection to a load, device or system component shall exit the panel at the bottom row of jacks, beginning left to right as viewed from the front, which will be called "inputs".
 - Equipment located indoors shall be installed in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
 - Cables shall enter the equipment racks or enclosures in such a manner that allows all doors or access panels to open and close without disturbing or damaging the cables.
 - 3) All distribution hardware shall be securely mounted in a manner that allows access to the connections for testing and provides sufficient room for the doors or access panels to open and close without disturbing the cables.
- H. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers or thermal ink transfer process. Handwritten labels are not acceptable.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
 - 2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.)

identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Interim Inspection:
 - This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B // T568A // pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
 - Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
 - The Contractor shall notify the COR, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
 - 4. Results of the interim inspection shall be provided to the COR and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
 - 5. The COR and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.
- B. Pretesting:
 - Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
 - 2. Pretesting Procedure:

- a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
- b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.
 - 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the COR.
- C. Acceptance Test:
 - 1. After the System has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test date and give the COR 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- D. Verification Tests:
 - Test the UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
 - Multimode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-14A using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.

- 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-7 using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
- E. Performance Testing:
 - Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
- F. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) and the multimode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
 - Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

- A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
- B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the COR.

3.4 GUARANTEE PERIOD OF SERVICE

- A. Contractor's Responsibilities:
 - 1. The Contractor shall guarantee that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the COR (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
 - 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current

and qualified OEM training certificates and OEM certification upon request.

- 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year guarantee period:
 - a. Response Time:
 - The COR (or facility Contracting Officer if the facility has taken possession of the building) are the Contractor's reporting and contact officials for the System trouble calls, during the guarantee period.
 - 2) A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
 - 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
 - 4) The Contractor shall respond on-site to a catastrophic trouble_call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 - a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
 - b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the COR or Facility Director. The RE or Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
 - b. Required on-site visits during the one year guarantee period
 - The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational

adjustments to maintain the System according the descriptions identified in this SPEC.

- a) The Contractor shall arrange all Facility visits with the COR or Facility Contracting Officer prior to performing the required maintenance visits.
- b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the COR or Facility Contracting Officer and the Contractor.
- c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the COR or Facility Contracting Officer.
- 2) The Contractor shall provide the COR or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the COR with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
 - a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to COR or Facilities Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
 - b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 3) The COR or Facility Contracting Officer shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The COR shall ensure copies of these reports are entered into the System's official acquisition documents.

- b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical asinstalled documents.
- B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the COR in writing upon the discovery of these incidents. The COR will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, cable "patch", "punch down", and cross-connector blocks or devices, data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- D. The VA Project Manager (PM) and/or if delegated, Contracting Officer Representative (COR) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the COR before proceeding with the change.
- E. System Performance:

1. At a minimum, the System shall be able to support the following data operations for Category 6 Certified Telecommunication Service:

- a. Provide the following interchange (or interface) capabilities:
 - 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
- b. ISDN:
 - 1) Narrow Band BRI:
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.

3) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.

- c. ATM operation and interface: ATM 155 mBps.
- d. Frame Relay: All stated compliances.
- e. Integrated Data Communications Utility (IDCU) operation and interface.
- f. Government Open Systems Interconnection Profile (GOSSIP) compliant.
- g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at (shall be Synchronous Optical Network compliant).
- 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 dB.
 - 5) System data error: 10 to the -10 Bps, minimum.

6) Loss: Measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.

- a) Trunk to station: 1.5 dB, maximum.
- b) Station to station: 3.0 dB, maximum.
- c) Internal switch crosstalk: -60 dB when a signal of <u>+</u> 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
- d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
- e) Traffic Grade of Service for Voice and Data:
 - (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.

- 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
- 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.
 - c) System speed: 540 mBps, minimum.
 - d) System data error: 10 to the -6 bps, minimum.

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.
- E. Specification Section 26 27 26, WIRING DEVICES.
- F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.

70	NATIONAL ELECTRICAL CODE (NEC)
75	Protection of Electronic Computer/Data Processing Equipment
77	Recommended Practice on Static Electricity
	Standard for Health Care Facilities
101	Life Safety Code
1221	Emergency Services Communication Systems

B. National Fire Protection Association (NFPA):

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS

467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568C	Commercial Building Telecommunications Wiring Standard
569B	Commercial Building Standard for Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM

and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.

- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the System.

1.5 SUBMITTALS

A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The COR shall retain one copy for review and approval.

1. If the submittal is approved the COR shall retain one copy for Official Records and return three (3) copies to the Contractor.

2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The COR shall retain one copy for Official Records.

- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
 - 5. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
 - Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
 - 7. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
 - 8. Conduit size requirement (between main TC, computer, and console rooms).

- 9. Main backbone, trunk line, riser, and horizontal cable pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.
 - b. Contractor's name, address, and telephone (including FAX) numbers.
 - c. Date of Submittal.
 - d. VA Project No.

2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:

- a. Installation Location and Name.
- b. Owner's or User's name, address, and telephone (including FAX) numbers.
- c. Date of Project Start and Date of Final Acceptance by Owner.
- d. System Project Number.
- e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
- 3. Narrative Description of the system.
- 4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system and edit between the // - //. Delete equipment items that are not required add additional items required, and renumber section as per system design. The following is the minimum equipment required by the system:

QUANTITY	UNIT
//As required//	Cabinet Assembly(s)
//As required//	Environmental Cabinet
//As required//	Distribution/Interface Cabinet
//As required//	Equipment (Radio Relay) Rack
//As required//	TROUBLE ANNUNCIATOR PANEL
//As required//	Lightning Protection System
//As required//	Wire Management System/Equipment
//As required//	Telecommunications Outlets (TCO)
//As Required//	Distribution Cables
//As required//	TCO Connection Cables
//As required//	System Connectors
//As required//	Terminators
//As required//	Distribution Frames

//As required//	Telecommunications Closets (TC)
//As required//	Environmental Requirements
1 ea.	Installation Kit
//As-required//	Separate List Containing Each Equipment Spare(s)

- 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- 6. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin, fiberoptic jack.
- 8. List of test equipment as per paragraph 1.5.D. below.
- 9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- 10. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:

1. The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.

2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:

- a. Spectrum Analyzer.
- b. Signal Level Meter.
- c. Volt-Ohm Meter.
- d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
- e. Bit Error Test Set (BERT).
- f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
- E. Samples: A sample of each of the following items shall be furnished to the COR for approval prior to installation.

1. TCO Wall Outlet Box 4" x 4"x 2.5" with:

- a. One each telephone (or voice) rj45 jack installed.
- b. Two each multi pin data rj45 jacks installed.
- c. Cover Plate installed.
- d. Fiber optic ST jack(s) installed.
- 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
- 3. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
- 4. Six hundred ten (610) mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- 5. Six hundred ten (610) mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- F. Certifications:
 - Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
 - 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
 - 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the COR. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
- H. Record Wiring Diagrams:
 - Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the COR. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.

- 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The COR shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.
- I. Surveys Required As A Part Of The Technical Submittal: The Contractor shall provide the following surveys that depict various system features and capacities are required in addition to the on site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal survey requirements), as a minimum:
 - 1. Cable Distribution System Design Plan: A design plan for the entire cable distribution systems requirements shall be provided with this document. A specific cable count shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems entire cable requirements and engineer a distribution system requirement plan using the format of the following paragraph(s), at a minimum:

Column	Explanation
FROM BUILDING	Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from
BUILDING	Identifies the building by number, title, or location cabling is to be provided in
TO BUILDING IMC	Identifies building main terminal signal closet, by room number or location, to which cabling is provided too, in, and from
FLOOR	Identifies the floor by number (i.e. 1st, 2nd, etc.) cabling and TCOs are to be provided
TC ROOM NUMBER	Identifies the floor signal closet room, by room number, which cabling shall be provided
ROOM NUMBER	Identifies the room, by number, from which cabling and TCOs shall be provided
NUMBER OF CABLE PAIR	Identifies the number of cable pair required to be provided on each floor designated OR the number of cable pair (VA Owned) to be retained
NUMBER OF STRANDS USED/SPARE	Identifies the number of strands provided in each run

а	TITP	(and/or	STP)	Requirements/Column	Explanation:
а.	UIF	(and/or	DIF /	REGULTEILEILS/COLULI	

b. Fiber Optic Cabling Requirements/Column Explanation:

Column	Explanation
--------	-------------

FROM BUILDING	Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from	
TO BUILDING IMC	Identifies building, by number, title, or location, to which cabling is provided	
FLOOR	Identifies the floor by number (i.e. 1st, 2nd, etc.)	
TC ROOM NUMBER	Identifies the room, by number, from which cabling shall be installed	
NUMBER OF STRANDS	Identifies the number of strands in each run of fiber optic cable	
INSTALLED METHOD	Identifies the method of installation in accordance with as designated herein	
NOTES	Identifies a note number for a special feature or equipment	
BUILDING MTC	Identifies the building by number or title	

2. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. System Requirements:

1. The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:

- a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
- b. Be a data cable distribution system that is based on a physical "Star" Topology. c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS"

carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.

- 2. Cable Systems Twisted Pair and Fiber optic:
 - a. General:
 - The Contractor shall be responsible for providing a new system conforming to current and accepted telephone and digital industrial/commercial cable distribution standards. The distribution cable installation shall be fully coordinated with the Facility, the PM, the COR and the Contractor prior to the start of installation.
 - 2) The Contractor is responsible for complete knowledge of the space and cable pathways (i.e. equipment rooms, TCs, conduits, wireways, etc.) of the Facility. The Contractor shall at a minimum design and install the System using the Pathway Design Handbook H-088C3, TIA/EIA Telecommunications Building Wiring Standards, and Facility Chief of Information Resource Management's (IRM) instructions, as approved in writing by the PM and/or COR.
 - 3) The System cables shall be fully protected by cable duct, trays, wireways, conduit (rigid, thin wall, or flex), and when specifically approved, flexible innerduct. It is the responsibility of the Contractor to confirm all contract drawings and the Facility's physical layout to determine the necessary cable protective devices to be provided. If flexible innerduct is used, it shall be installed in the same manner as conduit.
 - 4) Cable provided in the system (i.e. backbone, outside plant, inside plant, and station cabling) shall conform to accepted industry and OEM standards with regards to size, color code, and insulation. The pair twists of any pair shall not be exactly the same as any other pair within any unit or sub-unit of cables that are bundled in twenty-five (25) pairs or less. The absence of

specifications regarding details shall imply that best general industry practices shall prevail and that first quality material and workmanship shall be provided. Certification Standards, (i.e., EIA, CCITT, FIPPS, and NFPA) shall prevail.

- 5) Some areas of this Facility may be considered "plenum". All wire and cable used in support of the installation in those areas (if any) shall be in compliance with national and local codes pertaining to plenum environments. It is the responsibility of the Contractor to review the VA's cable and wire requirements with the COR and the IRM prior to installation to confirm the type of environment present at each location.
- 6) The Contractor shall provide outside and inside plant cables that furnishes the number of cable pairs required in accordance with the System requirements described herein. The Contractor shall fully coordinate and obtain approval of the design with the OEM, COR and the IRM prior to installation.
- 7) All metallic cable sheaths, etc. shall be grounded by the Contractor (i.e.: risers, underground, station wiring, etc.) as described herein.
- 8) If temporary cable and wire pairs are used, they shall be installed so as to not present a pedestrian safety hazard and the Contractor shall be responsible for all work associated with the temporary installation and for their removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the COR and the IRM prior to installation.
- 9) Conductors shall be cabled to provide protection against induction in voice and data circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 10) Measures shall be employed by the Contractor to minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 11) The System's cables shall be labeled on each end and been fully tested and certified in writing by the Contractor to the COR before proof of performance testing can be conducted. The asinstalled drawings shall identify each cable as labeled, used cable, and bad cable pairs. Minimum test requirements are for

impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The tests required for data cable must be made to guarantee the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. All cable installation and test records shall be made available at acceptance testing by the COR or Contractor and thereafter maintained in the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 12) The Contractor shall coordinate with the LEC to install the telephone entrance cable to the nearest point of entry into the Facility and as shown on the drawings. The Contractor shall coordinate with the COR and the LEC to provide all cable pairs/circuits from the Facility point of entry to the Telephone Switch Room all telephone, FTS, DHCP, ATM, Frame Relay, data, pay stations, patient phones, and any low voltage circuits as described herein.
- 13) The Contractor shall coordinate with the COR and the IRM to install the computer interface cable to the Facility Telephone Switch Room from the Facility's Computer Room for all data, DHCP, FTS, ATM, Frame Relay, and telephone circuits and as shown on the drawings.
- 14) The Contractor shall coordinate with the COR and the IRM to provide all cable pairs/circuits from the Facility Telephone Switch Room and establish circuits throughout the Facility for all voice, data, computer alarm (except fire alarm), private maintenance line, Radio Paging, PA, LAN, DHCP, and any low voltage circuits as described herein.
- 15) The Contractor shall provide proper test equipment to guarantee that cable pairs meet each OEM's standard transmission requirements, and guarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
- b. Telecommunications Closets (TC): In TC's that are served with both a UTP backbone cable and a fiber optic backbone cable, the UTP cable shall be terminated on separate RJ-45, 8-pin connectors with 110A or equivalent type punch down blocks located on the back or front of a 48-port modular patch panel dedicated to data applications. Only the

UTP backbone cable pairs, identified as being connected to the fiber optic backbone, shall be extended to the fiber optic interface device. All connecting cables required to extend these cables (i.e. patch cords, twenty-five pair connectors, etc.), to the fiber optic interface device, in the TC's shall also be provided by the Contractor to insure a complete and operational fiber optic distribution system:

- 1) In TC's, which are only served by a UTP backbone cable, the cable shall be terminated on separate modular connecting devices (110A or equivalent) that are dedicated to data applications. In order to provide full service to all data cable pairs as identified in each TC/cabinet including spare capacity noted herein, the size of all vertical (riser) cables and/or outside cables serving these TC's shall be increased as required.
- c. Backbone and Trunk Cables:
 - 1) The Contractor shall identify, in the technical submittal, the voice and data (analog RF coaxial cable shall not be provided in main trunk or backbone lines) connecting arrangements required by the LEC for interconnection of the System to the commercial telephone and FTS networks. The Contractor shall provide all required voice and data connecting arrangements.
 - 2) The Contractor shall be responsible for compatibility of the proposed TCs (to be compliant with the EPBX and CSU equipment) numbering scheme with the numbering plan for the FTS, DID, local stations, and the North American Numbering Plan. The Contractor shall consult with the VA and the LEC regarding the FTS and North American Numbering plan to be implemented for the Facility to ensure system compatibility.
 - 3) All submitted equipment shall meet or exceed standards, rules, and regulations of the Federal Communications Commission (FCC) and shall be capable of operating without outboard or "extra" devices. The Contractor shall identify the FCC registration number of the System equipment, EPBX, and proposed CSU (if known) in the technical submittal.
- d. Riser Cable:
 - All communication riser cables shall be listed as being suitable for the purpose and marked accordingly per Articles 517, 700, and 800 of the NEC.
 - All voice and data communication (analog RF coaxial cable is not to be provided in riser systems) riser cables shall be STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge

(AWG) solid, thermoplastic insulated conductors. They shall be enclosed with a thermoplastic outer jacket.

- The complete riser cabling system shall be labeled and tested as described herein.
- e. Telecommunication Outlets (TCO), Jacks: All TCO's shall have a minimum of one (1) RJ-45 type jacks. The jacks shall be eight pin RJ-45 type unkeyed (sometimes called center keyed) jacks, labeled, and designated for data.
- f. Fiber Optics:
 - A complete fiber optic cable distribution system shall be 1) provided as a part of the System. The Contractor shall provide a fiber optic cable that meets the minimum bandwidth requirements for FDDI, ATM, and Frame Relay services. This fiber optic cable shall be a 62.5/125 micron multi-mode, containing a minimum of 6 strands of fiber, unless otherwise specified, and shall not exceed a distance of 2,000 Meters (M), or 6,560 feet (ft.) in a single run. Loose tube cable, which separates the individual fibers from the environment, shall be installed for all outdoor runs or for any area which includes an outdoor run. Tight buffered fiber cable shall be used for indoor runs. The multimode fibers shall be terminated and secured at both ends in "ST" type female stainless steel connectors installed in an appropriate patch or breakout panel with a cable management system. A 610 mm (2 ft.) cable loop (minimum) shall be provided at each end to allow for future movement.
 - 2) The fiber optic backbone shall use a conventional hierarchical "star" design where each TC is wired to the primary hub (main cross-connect system) or a secondary hub (intermediate crossconnect system) and then to the primary hub. There shall be no more than two hierarchical levels of cross-connects in the backbone wiring. Each primary hub shall be connected and terminated to a CCS in the Telephone Switch Room. Additionally, a parallel separate fiber optic interconnection shall be provided between the Telephone Switch Room CCS and the MDF in the Main Computer Room.
 - 3) In the TC's, Telephone Switch Room, and Main Computer Room, all fiber optic cables shall be installed in a CCS and/or MDF rack mounted fiber optic cable distribution component/splice case (Contractor provided and installed rack), patch, or breakout panel in accordance with industry standards. Female "ST"

connectors shall be provided and installed on the appropriate panel for termination of each strand.

- 4) The Contractor shall test each fiber optic strand. Cable transmission performance specifications shall be in accordance with EIA/TIA standards. Attenuation shall be measured in accordance with EIA fiber optic test procedures EIA/TIA-455-46, -61, or -53 and NFPA. Information transmission capacity shall be measured in accordance with EIA/TIA-455-51 or -30 and NFPA. The written results shall be provided to the COR for review and approval.
- 3. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional digital telecommunications cabling system: "Main" (MTC), "intermediate" (IMTC), and "riser" (RTC) TC's; "backbone" cabling (BC) system; "vertical" (or "riser") trunk cabling system; "horizontal" (or "lateral") sub-trunk cabling system, vertical and horizontal cross-connection (VCC and HCC respectively) cabling systems, and TCO's with a minimum of three (3) RJ-45 jacks for the appropriate telephone, Data connections, and additional jacks, connectors, drop and patch cords, terminators, and adapters provided.

a. Telecommunication Closet (TC):

- 1) There shall be a minimum of one TC for the MTC, each building IMTC, and each RTC per building floor location. However, in large building(s), where the horizontal distance to the farthest voice and digital work area may exceed 90 Meters (M) (or 295 feet), additional TC's shall be provided as described herein. The maximum DC resistance per cable pair shall be no more than 28.6 Ohms per 305 M (1,000 feet). Each TC shall be centrally located to cover the maximum amount of local floor space. The TC's house in cabinets or enclosures, on relay racks, and/or on backboards, various telecommunication data equipment, controllers, multiplexers, bridges, routers, LAN hub(s), telephone crossconnecting, active and passive equipment.
- 2) Additionally, the TC's may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all backbone, vertical, and horizontal copper and fiber optic cables shall be terminated on appropriate cross-connection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described

herein. A cable and/or wire management system shall be a part of each CCS.

- a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with "U" grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every 800M² (or 8,000 ft²) of useable floor space. Additional outlets shall be equally spaced along the wall.
- b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications. The COR and/or Facility Chief Engineering Officer are responsible for informing the Contractor regarding the minimum climate control requirements. In identified hostile TC locations where it has been determined (by the COR or Facility Chief Engineer) that proper TC climate or external signal radiation cannot be properly maintained or controlled, the Contractor may, at his/her option, provide a minimum of one individual and properly sized self contained climate controlled equipment cabinet enclosure in each TC location identified on the drawings, in lieu of providing additional required TC air handling capability.
- b. Cross-connect Systems (CCS):
 - The CCS shall be selected based on the following criteria: requires the use of a single tool, has the fewest amount of parts, and requires the least amount of assembly or projected trouble shooting time during the life of the system.
 - 2) The CCS system used at the MTC, each IMTC, and each TC shall force cross-connect cable slack management through adherence to the OEM's installation methods, provided cable management systems, and as described herein, so that moves, adds, and changes can be administered easily and cost effectively.
 - 3) Copper Cables: The MTC, each IMTC, and TC shall contain a copper CCS sized to support the System TCO's and connections served by each individual TC and as shown on the drawings. The System layout shall allow for a minimum of 50% anticipated growth. Additionally, each CCS must provide maximum flexibility, while

maintaining performance, in order to meet system-changing requirements that are likely to occur throughout its useful life.

- 4) Fiber Optic Cables:
 - a) The MTC and each TC shall contain a fiber CCS sized to support the System TCO's and connections served by each individual TC and as shown on the drawings. The System layout shall allow for a minimum of 50% anticipated growth.
 - b) Each fiber CCS must provide maximum flexibility and cable management while maintaining performance in order to meet changing requirements that are likely to occur throughout the expected life of the system. All fiber optic cable slack shall be stored in protective enclosures.
 - c) If it is determined that a fiber optic distribution system is not necessary for the immediate system needs. Each TC shall be provided with fiber optic cable(s) that contain a minimum of 12 strands "dark" multimode fiber and 12 strands "dark" single mode fiber, each fiber properly terminated on its respective female stainless steel connector mounted in an appropriate fiber termination enclosure provided in each TC.
- 5) The Contractor shall not "cross-connect" the copper or fiber optic cabling systems and subsystems even though appropriate "patch" cords are to be provided for each "patch", "punch", or "breakout" panel. In addition, the Contractor shall not provide active electronic distribution or interface equipment as a part of the System.
- 6) Grounding: Proper grounding and bonding shall be provided for each TC and all internal equipment. Reference shall be made to proper codes and standards, such that all grounding systems must comply with all applicable National, Regional, and Local Building and Electrical codes. The most stringent code of these governing bodies shall apply.
 - a) If local grounding codes do not exist for the System location, then at a minimum, a #6 American Wire Gauge (AWG) stranded copper wire, or equivalent copper braid, shall be connected to a separate earth grounding system for each TC (the looping of TC's in a general location is allowed as long as the specifications contained herein are met). Under no circumstance shall the AC neutral be used for this ground. See PART 3 - EXECUTION for specific grounding instructions.
 - b) Each copper UTP or STP cable that enters a TC from the outside of a building (regardless if the cable is installed

underground or aerial) shall be provided with a surge protector and grounded an to earth ground at each cable's entry point in and out of the MTC and each IMTC.

- c. Main Cross-connection Subsystem (MCCS): The MCCS shall be located in the MTC and it shall be the common point of appearance for inter and intra-building copper and fiber optic "backbone" system cables, and connections to the telephone and data cable systems. The MTC usually houses telephone EPBX, public address, radio paging interface, routers, and main hierarchical data LAN concentrating equipment. Additionally, it shall provide a single administration and management point for the entire System.
- d. Data Cross-Connection Subsystems:
 - The MCCS shall be a Main Distribution Terminating (MDT) data unit and shall be provided in the MTC. The MDT shall consist of a "patch" panel(s) provided with modular RJ45 female connectors for cross-connection of all copper data cable terminations. The panels shall provide for system grounding (where no dielectric cables are used) and be provided with a cable management system.
 - 2) Each panel shall conform to EIA dimensions and be suitable for mounting in standard equipment racks, have the RJ45 jacks aligned in two horizontal rows (up to a maximum of 48 jacks per panel), and shall not exceed the OEM's recommendations. Each RJ45 jack shall be of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging the jack. It is not necessary to provide a jack for unused positions that are not part of the 50% expansion requirement.
 - a) All data system inputs from the server(s), data LAN, bridge, or interface distribution systems shall appear on the "top" row of jacks of the appropriate patch panel.
 - b) All System outputs or backbone cable connections shall appear on the "bottom" row of jacks of the same patch panel.
 - c) The splitting of pairs within cables between different jacks shall not be allowed. In the case of ISDN and/or ATM and/or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.

3) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular RJ45 connectors provided on each end to match the panel's modular RJ45 female jack's being provided.

e. Fiber optic Cross-Connection Subsystems: The MTC shall be provided with a separate fiber MCCS. Each TC shall be provided with a rack

mounted patch or distribution panel that is installed inside a lockable cabinet or "breakout enclosure". 1) The panel(s) shall contain a minimum of 24 female "ST" connectors, be able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to the OEM's maximum standard panel size for this type of use. All patch panel sides, including the front and back, shall be protected by a cabinet or enclosure.

2) The panel(s) shall conform to EIA dimensions and be suitable for installation in standard racks, cabinets, and enclosures. The panels shall provide for system grounding (where no dielectric cables are used).

3) The patch panel with the highest OEM approved density of fiber "ST" termination's (maximum of 72 each), while maintaining a high level of manageability, shall be selected. Patch cables, with proper "ST" connectors installed on each end shall be provided for each pair of fiber optic cable "ST" connectors.

- a) All System "inputs" from interface equipment or distribution systems shall appear on the "top" row of connectors of the appropriate patch panel.
- b) All System "outputs" or backbone cable connections shall appear on the "bottom" row of connectors of the same patch panel.

4) In order to achieve a high level of reliability that approximates that of an OEM connector, field installable connectors shall have an OEM specified physical contact polish. Every fiber cable shall be terminated with the appropriate connector, and tested to ensure compliance to OEM and specifications outlines herein. Where a local fiber optic system connector standard, Industry Standard fiber optic "ST" female connector terminated with a fiber optic cable, shall be used. But, if the fiber optic cable is not used (or "dark"), a "ST" male terminating "cap" shall be provided for each unused "ST" female connector.

- f. Intermediate Cross-connection Subsystems (IMCCS): The MTC and each IMTC shall be provided with an IMCCS that shall be the connection point between the MCCS system and the distribution backbone cable and the IMCCS, that is located in one or more buildings on a campus, where each IMCCS is placed by system design. For a technical explanation of internal equipment and system requirements, refer to the above MTC and MCCS paragraphs.
- g. Distribution Cable Systems / Backbone Cable System (Common to Interbuildings): The backbone cable system extends from the MCCS to each

IMCCS to establish service between buildings on a campus. The media (copper and fiber optic) used in the BC system shall be designed according to the system requirements, OEM standards and guidelines, and as described herein. A multi-pair copper for voice and data, and separate multiple fiber optic backbone system shall be provided as a part of the BC distribution system.

- All outside cable shall be minimum of STP or UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flexgel waterproof Rural Electric Association (REA) LISTED PE 39 CODE) between the outer armor or jacket and inner conductors protective lining.
- 2) The copper cable system shall be configured as a "Star" Topology with separate dedicated cables between the MCCS and each IMCCS.
- 3) UTP and STP copper cables shall consist of thermoplastic insulated conductors formed into binder groups. The groups are to be identified by distinctly colored binders and assembled to form a single compact core covered by a protective sheath. Each cable shall be rated for Category 6 Telecommunications System Service. A minimum of eight pairs per circuit, plus an additional 50% spare for growth shall be provided.
- 4) Where the distance limitations of UTP or STP may be exceeded, multimode (or single mode) fiber optic cable(s) shall be used to augment the voice and/or data backbone cable system(s). The total loss of each fiber shall not exceed 12 decibel (dB) at 850 nano-Meter (nM), 11 dB at 1,300 nM, or 10 dB at 1,500 nM.
- 5) All voice system "inputs" from the MCCS via the BC distribution system shall appear on the "left" side of IDC (minimum 110 blocks) punch terminals of the IMCCS.
- 6) All voice system "outputs" or trunk line connections shall appear on the "right" side of the same IDC (minimum 110 blocks) of the IMCCS.
- 7) All data system "inputs" from the MCCS via the BC distribution system shall appear on the "top" row of jacks of the appropriate patch panel of the IMCCS.
- 8) All data system "outputs" or trunk line connections shall appear on the "bottom" row of jacks in the same patch panel of the IMCCS.
- 9) The splitting of pairs within cables between different jacks shall not be allowed. In the case of ISDN and/or ATM and /or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.

- 10) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular connectors provided on each end to match the panel's modular female jack.
- 11) The fiber optic BC system shall be configured as "Star" Topology with separate dedicated fibers between the MCCS and each IMCCS. The System shall be sized to meet the system requirements plus an expansion capability of 50%. Fiber optic cable(s) having a minimum of 6 strands multimode fiber shall be provided. Two of the single mode fibers shall be designated for analog video service.
- 12) All BC shall be identified with permanent labels at both ends. Labels will indicate system, floor, closet, and zone. The label designations shall match those used for cross-connect terminals and patch panels.
- h. Distribution (Common to Intra-Building) Cabling Systems: The intrabuilding trunk cabling system provides for connection between the IMCCS and each Riser TC's provided vertical cross-connecting system (VCCS) within a building. The media (copper, fiber optic) used in the intra-building backbone cabling system shall be designed according to the system requirements, OEM standards and guidelines, and as described herein. A multi-pair copper for voice and data, and separate multiple fiber optic trunk system shall be provided as a part of the System.
 - Category 6 UTP or STP multi-pair trunk cable(s) shall be used in the voice and data trunk-line-cabling systems. A minimum of eight pairs per circuit, plus an additional 50% spare for growth shall be provided.
 - 2) Where the distance limitations of UTP and/or STP will be exceeded, multimode (or single mode) fiber optic cable shall be used in the voice and/or trunk cabling systems. The total loss of the fiber trunks shall not exceed 12 dB at 850 nM , 11 dB at 1,300 nM, or 10 dB at 1,500 nM.
 - a) All data system "outputs" from the IMCCS to the trunk-line distribution system shall appear on the "bottom" row of jacks of the same IDC (minimum 110A blocks) of the IMCCS.
 - b) The splitting of pairs within cables between different jacks shall not be allowed. In the case of ISDN and/or ATM and/or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.
 - c) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular

connectors provided on each end to match the panel's modular female jack.

- 3) The fiber optic trunk line system shall be configured as "Star" Topology with separate dedicated fibers between the IMCCS and each RCS. The System shall be sized to meet the System requirements with a expansion capability of 50% provided. Separate individual fiber optic cable(s) with a minimum of 18 strands multimode fiber and/or 12 strands single mode fiber shall be provided. Two of the single mode fibers shall be designated for analog video service.
- 4) All trunk lines shall be identified with permanent labels at both ends. Labels will indicate system, floor, closet, and zone. The label designations shall match those used for cross-connects and patch panels.
 - a) All System outputs from the IMCCS to the trunk-line distribution system shall appear on the "bottom" row of "ST" connectors in the appropriate patch panel.
 - b) A patch cord shall be provided for each system "pair" of connection "ST" connectors. As a minimum, each patch cord shall have "ST" male connectors provided on each end to match the panel's female "ST" connector provided.
- i. VCCS and Horizontal Cross-connecting (HCCS) Systems: Each TC shall be provided with a separate VCCS and HCCS located within the TC. The VCCS and HCCS shall interconnect and interface the riser (vertical) trunk line cables with the horizontal (or station) sub-trunk line cables. The media (copper, fiber optic used in the CCS system shall be designed according to the System requirements, OEM standards and guidelines, and as described herein. A multi-pair copper for voice and data, and separate multiple fiber optic CCS system shall be provided as a part of the System.
 - The UTP, STP, and fiber optic trunk-line cabling systems are that connected between the trunk-lines and Riser VCCS, shall be terminated:
 - a) On the "left" or "top" IDC (or 110A blocks) for each UTP or STP voice cable.
 - b) On the "top" row of RJ45 jacks on the appropriate patch panel for each UTP or STP data cable.
 - c) On the "top" row of "ST" connectors on the appropriate patch panel for each fiber.
 - The UTP, STP, and fiber optic sub-trunk (lateral) floor distribution cabling systems that are connected between each RTC

and each TCO or secondary system distribution or connection point, shall terminate on an appropriate HCCS, at the:

- a) On the "right" IDC (or 110A block) used as the VCCS input for each UTP or STP voice cable.
- b) On the "bottom row of RJ45 jacks on the appropriate patch panel used as the VCCS input for each UTP or STP data cable.
- c) On the "bottom" row of "ST" connectors on the appropriate patch panel used as the VCCS input for each fiber.
- d) The technical requirements of the VCCS and HCCS "patch", "terminating", or "breakout" panels and cable management assemblies for data and fiber optic cables shall be as described in the above MCCS, IMCCS, and TC technical paragraphs.
- 3) The Contractor shall not "cross-connect" the VCCS or HCCS cabling systems even though appropriate patch cords are provided for each "patch", "punch", or "breakout" panel. Also, the Contractor shall not provide active interface or distribution electronic equipment as a part of the System.
- j. Horizontal (or Station) Cabling (HC): The HC distribution cabling systems connects the distribution field of the voice and data HCCS, in a "Star" Topology, to each TCO or connector and as shown on the drawings via the sub-trunk system.
 - Horizontal cables shall consist of insulated, UTP or STP conductors that are rated for Category 6 telecommunications service for voice and data systems.
 - The number of UTP or STP distribution pairs dedicated to each floor from the HC shall be sufficient to accommodate all the horizontal voice and data circuits served by the distribution cable to each TCO.
 - a) A minimum of four pairs for voice shall be connected to the "right" side of the IDC (or 110A block) that the VCCS "input" connections appear in the RTC.
 - b) A minimum of two separate sets of four pairs each for data shall be connected to the "bottom" row of RJ45 jacks that the VCCS "input" connections appear in the RTC.
 - 3) The horizontal cable length to the farthest system outlet shall be limited to a maximum of 90M (or 295 ft). These maximum lengths must be derated, adjusted and reduced to include cross-connection and distribution system losses. Additional TC(s) shall be provided on large floor areas of buildings to limit the horizontal distribution to a maximum of 90M (or 295 ft).

- The splitting of pairs within a cable between different jacks shall not be permitted.
- 5) The installation of the HC shall conform to appropriate OEM recommendations and standards outlined herein. This requirement will insure adequate protection for Electro-Magnetic Interference (EMI) sources.
- 6) A system design where "looping" the HC distribution cables from room to room shall not be permitted.
- k. System Telecommunication Outlets (TCO): The System shall be capable of receiving the specified telephone (or voice) and data signals acquired from the LEC, FTS contracted carrier and computer system, and shall process and distribute them to the designated TCO's and as shown on the drawings. At a minimum, one TCO shall be provided on each room wall, associated with an active 120 VAC shall be provided and as shown on the drawings. The only exception to the general rule, of one outlet per wall, shall be those "special" locations (e.g., surgical suites, radiology MRI rooms, labs, patient bed rooms, warehouse, loading docks, storage rooms, etc.) where there is usually only one TCO provided as designated on the drawings.
 - Each TCO shall consist of multipin modular RJ45 jacks. Each TCO with appropriate jacks installed shall be provided by the Contractor in each designated location and as shown on the drawings.
 - 2) The Contractor shall connect each TCO data multipin modular RJ45 jack to a separate lower row jack on the HCCS "patch panel" in each associated RTC. The Contractor is not to "cross-connect" VCCS and HCCS data distribution cables or provides active electronic data distribution equipment as a part of the System.
 - 3) A non-impact termination method, using either a stuffer cap with installation tool or full-cycle terminating tool having both tactile and audible feedback to indicate proper termination shall be used. High impact installation tools shall not be used.
 - Each terminated conductor end shall be properly trimmed to assure a minimum clearance of 6.35 mm (0.250 in) clearance between the conductors of adjacent modules.
 - 5) The multipin RJ45 jack shall be modular in construction that will accept and operate with a modular UTP and STP RJ45 connector and its pin assignments.
 - 6) The Contractor shall connect each fiber optic TCO "ST" connector to a separate fiber optic "bottom" row "ST" connector HCCS "patch panel" or "breakout" terminating device in each associated TC.

The Contractor is not to "interconnect" VCCS and HCCS fiber optic distributions cables or provide active fiber optic electronic distribution equipment as a part of the system.

B. System Performance:

1. At a minimum, the System shall be able to support the following data operations for Category 6 Certified Telecommunication Service:

- a. Provide the following interchange (or interface) capabilities:
 - 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
- b. ISDN:
 - 1) Narrow Band BRI.
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band:
 - a) All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
- c. ATM operation and interface: ATM 155 mBps.
- d. Frame Relay: All stated compliances.
- e. Integrated Data Communications Utility (IDCU) operation and interface.
- f. Government Open Systems Interconnection Profile (GOSSIP) compliant.
- g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed (shall be Synchronous Optical Network compliant).
- At a minimum the System shall support the following operating parameters:
 a. Telecommunications Outlet (TCO):
 - 1) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
- C. General:
 - 1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:

- a. Maintains a stock of replacement parts for the item submitted.
- b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
- c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
- 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
- 3. The Contractor shall provide written verification, in writing to the COR at the time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
- 4. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone equipment, systems, and service.
- 5. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
- 6. All interconnecting twisted pair, fiber-optic cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiber-optic cable unterminated, unconnected, loose or unsecured.
- 7. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 27 10 00, STRUCTURED CABLING and Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
- 8. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the

plans or if not shown on the plans consult with COR regarding a suitable circuit location prior to bidding.

- 9. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.
- 10. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
- 11. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- Underground warning tape shall be standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.
- D. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
POWER LINE FREQUENCY	60 HZ ±2.0 HZ
Operating Temperature	O to 50 degrees (°) Centigrade (C)
Humidity	80 percent (%) minimum rating

- E. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph

minimum requirements Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.

- 3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the COR approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
- 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet (TCO):
 - 1. The TCO shall consist of a minimum of one data multipin jack mounted in a steel outlet box. A separate 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled stainless steel faceplate will be used. A second 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled faceplate shall be provided as required adjacent to the first box to ensure system connections and expandability requirements are met.
 - 2. The TCO shall be fed from the appropriate CCS located in the respective RTC in a manner to provide a uniform and balanced distribution system.
 - 3. Interface of the data multipin jacks to appropriate patch panels (or approved "punch down" blocks) in the associated RTC, is the responsibility of the Contractor. The Contractor shall not extend data cables from the RTCs to data terminal equipment or install data terminal equipment.
 - 4. The wall outlet shall be provided with a stainless steel or approve alternate cover plate to fit the telephone multipin jack, data multi- pin jacks, and the outlet box provided (100mm (4in.) x 100mm (4in.) for single and 100mm (4in.) x 200mm (8in.) for dual outlet box applications). For PBPU installations, the cover plate shall be stainless steel.
- B. Distribution Cables: Each cable shall meet or exceed the following specifications for the specific type of cable. Each cable reel shall be sweep tested and certified by the OEM by tags affixed to each reel. The Contractor shall turn over all sweep tags to the COR or PM. Additionally, the Contractor shall provide a 610 mm (2 ft.) sample of each provided cable, to the COR and receive approval before installation. Cables installed in any outside location (i.e. above ground, under ground in conduit, ducts, pathways, etc.) shall be filled with a waterproofing compound between

outside jacket (not immediately touching any provided armor) and inter conductors to seal punctures in the jacket and protect the conductors from moisture.

- 1. Data Multi-Conductor:
 - a. The cable shall be multi-conductor, shielded or unshielded cable with stranded conductors. The cable shall be able to handle the power and voltage used over the distance required. It shall meet Category 6 service at a minimum.
 - b. Technical Characteristics:

Wire size	22 AWG, minimum
Working shield	350 V
Bend radius	10X the cable outside diameter
Impedance	100 Ohms <u>+</u> 15%, BAL
Bandwidth	100 mHz, minimum
DC RESISTANCE	10.0 Ohms/100M, maximum
Shield coverage	
Overall Outside (if OEM specified)	100%
Individual Pairs (if OEM specified)	100%
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
62.0	52.0
100.0	68.0

2. Fiber Optic:

a. Multimode Fiber:

1) The general purpose multimode fiber optic cable shall be a dual window type installed in conduit for all system locations. A loadbearing support braid shall surround the inner tube for strength during cable installation.

2) Technical Characteristics:

Bend radius 6.0	", minimum
-----------------	------------

	Outer jacket, As required
FIBER DIAMETER	62.5 MICRONS
Cladding	125 microns
Attenuation	
850 nM	4.0 dB per kM, maximum
1,300 nM	2.0 dB per kM, maximum
Bandwidth	
850 nM	160 mHz, minimum
1,300 nM	500 mHz, minimum
Connectors	Stainless steel

3. AC Power Cable: AC power cable(s) shall be 3-conductor, no. 12 AWG minimum, and rated for 13A-125V and 1,625W. Master AC power, installation specification and requirements, are given in the NEC and herein.

- C. Outlet Connection Cables:
 - 1. Data:
 - a. The Contractor shall provide a connection cable for each TCO data jack in the system with 10% spares. The data connection cable shall connect a data instrument to the TCO data jack. The Contractor shall not provide data terminal(s)/equipment.
 - b. Technical Characteristics:

Length	1.8M (6 ft.), minimum
Cable	Data grade Category Six
Connector	RJ-45 male on each end
Color coding	Required, data industry standard
Size	24 AWG, minimum

- D. System Connectors:
 - 1. Solderless (Forked Connector):
 - a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector barrel shall be insulated and color-coded.
 - b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V

2. Multipin:

- a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector housing shall be fully enclosed and shielded. It shall be secured to the cable group by screw type compression sleeves.
- b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V
Number of pins	As requires, usually 25 pairs minimum

3. Modular (RJ-45): The connectors shall be commercial types for voice and high speed data transmission applications. The connector shall be compatible with telephone instruments, computer terminals, and other type devices requiring linking through the modular telecommunications outlet to the System. The connector shall be compatible with UTP and STP cables.

a. Technical Characteristics:

Туре	Number of Pins
RJ-45	Eight
Dielectric	Surge
Voltage	1,000V RMS, 60 Hz @ one minute, minimum
Current	2.2A RMS @ 30 Minutes or 7.0A RMS @ 5.0 seconds
Leakage	100 μA, maximum
Connectability	
Initial contact resistance	20 mili-Ohms, maximum
Insulation displacement	10 mili-Ohms, maximum
Interface	Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs shall provide connection when used in RJ-45 jacks.
Durability	200 insertions/withdrawals, minimum

E. Terminators:

- 1. Fiber Optic:
- a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on type that has low VSWR when installed and the proper impedance to terminate the required system unit or fiber optic cable.
- b. Technical Characteristics:

Frequency	Lightwave
Power blocking	As required

Return loss	25 dB
Connectors	"ST", minimum
Construction	Stainless steel
Impedance	As required

- F. Distribution Frames:
 - A new stand-alone (i.e., self supporting, free standing) MDF shall be provided to interconnect the EPBX and computer room. The MDF shall be modular and equipped with modular terminating mini blocks (i.e. Ericsson, 3M, etc.), and patch panels that are as small as possible and provide all the requirements of this specifications as described herein.
 - 2. All cable distribution closets and MDFs shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The MDF/telephone closet riser cable shall be sized to satisfy all voice requirements plus not less than 50% spare (growth) capacity in each telephone closet which includes a fiber optic backbone. The MDF/telephone closet riser cable shall be sized to satisfy all voice and data requirements plus not less than 50% spare (growth) capacity in each telephone closet which does not include a fiber optic backbone.
 - 3. The MDF and all intermediate distribution frames shall be connected to the EPBX system ground.

Telephone	
IDC type unit	As described in Part 2
Contact wires	50 micron of Gold over Nickel
Contact pressure	100 Grams, MIN
110A Punch blocks	Acceptable alternate to IDC
Data	110A blocks as described in Part 2
Fiber optic	Patch panel as described in Part 2
Analog Video	Patch panel as described in Part 2

4. Technical Characteristics:

2.3 TELECOMMUNCATIONS CLOSET REQUIREMENTS

A. Refer to VA Handbook H-088C3, Telephone System Requirements, for specific TC guidelines for size, power input, security, and backboard mounting requirements. It is the Contractors responsibility to ensure TC compliance with the System Requirements.

2.4 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

A. Floor loading for batteries and cabinets.

- B. Minimum floor space and ceiling heights.
- C. Minimum size of doors for equipment passage.
- D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
- E. Air conditioning, heating, and humidity requirements. The bidder shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
- F. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
- G. Proposed floor plan based on the expanded system configuration of the bidder's proposed EPBX for this Facility.
- H. Conduit size requirement (between equipment room and console room).

2.5 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the COR all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

A. System Grounding:

1. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.

- 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields.
 - b. Control Cable Shields.
 - c. Data Cable Shields.
 - d. Equipment Racks.
 - e. Equipment Cabinets.
 - f. Conduits.
 - g. Duct.
 - h. Cable Trays.
 - i. Power Panels.
 - j. Connector Panels.
 - k. Grounding Blocks.

- B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The COR may inventory the cable, patch panels, and related equipment.
 - 2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the COR.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the COR and PM.

- 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
- 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
- 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
- 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
- 7. All vertical and horizontal copper and fiber optic cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
- 8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair cables carrying data signals in data systems.
- 9. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space,

fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).

- b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the COR if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the COR.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The COR shall approve width and height dimensions.

- D. Distribution System Signal Wires and Cables:
 - Wires and cables shall be provided in the same manner and use like construction practices as Fire Protective and other Emergency Systems that are identified and outlined in NFPA 101, Life Safety Code, Chapters 7, 12, and/or 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions. The wires and cables shall be able to withstand adverse environmental conditions in their respective location without deterioration. Wires and cables shall enter each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of the cables.
 - a. Each wire and cable shall terminate on an item of equipment by direct connection. Spare or unused wire and cable shall be provided with appropriate connectors (female types) that are installed in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
 - b. Fiber optic cables that are spare, unused or dark shall be provided with Industry Standard "ST" type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
 - c. Coaxial cables that are spare, unused or dark shall be provided with the cable OEM specified type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
 - d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible.
 - 2. Routing and Interconnection:
 - a. Wires or cables between consoles, cabinets, racks and other equipment shall be in an approved conduit, signal duct, cable duct, or cable tray that is secured to building structure.
 - b. Wires and cables shall be insulated to prevent contact with signal or current carrying conductors. Wires or cables used in assembling consoles, panels, equipment cabinets and racks shall be formed into harnesses that are bundled and tied. Harnessed wires or cables shall be combed straight, formed and dressed in either a vertical or horizontal relationship to equipment, controls, components or terminations.
 - c. Harnesses with intertwined members are not acceptable. Each wire or cable that breaks out from a harness for connection or termination

shall have been tied off at that harness or bundle point, and be provided with a neatly formed service loop.

- d. Wires and cables shall be grouped according to service (i.e.: AC, grounds, signal, DC, control, etc.). DC, control and signal cables may be included with any group. Wires and cables shall be neatly formed and shall not change position in the group throughout the conduit run. Wires and cables in approved signal duct, conduit, cable ducts, or cable trays shall be neatly formed, bundled, tied off in 600 mm to 900 mm (24 in. to 36 in.) lengths and shall not change position in the group throughout the run. Concealed splices are not allowed.
- e. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right. This installation shall be accomplished with ties and/or fasteners that will not damage or distort the wires or cables. Limit spacing between tied off points to a maximum of 150 mm (6 inches).
- f. Do not pull wire or cable through any box, fitting or enclosure where change of cable tray or signal or cable duct alignment or direction occurs. Ensure the proper bend radius is maintained for each wire or cable as specified by it's OEM.
- g. Employ temporary guides, sheaves, rollers, and other necessary items to protect the wire or cable from excess tension or damage from bending during installation. Abrasion to wire or cable jackets is not acceptable and will not be allowed. Replace all cables whose jacket has been abraded. The discovery of any abraded and/or damaged cables during the proof of performance test shall be grounds for declaring the entire system unacceptable and the termination of the proof of performance test. Completely cover edges of wire or cable passing through holes in chassis, cabinets or racks, enclosures, pull or junction boxes, conduit, etc., with plastic or nylon grommeting.
- h. Cable runs shall be splice free between conduit junction and interface boxes and equipment locations.
- i. Cables shall be installed and fastened without causing sharp bends or rubbing of the cables against sharp edges. Cables shall be fastened with hardware that will not damage or distort them.
- j. Cables shall be labeled with permanent markers at the terminals of the electronic and passive equipment and at each junction point in the

System. The lettering on the cables shall correspond with the lettering on the record diagrams.

- k. Completely test all of the cables after installation and replace any defective cables.
- 1. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
- m. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.
 - Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - 3) Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - 4) Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the COR, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
- n. Wires or cables installed in underground conduit, duct, etc.
 - Wires or cables installed in underground installations shall be waterproofed by the inclusion of a water protective barrier (i.e. gel, magma, etc.) or flooding compound between the outside jacket and first shield. Each underground connection shall be accessible in a manhole, recessed ground level junction box, above ground pedestal, etc., and shall be provided with appropriate waterproof

connectors to match the cable being installed. Once the System has been tested and found to meet the System performance standards and accepted by VA, the Contractor shall provide waterproof shrink tubing or approved mastic to fully encompass each wire or cable connection and overlay at least 150 mm (6 inches) above each wire or cable jacket trim point.

- 2) It is not acceptable to connect waterproofed cable directly to an inside CCS punch block or directly to an equipment connection port. When an under ground cable enters a building, it shall be routed directly to the closest TC that has been designated as the building's IMTC. The Contractor shall provide a "transition" splice in this TC where the "water proofed" cable enters on one side and "dry" cable exits on the other side. The "transition" splice shall be fully waterproof and be capable of reentry for system servicing. Additionally, the transition splice shall not allow the waterproofing compound to migrate from the water proof cable to the dry cable.
- Warning tape shall be continuously placed 300 mm (12 inches) above buried conduit, cable, etc.

E. Outlet Boxes, Back Boxes, and Faceplates:

- Outlet Boxes: Signal, power, interface, connection, distribution, and junction boxes shall be provided as required by the system design, onsite inspection, and review of the contract drawings.
- Back Boxes: Back boxes shall be provided as directed by the OEM as required by the approved system design, on-site inspection, and review of the contract drawings.
- 3. Face Plates (or Cover Plates): Faceplates shall be of a standard type, stainless steel, anodized aluminum or UL approved cycolac plastic construction and provided by the Contractor for each identified system outlet location. Connectors and jacks appearing on the faceplate shall be clearly and permanently marked.
- F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
 - 1. Wires:
 - a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
 - b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to

prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.

2. Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.

G. AC Power: AC power wiring shall be run separately from signal cable.

H. Grounding:

1. General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.

- a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
- b. Gas protection devices shall be provided on all circuits and cable pairs serving building distribution frames or in any area served by an unprotected distribution system (manhole, aerial, etc.). The Contractor shall install the gas protection devices at the nearest point of entrance in buildings where protection is required and on the same circuits on the MDF in the telephone switch room.
- c. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
- d. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
- 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
- 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground

connections through physical contact with installed equipment, are acceptable alternates.

- 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
- I. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.

1. Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".

2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.

3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Interim Inspection:
 - 1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B // T568A // pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
 - Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer

certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.

- 3. The Contractor shall notify the COR, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
- 4. Results of the interim inspection shall be provided to the COR and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
- 6. The COR and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.
- B. Pretesting:
 - Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
 - 2. Pretesting Procedure:
 - a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.
 - 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
 - 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the COR.

- C. Acceptance Test: After the System has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test date and give the COR 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- D. Verification Tests:
 - Test the UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
 - Multimode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-14A using Method A, Optical Power Meter and Light Source and Method B, OTDR if fiber optic cable fails under Method A. Perform verification acceptance test.
 - 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-7 using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
 - E. Performance Testing:
 - Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
 - F. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) and the multimode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.

1. Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

- A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
- B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 GUARANTEE PERIOD OF SERVICE

- A. Contractor's Responsibilities:
 - 1. The Contractor shall guarantee that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the COR (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
 - 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year guarantee period:
 - a. Response Time:

1) The COR (or facility Contracting Officer if the facility has taken possession of the building) are the Contractor's reporting and contact officials for the System trouble calls, during the guarantee period.

2) A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.

3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:

a) A routine trouble call within one working days of its report.A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.

b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.

4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.

- a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
- b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the COR or Facility Director. The COR shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.

b. Required on-site visits during the one year guarantee period

- The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.
 - a) The Contractor shall arrange all Facility visits with the COR prior to performing the required maintenance visits.
 - b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the COR and the Contractor.
 - c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the COR.

2) The Contractor shall provide the COR a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the COR with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:

- a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to COR by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
- b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.

3) The COR shall provide the Facility Engineering Officer, two(2) copies of actual reports for evaluation.

- a) The COR shall ensure copies of these reports are entered into the System's official acquisition documents.
- b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical asinstalled documents.
- C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the COR in writing upon the discovery of these incidents. The COR will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

IRM-70 Jack C. Montgomery VA Medical Center Wiring Closet and Cable Specifications

General Requirements

All telecommunications cabling and telecommunications physical space must conform to established industry standards (NEC, NFPA, OSHA, IEEE, EIA/TIA, etc.) including the following practices:

- ONLY telecommunications equipment may be located in wiring closets. Electrical service panels, HVAC equipment, natural gas or water control valves, etc. must be located elsewhere.
- Length of any UTP cable run from patch panel in wiring closet to RJ-45 data jack at wall plate must not exceed 225 feet. If contractor cannot meet this requirement with a centrally located wiring closet, contractor must provide additional wiring closets conforming to the specifications outlined in this document.

Environmental/Electrical

A telephone/data wiring closet must be provided with dimensions of at least 10' x 10' in size. The floor must be sealed concrete or low static tile. It must have lighting controlled by a wall switch directly inside the closet by the entry. Lighting fixtures shall be flush-mounted, and shall ensure a lighting level of 100 foot-candles on working surfaces with a near (natural) light color rendition. Heating and cooling shall be provided in the closet to ensure 70 degrees F. 20-amp duplex or quad electrical receptacles must be located on each wall and each receptacle must be connected to one or more circuits that are isolated from receptacles outside the closet. The door must open outward to avoid collisions with network equipment or, if inward opening, provide at least five feet of clearance between the door and any network equipment.

Equipment Mounting Hardware

At the end of the room opposite from the entry, a contractor-provided 7-foot X 19-inch, T-style two-post equipment rack supporting 19" rack-mount equipment (Chatsworth Standard Rack, Part Number 55053-503) must be installed at a 90-degree angle to the wall. Vertical cable management must be provided by the contractor and attached to each side of the rack (Chatsworth CCS Combination Cabling Section, Part Number 30162-703). Contractor must also provide horizontal cable management (Chatsworth Universal horizontal Cable Manager, Part Number 30130-719, quantity of three). The rack must be bolted to the floor for stability and oriented for easy access from front and back (ideally this would be at least 4-foot clearance, front and back). It must also be connected by grounding strip to the building ground. VA OI&T staff will be responsible for the purchase and installation of network electronics and uninterruptible power supplies. Adjacent to the T-style equipment rack, one or more walls must be covered with ¾-inch fireproof plywood and painted white. This should be located on the same or adjacent wall where the Local Exchange Carrier point-of-presence equipment is or will be installed. If the demark from the carrier is located in a different part of the building a 25 pair feeder will be supplied and pulled by the contractor and terminated.

UTP Telecommunications Cabling

Sufficient patch panels must be provided to match the number of UTP Data/VOIP cable home runs from the new wiring closet to individual room locations, plus 10-15% for growth. These patch panels must be mounted with top panel starting at approximately 5.5 foot height of the contractor-provided 7-foot X 19-inch, T-style equipment rack. The patch panels must be 48-port Systimax PATCHMAX PowerSUM RJ-45 Modular to IDC 568-B (manufacturer part number 108 320 045, also known as PM2150PSE-48) in order to match our VA OI&T standard infrastructure. All UTP Data/VOIP cable home runs must be terminated in the wiring closet in patch panels using the 568-B standard.

All UTP analog/digital voice home runs must be terminated in contractor-provided, wall-mounted 110-block IDF in close proximity to location for VA OI&T-provided telephone switch and allow for easy cross-connect. The provision of both Data/VOIP cable runs and analog/digital voice cable runs provides flexibility for the location to support a mixture of PBX, VOIP and POTS voice services over time.

Cat 5e (or greater) cabling will be used. Cables will be BLUE for voice and GRAY for data. Once terminated, UTP cabling must be capable of supporting 10/100/1000-BASE-TX Ethernet traffic. All UTP cabling home runs must be terminated by 569-B modular RJ-45 jacks in flush-mount wall plates. The standard network drop consists of one phone and two data jacks. A typical room requires one triplex standard. For ease of tracing, troubleshooting or relocation, cable jacket colors will be BLUE for voice, ORANGE for data A and RED for data B.

All CAT5 cabling for the surveillance system shall have black sheath. All Cat5 wall jacks for the surveillance system shall be black. All surveillance system fiber optic cable installed shall have black tape every 10 feet or otherwise be clearly identified as infrastructure for the surveillance system

Labeling of Cable Runs

In order to match the VA OI&T standard infrastructure, the required components are as follows:

Wall Plate:	Systimax M14L-246 (fits single-gang box)
Blue Jack:	Systimax MPS100E-318
Orange Jack:	Systimax MPS100E-114 data A
Red Jack:	Systimax MPS100E1-317 data B
Black Jack:	Systimax MPS100E-003
	surveillance system

A label at the top of the wall plate must list the IDF closet location by room number, as in IDF-1-1-100A2B in illustration 1 below. Room numbers will be assigned by VA staff in advance of any

cabling pulls. The label below each jack must indicate the cable number 1 though XX in sequential order. Voice analog/digital phone jacks are labeled numerically and data jacks are labeled alphabetically. As an example, upon entering a room, the first quad receptacle would be labeled

"VSequence#", such as "**V1**" for the voice jack and "Sequence#letter", such as "**1A**" or "**1B**". Continue around the room in clockwise order incrementing the sequence until all wall jacks are labeled. See photo below as example.

Illustration 1: Sample wall plate with all required labeling

Contractor must clearly label all patch panels and 110-panels to match the labeling of the wall plate jacks.

Testing of Completed Cabling

Once UTP data cabling has been pulled and terminated at both ends, the contractor must test each cable run to confirm that it is capable of supporting the data transmission rates indicated

above and conforms to cabling standards listed above. The contractor must supply a report documenting the test results. The report should be submitted in electronic format.

The terminations in the wiring closets shall be on the following punch down blocks.

- Muskogee VA 110 Wiring Blocks / 48 Port Patch Panels
- Tulsa OPC Data- 48 Port Patch Panels (Only)/Phones 110 wiring blocks
- Muskogee Admin Lease 48 Port Patch Panels.
- Tulsa 11th Street 48 Port Patch Panels.
- Any other CBOC site please contact IRMS.

NETWORK/TELEPHONE JACK WIRING (At wall plate)

Pin #	TIA-568-B	TIA-568-B Color
1	White/Orange	
2	Orange/White	
3	White/Green	1111
4	Blue/White	
5	White/Blue	
6	Green/White	
7	White/Brown	
8	Brown/White	

Approved 02-16-10

by: Barry E. Moses Chief Information Officer

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, intrusion detection, duress alarms, video assessment and surveillance, video recording and storage, personal protection system, fire alarm interface, equipment cabinetry, dedicated photo badging system and associated live camera, report printer, photo badge printer, and uninterruptible power supplies (UPS) interface. Operator training shall be required as part of the Security Contractors scope. The Security Contractor shall be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the

installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - 4. Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- E. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- F. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- G. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for Commissioning.
- L. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.
- M. Section 28 13 16 PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.
- N. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.
- O. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.

- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).

- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- WW. UTP: Unshielded Twisted Pair
- XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the

equipment and material specified for this project, and shall have manufactured the item for at least three years.

B. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.

2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

- C. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within one hundred fifty (150) miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Contracting Officer

Representative (COR) reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof of project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four (4) hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

- A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.
- B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.

1. Mark the submittals, "SUBMITTED UNDER SECTION_____".

2. Submittals shall be marked to show specification reference including the section and paragraph numbers.

3. Submit each section separately.

D. The submittals shall include the following:

1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.

2. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.

- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth of these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic

submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.

- The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
- 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.
- Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide

essential information for communication of proper operation and/or maintenance of the component or system.

- Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
- b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
- c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
- d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and

contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.

- 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.

- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on

the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.

- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.

- c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
- d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - 2) The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:

- Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
- Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel

details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.

- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number
 - 8) Lock Type, Model Number & Power Input/Draw (standby/active)
 - 9) Card Reader Type & Model Number
 - 10) Shunting Device Type & Model Number
 - 11) Sounder Type & Model Number
 - 12) Manufacturer
 - 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device

14) Remarks column indicating special notes or door configurations

- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions

- d. Description of Camera Coverage
- e. Camera Location
- f. Floor Plan Sheet Number
- g. Camera Type
- h. Mounting Type
- i. Standard Detail Reference
- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
 - d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
 - e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number

- 4) First Relay Number
- 5) DGP, input or output Location
- 6) DGP Chain Number
- 7) DGP Cabinet Tamper Input Number
- 8) DGP Power Fail Input Number
- 9) Number of Monitor Points Reserved For Expansion Boards
- Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 6) DGP or input module Input Location

- 7) Date Test
- 8) Date Passed
- 9) Cable Type
- 10) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 5. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible

disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.

- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 6. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the COR documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COR.
 - System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- H. Group III Technical Data Package

1. Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the COR for approval at least 60 calendar days prior to the requested test date.

- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the COR for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
 - b. New Unit Control Room:
 - 1) Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the COR. Instruction is not to begin until the system is operational as designed.
 - The training documents will cover the operation and the maintenance manuals and the control console operators'

manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.

- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.
- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:

- 1) Physical Access control system components,
- 2) All intrusion detection system components,
- 3) Video surveillance, control and recording systems,
- 4) Intercom systems components,
- 5) All other security subsystems shown in the contract documents.
- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning guidelines.

4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the COR as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.

- Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
- 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.

- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.

- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the COR or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10.Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at anytime.
- 11.Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed

where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COR.

- 12.Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:
 - a. Certificates received instead of labels on bulk products.
 - b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
 - c. Documented qualification of installation firms.
 - d. Load and performance testing.
 - e. Inspections and certifications.
 - f. Final inspection and correction procedures.
 - g. Project schedule
- 13.Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the COR with a complete set of "asbuilt" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel

number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COR. If, in the opinion of the COR, any redlined notation is not legible, it shall be returned to the Contractor for resubmission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.

- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, sub-contractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COR. The Contractor shall organize into bound and labeled sets for the COR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).
- K. FIPS 201-2 Compliance Certificates

1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:

- a. Card Readers
- b. PIV Middelware
- c. Template Matcher
- d. Electromagnetically Opaque Sleeve
- e. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- L. Approvals will be based on complete submission of manuals together with shop drawings.

M. After approval and prior to installation, furnish the COR with one sample of each of the following:

1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.

2. Each type of conduit and pathway coupling, bushing and termination fitting.

- 3. Conduit hangers, clamps and supports.
- 4. Duct sealing compound.
- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/ International Code Council (ICC):

All7.1....Standard on Accessible and Usable Buildings and Facilities

C. American National Standards Institute (ANSI)/ Security Industry Association (SIA):

AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards

CP-01-00.....Control Panel Standard-Features for False Alarm Reduction

PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity

- TVAC-01.....CCTV to Access Control Standard Message Set for System Integration
- D. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV

375A-76.....Electrical Performance Standards for CCTV Monitors E. American National Standards Institute (ANSI): ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems F. American Society for Testing and Materials (ASTM) B1-07......Standard Specification for Hard-Drawn Copper Wire B3-07.....for Soft or Annealed Copper Wire B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors D2301-04..... Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape G. Architectural Barriers Act (ABA), 1968 H. Department of Justice: American Disability Act (ADA) 28.....FR Part 36-2010 ADA Standards for Accessible Design I. Department of Veterans Affairs: VHA National CAD Standard Application Guide, 2006 VA BIM Guide, V1.0 10 J. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems K. Federal Information Processing Standards (FIPS): FIPS-201-2..... Personal Identity Verification (PIV) of Federal Employees and Contractors L. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) M. Government Accountability Office (GAO): GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities N. Homeland Security Presidential Directive (HSPD):

HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... EEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08.....Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard C2-07.....National Electrical Safety Code C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810..... Physical characteristics 7811..... Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange 14443.....Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693.....Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless

Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance 19794..... Biometric data interchange formats Q. National Electrical Contractors Association 303-2005......Installing Closed Circuit Television (CCTV) Systems R. National Electrical Manufactures Association (NEMA): Maximum) TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable S. National Fire Protection Association (NFPA): 70-11..... National Electrical Code (NEC) 731-08...... Standards for the Installation of Electric Premises Security Systems 99-2005.....Health Care Facilities T. National Institute of Justice (NIJ) 0601.02-03.....Standards for Walk-Through Metal Detectors for use in Weapons Detection 0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-73-3.... Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming Interface

.....Pt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards Y. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 50-07..... Enclosures for Electrical Equipment 83-08..... Wires and Cables 294-99.....The Standard of Safety for Access Control System Units 305-08..... Hardware 360-09.....Liquid-Tight Flexible Steel Conduit 444-08.....Safety Communications Cables 464-09.....Audible Signal Appliances 467-07..... Electrical Grounding and Bonding Equipment Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05......Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations 486E-00..... Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors

	493-07Ther	moplastic-Insulated Underground Feeder and	
	Bran	ch Circuit Cable	
	514A-04Meta	llic Outlet Boxes	
	514B-04Fitt	ings for Cable and Conduit	
	51-05Sche	dule 40 and 80 Rigid PVC Conduit	
	609-96Loca	l Burglar Alarm Units and Systems	
	634-07Star	-07 with Burglar-Alarm	
	Syst	ems	
	636-01Star	dard for Holdup Alarm Units and Systems	
	639-97Star	dard for Intrusion-Detection Units	
	651-05Sche	dule 40 and 80 Rigid PVC Conduit	
	651A-07Type	EB and A Rigid PVC Conduit and HDPE	
	Cond	uit	
	752-05Star	dard for Bullet-Resisting Equipment	
	797-07Elec	trical Metallic Tubing	
	827-08Sentral Station Alarm Services		
	1037-09Star	dard for Anti-theft Alarms and Devices	
	1635-10Digi	tal Alarm Communicator System Units	
	1076-95Star	dards for Proprietary Burglar Alarm Units	
	and	Systems	
	<pre>1242-06Intermediate Metal Conduit 1479-03Fire Tests of Through-Penetration Fire Stops 1981-03Central Station Automation System 2058-05High Security Electronic Locks 60950Safety of Information Technology Equipment</pre>		
	60950-1Info	rmation Technology Equipment - Safety -	
	Part	1: General Requirements	
Ζ.	. Uniform Federal Accessibilit	y Standards (UFAS) 1984	
AA.	United States Department of Commerce:		

Special Pub 500-101 Care and Handling of Computer Magnetic Storage Media

1.8 COORDINATION

A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

2. To provide for ease of disconnecting the equipment with minimum interference to other installations.

3. To allow right of way for piping and conduit installed at required slope.

4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

A. General Requirements

1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

C. Personnel

1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.

D. Schedule of Work

1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.

E. System Inspections

- 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- F. Emergency Service

1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.

- a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from arrival on site.
 Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

G. Operation

1. Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.

H. Records & Logs

1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.

I. Work Request

1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

J. System Modifications

1. The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

K. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
 - 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.

4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.
 - 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
 - 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.
 - Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.

- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for eight (8) hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Emergency Generator
 - a. Report Printers: Unit Control Room
 - b. Video Monitors: Unit Control Room
 - c. Intercom Stations
 - d. Lights: Unit Control Room, Equipment Rooms, & Security Offices
 - e. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
 - f. Security Device Power Supplies (DGP, VASS, Card Access, Lock Power, etc.) powered from the security closets or remotely: various locations
 - g. Telephone/Radio Recording Equipment: Unit Control Room.
 - h. VASS Camera Power Supplies: Security Closets
 - i. VASS Pan/Tilt Units: Various Locations
 - j. VASS Outdoor Housing Heaters and Blowers: Various Sites
 - k. Intercom Master Control System
 - 1. Fiber Optic Receivers/Transmitters
 - m. Security office Weapons Storage
 - n. Outlets that charge handheld radios
 - 2. Uninterruptible Power Supply (UPS) on Emergency Power
 - a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room

3) Communications equipment: Control Equipment Room and various sites.

- 4) VASS: Control Equipment Room
- 5) Digital Video Recorders, encoders & decoders: Control Room
- 6) All equipment Room racked equipment.
- 7) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

- A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.
 - 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
 - Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.
- B. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, under ground-fault conditions.
 - Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
 - 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
 - Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
 - 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.

- Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
- 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
 - 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
 - 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.1. Vertical Equipment Racks:

- a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.
- b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
- c. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.
- 2. Console racks:
 - a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
 - b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.
- C. Tamper Provisions and Tamper Switches:
 - Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
 - 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sight to any internal component before the switch activates.
 - 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the

door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.

- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The COR shall have final authority on the authorization or refusal of substitutions.

If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the COR stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:

- 1. Identity of the material or devices specified for which there is a proposed substitution.
- Description of the segment of the specification where the material or devices are referenced.
- Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
- 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall

include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a pointby-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (excluding ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the

date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of four (4) hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 - 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate

any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.

- 3. Controlling devices shall be utilized to interface the SMS with all field devices.
- The Security control room and security console will be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.
- 5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:
 - a. Security Console Bays and Equipment Racks
 - b. Security Network Server and Workstation
 - c. CCTV Monitoring, Controlling, and Recording Equipment
 - d. PACS Monitoring and Controlling Equipment
 - e. IDS Monitoring and Controlling Equipment
 - f. Main Panels for all Security Systems
 - g. Power Supply Units (PSU) for all field devices
 - h. Life safety and power monitoring equipment
 - All other building systems deemed necessary by the VA to include, but not limited to, heating, ventilation and air conditioning (HVAC), elevator control, portable radio, fire alarm monitoring, and other potential systems.
 - j. Police two-way radio control consoles/units.
- B. Security Console Bays shall be EIA 310D compliant and:
 - Utilize stand-up, sit-down, and vertical equipment racks in any combination to monitor and control the security subsystems.
 - Shall be wide enough for equipment that requires a minimum 19 inch (47.5 cm) mounting area.
 - 3. Shall be made of metal, furnished with wire ways, a power strip, a thermostatic controlled bottom or top mounted fan units, a hinge mounted rear door, a hinge mounted front door made of Plexiglas, and a louvered top. When possible, pre-fabricated (standard off-theshelf) security console equipment shall be used in place of customized designed consoles.
 - 4. A wire management system shall be designed and installed so that all cables are mounted in a manner that they do not interfere with dayto-day operations, are labeled for quick identification, and so that

high voltage power cables do not cause signal interference with low voltage and data carrying cables.

- 5. Shall be mounted on lockable casters.
- 6. Shall be ergonomically designed so that all devices requiring repetitive interaction with by the operator can be easily accessed, observed, and accomplished.
- 7. Controls and displays shall be located so that they are not obscured during normal operation. Control and display units installed with a work bench shall be a minimum of 3 in. (7.5 cm) from all edges of the work bench area.
- 8. All security subsystem controls shall be installed within the same operating console bay of their associated equipment.
- 9. Video monitors shall be mounted above all controls within a console bay and positioned in a manner that minimum strain is placed on the operator viewing them at the console.
- 10. At least one workbench for every three (3) console bays shall be provided free of control equipment to allow for appropriate operator workspace.
- 11. All console devices shall be labeled and marked with a minimum of quarter inch bold print.
- 12. All non-security related equipment that is required to be monitored shall be installed in a console bay separate from the security subsystem equipment and clearly be identified as such.
- 13. Console bays and related equipment shall be arranged in priority order and sequenced based upon their pre-defined security subsystem operations criticality established by the Contracting Officer.
- 14. The following minimum console technical characteristics shall be taken into consideration when designing for and installing the security console and equipment racks:

	Stand-Up	Sit-Down	Vertical Equipment Rack
Workstation Height	No Greater than	No greater	No greater than 96
	84 in. (210 cm)	than 72 in.	in. (240 cm)
		(150 cm)	
Bench board Slope	21 in.	25 in.	N/A
	(52.5 cm)	(62.5 cm)	
Bench board Angle	15 degrees	15 degrees	N/A
Depth of Console	24 in.	24 in.	N/A

	(60 cm)	(60 cm)	
Leg and Feet	6 sq. ft. from	6 sq. ft. from	6 sq. ft. from
Clearance	center of	center of	center of Console
	Console Slope	Console Slope	Slope front
	front	front	
Distance Between	96 in. (240 cm)	96 in. (240	96 in. (240 cm)
Console Rows		Cm)	
Distance Between	36 in. (90 cm)	36 in. (90 cm)	36 in. (90 cm)
Console and Wall	from the rear	from the rear	from the rear
	and/or side of	and/or side of	and/or side of
	console or rack	console or	console or rack
		rack	

- C. Security Console Configuration:
 - The size shall be defined by the number of console bays required to house and operate the security subsystems, as well as any other factors that may influence the overall design of the space. A small Access Control System and Database Management shall contain no more than four (4) security console bays. A large Access Control System and Database Management shall contain no less than five (5) and no more than eight (8) security console bays.
 - 2. Shall meet the following minimum spacing requirements to ensure that an Access Control System and Database Management is provided to house existing and future security subsystems and other equipment listed in paragraph 2.3.C:
 - a. Five hundred (500) square feet for a large Access Control System and Database Management.
 - b. Three hundred (300) square feet for a small Access Control System and Database Management.
 - c. If office, training room and conference space, is a processing area as well as holding cell space is to be located adjacent to the Access Control System and Database Management, these space requirements also need to be considered.
 - 3. Access shall meet UFAS and ADA accessibility requirements.
- D. Remote security console access: For facilities that have a remote, secondary back-up control console or workstation shall apply the following requirements:

- The secondary stations shall the requirements outlined in Sections 2.2.A-G.
- Installation of an intercom station or telephone line shall be installed and provide direct one touch call-up for communications between the primary Security Control Console and secondary Security Control Console.
- Secondary stations shall not have priority over a primary Security Control Console.
- 4. The primary Access Control System and Database Management shall have the ability to shut off power and a signal to a secondary control station in the event the area has been compromised.

E. Wires and Cables:

- Shall meet or exceed the manufacturer's recommendation for power and signals.
- Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
- 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
- A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
- 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
- 9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each

individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESSION

A. Transient Voltage Surge Suppression

1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:

- A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
- d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, noncondensing.
- B. Physical Access Control Systems

1. Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:

- a. UL1449 2nd Edition, 2007, listed
- b. UL1449 S.V.R. of 400 Volts or lower
- c. Status Indicator Light(s)
- d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 µsec)
- e. Maximum Continuous Current: 15 Amps
- f. MCOV: 125 VAC
- g. Service Voltage: 110-120 VAC

2. Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:

- a. UL 497B
- b. Minimum Surge Current Capacity: 2,000 Amps per pair
- c. Maximum Continuous Current: 5 Amps
- d. MCOV: 33 Volts
- e. Service Voltage: 24Volts

3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:

a. Conforms with UL497B standards (where applicable)

- b. Clamp level for 12 and 24V power: 18VDC / 38VDC
- c. Clamp level for Data/LED: 6.8VDC
- d. Service Voltage for Power: 12VDC/24VDC
- e. Service Voltage for Data/LED: 5VDC
- f. Clamp level PoE Access Power: 72V
- g. Clamp level PoE Access Data: 7.9V
- h. Service Voltage PoE Access: 48VAC 54VAC
- i. Service Voltage PoE Data: 5VDC

C. Intrusion Detection Systems

1. Suppressors shall be installed on AC at the point of service and shall meet the following criteria:

- a. UL 1449, 2nd Edition 2007, listed
- b. UL 1449 S.V.R. of 400 Volts or lower
- c. Status Indicator Lights
- d. Center screw for terminating Class II transformers
- e. Minimum Surge Current Capacity of 32,000 Amps (8 x 20 µSec)

2. Suppressors shall be installed on all burglar alarm initiating and signaling loops and addressable circuits which enter or leave separate buildings. The following criteria shall be met:

- a. UL 497B for data communications or annunciation (powered loops).
- b. Fail-short/fail-safe mode.
- c. Surge Current Capacity: 9,000 Amps (8x20 µSec).
- d. Clamp Voltage: 15 Vrms.
- e. Joule Rating: 76 Joules per pair (10x1000 µSec).
- f. Auto-reset current protection not to exceed 150 milliAmps for UL 497A devices.
- D. Video Surveillance System

1. Protectors shall be installed on cable systems on points of entry and exit from separate buildings. Suppressors shall be installed at each exterior camera location and include protection for 12 and/or 24 volt power, data signal and motor controls (for Pan, Tilt and Zoom systems). Surge Protection Devices shall protect all modes herein mentioned and contain all modes in a single unit system. Protection for all systems mentioned above shall be incorporated at the head end equipment. Additionally a minimum 450VA battery back up shall be used to protect the DVR or VCR and monitor. Protectors shall meet the following criteria:

- a. Head-End Power
 - 1) UL 1778, CUL (Battery Back Up)
 - 2) Minimum Surge Current Capacity: 65,000 Amps (8x20µsec)
 - 3) Minimum of two (2) NEMA 5-15R Receptacles (one (1) AC power only, one (1) with UPS)
 - 4) All modes protected (L-N, L-G, N-G)
 - 5) EMI/RFI Filtering
 - 6) Maximum Continuous Current: 12 Amps
- b. Camera Power

Minimum Surge Current Capacity: 1,000 Amps (8X20µsec); 240
 Amps for IP Video/PoE cameras

- 2) Screw Terminal Connection
- 3) All protection modes L-G (all Lines)
- 4) MCOV 40VAC
- E. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, undergroundfault conditions.
 - The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.

- 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufacturer's installation instructions.
- F. One hundred twenty (120) VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)
 - 6. Weight: 2.88 g (0.18 lbs)
 - 7. Housing: ABS

2.5 INSTALLATION KIT

- A. General:
 - 1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Control Cable Shields
 - 2) Data Cable Shields
 - 3) Equipment Racks

- 4) Equipment Cabinets
- 5) Conduits
- 6) Cable Duct blocks
- 7) Cable Trays
- 8) Power Panels
- 9) Grounding
- 10) Connector Panels
- 3. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 4. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 5. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 6. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 7. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security

equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:

1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.

2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.

- D. Provide services of manufacturer's technical representative for twelve (12) hours to instruct VA personnel in operation, eight (8) hours for Administrator and eight (8) hours for Maintenance. Training shall be available to personnel on all shifts.
- E. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

A. General Programming Requirements

1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems (e.g., digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization). System programming for existing or new SMS servers shall not be conducted at the project site.

B. Level of Effort for Programming

1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the COR on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the COR has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:

- a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with COR for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with COR to ensure data uploading is performed without incident or loss of function or data loss.
- The Contractor shall identify and request from the COR, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and COR coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident or loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

	Description of Tasks							
Descrip tion of Systems	Develop System Loading Sheets	Coordi nation	Initial Set-up Configur ation	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)	

SMS Setup & Configu ration	e.g., program monitori ng stations , programm ing networks , intercon nections between CCTV, intercom s, time synchron ization	e.g., retrie ve IP addres ses, naming conven tions, standa rd event descri ptions , progra mming templa tes, coordi nate specia l system needs	e.g., Load system Operatin g System and Applicat ion software , general system configur ations	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. , prog ram moni tori ng stat ions , prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s, time sync hron izat ion	e.g., check all system diagno stics (e.g., client s, panels)	Load and set- up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration
-------------------------------------	---	---	---	---	--	---	---

							e.g., creating
					o ~		a door, door
					e.g.		configuration,
		e.g., confir	0 <i>°</i>		'	~ ~	adding request
			e.g.,		setu	e.g.,	to exit, door
		ming	enter		p of	perfor	monitors and
	e.g.,	device	data		devi	ming	relays, door
	setup of	config	from		ce,	entry	timers, door
Electro	device, door	uratio	loading sheets;		door	testin	related events
nic		ns,			grou	g to confir	(e.g., access,
Entry	groups & schedule	naming	configur	-	ps &		access denied,
Control				sche		forced open,	
Systems	s, REX,	tions,	componen			correc	held open),
	Locks,	event	ts, link		t set-	linkages, controlled	
	link	descri			REX, up and		
	graphics	ption	cameras,		Lock	config	areas,
		and	and		S,	uratio	advanced door
		narrat	graphics		link	n	monitoring,
		ives			grap		time zones,
					hics		sequence of
							operations

Intrusi on Detecti on Systems	e.g., enter door groups & schedule s, link devices - REX, lock, & graphics	e.g., confir ming device config uratio ns, naming conven tions, event descri ption and narrat ives	<pre>e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics</pre>		e.g. , ente r door grou ps & sche dule s, link devi ces - REX, lock , & grap hics		<pre>e.g., setting up monitoring and control points (e.g., motion sensors, glassbreaks, vibration sensor, strobes, sounders) creating intrusion zones, creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,</pre>
---	---	---	---	--	---	--	--

CCTV Systems	e.g., programm ing call-ups recordin g	e.g., confir ming device config uratio ns, naming conven tions	<pre>e.g., enter data from loading sheets; camera naming conventi on, sequence s, configur e componen ts)</pre>	e.g. , prog ramm ing call -ups reco rdin g	e.g., confir m area of covera ge, call- up per event genera ted and record ing rates	e.g., setting up cameras points, recording ratios (e.g., normal, alarm event) timed recording, linkages, maps placements, call-ups
	_	velopment	per monitor sks are supp of the Tec bmittals.	-		N/A

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the COR at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the conclusion of each phase of testing and prior to COR approval of the test.

2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.

B. Intermediate Testing

1. After completion of 30-50 percent of the installation of ESS cabinet(s) and equipment, one local and remote control stations and prior to any further work, this portion of the system must be pretested, inspected, and certified. Each item of installed equipment shall be checked to ensure appropriate FCC listing & UL certification labels are affixed, NFPA, Emergency, Safety, and JCAHCO guidelines are followed, and proper installation practices are followed. The intermediate test shall include a full operational test.

C. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the Contracting Officer Representative (COR), until completion of the entire project. The results will be compared to the Acceptance Test results.

D. Contractor's Field Testing (CFT)

1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to COR approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the COR's acceptance testing procedures. The Contractor shall provide the COR with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to the COR stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

- E. Performance Verification Test (PVT)
 - 1. Test team:
 - a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test and give the COR written notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the COR. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification.

The notification of the acceptance test shall include the expected length (in time) of the test.

2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for out-of-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.

3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the COR or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.

4. Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the COR prior to commencing the endurance test.

- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection

1) Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for COR's approval.

2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of

item problem, date noted, date corrected, and details of how item was corrected.

6. Partial PVT - At the discretion of COR, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.

- F. Endurance Test
 - 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the COR notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The COR may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the COR prior to acceptance of the system.
 - 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the COR.
 - 3. Phase II (Assessment):
 - a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective

action taken, results of tests performed, and recommend the point at which testing should be resumed.

b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after the COR receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase I be repeated.

4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR. 5. Phase IV (Assessment):

- After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
- 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the COR receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determination of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the COR may require, the Phase

IV assessment shall be repeated as if Phase III had just been completed.

G. Exclusions

1. The Contractor will not be held responsible for failures in system performance resulting from the following:

- a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
- b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
- c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification of the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings

sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See Section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the COR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - 4. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent

referenced. Publications are referenced in the text by the basic designation only. B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-05..... Thermoset-Insulated Wires and Cables 83-08..... Wires and Cables 467-07.....Electrical Grounding and Bonding Equipment 486A-03..... Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... Systems for Underground Use or in Damp or Wet Locations 486E-00..... for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Fittings for Cable and Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical loss test set.
 - Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 GENERAL

- A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.
 - B. Support of Open Cabling: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars, spools, J-hooks, and D-rings.
 - 3. Straps and other devices.
 - C. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems."Flexible metal conduit shall not be used.
 - Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG.
 - b. Communications, Plenum Rated: Type CMP complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG.
 - f. Multipurpose, Plenum Rated: Type MPP complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

- A. Description: Multimode, 62.5/125-micrometer, 6-fiber, nonconductive, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG.
 - e. Plenum Rated, Conductive: Type OFCP complying with NFPA 262.
 - f. Riser Rated, Conductive: Type OFCR complying with UL 1666.
 - 5. Conductive cable shall be aluminum armored type.
 - 6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

B. Jacket:

- 1. Jacket Color: Orange for 62.5/125-micrometer cable.
- Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Cable Connecting Hardware: Meet the Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 1. Quick-connect, simplex and duplex, Type SC connectors. Insertion loss shall be not more than 0.75 dB.

2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.8 RS-485 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.9 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.10 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, power-limited cable, concealed in building finishes, or power-limited tray cable, in cable tray complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.11 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.12 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Cable will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

2.13 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.14 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.

- Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
- 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - 2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.

- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1525 mm) apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- M. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

- 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
- 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.3 CONNECTIONS

A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.

- B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.

3.4 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.

- a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.8 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.
- D. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

A.	. Publications listed below (including amendments, addenda, revisions		
	supplements, and errata) form a part of this specification to the		
	extent referenced. Publications are referenced in the text by		
	designation only.		
в.	3. American Society for Testing and Materials (ASTM):		
	B1-07for Hard-Drawn Copper		
	Wire		
	B3-07for Soft or Annealed		
	Copper Wire		
	B8-04for Concentric-Lay-		
	Stranded Copper Conductors, Hard, Medium-Hard,		
	or Soft		
C.	Institute of Electrical and Electronics Engineers, Inc. (IEEE):		
	81-1983 Resistivity,		
	Ground Impedance, and Earth Surface Potentials		
	of a Ground System		
	C2-07Code		
D.	National Fire Protection Association (NFPA): 70-11National Electrical Code (NEC)		
	99-2005Health Care Facilities		
E.	. Underwriters Laboratories, Inc. (UL):		
	44-05 Thermoset-Insulated Wires and Cables		
	83-08 And Cables		
	467-07Grounding and Bonding Equipment		
	486A-486B-03Wire Connectors		
PART 2 - PRODUCTS			

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Above Grade:
 - 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch x } \frac{3}{4} \text{ inch})$.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.5 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

2.6 SECURITY CONTROL ROOM GROUND

A. Provide 50mm2 (1/0 AWG) stranded copper grounding conductor(s) color coded with a green jacket, bolted at the Room's Communications System Grounding Electrode Cooper Plate and circulate to each equipment rack ground buss bar through the wire management system. Connect each equipment rack, wire management system's cable tray, ladder, etc. to the circulating ground wire with a minimum 25mm2 (4AWG) stranded Cooper Wire, color coded with a green jacket.

- Connect each equipment rack ground bus bar to the security ground bus bar,, and
- 2. Connect each additional room item to the security ground buss bar.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.3 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.4 COMPUTER ROOM/SECURITY EQUIPMENT ROOM GROUNDING

- A. Conduit: Ground and bond metallic conduit systems as follows:
 - Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm² (6AWG) bonding jumpers.
 - Bond at all intermediate metallic enclosures and across all joints using 16 mm² (6 AWG) bonding jumpers.

3.5 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.

- Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
- 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
- 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.6 LIGHTNING PROTECTION SYSTEM

A. Under no condition shall the electrical system's third of fourth ground electrode system, or the telecommunications system circulating ground system be connected to the lightning protection system.

3.7 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

3.8 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 - Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - After installing grounding system but before Security System's electrical circuits have been energized, test for compliance with requirements.

- Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
 - 2. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
- J. Section 31 20 00 EARTH MOVING. For bedding of conduits.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Contracting Officer Representative (COR) four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.

- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

- FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
- C. National Fire Protection Association (NFPA):

70-11..... National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

5-04.....Surface Metal Raceway and Fittings

6-07.....Rigid Metal Conduit

50-07..... Enclosures for Electrical Equipment

360-09.....Liquid-Tight Flexible Steel Conduit

467-07.....Grounding and Bonding Equipment

514A-04.....Metallic Outlet Boxes

514B-04.....Fittings for Cable and Conduit

514C-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers

- 651-05.....Schedule 40 and 80 Rigid PVC Conduit
- 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit

797-07.....Electrical Metallic Tubing

1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2 CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3 WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4 CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates

having the same finishes as that of other electrical plates in the room.

- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - 3. Set screw fittings: Not permitted for use with aluminum conduit.
- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- F. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- G. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.

- 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
- 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

2.10 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.

- 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.

- b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
- 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
- Align and run conduit parallel or perpendicular to the building lines.
- Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
- 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch)

vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.

C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.

L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.

- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS. The system shall generally consist of the server to be located in Building 52 with a standalone network created to support the system. Edge switches shall be distributed on several floors of the various buildings for connection of access control panels. The edge switches shall be connected to the core switch primarily by existing fiber optic cables. Refer to the plan drawings for connectivity details. Monitoring, control, and badging shall be performed from network connected workstations in primary and secondary locations in Building 53. The PACS shall interface with the intrusion system and the Video and Assessment and Surveillance System, VASS, which will in sum compose the Security Management System, or SMS. The PACS, intrusion system and VASS shall operate on the same network.
- B. This Section includes a Physical Access Control System consisting of a system server, networked workstation computers, operating system and application software, and field-installed Controllers connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors
 - b. Anti-passback
 - c. Visitor assignment
 - d. Surge and tamper protection
 - e. Secondary alarm annunciator
 - f. Credential cards and readers
 - g. Push-button switches
 - h. RS-232 ASCII interface
 - i. Credential creation and credential holder database and management
 - j. Monitoring of field-installed devices
 - k. Reporting
 - 2. Security:
 - a. Real-time guard tour.
 - b. Video and camera control.

- C. System Architecture:
 - Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.
- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201-2.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Head-End equipment server,
 - 2. One or more networked PC-based workstations,
 - 3. Physical Access Control System and Database Management Software,
 - 4. Credential validation software/hardware,
 - 5. Field installed controllers,
 - 6. PIV Middelware,
 - 7. Card readers,
 - 8. Biometric identification devices,
 - 9. PIV PIV-I, Legacy CAC, CAC NG, CAC EP, TWIC, FRAC cards,
 - 10. Supportive information system,
 - 11. Door locks and sensors,
 - 12. Power supplies,
 - 13. Interfaces with:
 - a. Video Surveillance and Assessment System,
 - b. Gate, turnstile, and traffic arm controls,
 - c. Automatic door operators,
 - d. Intrusion Detection System,
 - e. Intercommunication System
 - f. Fire Protection System,
- F. Head-End equipment server, workstations and controllers shall be connected by a high-speed electronic data transmission network.
- G. Information system supporting PACS , Head-End equipment server, workstations, network switches, routers and controllers shall comply with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems).
- H. PACS system shall support:
 - 1. Multiple credential authentication modes,
 - 2. Bidirectional communication with the reader,

- 3. Incident response policy implementation capability; system shall have capability to automatically change access privileges for certain user groups to high security areas in case of incident/emergency.
- 4. Visitor management,
- I. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- J. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.
- K. System Software: Shall be based on Windows/Unix/Linux Central Operating System, workstation operating system, server operating system, and application software.
- L. Software and controllers shall be capable of matching full 56 bit FASC-N plus minimum of 32 bits of public key certificate data.
- M. Software shall have the following capabilities:
 - 1. Multiuser multitasking to allow for independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Support authentication and enrolment;
 - a. PIV verification,
 - b. Expiration date check,
 - c. Validate digital signatures of data objects (Objects are signed by the Trusted Authority
 - d. Private key challenge (CAK & PAK to verify private key public key pairs exist and card is not a clone)
 - 3. Support CRL validation via OCSP or SCVP on a scheduled basis and automatically deny access to any revoked credential in the system.
 - Graphical user interface to show pull-down menus and a menu tree format that complies with interface guidelines of Microsoft Windows operating system.
 - 5. System license shall be for the entire system and shall include capability for future additions that are within the indicated system size limits specified in this Section.

- 6. System shall have open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with Microsoft Windows 7 operating system.
- 7. Operator login and access shall be utilized via integrated smart card reader and password protection.
- N. Systems Networks:
 - A standalone system network shall interconnect all components of the system. This network shall include communications between a central station and any peer or subordinate workstations, enrollment stations, local annunciation stations, portal control stations or redundant central stations.
- O. Security Management System Server Redundancy:
 - The SMS shall support multiple levels of fault tolerance and SMS redundancy listed and described below:
 - a. Hot Standby Servers
 - b. Clustering
 - c. Disk Mirroring
 - d. RAID Level 10
 - e. Distributed Intelligence
- P. Number of points:
 - 1. PACS shall support multiple autonomous regional servers that can connect to a master command and controller server.
 - Unlimited number of access control readers, unlimited number of inputs or outputs, unlimited number of client workstations, unlimited number of cardholders.
 - 3. Total system solution to enable enterprise-wide, networked, multiuser access to all system resources via a wide range of options for connectivity with the customer's existing LAN and WAN.
- Q. Console Network:
 - 1. Console network, if required, shall provide communication between a central station and any subordinate or separate stations of the system. Where redundant central or parallel stations are required, the console network shall allow the configuration of stations as master and slave. The console network may be a part of the field device network or may be separate depending upon the manufacturer's system configuration.
- R. Network(s) connecting PCs and Controllers shall comply with NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems) and consist of one or more of the following:

- Local area, IEEE 802.3 Fast Ethernet 100 BASE-TX, star topology network based on TCP/IP.
- 2. Direct-connected, RS-232 cable from the COM port of the Central Station to the first Controller, then RS-485 to interconnect the remainder of the Controllers at that Location.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. For requirements for commissioning, systems readiness checklists, and training.
- L. Section 28 13 16 ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.
- M. Section 28 13 53 SECURITY ACCESS DETECTION. Requirements for screening of personnel and shipments.
- N. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.
- O. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- P. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.

Q. Section 28 31 00 - FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

- A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.
 - B. The Contractor shall be responsible for providing, installing, and the operation of the PACS as shown. The Contractor shall also provide certification as required.
 - C. The security system will be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.

1.4 SUBMITTALS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.5 APPLICABLE PUBLICATIONS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.6 DEFINITIONS

- A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.
 - B. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16character set.
 - C. Access Control List: A list of (identifier, permissions) pairs associated with a resource or an asset. As an expression of security policy, a person may perform an operation on a resource or asset if and only if the person's identifier is present in the access control list (explicitly or implicitly), and the permissions in the (identifier, permissions) pair include the permission to perform the requested operation.
 - D. Access Control: A function or a system that restricts access to authorized persons only.
 - E. API Application Programming Interface
 - F. Assurance Level (or E-Authentication Assurance Level): A measure of trust or confidence in an authentication mechanism defined in OMB Memorandum M-04-04 and NIST Special Publication (SP) 800-63, in terms of four levels:

- 1. Level 1: LITTLE OR NO confidence
- 2. Level 2: SOME confidence
- 3. Level 3: HIGH confidence
- 4. Level 4: VERY HIGH confidence
- G. Authentication: A process that establishes the origin of information, or determines an entity's identity. In this publication, authentication often means the performance of a PIV authentication mechanism.
- H. Authenticator: A memory, possession, or quality of a person that can serve as proof of identity, when presented to a verifier of the appropriate kind. For example, passwords, cryptographic keys, and fingerprints are authenticators.
- I. Authorization: A process that associates permission to access a resource or asset with a person and the person's identifier(s).
- J. BIO or BIO-A: A FIPS 201 authentication mechanism that is implemented by using a Fingerprint data object sent from the PIV Card to the PACS. Note that the short-hand "BIO (-A)" is used throughout the document to represent both BIO and BIO-A authentication mechanisms.
- K. Biometric: An authenticator produced from measurable qualities of a living person.
- L. CAC EP CAC End Point with end point PIV applet
- M. CAC NG CAC Next Generation with transitional PIV applet
- N. Card Authentication Key (CAK): A PIV authentication mechanism (or the PIV Card key of the same name) that is implemented by an asymmetric or symmetric key challenge/response protocol. The CAK is an optional mechanism defined in NIST SP 800-73. SP800-73 NIST strongly recommends that every PIV Card contain an asymmetric CAK and corresponding certificate, and that agencies use the asymmetric CAK protocol, rather than a symmetric CAK protocol, whenever the CAK authentication mechanism is used with PACS.
- O. CCTV: Closed-circuit television.
- P. Central Station: A PC with software designated as the main controlling PC of the PACS. Where this term is presented with initial capital letters, this definition applies.
- Q. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- R. CPU: Central processing unit.
- S. Credential: Data assigned to an entity and used to identify that entity.

- T. File Server: A PC in a network that stores the programs and data files shared by users.
- U. FIPS Federal Information Processing Standards
- V. FRAC First Responder Authentication Credential
- W. HSPD Homeland Security Presidential Directive
- X. I/O: Input/Output.
- Y. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- Z. IEC International Electrotechnical Commission
- AA. ISO International Organization for Standardization
- BB. KB Kilobyte
- CC. kbit/s Kilobits / second
- DD. LAN: Local area network.
- EE. LED: Light-emitting diode.
- FF. Legacy CAC Contact only Common Access Card with v1 and v2 applets
- GG. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- HH. NIST: National Institute of Standards and Technology
- II. PACS: Physical Access Control System
- JJ. PC/SC: Personal Computer / Smart Card
- KK. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- LL. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- MM. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- NN. PIV: Personal Identification Verification
- 00. PIV-I PIV Interoperable credential
- PP. PPS: Protocol and Parameters Selection
- QQ. RF: Radio frequency.
- RR. ROM: Read-only memory. ROM data are maintained through losses of power.

- SS. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- TT. RS-485: An TIA/EIA standard for multipoint communications.
- UU. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- VV. TPDU: Transport Protocol Data Unit
- WW. TWIC Transportation Worker Identification Credential
- XX. UPS: Uninterruptible power supply.
- YY. Vcc: Voltage at the Common Collector
- ZZ. WAN: Wide area network.

AAA. WAV: The digital audio format used in Microsoft Windows.

- BBB. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.
- CCC. Windows: Operating system by Microsoft Corporation.
- DDD. Workstation: A PC with software that is configured for specific limited security system functions.

1.7 COORDINATION

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.8 MAINTENANCE & SERVICE

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door.
- C. Physical Access Control System shall provide access to following Security Areas:
 - 1. Controlled
 - 2. Limited
 - 3. Exclusion
- D. PACS shall provide:
 - 1. One authentication factor for access to Controlled security areas
 - 2. Two authentication factors for access to Limited security areas

3. Three authentication factors for access to Exclusion security areas

- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.
- G. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for physical access control. If communications to Central Station are lost, all Controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.
- H. Location Capacity:
 - 1. Two hundred fifty-six (256) reader-controlled doors.
 - 2. Ten thousand (10,000) total access credentials.
 - 3. Two thousand forty-eight (2048) supervised alarm inputs.
 - 4. Two thousand forty-eight (2048) programmable outputs.
 - 5. Thirty-two thousand (32,000) custom action messages per Location to instruct operator on action required when alarm is received.
- I. System Network Requirements:
 - Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
 - Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.

- 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.
- 4. Communications Controller may be used as an interface between the Central Station display systems and the field device network. Communications Controller shall provide functions required to attain the specified network communications performance.
- J. Central Station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central Station shall control system networks to interconnect all system components, including workstations and field-installed Controllers.
- K. Field equipment shall include Controllers, sensors, and controls. Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records. Controllers are classified as alarm-annunciation or entry-control type.
- L. System Response to Alarms: Alarms shall be annunciated at the Central Station within 1 second of the alarm occurring at a Controller or device controlled by a local Controller, and within 100 ms if the alarm occurs at the Central Station. Alarm and status changes shall be displayed within 100 ms after receipt of data by the Central Station. All graphics shall be displayed, including graphics-generated map displays, on the console monitor within 5 seconds of alarm receipt at the security console. This response time shall be maintained during system heavy load.
- M. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- N. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect singleand double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multibit and burst error conditions. Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each

communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.

- 0. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.
- P. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- Q. References to industry and trade association standards and codes are minimum installation requirement standards.
- R. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.10 EQUIPMENT AND MATERIALS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and

8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201-2 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Physical Access Control System
 - 2. Application Software
 - 3. System Database
 - 4. Surge and Tamper Protection
 - 5. Standard Workstation Hardware
 - 6. Communications Workstation
 - 7. Controllers (Data Gathering Panel)
 - 8. Secondary Alarm Annunciator
 - 9. Keypads
 - 10. Card Readers
 - 11. Credential Cards
 - 12. Enrollment Center (To be provided in accordance with the VA PIV enrollment and issuance system.)
 - 13. System Sensors and Related Equipment
 - 14. Push Button Switches
 - 15. Interfaces
 - 16. Door and Gate Hardware interface
 - 17. IP and RS-232 ASCII Interface
 - 18. Real Time Guard Tour
 - 19. Video and Camera Control
 - 20. Cables
 - 21. Transformers

2.2 SECURITY MANAGEMENT SYSTEM (SMS)

A. Shall allow the configuration of an enrollment and badging, alarm monitoring, administrative, asset management, digital video management, intrusion detection, visitor enrollment, remote access level management, and integrated client workstations or any combination of all or some.

- B. Shall be expandable to support an unlimited number of individual module or integrated client workstations. All access control field hardware, including Data Gathering Panels (DGP), shall be connected to all physical access control system workstation on the network.
- C. Shall have the ability to compose, file, maintain, update, and print reports for either individuals or the system as follows.
 - Individual reports that consist of an employee's name, office location, phone number or direct extension, and normal hours of operation. The report shall provide a detail listing of the employee's daily events in relation to accessing points within a facility.
 - System reports shall be able to produce information on a daily/weekly/monthly basis for all events, alarms, and any other activity associated with a system user.
- D. All reports shall be in a date/time format and all information shall be clearly presented. Shall be designed to allow it to work with any industry standard network protocol and topology listed below:
 - 1. Transmission Control Protocol (TCP)/IP
 - 2. Novell Netware (IPX/SPX)
 - 3. Banyan VINES
 - 4. IBM LAN Server (NetBEUI)
 - 5. Microsoft LAN Manager (NetBEUI)
 - 6. Network File System (NFS) Networks
 - 7. Remote Access Service (RAS) via ISDN, x.25, and standard phone lines.
- E. Shall provide full interface and control of the PACS to include the following subsystems within the PACS:
 - 1. Public Key Infrastructure
 - 2. Card Management
 - 3. Identity and Access Management
 - 4. Personal Identity Verification
- F. Shall have the following features or compatibilities:
 - The ability to be operated locally or remotely via a LAN, WAN, internet, or intranet.
 - 2. Event and Alarm Monitoring
 - 3. Database Partitioning
 - 4. Ability to fully integrate with all other security subsystems

- 5. Enhanced Monitoring Station with Split Screen Views
- 6. Alternate and Extended Shunt by Door
- 7. Escort Management
- 8. Enhanced IT-based Password Protection
- 9. N-man Rule and Occupancy Restrictions
- 10. Open Journal Data Format for Enhanced Reporting
- 11. Automated Personnel Import
- 12. ODBC Support
- 13. Windows 7
- 14. Field-Level Audit Trail
- 15. Cardholder Access Events

G. Shall be from one of the following manufacturers.

- 1. Software House
- 2. Lenel
- 3. GE
- 4. Hirsch
- 5. Johnson Controls

2.3 APPLICATION SOFTWARE

- A. System Software: Based on sixty-four (64)-bit, Microsoft Windows 7 central-station and workstation operating system and application software. Software shall have the following features:
 - Multiuser multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Graphical user interface to show pull-down menus and a menu tree format.
 - Capability for future additions within the indicated system size limits.
 - Open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with operating system.
 - 5. Password-protected operator and smart card login and access.
- B. Peer Computer Control Software: Shall detect a failure of a central computer, and shall cause the other central computer to assume control of all system functions without interruption of operation. Drivers shall be provided in both central computers to support this mode of operation.
- C. Application Software: Interface between the alarm annunciation and entry-control Controllers, to monitor sensors, operate displays, report

alarms, generate reports, and help train system operators. Software shall have the following functions:

- 1. Resides at the Central Station, workstations, and Controllers as required to perform specified functions.
- 2. Operate and manage peripheral devices.
- 3. Manage files for disk I/O, including creating, deleting, and copying files; and automatically maintain a directory of all files, including size and location of each sequential and random-ordered record.
- Import custom icons into graphics views to represent alarms and I/O devices.
- 5. Globally link I/O so that any I/O can link to any other I/O within the same Location, without requiring interaction with the host PC. This operation shall be at the Controller.
- 6. Globally code I/O links so that any access-granted event can link to any I/O with the same Location without requiring interaction with the host PC. This operation shall be at the Controller.
- 7. Messages from PC to Controllers and Controllers to Controllers shall be on a polled network that utilizes check summing and acknowledgment of each message. Communication shall be automatically verified, buffered, and retransmitted if message is not acknowledged.
- 8. Selectable poll frequency and message time-out settings shall handle bandwidth and latency issues for TCP/IP, RF, and other PC-to-Controller communications methods by changing the polling frequency and the amount of time the system waits for a response.
- 9. Automatic and encrypted backups for database and history backups shall be automatically stored at the central control PC and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
- Operator audit trail for recording and reporting all changes made to database and system software.
- D. Workstation Software:
 - Password levels shall be individually customized at each workstation to allow or disallow operator access to program functions for each Location.
 - 2. Workstation event filtering shall allow user to define events and alarms that will be displayed at each workstation. If an alarm is unacknowledged (not handled by another workstation) for a preset

amount of time, the alarm will automatically appear on the filtered workstation.

- E. Controller Software:
 - Controllers shall operate as an autonomous intelligent processing unit. Controllers shall make decisions about physical access control, alarm monitoring, linking functions, and door locking schedules for its operation, independent of other system components. Controllers shall be part of a fully distributed processing control network. The portion of the database associated with a Controller and consisting of parameters, constraints, and the latest value or status of points connected to that Controller, shall be maintained in the Controller.
 - 2. Functions: The following functions shall be fully implemented and operational within each Controller:
 - a. Monitoring inputs.
 - b. Controlling outputs.
 - c. Automatically reporting alarms to the Central Station.
 - d. Reporting of sensor and output status to Central Station on request.
 - e. Maintaining real time, automatically updated by the Central Station at least once a day.
 - f. Communicating with the Central Station.
 - g. Executing Controller resident programs.
 - h. Diagnosing.
 - i. Downloading and uploading data to and from the Central Station.
 - 3. Controller Operations at a Location:
 - a. Location: Globally operating I/O linking and anti-passback functions between Controllers within the same Location without central-station or workstation intervention. Linking and antipassback shall remain fully functional within the same Location even when the Central Station or workstations are off line.
 - b. In the event of communications failure between the Central Station and a Location, there shall be no degradation in operations at the Controllers at that Location. The Controllers at each Location shall be connected to a memory buffer with a capacity to store up to 10,000 events; there shall be no loss of transactions in system history files until the buffer overflows.
 - c. Buffered events shall be handled in a first-in-first-out mode of operation.

- 4. Individual Controller Operation:
 - a. Controllers shall transmit alarms, status changes, and other data to the Central Station when communications circuits are operable. If communications are not available, Controllers shall function in a stand-alone mode and operational data, including the status and alarm data normally transmitted to the Central Station, shall be stored for later transmission to the Central Station. Storage capacity for the latest 1024 events shall be provided at each Controller.
 - b. Card-reader ports of a Controller shall be custom configurable for at least eight (8) different card-reader or keypad formats. Multiple reader or keypad formats may be used simultaneously at different Controllers or within the same Controller.
 - c. Controllers shall provide a response to card-readers or keypad entries in less than 0.25 seconds, regardless of system size.
 - d. Controllers that are reset, or powered up from a nonpowered state, shall automatically request a parameter download and reboot to its proper working state. This shall happen without any operator intervention.
 - e. Initial Startup: When Controllers are brought on-line, database parameters shall be automatically downloaded to them. After initial download is completed, only database changes shall be downloaded to each Controller.
 - f. Failure Mode: On failure for any reason, Controllers shall perform an orderly shutdown and force Controller outputs to a predetermined failure mode state, consistent with the failure modes shown and the associated control device.
 - g. Startup After Power Failure: After power is restored, startup software shall initiate self-test diagnostic routines, after which Controllers shall resume normal operation.
 - h. Startup After Controller Failure: On failure, if the database and application software are no longer resident, Controllers shall not restart, but shall remain in the failure mode until repaired. If database and application programs are resident, Controllers shall immediately resume operation. If not, software shall be restored automatically from the Central Station.
- 5. Communications Monitoring:
 - a. System shall monitor and report status of RS-485 communications loop and TCP/IP communication status of each Location.

- b. Communication status window shall display which Controllers are currently communicating, a total count of missed polls since midnight, and which Controller last missed a poll.
- c. Communication status window shall show the type of CPU, the type of I/O board, and the amount of RAM memory for each Controller.
- 6. Operating systems shall include a real-time clock function that maintains seconds, minutes, hours, day, date, and month. The realtime clock shall be automatically synchronized with the Central Station at least once a day to plus or minus 10 seconds. The time synchronization shall be automatic, without operator action and without requiring system shutdown.
- F. PC-to-Controller Communications:
 - Central-station or workstation communications shall use the following:
 - a. TCP/IP LAN network interface cards.
 - Direct serial, TCP/IP, and dial-up communications shall be alike in the monitoring or control of system, except for the connection that must first be made to a dial-up Location.
 - 3. TCP/IP network interface card shall have an option to set the poll frequency and message response time-out settings.
 - 4. PC-to-Controller and Controller-to-Controller communications (direct, dial-up, or TCP/IP) shall use a polled-communication protocol that checks sum and acknowledges each message. All communications shall be verified and buffered and retransmitted if not acknowledged.
- G. Direct Serial or TCP/IP PC-to-Controller Communications:
 - 1. Communication software on the PC shall supervise the PC-to-Controller communications link.
 - Loss of communications to any Controller shall result in an alarm at all PCs running the communications software.
 - 3. When communications are restored, all buffered events shall automatically upload to the PC, and any database changes shall be automatically sent to the Controller.
- H. Database Downloads:
 - All data transmissions from PCs to a Location, and between Controllers at a Location, shall include a complete database checksum to check the integrity of the transmission. If the data checksum does not match, a full data download shall be automatically retransmitted.

- 2. If a Controller is reset for any reason, it shall automatically request and receive a database download from the PC. The download shall restore data stored at the Controller to their normal working state and shall take place with no operator intervention.
- I. Operator Interface:
 - Inputs in system shall have two icon representations, one for the normal state and one for the abnormal state.
 - 2. When viewing and controlling inputs, displayed icons shall automatically change to the proper icon to display the current system state in real time. Icons shall also display the input's state, whether armed or bypassed, and if the input is in the armed or bypassed state due to a time zone or a manual command.
 - 3. Outputs in system shall have two icon representations, one for the secure (locked) state and one for the open (unlocked) state.
 - Icons displaying status of the I/O points shall be constantly updated to show their current real-time condition without prompting by the operator.
 - 5. The operator shall be able to scroll the list of I/Os and press the appropriate toolbar button, or right click, to command the system to perform the desired function.
 - 6. Graphic maps or drawings containing inputs, outputs, and override groups shall include the following:
 - a. Database to import and store full-color maps or drawings and allow for input, output, and override group icons to be placed on maps.
 - b. Maps to provide real-time display animation and allow for control of points assigned to them.
 - c. System to allow inputs, outputs, and override groups to be placed on different maps.
 - d. Software to allow changing the order or priority in which maps will be displayed.
 - 7. Override Groups Containing I/Os:
 - a. System shall incorporate override groups that provide the operator with the status and control over user-defined "sets" of I/Os with a single icon.
 - b. Icon shall change automatically to show the live summary status of points in that group.
 - c. Override group icon shall provide a method to manually control or set to time zone points in the group.

- d. Override group icon shall allow the expanding of the group to show icons representing the live status for each point in the group, individual control over each point, and the ability to compress the individual icons back into one summary icon.
- 8. Schedule Overrides of I/Os and Override Groups:
 - a. To accommodate temporary schedule changes that do not fall within the holiday parameters, the operator shall have the ability to override schedules individually for each input, output, or override group.
 - b. Each schedule shall be composed of a minimum of two dates with separate times for each date.
 - c. The first time and date shall be assigned the override state that the point shall advance to, when the time and date become current.
 - d. The second time and date shall be assigned the state that the point shall return to, when the time and date become current.
- 9. Copy command in database shall allow for like data to be copied and then edited for specific requirements, to reduce redundant data entry.
- J. Operator Access Control:
 - Control operator access to system controls through three (3) password-protected operator levels. System operators and managers with appropriate password clearances shall be able to change operator levels for operators.
 - Three successive attempts by an operator to execute functions beyond their defined level during a 24-hour period shall initiate a software tamper alarm.
 - 3. An unlimited number of passwords shall be available with the system software. System shall display the operator's name or initials in the console's first field. System shall print the operator's name or initials, action, date, and time on the system printer at login and logoff.
 - 4. The password shall not be displayed or printed.
 - Each password shall be definable and assignable for the following:
 a. Commands usable.
 - b. Access to system software.
 - c. Access to application software.
 - d. Individual zones that are to be accessed.
 - e. Access to database.

- K. Operator Commands:
 - Command Input: Plain-language words and acronyms shall allow operators to use the system without extensive training or dataprocessing backgrounds. System prompts shall be a word, a phrase, or an acronym.
 - 2. Command inputs shall be acknowledged and processing shall start in not less than one (1) second.
 - 3. Tasks that are executed by operator's commands shall include the following:
 - a. Acknowledge Alarms: Used to acknowledge that the operator has observed the alarm message.
 - b. Place Zone in Access: Used to remotely disable intrusion alarm circuits emanating from a specific zone. System shall be structured so that console operator cannot disable tamper circuits.
 - c. Place Zone in Secure: Used to remotely activate intrusion alarm circuits emanating from a specific zone.
 - d. System Test: Allows the operator to initiate a system-wide operational test.
 - e. Zone Test: Allows the operator to initiate an operational test for a specific zone.
 - f. Print reports.
 - g. Change Operator: Used for changing operators.
 - h. Display Graphics: Used to display any graphic displays implemented in the system. Graphic displays shall be completed within 20 seconds from time of operator command.
 - i. Run system tests.
 - j. Generate and format reports.
 - k. Request help with the system operation.
 - 1) Include in main menus.
 - Provide unique, descriptive, context-sensitive help for selections and functions with the press of one function key.
 - Provide navigation to specific topic from within the first help window.
 - 4) Help shall be accessible outside the applications program.
 - 1. Entry-Control Commands:
 - Lock (secure) or unlock (open) each controlled entry and exit
 a minimum of four times a day through time-zone programming.

- Arm or disarm each monitored input a minimum of four times a day through time-zone programming.
- Enable or disable readers or keypads a minimum of twice a day through time-zone programming.
- Enable or disable cards or codes a minimum of four times per day per entry point through access-level programming.
- 4. Command Input Errors: Show operator input assistance when a command cannot be executed because of operator input errors. Assistance screen shall use plain-language words and phrases to explain why the command cannot be executed. Error responses that require an operator to look up a code in a manual or other document are not acceptable. Conditions causing operator assistance messages include the following:
 - a. Command entered is incorrect or incomplete.
 - b. Operator is restricted from using that command.
 - c. Command addresses a point that is disabled or out of service.
 - d. Command addresses a point that does not exist.
 - e. Command is outside the system's capacity.
- L. Alarms:
 - 1. System Setup:
 - Assign manual and automatic responses to incoming point status change or alarms.
 - b. Automatically respond to input with a link to other inputs, outputs, operator-response plans, unique sound with use of WAV files, and maps or images that graphically represent the point location.
 - c. 60-character message field for each alarm.
 - d. Operator-response-action messages shall allow message length of at least 65,000 characters, with database storage capacity of up to 32,000 messages. Setup shall assign messages to alarm originating device.
 - e. Secondary messages shall be assignable by the operator for printing to provide further information and shall be editable by the operator.
 - f. Allow 25 secondary messages with a field of 4 lines of 60 characters each.
 - g. Store the most recent 1000 alarms for recall by the operator using the report generator.
 - 2. Software Tamper:

- a. Annunciate a tamper alarm when unauthorized changes to system database files are attempted. Three consecutive unsuccessful attempts to log onto system shall generate a software tamper alarm.
- b. Annunciate a software tamper alarm when an operator or other individual makes three consecutive unsuccessful attempts to invoke functions beyond their authorization level.
- c. Maintain a transcript file of the last 5000 commands entered at the Central Station to serve as an audit trail. System shall not allow write access to system transcript files by any person, regardless of their authorization level.
- d. Allow only acknowledgment of software tamper alarms.
- Read access to system transcript files shall be reserved for operators with the highest password authorization level available in system.
- 4. Animated Response Graphics: Highlight alarms with flashing icons on graphic maps; display and constantly update the current status of alarm inputs and outputs in real time through animated icons.
- 5. Multimedia Alarm Annunciation: WAV files to be associated with alarm events for audio annunciation or instructions.
- 6. Alarm Handling: Each input may be configured so that an alarm cannot be cleared unless it has returned to normal, with options of requiring the operator to enter a comment about disposition of alarm. Allow operator to silence alarm sound when alarm is acknowledged.
- 7. Alarm Automation Interface: High-level interface to Central Station alarm automation software systems. Allows input alarms to be passed to and handled by automation systems in same manner as burglar alarms, using an RS-232 ASCII interface.
- 8. CCTV Alarm Interface: Allow commands to be sent to CCTV systems during alarms (or input change of state) through serial ports.
- 9. Camera Control: Provides operator ability to select and control cameras from graphic maps.
- M. Alarm Monitoring: Monitor sensors, Controllers, and DTS circuits and notify operators of an alarm condition. Display higher-priority alarms first and, within alarm priorities, display the oldest unacknowledged alarm first. Operator acknowledgment of one alarm shall not be considered acknowledgment of other alarms nor shall it inhibit reporting of subsequent alarms.

- Displayed alarm data shall include type of alarm, location of alarm, and secondary alarm messages.
- Printed alarm data shall include type of alarm, location of alarm, date and time (to nearest second) of occurrence, and operator responses.
- Maps shall automatically display the alarm condition for each input assigned to that map, if that option is selected for that input location.
- 4. Alarms initiate a status of "pending" and require the following two handling steps by operators:
 - a. First Operator Step: "Acknowledged." This action shall silence sounds associated with the alarm. The alarm remains in the system "Acknowledged" but "Un-Resolved."
 - b. Second Operator Step: Operators enter the resolution or operator comment, giving the disposition of the alarm event. The alarm shall then clear.
- 5. Each workstation shall display the total pending alarms and total unresolved alarms.
- 6. Each alarm point shall be programmable to disallow the resolution of alarms until the alarm point has returned to its normal state.
- 7. Alarms shall transmit to SCC in real time, except for allowing connection time for dial-up locations.
- Alarms shall be displayed and managed from a minimum of four different windows.
 - a. Input Status Window: Overlay status icon with a large red blinking icon. Selecting the icon will acknowledge the alarm.
 - b. History Log Transaction Window: Display name, time, and date in red text. Selecting red text will acknowledge the alarm.
 - c. Alarm Log Transaction Window: Display name, time, and date in red. Selecting red text will acknowledge the alarm.
 - d. Graphic Map Display: Display a steady colored icon representing each alarm input location. Change icon to flashing red when the alarm occurs. Change icon from flashing red to steady red when the alarm is acknowledged.
- 9. Once an alarm is acknowledged, the operator shall be prompted to enter comments about the nature of the alarm and actions taken. Operator's comments may be manually entered or selected from a programmed predefined list, or a combination of both.

- 10. For locations where there are regular alarm occurrences, provide programmed comments. Selecting that comment shall clear the alarm.
- 11. The time and name of the operator who acknowledged and resolved the alarm shall be recorded in the database.
- 12. Identical alarms from same alarm point shall be acknowledged at same time the operator acknowledges the first alarm. Identical alarms shall be resolved when the first alarm is resolved.
- 13. Alarm functions shall have priority over downloading, retrieving, and updating database from workstations and Controllers.
- 14. When a reader-controlled output (relay) is opened, the corresponding alarm point shall be automatically bypassed.
- N. Monitor Display: Display text and graphic maps that include zone status integrated into the display. Colors are used for the various components and current data. Colors shall be uniform throughout the system.
 - 1. Color Code:
 - a. FLASHING RED: Alerts operator that a zone has gone into an alarm or that primary power has failed.
 - b. STEADY RED: Alerts operator that a zone is in alarm and alarm has been acknowledged.
 - c. YELLOW: Advises operator that a zone is in access.
 - d. GREEN: Indicates that a zone is secure and that power is on.
 - 2. Graphics:
 - a. Support 32,000 graphic display maps and allow import of maps from a minimum of 16 standard formats from another drawing or graphics program.
 - b. Allow I/O to be placed on graphic maps by the drag-and-drop method.
 - c. Operators shall be able to view the inputs, outputs, and the point's name by moving the mouse cursor over the point on graphic map.
 - d. Inputs or outputs may be placed on multiple graphic maps. The operator shall be able to toggle to view graphic map associated with inputs or outputs.
 - e. Each graphic map shall have a display-order sequence number associated with it to provide a predetermined order when toggled to different views.
 - f. Camera icons shall have the ability to be placed on graphic maps that, when selected by an operator, will open a video window,

display the camera associated with that icon, and provide pantilt-zoom control.

- g. Input, output, or camera placed on a map shall allow the ability to arm or bypass an input, open or secure an output, or control the pan-tilt-zoom function of the selected camera.
- 0. System test software enables operators to initiate a test of the entire system or of a particular portion of the system.
 - Test Report: The results of each test shall be stored for future display or printout. The report shall document the operational status of system components.
- P. Report Generator Software: Include commands to generate reports for displaying, printing, and storing on disk and tape. Reports shall be stored by type, date, and time. Report printing shall be the lowest priority activity. Report generation mode shall be operator selectable but set up initially as periodic, automatic, or on request. Include time and date printed and the name of operator generating the report. Report formats may be configured by operators.
 - Automatic Printing: Setup shall specify, modify, or inhibit the report to be generated; the time the initial report is to be generated; the time interval between reports; the end of period; and the default printer.
 - Printing on Requests: An operator may request a printout of any report.
 - 3. Alarm Reports: Reporting shall be automatic as initially set up. Include alarms recorded by system over the selected time and information about the type of alarm (such as door alarm, intrusion alarm, tamper alarm, etc.), the type of sensor, the location, the time, and the action taken.
 - 4. Access and Secure Reports: Document zones placed in access, the time placed in access, and the time placed in secure mode.
 - 5. Custom Reports: Reports tailored to exact requirements of who, what, when, and where. As an option, custom report formats may be stored for future printing.
 - Automatic History Reports: Named, saved, and scheduled for automatic generation.
 - 7. Cardholder Reports: Include data, or selected parts of the data, as well as the ability to be sorted by name, card number, imprinted number, or by any of the user-defined fields.

- 8. Cardholder by Reader Reports: Based on who has access to a specific reader or group of readers by selecting the readers from a list.
- 9. Cardholder by Access-Level Reports: Display everyone that has been assigned to the specified access level.
- 10. Panel Labels Reports: Printout of control-panel field documentation including the actual location of equipment, programming parameters, and wiring identification. Maintain system installation data within system database so that they are available on-site at all times.
- 11. Activity and Alarm On-Line Printing: Activity printers for use at workstations; prints all events or alarms only.
- 12. History Reports: Custom reports that allows the operator to select any date, time, event type, device, output, input, operator, Location, name, or cardholder to be included or excluded from the report.
 - a. Initially store history on the hard disk of the host PC.
 - b. Permit viewing of the history on workstations or print history to any system printer.
 - c. The report shall be definable by a range of dates and times with the ability to have a daily start and stop time over a given date range.
 - d. Each report shall depict the date, time, event type, event description, device, or I/O name, cardholder group assignment, and cardholder name or code number.
 - e. Each line of a printed report shall be numbered to ensure that the integrity of the report has not been compromised.
 - f. Total number of lines of the report shall be given at the end of the report. If the report is run for a single event such as "Alarms," the total shall reflect how many alarms occurred during that period.
 - g. System shall have the ability to produce a report indicating status of system inputs and outputs or of inputs and outputs that are abnormal, out of time zone, manually overridden, not reporting, or in alarm.
- 13. Reports shall have the following four options:
 - a. View on screen.
 - b. Print to system printer. Include automatic print spooling and "Print To" options if more than one printer is connected to system.
 - c. "Save to File" with full path statement.

- 14. Custom Code List Subroutine: Allow the access codes of system to be sorted and printed according to the following criteria:
 - a. Active, inactive, or future activate or deactivate.
 - b. Code number, name, or imprinted card number.
 - c. Group, Location, access levels.
 - d. Start and stop code range.
 - e. Codes that have not been used since a selectable number of days.
 - f. In, out, or either status.
 - g. Codes with trace designation.
- 15. The reports of system database shall allow options so that every data field may be printed.
- 16. The reports of system database shall be constructed so that the actual position of the printed data shall closely match the position of the data on the data-entry windows.
- Q. Anti-Passback:
 - System shall have global and local anti-passback features, selectable by Location. System shall support hard and soft antipassback.
 - 2. Hard Anti-Passback: Once a credential holder is granted access through a reader with one type of designation (IN or OUT), the credential holder may not pass through that type of reader designation until the credential holder passes though a reader of opposite designation.
 - 3. Soft Anti-Passback: Should a violation of the proper IN or OUT sequence occur, access shall be granted, but a unique alarm shall be transmitted to the control station, reporting the credential holder and the door involved in the violation. A separate report may be run on this event.
 - 4. Timed Anti-Passback: A Controller capability that prevents an access code from being used twice at the same device (door) within a user-defined amount of time.
 - 5. Provide four separate zones per Location that can operate without requiring interaction with the host PC (done at Controller). Each reader shall be assignable to one or all four anti-passback zones. In addition, each anti-passback reader can be further designated as "Hard," "Soft," or "Timed" in each of the four anti-passback zones. The four anti-passback zones shall operate independently.
 - 6. The anti-passback schemes shall be definable for each individual door.

- 7. The Master Access Level shall override anti-passback.
- System shall have the ability to forgive (or reset) an individual credential holder or the entire credential holder population antipassback status to a neutral status.
- R. Visitor Assignment:
 - Provide for and allow an operator to be restricted to only working with visitors. The visitor badging subsystem shall assign credentials and enroll visitors. Allow only access levels that have been designated as approved for visitors.
 - Provide an automated log of visitor name, time and doors accessed, and whom visitor contacted.
 - 3. Allow a visitor designation to be assigned to a credential holder.
 - 4. PACS shall be able to restrict the access levels that may be assigned to credentials that are issued to visitors.
 - 5. Allow operator to recall visitors' credential holder file, once a visitor is enrolled in the system.
 - 6. The operator may designate any reader as one that deactivates the credential after use at that reader. The history log shall show the return of the credential.
 - System shall have the ability to use the visitor designation in searches and reports. Reports shall be able to print all or any visitor activity.
- S. Entry-Control Enrollment Software: Database management functions that allow operators to add, delete, and modify access data as needed.
 - The enrollment station shall not have alarm response or acknowledgment functions.
 - Provide multiple, password-protected access levels. Database management and modification functions shall require a higher operator access level than personnel enrollment functions.
 - 3. The program shall provide means to disable the enrollment station when it is unattended to prevent unauthorized use.
 - 4. The program shall provide a method to enter personnel identifying information into the entry-control database files through enrollment stations. In the case of personnel identity verification subsystems, this shall include biometric data. Allow entry of personnel identifying information into the system database using menu selections and data fields. The data field names shall be customized during setup to suit user and site needs. Personnel identity verification subsystems selected for use with the system

shall fully support the enrollment function and shall be compatible with the entry-control database files.

- 5. Cardholder Data: Provide 99 user-defined fields. System shall have the ability to run searches and reports using any combination of these fields. Each user-defined field shall be configurable, using any combination of the following features:
 - a. MASK: Determines a specific format that data must comply with.
 - b. REQUIRED: Operator is required to enter data into field before saving.
 - c. UNIQUE: Data entered must be unique.
 - d. DEACTIVATE DATE: Data entered will be evaluated as an additional deactivate date for all cards assigned to this cardholder.
 - e. NAME ID: Data entered will be considered a unique ID for the cardholder.
- 6. Personnel Search Engine: A report generator with capabilities such as search by last name, first name, group, or any predetermined user-defined data field; by codes not used in definable number of days; by skills; or by seven other methods.
- Multiple Deactivate Dates for Cards: User-defined fields to be configured as additional stop dates to deactivate any cards assigned to the cardholder.
- 8. Batch card printing.
- 9. Default card data can be programmed to speed data entry for sites where most card data are similar.
- Enhanced ACSII File Import Utility: Allows the importing of cardholder data and images.
- T. System Redundancy & High Availability: The system shall provide multiple levels of communications redundancy and failover for all PACS hosted controllers, digital video recorders, and client workstations. The PACS shall be capable of automatically re-routing communications to alternate computers across the system without operator intervention.
 - PACS system configuration with a single application/ database server shall provide at a minimum the following redundancy and failover capability:
 - a. The PACS shall provide communications redundancy and failover for network-attached devices. Each network attached device shall have one or more alternative communication sever(s) that can provide hosting in case of primary communications server failure.

- b. In case of primary communications server failure, the system shall automatically re-route network-attached devices to their designated backup communications servers to allow continuous system operations without loss of alarm and event transaction processing during failover.
- c. Network-attached devices which transition to backup communications servers, shall be able to be redirected back to their default primary servers, once the primary communications servers have been restored.

2.4 SURGE AND TAMPER PROTECTION

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

2.5 PACS SERVER HARDWARE

- A. Server shall meet the minimum specifications to function with the proposed software package functional requirements or shall meet the following specifications, whichever are greater.
 - SMS Server Computer: Standard unmodified PC of modular design. The CPU word size shall be sixty-four (64) bit; the CPU operating speed shall be at least 3.4 GHz.
 - a. Processor family: Intel® Xeon® E5640 (4 core, 2.66 GHz, 12MB L3, 80W).
 - b. Number of processors: Two (2)
 - c. Memory: Twelve 12 GB RAM , expandable to a minimum of one hundred ninety-two 192 GB without additional chassis or power supplies. Memory protection shall include Mirrored Memory, Online Spare, Advanced ECC, and Memory Lock Step Mode.
 - d. Input/Output: 2 expansions slots, Network Controller two (2) 1GbE NC382i Multifunction 4 Ports.
 - e. Power Supply: Dual minimum capacity of four hundred sixty (460)W hot plug.
 - f. Real-Time Clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
 - 3) Clock shall function for 1 year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.

- g. Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- h. Parallel Port: An enhanced parallel port.
- i. The server shall have a 1 GB NIC or greater network card, rated at 100/1000 MB/sec.
- j. The server shall have dual two hundred fifty (250) GB hard disk drives at seven thousand two hundred (7200) RPM.
- k. The server shall have a CD / DVD combo drive.
- 1. The server operating system shall be either:
 - 1) Windows 2007 or Windows 2010.
- m. The Web Server shall be IIS 7.0 or better.
- n. The Database shall be SQL Server 2005 (Express, Standard, Data Center, or Enterprise).
- o. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.
- p. Color Monitor: Seventeen inch (17") or larger SVGA (1024 x 768) monitor with true color support. The server shall have a dedicated 256 MB SVGA accelerated video card with at least 64 MB onboard RAM.
- q. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
- r. Mouse: Standard, compatible with the installed software.
- s. Special function keyboard attachments or special function keys to facilitate data input of the following operator tasks:
 - 1) Help.
 - 2) Alarm Acknowledge.
 - 3) Place Zone in Access.
 - 4) Place Zone in Secure.
 - 5) System Test.
 - 6) Print Reports.
 - 7) Change Operator.
- t. CD-ROM Drive:
 - 1) Nominal storage capacity of 650 MB.
 - 2) Data Transfer Rate: 1.2 Mbps.
 - 3) Average Access Time: 150 ms.
 - 4) Cache Memory: 256 KB.
 - 5) Data Throughput: 1 MB/second, minimum.
- t. Dot Matrix Alarm Printer:
 - 1) Connected to the Central Station.

- Minimum of 96 characters, standard ASCII character set based on ANSI X3.154, and with graphics capability and programmable control of top-of-form.
- 3) Prints in both red and black without ribbon change.
- 4) Adjustable sprockets for paper width up to 11 inches.
- 5) Eighty (80) columns per line, minimum speed of 200 characters per second.
- 6) Character Spacing: Selectable at 10, 12, or 17 characters per inch.
- 7) Paper: Sprocket-fed fan fold paper.
- v. Report Printer:
 - 1) Connected to the Central Station and designated workstations.
 - 2) Laser printer with minimum resolution of 600 dpi.
 - 3) RAM: 64 MB, minimum.
 - 4) Printing Speed: Minimum 12 pages per minute.
 - 5) Paper Handling: Automatic sheet feeder with 150- sheet paper cassette and with automatic feed.
 - 6) Interface: Bidirectional parallel and universal serial bus.
- B. Redundant Central Computer: One identical redundant central computer, connected in a hot standby, peer configuration. This computer shall automatically maintain its own copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant computer in near real-time. If central computer fails, redundant computer shall assume control immediately and automatically.
- C. PACS controllers clustering shall support the following features:
 - 1. Assignment of Master and alternate master controllers for cluster communication to the SMS server
 - 2. Primary and backup communication paths to the SMS server
 - 3. Encrypted communications
 - 4. Up to 16 controllers per cluster
 - 5. Logical event linking between controllers in a cluster independent of SMS server communication
 - Asynchronous communication via TCP/IP (Polled devices shall not be acceptable)
- D. UPS: Self-contained; complying with requirements in Division 26 Section
 "Static Uninterruptible Power Supply."

- Size: Provide a minimum of four (4) hours of operation of the central-station equipment, including 2 hours of alarm printer operation.
- 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
- 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.
 - k. Remote battery monitoring.

2.6 STANDARD WORKSTATION HARDWARE

- A. Workstation shall consist of a standard unmodified PC, with accessories and peripherals that configure the workstation for a specific duty.
- B. Workstation Computer: Standard unmodified PC of modular design. The CPU word size shall be 32 bits or larger; the CPU operating speed shall be at least 2 GHz.
 - Memory: 512 MB of usable installed memory, expandable to a minimum of 8 GB without additional chassis or power supplies.
 - 2. Power Supply: Minimum capacity of 250 W.
 - 3. Real-Time Clock:
 - a. Accuracy: Plus or minus 1 minute per month.
 - b. Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
 - c. Provide automatic time correction once every 24 hours by synchronizing clock with the Central Station.
 - Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
 - 5. Parallel Port: An enhanced parallel port.
 - LAN Adapter Card: Two (2) 10/100/1000 Mbps PCI bus, internal network interface card.
 - 7. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.

- 8. Color Monitor: Not less than 17 inches (430 mm), with a minimum resolution of 1280 by 1024 pixels, noninterlaced, and a maximum dot pitch of 0.28mm. The video card shall support at least 256 colors at a resolution of 1280 by 1024 at a minimum refresh rate of 60 Hz.
- 9. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
- 10. Mouse: Standard, compatible with the installed software.
- 11. Disk storage shall include the following, each with appropriate
 controller:

a. Minimum 250 GB hard disk, maximum average access time of 10 ms.

- 12. CD-ROM Drive:
 - a. Nominal storage capacity of 650 MB.
 - b. Data Transfer Rate: 1.2 Mbps.
 - c. Average Access Time: 150 ms.
 - d. Cache Memory: 256 KB.
 - e. Data Throughput: 1 MB/second, minimum.
- 13. Printer:
 - a. Connected to the Central Station and designated workstations.
 - b. Laser printer with minimum resolution of 600 dpi.
 - c. RAM: 64 MB, minimum.
 - d. Printing Speed: Minimum 12 pages per minute.
 - e. Paper Handling: Automatic sheet feeder with 150-sheet paper cassette and with automatic feed.
- 14. Interface: Bidirectional parallel, and universal serial bus.
- 15. LAN Adapter Card: 10/100/1000 Mbps internal network interface card.
- C. Redundant Workstation: One identical redundant workstation, connected in a hot standby, peer configuration. This workstation shall automatically maintain its own copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant workstation in near real time. If its associated workstation fails, redundant workstation shall assume control immediately and automatically.
- D. UPS: Self-contained, complying with requirements in Division 26 Section
 "Static Uninterruptible Power Supply."
 - Size: Provide a minimum of four (4) hours of operation of the central-station equipment, including 2 hours of alarm printer operation.

- 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
- 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.
 - k. Remote battery monitoring.

2.7 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the Central Station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time to control panel, readers, locks, and accessories during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network with dc line supervision on each of its alarm inputs.
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal, and for conditions as described in UL 1076 for line security equipment by monitoring for abnormal open, grounded, or shorted conditions using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of 10 percent or more for longer than 500 ms.

- Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
- c. Outputs: Managed by Central Station software.
- 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.
- E. Entry-Control Controller:
 - Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
 - 2. Inputs:
 - a. Data from entry-control devices; use this input to change modes between access and secure.
 - b. Database downloads and updates from the Central Station that include enrollment and privilege information.
 - 3. Outputs:
 - a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.

- b. Grant or deny entry by sending control signals to portal-control devices and mask intrusion alarm annunciation from sensors stimulated by authorized entries.
- c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.
- d. Door Prop Alarm: If a portal is held open for longer than time listed in a schedule, alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.
 - a. Store up to 1000 transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.

2.8 PIV MIDDLEWARE

- A. PIV Middleware shall provide three-factor authentication, including biometric matching using a fingerprint capture device capable of single fingerprint capture. Unit shall enable digital certificates can to be verified by security personnel using the issuer's certificate authority, SCVP, OCSP responder/repeater, or the TSA hot list for TWIC cardholders. All cards shall be validated using FIPS-201-2 challengeresponse protocol in order to identify forged or cloned cards. PIV Middleware solution shall validate all PIV, TWIC, NG CAC, and FRAC cards. TWIC card FASC-Ns shall also be verified against a live or cached TSA hot list.
- B. PIV Middleware shall have ability to:
 - 1. Verify cardholder identity and validates FIPS 201-2 compliant PIV-II, next-generation (NG) CAC, TWIC, or FRAC credentials in real-time
 - Perform three-factor authentication of cardholder using PIN, biometrics, and certificate detecting forged or cloned cards
 - 3. Enroll FASC-N, photo, and pertinent cardholder information into PACS software

- Automatically suspend a cardholder's badge if his or her PIV, TWIC, or CAC card certificate serial number is on the Certificate Revocation List (CRL)
- 5. Upload a cardholder transaction audit trail to central database or exports it to a .csv file for centralized transaction management
- 6. Be compatible with biometric mobile terminal for off-site verification and enrollment
- 7. Re-validate imported cardholder certificates on a periodic basis via the Internet
- 8. Operate with commercial, off-the-shelf (COTS) FIPS 201-2 PIV-II and ANSI INCITS 378-compliant fingerprint capture devices
- 9. Revalidate imported cardholder certificates at regular intervals, ensuring that the credentials used in PACS system are backed by a valid set of digital certificates. Digital certificates are verified against local OCSP repeater/validation authority using the issuer's validation authority, or Microsoft Crypto Application Programming Interface (API) on Windows 7 or Vista.
- Certificate Manager shall fully support SCVP and OCSP for fast, online validation.
- 11. Provide verification of TWIC credentials against a live TSA hot list.
- 12. Support uploading local transactions to a central database for consolidated activity reporting. This application shall support a variety of ODBC- or ADO-compliant databases, including Oracle, SQL Server 2005, Informix, DB2, and Firebird.
- 13. Provide user with ability to produce canned transaction log queries as well as creating queries directly from the SQL database.
- C. PIV Middleware PC requirements:
 - PIV Middleware software shall operate on Intel-based PC with minimum 1.8 GHz CPU, 1 GB RAM, 40 GB hard disk, and Microsoft Windows 7 with Microsoft .NET Framework 2.0
 - 2. Unit shall fingerprint capture devices and smart card reader.
- D. PIV Middleware shall be FIPS 201-2 approved product.

2.9 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time

shall be 800ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.

- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
 - Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- D. Display: LED or other type of visual indicator display shall provide visual and audible status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, card and/or PIN, card and/or biometrics, card and/or pin and/or biometrics, supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201-2, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.
- J. Shall contain read head electronics, and a sender to encode digital door control signals.
- K. LED's shall be utilized to indicate card reader status and access status.

- L. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- M. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.
- N. Shall have a minimum of two programmable inputs and two programmable outputs.
- 0. All card readers that utilize keypad controls along with a reader and shall meet the following specifications:
 - Entry control keypads shall use a unique combination of alphanumeric and other symbols as an identifier. Keypads shall contain an integral alphanumeric/special symbols keyboard with symbols arranged in ascending ASCII code ordinal sequence. Communications protocol shall be compatible with the local processor.
 - 2. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected. The design of the keypad display or keypad enclosure shall limit the maximum horizontal and vertical viewing angles of the keypad. The maximum horizontal viewing angle shall be plus and minus five (5) degrees or less off a vertical plane perpendicular to the plane of the face of the keypad display. The maximum vertical viewing angle shall be plus and minus 15 degrees or less off a horizontal plane perpendicular to the plane of the face of the keypad display.
 - a. Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
 - b. Shall be powered from the source as designed.
 - c. Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
 - d. Shall provide a means for users to indicate a duress situation by entering a special code.
- P. PIV Contact Card Reader

- Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
- Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.
- Programming Voltage: PIV Readers shall not generate a Programming Voltage.
- 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
- 5. Retrieval Time: Retrieval time for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
- Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.
- 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read character TAl of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.
- Q. Contactless Smart Cards and Readers
 - Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
 - 2. The readers shall have "flash" download capability to accommodate card format changes.
 - 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
 - 4. The card reader shall be contactless and meet or exceed the following technical characteristics:
 - a. Data Output Formats: FIPS 201-2 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 - 200 bits. FIPS 201-2 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 - 232 bits. All Wiegand formats or

the upgradeability from Low to Medium Levels can be field configured with the use of a command card.

- b. FIPS 201-2 readers shall be able to read, but not be limited to, DESfire and iCLASS cards.
- c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1" to 2" (2.5 - 5 cm).
- d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
- e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
- f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.
- g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B communication signal interfaces as defined in ISO/IEC 14443-2:2001.
- h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
- i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.
- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.
- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (~106 kbits/s), fc/64(~212 kbits/s), and configurable to allow activation/deactivation.
- Readibility Range: The reader shall not be able to read PIV card more than 10cm(4inch) from the reader

2.10 KEYPADS

A. Designed for use with unique combinations of alphanumeric and other symbols as an Identifier. Keys of keypads shall contain an integral

alphanumeric/special symbol keyboard with symbols arranged in ascending ASCII-code ordinal sequence or random scrambled order. Communications protocol shall be compatible with Controller.

- Keypad display or enclosure shall limit viewing angles of the keypad as follows:
 - a. Maximum Horizontal Viewing Angle: 5 degrees or less off in either direction of a vertical plane perpendicular to the plane of the face of the keypad display.
 - b. Maximum Vertical Viewing Angle: 15 degrees or less off in either direction of a horizontal plane perpendicular to the plane of the face of the keypad display.
- Duress Codes: Provide duress situation indication by entering a special code.

2.11 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201-2.
- B. Visual Card Topography shall be compliant with NIST 800-104.
- C. PIV logical credentials shall contain multiple data elements for the purpose of verifying the cardholder's identity at graduated assurance levels. These mandatory data elements shall collectively comprise the data model for PIV logical credentials, and include the following:
 - 1. CHUID
 - 2. PIN
 - 3. PIV authentication data (one asymmetric key pair and corresponding certificate)
- D. The credential card (PIV) shall be an ISO 14443 type smart card with contactless interface that operates at 13.56 MHZ.

2.12 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be

user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (\pm 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

- C. Guard tour stations:
 - The guard tour station shall be single gang brushed steel plate flush mounted in a single gang box. The switch shall be a normally open momentary keyed switch.
- D. Delayed Egress (DE)
 - The delay-locking device shall include all of the following features:
 - a. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- E. Crash Bar:
 - 1. Emergency Exit with Alarm (Panic):
 - a. Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one(1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.

- e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
- f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.
- g. Normal Exit:
 - 1) Entry control portals shall include panic bar non-emergency exit hardware as designed.
 - 2) Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
 - Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
 - 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
 - 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.

F. Key Bypass:

- Shall be utilized for all doors that have a mortise or rim mounted door hardware.
- Each door shall be individually keyed with one master key per secured area.
- 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
- 4. All keys shall have a serial number cut into the key. No two serial numbers shall be the same.

- 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.
- G. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - Door closing force shall be adjustable to ensure adequate closing control.
 - Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
 - 4. Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
 - 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
 - 6. Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.
 - 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.
 - d. Have push button controls for setting door close and door open positions.
 - e. Have open obstruction detection and close obstruction detection built into the unit.
 - f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
 - g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
 - h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.

- 1. Shall monitor and report door status to the SMS.
- 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.
 - d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
 - e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.13 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:
 - a. Minimum continuous current rating of 10 A at 120 V ac or 5 A at 240-V ac.
 - b. Contacts that will make 720 VA at 60 A and that will break at 720 VA at 10 A.
 - 2. Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
 - 3. Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
 - 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.14 PORTAL CONTROL DEVICES

- A. Shall be used to assist the PACS.
- B. Such devices shall:
 - 1. Provide a means of monitoring the doors status.
 - Allow for exiting a space via either a push button, request to exit, or panic/crash bar.

- 3. Provide a means of override to the PACS via a keypad or key bypass.
- 4. Assist door operations utilizing automatic openers and closures.
- 5. Provide a secondary means of access to a space via a keypad.
- C. Shall be connected to and monitored by the main PACS panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall provide a secondary means of physical access control within a secure area.
- F. Push-Button Switches:
 - Shall be momentary contact, back lighted push buttons, and stainless steel switch enclosures for each push button as shown. Buttons are to be utilized for secondary means of releasing a locking mechanism.
 - a. In an area where a push button is being utilized for remote access of the locking device then no more than two (2) buttons shall operate one door from within one secure space. Buttons will not be wired in series with one other.
 - b. In an area where locally stationed guards control entry to multiple secure points via remote switches. An interface board shall be designed and constructed for only the amount of buttons it shall house. These buttons shall be flush mounted and clearly labeled for ease of use. All buttons shall be connected to the PACS and SMS system for monitoring purposes.
 - c. Shall have double-break silver contacts that will make 720 VA at60 amperes and break 720 VA at 10 amperes.
- G. Entry Control Devices:
 - 1. Shall be hardwired to the PACS main control panel and operated by either a card reader or a biometric device via a relay on the main control panel.
 - 2. Shall be fail-safe in the event of power failure to the PACS system.
 - 3. Shall operate at 24 VDC, with the exception of turnstiles and be powered by a separate power supply dedicated to the door control system. Each power supply shall be rated to operate a minimum of two doors simultaneously without error to the system or overload the power supply unit.
 - Shall have a diode or metal-oxide veristor (MOV) to protect the controller and power supply from reverse current surges or backcheck.

- 5. Electric Strikes/Bolts: Shall be:
 - a. Made of heavy-duty construction and tamper resistant design.
 - b. Tested to over one million cycles.
 - c. Rated for a minimum of 1000 lbs. holding strength.
 - d. Utilize an actuating solenoid for the strike/bolt. The solenoid shall move from fully open to fully closed position and back in not more than 500 milliseconds and be rated for continuous duty.
 - e. Utilize a signal switch that will indicate to the system if the strike/bolt is not engaged or is unlocked when it should be secured.
 - f. Flush mounted within the door frame.
- 6. Electric Mortise Locks: Shall be installed within the door and an electric transfer hinge shall be utilized to allow the wires to be transferred from the door frame to the lock. If utilized with a double door then the lock shall be installed inside the active leaf. Electric Mortise Locks shall:
 - a. These locks shall be provided and installed by the Division 8 "DOOR HARDWARE" Contractor.
 - Have integrated Request to Exit switch for doors receiving physical access control devices.
 - b. Provide integration of the Electric Mortise Locks with the PACS
 for:
 - 1) Lock Power
 - 2)Request to Exit switch.
- 7. Electromagnetic Locks:
 - a. These locks shall be without mechanical linkage utilizing no moving parts, and securing the door to its frame solely on electromagnetic force.
 - b. Shall be comprised of two pieces, the mag-lock and the door plate. The electromagnetic locks shall be surface mounted to the door frame and the door plate shall be surface mounted to the door.
 - c. Ensure a diode is installed in line with the DC voltage supplying power to the unit in order to prevent back-check on the system when the electromagnetic lock is powered.
 - d. Shall utilize a magnetic bonding sensor (MBS) to monitor the door status and report that status to the SMS. A balanced magnetic switch shall be used in conjunction with MBS, and the two shall be wired in series.

e. Electromagnetic locks shall meet the following minimum technical characteristics:

Operating Voltage		24 VDC
Current Draw		.5A
Holding Force	Swing Doors	675 kg (1500 lbs)
	Sliding Doors	225 kg (500 lbs)

8. Turnstiles:

a. Shall operate at 110 VAC, 60 Hz or 220 VAC, 50 Hz supplied from a dedicated circuit breaker on a security power panel. This device does not require a back-up power source.

2.15 SECONDARY ALARM ANNUNCIATOR

A. Secondary Alarm Annunciation Site: A workstation with limited I/O capacity, consisting of a secondary alarm annunciation workstation to allow the operator to duplicate functions of the main operator interface, and to show system status changes.

2.16 INTERFACES

- A. CCTV System Interface
 - Ethernet or TCP/IP interface associated driver, and controller shall be provided for connection of the SMS Central Computer to the CCTV Alarm interface. The interface shall provide alarm data to the CCTV Alarm interface for automatic camera call-up. If required the Security Contractor shall be responsible for programming the command strings into the SMS Server.
- B. Power Supplies:
 - 1. Shall be UL rated and able to adequately power eight (8) entry control devices on a continuous base without failure.
 - 2. Shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ 3A
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall
	provide up to 14 Ah
OUTPUT CURRENT	10 amp max. (@ 13.8) VDC
	6 amp max. (@ 27.6) VDC
PRIMARY FUSE SIZE	6.3 amp (non-removable)
BATTERY FUSE SIZE	12 amp, 3AG

CHARGING CIRCUIT Built-in standard

2.17 VIDEO AND CAMERA CONTROL

- A. Control station or designated workstation displays live video from a CCTV source.
 - Control Buttons: On the display window, with separate control buttons to represent Left, Right, Up, Down, Zoom In, Zoom Out, Scan, and a minimum of two custom command auxiliary controls.
 - Provide different icons to represent different types of cameras, with ability to import custom icons. Provide option for display of icons on graphic maps to represent their physical location.
 - 3. Provide the alarm-handling window with a command button that will display the camera associated with the alarm point.
- B. Display mouse-selectable icons representing each camera source, to select source to be displayed. For CCTV sources that are connected to a video switcher, control station shall automatically send control commands through a COM port to display the requested camera when the camera icon is selected.
- C. Allow cameras with preset positioning to be defined by displaying a different icon for each of the presets. Provide control with Next and Previous buttons to allow operator to cycle quickly through the preset positions.

2.18 WIRES AND CABLES

A. Refer to section 280513 "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY".

2.19 PANIC BUTTONS

- A. The panic button system shall consist of wireless desk mounted and wall mounted transmitters and the associated repeaters and receivers. Contractor shall be responsible for conducting a wireless survey and furnishing and installing the appropriate number of repeaters and receivers to provide adequate coverage and consistent receipt of signals. System shall operate in the 315MHz or 900MHz spectrum.
- B. Desk/Under Counter Mount Buttons:
 - 1. Shall be single button.
 - 2. Shall be able to be mounted under a desk or countertop.
 - 3. Shall have a battery life of 1-2 years, dependent on use.
- C. Wall Mount Buttons:
 - Shall consist of a mushroom style or square button on a single gang plate. This plate shall be attached to a non-metallic deep single

gang box, which shall be flush mounted on the wall. A universal wireless transmitter shall be located in the box which shall transmit signal via depression of the button.

- Mushroom button shall be red, approximately 1-5/8" in diameter with no more than 3/4" between the front of the plate and the back of the button. Button contacts shall be momentary, form C dry contacts.
- Square button shall be approximately 2" square and there shall be no gap between button and plate. It is not required that the button is illuminated.
- 4. Labeling: Button plate or square button shall be labeled with "Emergency", other text as approved by the Owner, or may be blank.
- 5. Single gang plate shall be attached to box with tamper proof screws.
- 6. Single gang box shall be non-metallic, minimum 20.5 in³.
- 7. Universal transmitter shall be located inside of the single gang box. The button shall be wired to the transmitter for signal transmission. Should spare limitations require it, transmitter circuit board and battery may be removed from the plastic case, but circuit board shall be properly protected from items inside of the single gang box.
- 8. Shall interface with Security System to notify operators at SCC of which device has been activated.
- 9. When a button is activated, the closest surveillance camera(s), as defined by the Owner but no greater than three (3), shall appear in alarm condition at SCC.

2.20 MOTION DETECTORS

- A. Wall or ceiling mount.
- B. Dual technology PIR and microwave with sensitivity adjustment, draft and small animal immunity, anti-masking.
- C. Wall mount coverage area of 40' x 40'.
- D. Ceiling mount coverage radius of 40' with changeable mirrors.
- E. Twelve (12)V DC operation.

2.21 KEYSWITCH BYPASS

- A. Mortise style keyway, accepts any brand 1-1/4" or 1-1/8" mortise cylinder.
- B. Twelve (12)/24V bi-color LED.
- C. Cover plate with tamper proof screws.
- D. Mortise cylinder provided with two keys.
- E. Mounted in a single gang box.

2.22 AUDIBLE ANNUNCIATOR

- A. The audible annunciator shall activate a local sounder and transmit a signal to the Security Command Center when the associated door is opened.
 - 1. Audible sounder 80dB @ 3 ft.
 - 2. Twelve (12) or 24V, AC or DC operation.
 - 3. Mountable in single gang box.
 - 4. Output contact to SCC.
 - 5. Input can be shunted from SCC via hand wired connection and output from security system hardware.
 - 6. If utilizing a door prop alarm, timer shall be set to "0".

2.23 INTRUSION DETECTION SYSTEM

- A. The intrusion detection system shall integrate with the security system monitoring software to notify SCC operators of alarms.
 - 1. Shall be rated as a commercial burglary panel.
 - 2. Minimum of eight (8) onboard hardware zones.
 - Integration with wireless panic button system for identification of which button has been activated.
 - 4. Minimum of eight (8) independent partitions.
 - 5. Minimum of one hundred fifty (150) user codes.
 - 6. Minimum of five hundred twelve (512) event storage.
 - 7. Up to ninety-six (96) programmable outputs with additional modules.
 - 8. English language LCD keypads.
 - 9. Twelve (12)V DC battery backup with batteries supplied to furnish power for a minimum of eight (8) hours.

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.

C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.
 - Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.

- 7. Prepare and install alarm graphic maps.
- 8. Develop user-defined fields.
- 9. Develop screen layout formats.
- 10. Complete system diagnostics and operation verification.
- 11. Prepare a specific plan for system testing, startup, and demonstration.
- 12. Develop acceptance test concept and, on approval, develop specifics of the test.
- Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- D. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- E. Install cables without damaging conductors, shield, or jacket.
- F. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- G. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed 500 feet (150 m).
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet (8 m).

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems on the network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems:
 - 1. CCTV:
 - a. Provide 24 hour coverage for all cameras defined in associated plans.
 - b. Be able to monitor, control and record cameras on a 24 hours basis.
 - c. Be programmed automatically call up a camera when an access point is put into an alarm state.
 - d. For additional PACS system requirements as they relate to the CCTV, refer to Section 28 23 00, VIDEO SURVEILLANCE.
 - 2. IDS:
 - a. Be able to monitor door control sensors.
 - b. Be able to monitor and control the IDS on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the operator via an audible alarm.
 - d. For additional PACS system requirements as they relate to the IDS, refer to Section 28 16 11, INTRUSION DETECTION SYSTEM.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system

integration meet or exceed the minimum system requirements outlined on the systems software packages.

- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment:
 - Unless otherwise specified, existing devices shall not be re-used. Contractor shall remove existing devices which are to be replaced as part of this specification and associated plans and shall return devices to the Owner. Contractor shall remove cabling to existing devices to original point of origin. Should contractor encounter an existing device which would be beneficial to re-use, the following shall apply:
 - a) The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - b) The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
 - c) The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any

device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.

- d) The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- e) The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- N. SMS:
 - Place the SMS server and workstations on the Contractor furnished and installed FMS network. Provide the security system protection levels required to insure only authorized VA personnel have access to the system.
 - 2. Program and set-up the SMS to ensure it is in fully operation.
- O. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.

- 2. Terminate input signals as required.
- 3. Program and address the reader as per the design package.
- 4. Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.
- P. Biometrics:
 - 1. Connect all signal input and output cables along with all power cables.
 - 2. Program and ensure the device is in operating order.
- Q. Portal Control Devices:
 - Install all signal input and output cables as well as all power cables.
 - 2. Devices shall be surface or flush mounted as per the design package.
 - 3. Program all devices and ensure they are working.
- R. Door Status Indicators:
 - Install all signal input and output cables as well as all power cables.
 - 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
 - Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).
- S. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- T. System Start-Up:
 - 1. The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.

- b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
- c. System wiring has been tested and verified as correctly connected as indicated.
- d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
- e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
- Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.
- U. Supplemental Contractor Quality Control:
 - The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
 - The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
 - 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
 - 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

- A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.
- B. Provide interface between the Access Control Software/Security Management System software and the Video Surveillance System to send notifications of alarms. When an alarm occurs, the nearest surveillance camera shall appear in alarm mode, shall "pop up" to the

designated monitor, and, if the nearest camera is a pan/tilt/zoom camera, the camera shall move to a preset view. This interface shall be a high level data interface, an interface based completely on relays is not allowed.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Testing Agency: Engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards - Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
 - 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.
- D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 28 16 00 INTRUSION DETECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Intrusion Detection System, hereinafter referred to as IDS, as specified in this section.
- B. This Section includes the following:
 - Intrusion detection with hard-wired, modular, microprocessor-based controls, intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions.
 - Responsibility for integrating electronic and electrical systems and equipment is specified in the following Sections, with Work specified in this Section:
 - a. Division 08 Section "DOOR HARDWARE".
 - b. Division 28 Section "PHYSICAL ACCESS CONTROL".
 - c. Division 28 Section "VIDEO SURVEILLANCE".
- C. Related Sections include the following:
 - Division 28 Section "VIDEO SURVEILLANCE" for closed-circuit television cameras that are used as devices for video motion detection.
 - Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY" for cabling between central-station control units and field-mounted devices and controllers.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- E. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for commissioning - systems readiness checklists, and training.
- G. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.

H. Section 28 23 00 - VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the IDS as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.

1.4 DEFINITIONS

- A. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- B. I/O: Input/Output.
- C. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- D. LED: Light-emitting diode.
- E. NEC: National Electric Code
- F. NEMA: National Electrical Manufacturers Association
- G. NFPA: National Fire Protection Association
- H. NRTL: Nationally Recognized Testing Laboratory.
- I. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- J. PIR: Passive infrared.
- K. RF: Radio frequency.
- L. Standard Intruder: A person who weighs 45 kg (100 lb.) or less and whose height is 1525 mm (60 in) or less; dressed in a long-sleeved shirt, slacks, and shoes.

- M. Standard-Intruder Movement: Any movement, such as walking, running, crawling, rolling, or jumping, of a "standard intruder" in a protected zone.
- N. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- O. UPS: Uninterruptible Power Supply
- P. UTP: Unshielded Twisted Pair

1.5 SUBMITTALS

- A. Refer to Section 28 05 00, Part1.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a shop drawing and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).

- e. Identify all pull box and conduit locations, sizes, and fill capacities.
- Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the IDS, provide the sensor ID, sensor type and housing model number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Shop drawing packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and

completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:

- 1. 35 percent
- 2. 65 percent
- 3. 90 percent
- 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Security Industry Association (SIA):

PIR-01-00......Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity CP-01-00.....Control Panel Standard-Features for False Alarm

Reduction

C. Department of Justice American Disability Act (ADA)

28 CFR Part 36.....2010 ADA Standards for Accessible Design

D. Federal Communications Commission (FCC):

(47 CFR 15) Part 15....Limitations on the Use of Wireless Equipment/Systems

E. National Electrical Manufactures Association (NEMA): 250-08........Enclosures for Electrical Equipment (1000 Volts Maximum)

- F. National Fire Protection Association (NFPA):
 - 70-11.....National Electrical Code

731-08..... Standards for the Installation of Electric Premises Security Systems

G. Underwriters Laboratories, Inc. (UL):

464-09.....Audible Signal Appliances

609-96.....Local Burglar Alarm Units and Systems

634-07..... Standards for Connectors with Burglar-Alarm Systems

639-07.....Digital Alarm Communicator System Units

H. Uniform Federal Accessibility Standards (UFAS), 19841.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of intrusion detection system equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 EQUIPMENT AND MATERIALS

- A. General
 - All equipment associated within the IDS shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.

- 2. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 96 hours of run time in the event of a loss of primary power to the facility.
- 3. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- 4. All IDS components located in designated "HAZARDOUS ENVIRONMENT" areas where fire or explosion could occur due to the presence of natural gases or vapors, flammable liquids, combustible residue, or ignitable fibers or debris, shall be rated Class II, Division I, Group F, and installed in accordance with National Fire Protection Association (NFPA) 70 National Electric Code, Chapter 5.
- 5. All equipment and materials for the system will be compatible to ensure functional operation in accordance with requirements.

1.9 WARRANTY OF CONSTRUCTION.

- A. Warrant IDS work subject to the Article "Warranty of Construction" of FAR 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 FUNCTIONAL DESCRIPTION OF SYSTEM

- A. Supervision: System components shall be continuously monitored for normal, alarm, supervisory, and trouble conditions. Indicate deviations from normal conditions at any location in system. Indication includes identification of device or circuit in which deviation has occurred and whether deviation is an alarm or malfunction.
 - 1. Alarm Signal: Display at central-station control unit and actuate audible and visual alarm devices.
 - Trouble Condition Signal: Distinct from other signals, indicating that system is not fully functional. Trouble signal shall indicate system problems such as battery failure, open or shorted transmission line conductors, or controller failure.
 - Supervisory Condition Signal: Distinct from other signals, indicating an abnormal condition as specified for the particular device or controller.

- B. System Control: Central-station control unit shall directly monitor intrusion detection units and connecting wiring.
- C. System shall automatically reboot program without error or loss of status or alarm data after any system disturbance.
- D. Operator Commands:
 - Help with System Operation: Display all commands available to operator. Help command, followed by a specific command, shall produce a short explanation of the purpose, use, and system reaction to that command.
 - 2. Acknowledge Alarm: To indicate that alarm message has been observed by operator.
 - Place Protected Zone in Access: Disable all intrusion-alarm circuits of a specific protected zone. Tamper circuits may not be disabled by operator.
 - 4. Place Protected Zone in Secure: Activate all intrusion-alarm circuits of a protected zone.
 - 5. Protected Zone Test: Initiate operational test of a specific protected zone.
 - 6. System Test: Initiate system-wide operational test.
 - 7. Print Reports.
- E. Timed Control at Central-Station Control Unit: Allow automatically timed "secure" and "access" functions of selected protected zones.
- F. Printed Record of Events: Print a record of alarm, supervisory, and trouble events on system printer. Sort and report by protected zone, device, and function. When central-station control unit receives a signal, print a report of alarm, supervisory, or trouble condition. Report type of signal (alarm, supervisory, or trouble), protected zone description, date, and time of occurrence. Differentiate alarm signals from other indications. When system is reset, report reset event with the same information concerning device, location, date, and time. Commands shall initiate the reporting of a list of current alarm, supervisory, and trouble conditions in system or a log of past events.
- G. Response Time: 2 seconds between actuation of any alarm and its indication at central-station control unit.
- H. Circuit Supervision: Supervise all signal and data transmission lines, links with other systems, and sensors from central-station control unit. Indicate circuit and detection device faults with both protected zone and trouble signals, sound a distinctive audible tone, and illuminate an LED. Maximum permissible elapsed time between occurrence

of a trouble condition and indication at central-station control unit is 20 seconds. Initiate an alarm in response to opening, closing, shorting, or grounding of a signal or data transmission line.

- I. Programmed Secure-Access Control: System shall be programmable to automatically change status of various combinations of protected zones between secure and access conditions at scheduled times. Status changes may be preset for repetitive, daily, and weekly; specially scheduled operations may be preset up to a year in advance. Manual secure-access control stations shall override programmed settings.
- J. Manual Secure-Access Control: Coded entries at manual stations shall change status of associated protected zone between secure and access conditions.

2.2 SYSTEM COMPONENT REQUIREMENTS

A. Compatibility: Detection devices and their communication features, connecting wiring, and central-station control unit shall be selected and configured with accessories for full compatibility with the following equipment:

1. 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM.

- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
 - Minimum Protection for Power Lines 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS.
 - Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Lines: Comply with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS as recommended by manufacturer for type of line being protected.
- C. Interference Protection: Components shall be unaffected by radiated RFI and electrical induction of 15 V/m over a frequency range of 10 to 10,000 MHz and conducted interference signals up to 0.25-V RMS injected into power supply lines at 10 to 10,000 MHz.
- D. Tamper Protection: Tamper switches on detection devices, controllers, annunciators, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or

partially disassembled and when entering conductors are cut or disconnected. Central-station control-unit alarm display shall identify tamper alarms and indicate locations.

E. Addressable Devices: Transmitter and receivers shall communicate unique device identification and status reports to central-station control unit.

2.3 ENCLOSURES

- A. Interior Sensors: Enclosures that protect against dust, falling dirt, and dripping noncorrosive liquids.
- B. Interior Electronics: NEMA 250, Type 12.
- C. Exterior Electronics: NEMA 250, Type 4X [fiberglass] [stainless steel].
- D. Corrosion Resistant: NEMA 250, Type 4X [PVC] [stainless steel].
- E. Screw Covers: Where enclosures are accessible to inmates, secure with security fasteners of type appropriate for enclosure.

2.4 EQUIPMENT ITEMS

- A. General:
 - 1. All requirements listed below are the minimum specifications that need to be met in order to comply with the IDS.
 - 2. All IDS sensors shall conform to UL 639, Intrusion Detection Standard.
 - 3. Ensure that IDS is fully integrated with other security subsystems as required to include, but not limited to, the CCTV, PACS, EPPS, and Physical Access Control System and Database Management. The IDS provided shall not limit the expansion and growth capability to a single manufacturer and shall allow modular expansion with minimal equipment modifications.
- B. IDS Components: The IDS shall consist of, but not be limited to, the following components:
 - 1. Control Panel
 - 2. Interior Detection Devices (Sensors)
 - 3. Power Supply
 - 4. Enclosures

2.5 CONTROL PANEL

A. The Control panel shall be the main point of programming, monitoring, accessing, securing, and troubleshooting the IDS. Refer to American National Standards Institute (ANSI) CP-01 Control Panel Standard-Features for False Alarm Reduction.

- B. The Control Panel shall provide a means of reporting alarms to an Physical Access Control System and Database Management via a computer interface or direct connection to an alarm control monitoring panel.
- C. The Control panel shall utilize a Multifunctional Keypad, Input and Output Modules for expansion of alarm zones, interfacing with additional security subsystems, programming, monitoring and controlling the IDS.
- D. The Control panel shall meet or exceed the following minimum functional requirements for programming outputs, system response, and user interface:
 - 1. Programming Outputs:
 - a. 2 Amps alarm power at 12 VDC
 - b. 1.4 Amps auxiliary power at 12 VDC
 - c. Four alarm output patterns
 - d. Programmable bell test
 - e. Programmable bell shut-off timer
 - 2. System Response:
 - a. Selectable point response time
 - b. Cross point capability
 - c. Alarm verification
 - d. Watch mode
 - e. Scheduled events arm, disarm, bypass and un-bypass points, control relays, and control authority levels
 - 3. User Interface:
 - a. Supervises up to eight command points (e.g. Up to 16 unsupervised keypads can be used)
 - b. Provides custom keypad text
 - c. Addresses full function command menu including custom functions
 - d. Allows user authority by defined area and 16-character name
 - e. Provides for 14 custom authority control levels allowing user's authority to change, add, delete pass codes, disarm, bypass points, and start system tests.
 - 4. The Control panel shall meet or exceed the following technical characteristics:

Input Voltage via 110 VAC or 220 VAC Step-down Transformer	16 or 18 VAC
Operating Voltage	12 VDC
Output Voltage	12 VDC @ 2 A max
Direct Hardwire Zones	7

Partitions	8
Multifunctional Keypads	16 (2 per partition)
Communications Port	RJ-11

- E. A multifunctional keypad shall be utilized as a user interface for arming, disarming, monitoring, troubleshooting, and programming the alarm control panel.
- F. Keypads shall have the following features:
 - Multiple function keypads suitable for remote mounting, no greater than 1333 m (4000 ft), shall be provided from the control panel and have a light emitting diode (LED) readout of alarm and trouble conditions by zone.
 - An alphanumeric English language display, with keypad programmability, and EE-PROM memory, shall also be provided.
 - Trouble alarm indicators shall be distinguishable from intrusion alarms.
 - 4. A minimum of four (4) zones selectable as entry and exit with programmable time delay.
 - 5. Complete system test activated capability at the keypad.
 - Capability for opening and closing reports to a remote monitoring location.
 - 7. Adjustable entry and exit delay times.
 - 8. Capability for a minimum of two (2) multiple function keypads.
 - 9. Capability to shunt or bypass selected interior zones while arming perimeter protection and remaining interior zones.
 - Capability for a minimum of seven assignable pass-codes that are keypad programmable from a suppressed master code.
 - 11. The control panel shall have a communications port that will allow for communications with a computer for programming, monitoring, and troubleshooting purposes. The communications port will be, at a minimum, and RJ-11 or better.
 - 12. The control panel will have a systems success probability of 95% or better, and shall include the following success considerations:
 - a. False Alarm: Shall not exceed one (1) false alarm per 30 days per sensor zone.
 - b. Nuisance Alarm: Shall not exceed a rate of one (1) alarm per seven (7) days per zone within the first 60 days after installation and acceptance. Sensor adjustments will be made and then shall not exceed one (1) alarm per 30 days.

- 13. The Control Panel will be able to detect either a line fault or power loss for all supervised data cables.
 - a. Line Fault Detection: Communication links of the IDS shall have an active mode for line fault detection. Fault isolation at the systems level shall have the same geographic resolutions as provided for intrusion detection. The line fault alarm shall be clearly distinguishable from other alarms.
 - b. Power Loss Detection: Provide the capability to detect when critical components experience temporary or permanent loss of power and annunciate to clearly identify the component experiencing power loss.

2.6 KEYPADS

A. Keypads shall meet or exceed the following technical characteristics:

Connections	4-wire flying lead for data and power
Operating Temperature	0°C to +50°C (+32°F to +122°F)
Display Window	8-point LED
Indicators: Illuminated keys	Armed Status-LED
	Point Status-LED
	Command Mode-LED
	Power-LED
Voltage	Nominal 12 VDC

2.7 INPUT MODULE

A. An input module shall be utilized to connect additional detection devices to the control panel. This module will meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Zone Inputs	Style A (Class B) Supervised
Operating Temperature	0 to 40 degrees C (32 to 140 degrees F)

2.8 OUTPUT MODULE

A. An output module shall be utilized to interface the control panel with other security subsystems. The output module shall meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Output Relays	"Form C" Dry Relay Contracts
Relay Contact Rating	4A @ 24 VDC
	4A @ 24 VAC

	1A @ 70 VAC
Operating Temperature	0 to 40 degrees C F (32 to 140 degrees)

2.9 INTERIOR DETECTION DEVICES (SENSORS)

- A. The IDS shall consist of interior, exterior, and other detection devices that are capable of:
 - Locating intrusions at individually protected asset areas or at an individual portal;
 - 2. Locating intrusions within a specific area of coverage;
 - 3. Locating failures or tampering of individual sensors or components.
- B. Provide and adjust for devices so that coverage is maximized in the space or area it is installed in. For large rooms where multiple devices are required, ensure device coverage is overlapping.
- C. Detection sensitivity shall be set up to ensure maximum coverage of the secure area is obtained while at the same time limiting excessive false alarms due to the environment and impact of small animals. All detection devices shall be anti-masking with exception of video motion detection.
- D. Dual sensor technology shall be used when possible. Sensor technology shall not be of the same type that is easily defeated by a single method. This will reduce the amount of false alarms.
- E. Interior Environmental Conditions: Systems shall be able to operate in environmentally protected interior areas and shall meet operational performance requirements for the following ambient conditions:
 - 1. If components are installed in unheated areas they shall be able to operate in temperatures as low as -17 C (0 F);
 - 2. Interior Sensor Environmental Characteristics:

Temperatures	0 to 50 C (32F to 120 F)
Pressure	Sea Level to 4573m (15,000 ft.) above sea level
Humidity	5% - 95%
Fungus	Components of non-fungus nutrient materials
Acoustical Noise	Suitable for high noise environments above 100db

- F. Balanced Magnetic Switches (BMS)
 - BMS switches shall be surface or recessed mounted according to manufacturer's instructions. Recessed mounted is the preferred method to reduce tampering or defeating of the system. Switches

shall activate when a disturbance in the balanced magnetic field occurs.

- 2. Switches shall have a minimum of two (2) encapsulated reed switches.
- 3. Contractor shall provide each BMS with a current protective device, rated to limit current to 80% of the switch capacity.
- 4. Surface Mounted BMS: For exterior application, components shall be housed in weatherproof enclosures.
- 5. BMS field adjustments in the fixed space between magnet and switch housing shall not be possible. Attempts to adjust or disturb the magnetic field shall cause a tamper alarm.
- 6. BMS Technical Characteristics:

Maximum current	.25 amperes
Maximum voltage	30 VDC
Maximum power	3.0 W (without internal terminating
	resistors). 1.0 W (with internal terminating resistors).
Components	Three (3) pre-adjusted reed switches
	Three (3) pre-adjusted magnets
Output contacts	Transfer type SPDT
Contact rating	0.5 amperes, 28 VDC
Switch mechanism	Internally adjustable
	¼ - ½ in. (6-13 mm)
Wiring	Two (2) wires #22 American Wire Gauge (AWG), three (3) or 11 foot attached cable
Activation lifetime	1,000,000 activations
Enclosure	Nonferrous materials
Tamper alarm activation	Cover opened 3 mm (1/8 in.) and inaccessible until actuated

- G. Acoustic and Seismic Glass Break Detectors
 - Detects intrusion thru the use of audible sound and vibration emitted from the breaking of glass using a tuned frequency range and sound pattern recognition. This initiates an alarm when glass they protect is broken or cracked.
 - Detectors shall be installed in strict conformance with manufacture's installation instructions.
 - The detector's power circuit shall be switched via an output relay on the control panel to provide latching alarm LED reset capability.
 - 4. Sensors shall be contained in a fire-resistant ABS plastic housing and must be mounted in contact with a window.

- 5. Sensing shall be accomplished through the use of a mechanical filtered piezoelectric element.
- Sensors shall have a sensitivity adjustment controlling output voltage from the piezoelectric element which triggers a solid-state latching device.
- Sensors shall selectively filter input to minimize false alarms and not initiate alarm in response to ambient seismic vibrations or other ambient stimuli.
- A manufacture's test unit will be used to validate the sensor by simulating glass breakage.
- 9. The Contractor shall provide sensors for adjusting sensitivity and two-sided polyurethane tape with acrylic adhesive for window attachment.
- Sensor shall include exterior label to protect adhesive tape from direct sunlight.
- 11. Window Intrusion Detection Sensor Technical Specifications:

Power	Auxiliary power supply 12 VDC @ 25 mA (+/-) 10%
Power Input	10 - 15 VDC at 16mA protected against reverse polarity, 20 mA during relay closure
Relay Output Rating	Minimum of 25 VDC mA
Coverage Audio	6,000 Square ft.
Coverage Glass Break	7.5 m (25 ft.) wide by 7.5 m wide (25 ft.)
	Minimum: 7.62 m (25 feet) from the detector to the furthest point on protected glass.
Audio Output	300 - 12,000 HZ
Alarm Output	Relay NO or NC selectable
Interconnection	12 pin Panduit connector, 22 AWG
Radio Frequency Interface	No alarm or setup on between frequencies 26 - 100 MHz 50 v/m
	Immunity to mobile RF interference 100 watts 3 m @ (9.8 Ft.) in 27-100 MHz range
Alarm period	Two (2) to three (3)
Mounting	Ceiling, same wall, adjacent wall, opposite wall
Features	Test and alarm LEDs for acoustic

	seismic and alarm condition latching, Alarm LED and tamper switch on cover.
Alarm verification	Digital signal processing or dual acoustic processing technologies
Detection ability	Single and multi-pane glass, wired glass, tempered and laminated glass to 6 mm (¼ inch) or thickness

- H. Passive Infrared Motion Sensors (PIR)
 - These sensors shall detect an intruder presence by monitoring the level of infrared energy emitted by objects within a protected zone and meet ANSI PIR-01 Passive Infrared Motion Detector Standards Features for Enhancing False Alarm Immunity. An alarm shall be initiated when motion and temperature changes within set patterns are detected as follows.
 - 2. The detector shall provide multiple detection zones distributed at a variety of angles and distance.
 - 3. Sensors shall be passive in nature; no transmitted energy shall be required for detection.
 - Sensors shall be sensitive to infrared energy emitted at wavelengths corresponding to human body and other objects at ambient temperatures.
 - 5. Sensors shall not alarm in response to general area thermal variations and shall be immune to radio frequency interference.
 - Sensors shall not be susceptible to changes in temperature due to an air conditioner being turned on or off.
 - 7. Sensors shall be housed in a tamper-alarmed enclosure.
 - Sensor detectors shall include motion analyzer processing, adjustable lens, and walk test LED's visible from any angle.
 - 9. Sensors shall provide some means of indicating an alarm condition during installation and calibration. A means of disabling the indication shall be provided within the sensor enclosure.
 - 10. Sensor detectors shall include a motion monitoring verification circuit that will signal trouble or alarm if the detector fails to detect motion for an extended period.
 - 11. PIR Technical Characteristics:

Power	Six (6) - 12 VDC 25 mA continuous current draw
	38 mA peaks
Alarm Velocity	1500 mm (Five (5) ft.) at a velocity of 30 mm (0.1 ft.) per second, and

	one (1) step per second, assuming 150 mm (6 in.) per step. Also, faster than 30 mm (1 foot) per second, up to 3000 mm (10 feet) per second
Maximum detection range	10.6 m (35 ft.)
Frequency range- non activation or setup use	26 to 950 MHz using a 50 watt transmitter located 1 ft. from the unit or attached wiring
Infrared detection	<pre>1 1/2°C (3°F) different from the background temperature</pre>
Detection Pattern	180 degrees for volumetric units, non PIR 360
PIR 360°Detection Pattern	Programmable 60 detection zones including one directly below
Mounting	Ceiling and walls
Ceiling heights	2.4 m (Eight (8) ft.) - 5.4 m (18 ft)
Sensitivity adjustments	Three (3) levels

- I. Microwave-Passive Infrared Detector
 - This sensor shall be designed to detect the motion of a human body within a protected area by means of a combination of microwave sensing technology and passive infrared (MPIR) sensing technology as follows.
 - 2. The sensor shall require both technologies to sense intrusion before an alarm may occur.
 - The sensor shall be designed for wall mounting on swivel bracket. A high-security gimbaled bracket shall be provided.
 - 4. The PIR fields of view shall be focused on the pyroelectric element by means of an internal multi-faceted mirror.
 - 5. The sensor shall incorporate a look-down lens system that detects the passing of an intruder directly beneath the sensor.
 - 6. The sensor shall incorporate a microwave supervision system which shall activate the trouble output if the device technology fails.
 - 7. The sensor shall incorporate self-diagnostics which shall monitor the sensor systems and report a trouble to the control panel if any system device fails.
 - 8. The sensor shall have compensation against loss of sensitivity as the ambient temperature nears human body temperature.
 - 9. MPIR Technical Characteristics:

Technology	Microwave and Passive Infrared
Power	Nine (9) - 15 VDC max current consumption 22 mA at 12 VDC
Operating Temperature	0° C (32°F) - 49° C (120° F)
Detection Area	30 m (98 ft.) long by 3 m (9.8 ft.) wide or 21 m (69 ft.) long by 21m (69 ft.) wide
Electronics	Microcontroller based
Alarm Contact	Form-C rated 125 mA, 28 VDC
Tamper Contact	125 mA, 28 VDC
Trouble Contact	Form-B rated 25 mA, 30 VDC
Microwave Operating Frequency	10.525 GHz
Microwave Sensitivity	Adjustable on circuit board
Detection pattern adjustment	Changing of internal lens
Sensing element	Pyro-electric
LED Indicators	PIR, microwave, alarm
Bug and Dust protection	zero-clearance, gasket bug guard
Lens	Interchangeable: standard 18x24 m (60x80 ft.), corner mounting, ultra- wide, pet alley, long range, room and corridor combo, room and ceiling combo, creep zone

2.10 TAMPER ALARM SWITCHES

- A. The following IDS sensors shall be used to monitor and detect potential tampering of sensors, control panels and enclosures.
 - Tamper Switches: All enclosures including cabinets, housings, boxes, raceways, and fittings with hinged doors or removable covers containing circuits and power supplies related to the IDS shall include corrosion-resistant tamper switches.
 - 2. Tamper alarms shall be annunciated to be clearly distinguishable from IDS alarms.
 - 3. Tamper switches will not be in a viewable from a direct line of sight perspective. The minimum amount of time the tamper switch becomes active and sends a signal after an enclosure is opened or panel removable is attempted, shall be one (1) second.
 - 4. Tamper switches will initiate when enclosure doors or covers is removed as little as 6.35 mm (1/4 inch) from the closed position unless otherwise indicated. Tamper switches shall be:

- a. Push/pull automatic reset type;
- b. Inaccessible until switch is activated;
- c. Spring-loaded and held in closed position by door or cover; and
- d. Wired to break a circuit when door or cover is removed with each sensor annunciated individually at a central reporting processor.
- 5. Fail-Safe Mode: Shall provide the capability to detect and annunciate diminished functional capabilities and perform selftests. Fail-safe alarms shall be annunciated to be clearly distinguishable from other types of alarms.

2.11 POWER SUPPLY

- A. A power supply shall only be utilized if the control panel is unable to support the load requirements of the IDS system.
- B. All power supplies shall be UL rated and able to adequately power two entry control devices on a continuous base without failure.
- C. Power supplies shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ 2 amp
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide up to [insert number]Ah, rechargeable
OUTPUT CURRENT	4 amp max. @ 13.8 VDC
	3 amp max. @ 27.6 VDC
BATTERY FUSE SIZE	3.5 A @ 250 VAC
CHARGING CIRCUIT	Built-in standard

2.12 SECURITY FASTENERS

- A. Security fasteners shall be operable only by tools produced for use on specific type of fastener by fastener manufacturer or other licensed fabricator. Drive system type, head style, material, and protective coating as required for assembly, installation, and strength.
- B. Drive System Types: Pinned Torx or pinned hex (Allen).
- C. Socket Flat Countersunk Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.
- D. Socket Button Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.

- E. Socket Head Cap Fasteners:
 - 1. Heat-treated alloy steel, ASTM A 574 (ASTM A 574M).
 - 2. Stainless steel, ASTM F 837 (ASTM F 837M), Group 1 CW.
- F. Protective Coatings for Heat-Treated Alloy Steel:
 - 1. Zinc chromate, ASTM F 1135, Grade 3 or 4; for exterior applications and interior applications where indicated.
 - 2. Zinc phosphate with oil, ASTM F 1137, Grade I, or black oxide.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. IDS installation shall be in accordance with Underwriters Laboratories (UL) 639 Standards for Intrusion Detection Units and UL 634 Standards for Connectors with Burglar Alarm Systems, and appropriate manufacture's installation manuals for each type of IDS.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including VA furnished equipment, and appurtenances in accordance with the manufacturer's instructions and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The IDS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or designed as a computer network.
- E. The IDS shall be able to be integrated with other security subsystems. Integration with these security subsystems shall be achieved by computer programming and the direct hardwiring of the systems. Determination for methodology shall be outlined when the system(s) is/are being designed and engineered. For installation purposes, the IDS shall utilize an output module for integration with other security subsystems. The Contractor will ensure all connections are per the OEM and that any and all software upgrades required to integrate the systems are installed prior to system start-up.
- F. For programming purposes, the Contractor shall refer to the manufacturer's requirements and Contracting Officer instructions for correct system operations. This includes ensuring computers being utilized for system integration meet or exceeds the minimum system requirements outlined in the IDS software packages.

- G. Lightening and power surges to the central alarm reporting and display unit shall be protected at both ends against excessive voltages. This requirement shall apply for circuits that are routed both in underground conduits and overhead runs.
- H. At a minimum, the Contractor shall install primary detection devices, such as three electrode gas-type surge arresters, and secondary protectors to reduce dangerous voltages to levels that will cause no damage. Fuses shall not be permitted as protection devices.
- I. The Contractor shall provide fail-safe gas tube type surge arresters on exposed IDS data circuits. In addition, transient protection shall protect against spikes up to 1000 volts peak voltage with a onemicrosecond rise time and 100-microsecond decay time, without causing false alarms. The protective device shall be automatic and selfrestoring. Also, circuits shall be designed or selected assuming a maximum of 25 ohms to ground.
- J. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name, equipment model and serial identification numbers, and UL logo. The Contracting Officer may inventory the IDS equipment at the time of delivery and reject items that do not conform to this requirement.
 - 2. Storage and Handling: Store and protect equipment in a manner that will preclude damage as directed by the Contracting Officer.
- K. Cleaning and Adjustments:
 - Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
 - Prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or synchronization. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.
- L. Tamper Switches
 - Install tamper switches to initiate an alarm signal when a panel, box, or component housing door or cover is moved as little as 6.35 mm (1/4 inch) from the normally closed position unless otherwise specified.
 - Locate tamper switches within enclosures, cabinets, housings, boxes, raceways, and fittings to prevent direct line of sight to any

internal components and to prevent tampering with switch or circuitry.

- 3. Conceal tamper switch mounting hardware so that the location of the switch within the enclosure cannot be determined from the exterior.
- M. Unique IDS Installation Components:
 - 1. BMS Surface Mounted:
 - a. Surface mounted BMS housing for the switch element shall have the capability to receive threaded conduit. Housing covers for surface mounted BMS, if made of cast aluminum, shall be secured by stainless steel screws. Magnet housing cover shall not be readily removable and BMS housings shall be protected from unauthorized access by a cover operated, corrosion-resistant tamper device.
 - b. Conductors running from a door to alarm circuits shall be contained within a flexible armored cord constructed from corrosion-resistant metal. Each end of the armored cord shall terminate in a junction box or other enclosure. Armored cord ends shall be mechanically secured to the junction boxes by clamps or bushings. Conductors within the armored cord shall be provided with lug terminals at each end. Conductors and the armored cord shall experience no mechanical strain as the door is removed from fully open to closed position. Switch circuits shall initiate an alarm if a short circuit is applied to the door cord.
 - c. For exterior application on double gates, both BMS elements must be mounted on the gate. Flexible armored cord constructed from corrosion-resistant metal shall be used to provide electrical connection.
 - 2. BMS Recessed Mounted:
 - a. Ball bearing door trips shall be mounted within vault door headers such that when the locking mechanism is secured, the door bolt engages an actuator, mechanically closing the switch.
 - b. Door bolt locking mechanisms shall be fully engaged before the ball bearing door trip is activated. Also, circuit jumpers from the door shall be provided.
 - 3. Passive Infrared Detectors: (PIR)
 - a. The protective beam shall be focused in a straight line.
 - b. Installed beam distance from transmitter to receiver shall not exceed 80% of the manufacturer's maximum recommended rating.

- c. Mirrors may be used to extend the beam or to establish a network of beams. Each mirror used shall not lower the rated maximum system range by more than 50%.
- d. Mirrors and photoelectric sources used in outdoor applications shall have self-heating capability to eliminate condensation and shall be housed in weatherproof enclosures.

3.2 WIRING INSTALLATION

- A. Wiring Method: Install wiring in metal raceways according to Section 28 05 28.33 "CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY." Conceal raceway except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
- B. Wiring Method: Install wiring in raceways except in accessible indoor ceiling spaces and in interior hollow gypsum board partitions where cable may be used. Conceal raceways and wiring except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
- C. Wiring Method: Cable, concealed in accessible ceilings, walls, and floors when possible.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Use lacing bars and distribution spools. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer. Install conductors parallel with or at right angles to sides and back of enclosure. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with intrusion system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Wires and Cables:
 - Conductors: Size as recommended in writing by system manufacturer, unless otherwise indicated.
 - 120-V Power Wiring: Install according to Division 26 Section "LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES," unless otherwise indicated.
 - 3. Control and Signal Transmission Conductors: Install unshielded, twisted-pair cable, unless otherwise indicated or if manufacturer recommends shielded cable, according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."

- 4. Computer and Data-Processing Cables: Install according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- 5. Television Signal Transmission Cables: Install according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- F. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- G. Install power supplies and other auxiliary components for detection devices at controllers, unless otherwise indicated or required by manufacturer. Do not install such items near devices they serve.
- H. Identify components with engraved, laminated-plastic or metal nameplate for central-station control unit and each terminal cabinet, mounted with corrosion-resistant screws.

3.3 GROUNDING

- A. Ground system components and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Signal Ground Terminal: Locate at main equipment rack or cabinet. Isolate from power system and equipment grounding. Provide five (5) ohm ground. Measure, record, and report ground resistance.
- C. Install grounding electrodes of type, size, location, and quantity indicated. Comply with installation requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY SYSTEMS."

3.4 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of seven (7) days prior notice.

3.5 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.6 TESTS AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide services of manufacturer's technical representative for eight(8) hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

- - - E N D - - -

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Video Surveillance System, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes the video surveillance system consisting of cameras, data transmission wiring, and a control station with its associated equipment. The system shall generally consist of the server and storage to be located in Building 52 with a standalone network created to support the system. Edge switches shall be distributed on several floors of the various buildings for connection of cameras. Cameras shall be IP based and shall consist of interior fixed position and exterior pan/tilt/zoom cameras. Contractor may select an architecture which allows network storage or network video recorders to be located in the various Telecommunications Rooms. The edge switches shall be connected to the core switch primarily by existing fiber optic cables. Refer to the plan drawings for connectivity details. Monitoring shall be performed from network connected workstations in primary and secondary locations in Building 53 and Building 22. The VASS shall interface with the intrusion and Physical Access Control System, or PACS, which will in sum compose the Security Management System, or SMS. The PACS, intrusion system and VASS shall operate on the same network.
- C. Video surveillance system Video assessment & surveillance system shall be integrated with monitoring and control system specified in Division 28 Section INTRUSION DETECTION and PHYSICAL ACCESS CONTROL that specifies systems integration.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- D. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- E. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

- F. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- G. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- H. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for commissioning, systems readiness checklists, and training.
- I. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system integration.
- J. Section 28 13 16 PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.
- K. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).
- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): An encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. ips: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: A video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.
- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: Refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with

all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.

- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.

2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

F. Contractor Qualification:

1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 120 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.

3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.

G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01
 33 23, Shop Drawings, Product Data, and Samples, and Section 02 41 00,
 Demolition Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1067 x 762 millimeters (42 x 30 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.

d. Specification and scope of work pages for all security systems that are applicable to the design package that will:

1) Outline all general and job specific work required within the design package.

Provide a device identification table outlining device
 Identification (ID) and use for all security systems equipment
 utilized in the design package.

- 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.

e. All general and drawing specific notes shall be included with the system drawings.

5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:

- a. Device ID.
- b. Device Location (e.g. site, building, floor, room number, location, and description).
- c. Mounting type (e.g. flush, wall, surface, etc.).
- d. Power supply or circuit breaker and power panel number.
- e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.

6. Detail and elevation drawings for all devices that define how they were installed and mounted.

- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. Thirty-five (35) percent
 - 2. Sixty-five (65) percent
 - 3. Ninety (90) percent
 - 4. One hundred (100) percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA): 330-09.....Electrical Performance Standards for CCTV Cameras 375A-76.....Electrical Performance Standards for CCTV Monitors C. Institute of Electrical and Electronics Engineers (IEEE): C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits 802.3af-08.....Power over Ethernet Standard D. Federal Communications Commision (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems E. National Electrical Contractors Association (NECA): 303-2005..... TInstalling Closed Circuit Television (CCTV) Systems F. National Fire Protection Association (NFPA): 70-08.....Article 780-National Electrical Code G. Federal Information Processing Standard (FIPS): 140-2-02.....Security Requirements for Cryptographic Modules H. Underwriters Laboratories, Inc. (UL): 983-06.....Camera Units 3044-01.....Standard for Surveillance Closed Circuit Television Equipment 1.7 COORDINATION A. Coordinate arrangement, mounting, and support of video surveillance

equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

2. To provide for ease of disconnecting the equipment with minimum interference to other installations.

3. To allow right of way for piping and conduit installed at required slope.

4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

- A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
- B. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- C. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

- A. All Cameras will be EIA 330 and UL 1.Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply with requirements in Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.
- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:

1. Will be charge coupled device (CCD) or Complimentary Metal Oxide Semi-Conductor (CMOS) and shall conform to National Television System Committee (NTSC) formatting. Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and are to be utilized to complement the fixed cameras.
 Shall be powered over Ethernet. Network switches supporting PoE cameras shall have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
 Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.

5. Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.

6. Shall come with built-in video motion detection that shall automatically monitor and process information from each camera. The camera motion detection shall detect motion within the camera's field of view and provide automatic visual, remote alarms as a result of detected motion.

7. Shall be programmed to digitally flip from color to black and white at dusk and vice versa at low light conditions.

8. Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.

9. P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.

10. Dummy or fake cameras will not be utilized at any time.

11. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

12. Fixed position cameras except for 180° view shall have automatic or remote back focus capability.

2.3 DIGITAL BASED VIDEO MANAGEMENT SYSTEM

A. Key Features

1. Open Platform: Open API/SDK, supports integration with third party applications.

2. Recording of video from IP cameras, IP video encoders and selected DVRs with analog cameras.

3. Wide IP camera and device support: Support connection of more than 100 IP cameras, IP video encoders and selected DVR models from multiple vendors through dedicated device integration. 4. ONVIF^m and PSIA compliant: Supports ONVIF^m and PSIA compliant cameras and devices.

5. Wide compression technology support: Supports the news compression methods; MPEG4 ASP, MxPEG and H.264, besides MJEPG and MPEG4.

6. Display sequences and time intervals in thumbnail pre-views.

7. Control of cameras, camera-integrated devices and other integrated systems- directly from the camera view.

8. Independent Playback: Instant and independent playback function allows you to independently playback recorded video for one or more cameras, while in live viewing or playback mode.

9. Built-in Video Motion Detection: Independent of camera model and supporting up to 64 cameras simultaneously per server.

10. Multiple language support.11. Multi-channel, two-way audio: Communicate with people at gates/entrances or broadcast messages to many people at once with multichannel, two-way audio.

11. Deliver authentic evidence to public authorities by exporting video to various formats, including video from multiple cameras with viewer, logs, and user notes included.

B. Administration Features

1. Enables discovery of camera devices using methods such as Universal Plug And Play, Broadcast and IP Range scanning.

2. Change settings across multiple devices simultaneously.

3. Export/import of system and user configuration data: System backup for reliable system operation and fast system recovery. System cloning for efficient rollout of multiple systems with the same, or similar, configuration.

4. Import of off-line configuration data: Enabling off-line editing of configuration data, including camera and device definitions.

5. Automatic system restore points: A 'Restore Point' is created each time a configuration change is confirmed.

6. Enables easy rollback to previously defined system configuration points and enables cancelation of undesired configuration changes and restoration of earlier valid configurations.

C. Integration Options

1. Open Software Development Kit (SDK) makes it possible to video enable your business processes, through integration of third party applications, such as video analytics, access systems, etc. 2. Integrate with physical access control systems, alarms, gates, building management systems, etc. using hardware I/O, internal events and TCP/IP events

3. Create, import and use HTML pages for navigation between views or to trigger a Smart Wall preset

4. Develop third party plug-ins for the Smart Client to expand with new functionality

- D. Server Modules
 - 1. Recording Server
 - a. Simultaneous digital multi-channel video and audio recording and live viewing (relaying).
 - b. Two-way audio enables integrated control of microphones and speakers connected to IP devices.
 - c. Bandwidth optimized multi-streaming by splitting a single camera video stream to differentiated streams for live view and recording, where each can be optimized independently with respect to frame rate and resolution.
 - d. Connectivity to cameras, video encoders and selected DVRs supports MJPEG, MPEG4, MPEG4 ASP*, H.264* and MxPEG.
 - e. Auto-detect camera models during setup.

2. Flexible multi-site, multi-server license structure charged per camera.

3. Recording speed: Minimum of 30 frames per second per camera.

4. Recording quality depends entirely on camera and video encoder capabilities: no software limitation.

5. Start cameras on live view requests from clients.

6. System shall have a total centralized storage capacity of a minimum of 70TB. Recording is based on record on motion, 10 fps, 30% motion, H.264 compression, 30 days capacity, RAID 5 configuration. Storage may be distributed on individual network video recorders. Each recorder shall be RAID 5 configured and for cameras recording to that NVR maintain 30 days storage at 10 fps, 30% motion, H.264 compression

7. Hourly to daily database archiving with optional automatic move to network drive.

Built-in, real-time, camera independent motion detection (VMD);
 fully adjustable sensitivity, zone exclusions, recording activation
 with frame rate speed up, and alert activation through email or SMS.
 Start recording on event.

10. Client initiated start of recording based on pre-defined recording time and access privileges.

11. Pan Tilt Zoom (PTZ) preset positions, minimum of thirty-two (32) per camera.

12. Absolute and relative PTZ positioning.

13. PTZ go-to preset position on events.

14. Combine PTZ patrolling and go-to positions on events.

15. Set multiple patrolling schedules per camera per day: i.e.

different for day/night/weekend.

16. PTZ scanning on supported devices.

17. On pre-defined events Matrix remote commands are automatically sent to display live video remotely on computers running the Matrix Monitor or the Smart

18. Client with Matrix Plug-in.

a. Notification (sound, e-mail and SMS) and camera patrolling scheduling, triggered by time or event.

E. Recording Server Manager

1. Local console management of the Recording Server accessible from the notification area.

- 2. Start and stop Recording Server service.
- 3. Access to Recording Server configuration settings.
- 4. Access to Recording Server help system.
- 5. View system status and log information.
- F. Image Server
 - 1. Remote access for Smart and Remote Clients.
 - 2. Built-in web server for download and launch of clients and plug-ins.
 - 3. Set up one Master and multiple Slave Servers.

4. Authenticate access based on Microsoft Active Directory user account, or user name and password.

5. Authorize access privileges per Microsoft Active Directory user account/group, user profile or grant full access.

6. User profiles control access to: Live view, PTZ, PTZ presets, Output control, Events, Listen to microphone, Talk to speaker, Manual recording; Playback, AVI export, JPG export, DB export, Sequences, Smart Search and audio. As well as Set up views, Edit private views and Edit shared public views.

7. Audit logs of exported evidence by user and file.

8. Audit logs of client user activity by time, locations and cameras.

G. Recording Viewer

1. Playback recorded video and audio locally on the

H. Recording Server.

1. View up to four (4) cameras time-synched during playback.

2. Scrollable activity timeline.

3. Instant search on recordings based on date/time and activity/alarm (Video Motion Detection).

4. 'Smart Search' for highlighted image zones and objects.

5. Evidence can be generated as a printed report, a JPEG image, an AVI film or in the native database format.

6. Export audio recordings in WAV or AVI format.

7. Export video digitally zoomed to view area of interest only and to minimize export footprint size.

8. Export 'Evidence CD' containing native database and Recording Viewer for viewing by authorities.

9. Encryption & password protection option for exported recordings and files.

10. Option to send email.

11. De-interlacing of video from analog cameras.

12. IPIX technology for PTZ in 360° recorded images.

I. PDA Server

1. Remote access for PDA Client.

2. Handle login and session requests between PDA clients and Image Server.

3. Resize video surveillance images to fit the screen layout of PDA Client.

J. Client

1. Installed on Recording Server for local viewing and playback of video and audio.

 Independent Playback capability allows for instant playback of recorded video for one or more cameras, while in live and playback mode
 Live view digital zoom allows zoomed-out recordings while the operator digitally can zoom in to see details.

4. 'Update On Motion Only' optimizes CPU usage by letting motion detection control whether the image should be decoded and displayed or not.

5. Shared and private camera views offer 1x1 up to 10x10 layouts in addition to asymmetric views.

6. Views optimized for both 4:3 and 16:9 screen ratios.

7. Multiple computer monitor support with a main window and any number of either windowed or full screen views.

8. Carousel function allows a specified view to rotate between predefined cameras with individual timing and order with multiple appearances. Carousel function can be controlled allowing the operator to pause carousel function and to switch to previous or next camera.

Matrix function to view live video from multiple cameras.10.
 Cameras' built-in audio sources available in live and in playback.

11. Separate pop-up window displaying sequences and time intervals in thumbnail pre-views.

12. Presents recorded sequences for individual cameras, or all cameras in a view

13. Instant playback of video sequences

K. Remote Client

1. View live video or playback recordings for 1-16 cameras simultaneously; from the same or different servers.

2. Advanced video navigation including fast/slow playback, jump to date/time, single step and video motion search.

3. Individual views can be user-defined in various layouts: view or playback camera images from multiple servers simultaneously in the same view.

4. Shared views can be managed centrally via the server with admin/user rights and user groups.

- 5. Import maps for navigation to cameras.
- 6. Control output port relay operation, for example control of gates.
- 7. Quick overview of sequences with detected motion and preview window.
- 8. Quick overview of events/alerts.
- 9. Control PTZ cameras remotely, also using preset positions.

10. Remote PTZ Point-and-Click control

11. Remote PTZ zoom to a marked rectangle.

12. Take manual control over a PTZ camera that runs a patrolling scheme; after a timeout with no activity the camera reverts to its scheduled patrolling.

13. IPIX 1x2 or 2x2 'Quad View' for viewing all 360° at once.

14. Optional video compression in streaming from server to client gives better use of bandwidth.

15. Create AVI files or save JPEG images.

16. Print incident reports with free-text user comments.

17. System logon using user name and password.

L. PDA Client

1. View live or playback video from a single server or from multiple servers.

2. In live view you can control Pan/Tilt/Zoom cameras manually or use preset positions, and control the cameras' output relays to trigger external actions.

3. When viewing recordings, you can playback at variable speed or single step image by image.

4. The PDA client shall connect to the VMS server using any IP connection; typically wireless LAN, GPRS, etc.

5. Video compression from the server to PDA optimizes bandwidth usage.

6. System logon using user name and password.

M. Matrix Monitor

1. Virtual Matrix showing live video directly from up to 4 cameras at a time triggered remotely by Matrix remote commands.

2. Camera view shifts by FIFO (first-in-first-out).

3. Multiple events can control a single Matrix monitor and single events can control multiple monitors.

N. Minimum System Requirements VMS Server

1. HW Platform: Minimum specifications below or those recommended by Video System Software Manufacturer.

a. Dual Core Intel Xeon 5150 2.66 GHz processor.

- b. 4 MB cache.
- c. 1.33 MHz FSB.
- d. 4 GB RAM.
- e. 250 GB storage.
- f. 800 x 600 video resolution.
- g. Dual 10/100/1000 Ethernet network interface cards.
- h. DVD ROM drive.
- i. Additional drives for storage: Attached or networked.
- j. Standard SVGA video card.
- 2. OS:
 - a. Microsoft® Windows® 7 Professional (32 bit or 64 bit), Windows Server 2003 (32 bit or 64 bit), Windows Server 2008 R1/R2 (32 bit or 64 bit), Windows Vista™ Business (32 bit or 64 bit), Windows Vista Enterprise (32 bit or 64 bit), Windows Vista Ultimate (32 bit or 64 bit), Windows 7 Professional (32 bit or 64 bit), Windows 7 Enterprise (32 bit or 64 bit) and Windows 7 Ultimate (32 bit or 64 bit).

- 3. Software:
 - a. Microsoft .NET 3.5 Framework SP1, or newer.
 - b. DirectX 9.0 or newer required to run Playback Viewer application.
- O. Minimum System Requirements PDA Server
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU and 1 GB RAM (2.4 GHz dual core processor and2 GB RAM or more recommended).
 - b. Minimum 1 GB disk space available.
 - 2. OS:
 - a. Microsoft Windows 7 Professional (32 bit or 64 bit), Windows Server 2003 (32 bit or 64 bit).
 - 3. Software:
 - a. Microsoft .NET 2.0 (not compatible with newer versions). Internet Information Server (IIS) 5.1.
- P. Minimum System Requirements VMS Client
 - 1. HW Platform: Minimum specifications below or those recommended by Video System Software Manufacturer.
 - a. Intel Core 2 Quad 2.66 GHz processor.
 - b. 4 MB cache.
 - c. 1.66 MHz FSB.
 - d. 4 GB RAM.
 - e. 250 GB storage.
 - f. 1600 x 1200 resolution.
 - g. 10/100/1000 Ethernet network interface card.
 - h. 16x DVD +/- RW Drive.
 - i. Sound card.
 - 2. Graphics Card:
 - a. AGP or PCI-Express 256 MB dual head video adapter 1280 x 1024, 16 bit colors.
 - 3. OS:
 - a. Microsoft Windows 7 Professional (32 bit or 64 bit), Windows Server 2003 (32 bit or 64 bit), Windows Server 2008 R1/R2 (32 bit or 64 bit), Windows Vista Business (32 bit or 64 bit), Windows Vista Enterprise (32 bit or 64 bit), Windows Vista Ultimate (32 bit or 64 bit), Windows 7 Professional (32 bit or 64 bit), Windows 7 Enterprise (32 bit or 64 bit) and Windows 7 Ultimate (32 bit or 64 bit).
 - 4. Software:
 - a. DirectX 9.0 or newer required to run Playback Viewer application.

- b. Microsoft .NET 3.5 Framework SP1, or newer.
- Q. Minimum System Requirements VMS Remote Client
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU, RAM 1 GB (2 GB or higher recommended on Microsoft Windows Vista).
 - 2. OS:
 - a. Microsoft Windows 7 Professional (32 bit or 64 bit), Windows Server 2003 (32 bit or 64 bit), Windows Server 2008 R1/R2 (32 bit or 64 bit), Windows Vista Business (32 bit or 64 bit), Windows Vista Enterprise (32 bit or 64 bit) and Windows Vista Ultimate (32 bit or 64 bit), Windows 7 Professional (32 bit or 64 bit), Windows 7 Enterprise (32 bit or 64 bit) and Windows 7 Ultimate (32 bit or 64 bit).
 - 3. Software:
 - a. DirectX 9.0 or newer required to run Playback Viewer Application Microsoft Internet Explorer 6.0, or newer, 32 bit version required.

R. Licensing Structure

- 1. Base Server License
 - a. An VMS Base Server license is mandatory for installing the product.
- 2. The Base Server license contains:
 - a. Unlimited number of Recording Server licenses
 - b. Unlimited number of Clients, PDA Clients and Virtual Matrix Monitor licenses
- 3. Camera License
 - a. To connect to a camera, a Device License per camera channel is required
 - b. The product may only be used with as many cameras as you have purchased camera licenses for. Video encoders and DVRs with multiple analog cameras require a license per channel to operate.
 - c. Camera Licenses can be purchased in any numbers.
- 4. Client License:
 - a. Contractor shall define licensing structure and costs if proposed system does not comply with Section R.
- 5. All Contractor furnished software shall contain a perpetual, permanent license in which no other fees beyond the single payment for the work of this specification are required in order to use the proposed software indefinitely. Owner understands that after the

initial warranty period has expired, maintenance and technical support fees may be required annually, quarterly, or monthly in order to receive software updates and technical support. However, it remains the option of the Owner to purchase or decline this service. If Owner chooses to discontinue or never purchase this service, the software would continue to be legally licensed for use. All software shall be the latest version released and all Contractor furnished servers and PCs shall be current on all patches and updates for all software on the machines at the time of acceptance of the associated systems.

- S. IP NETWORK DECODER
 - The unit shall be used for video monitoring and surveillance over IP networks. Network decoder shall decode MPEG-4 digital video to analog video.
 - 2. The decoder shall use MPEG-4 compression for efficient distribution of images over a network.
 - 3. The decoder shall be available as a standalone unit that can be horizontally or vertically mounted.
 - 4. The decoder shall include, but not be limited to the following:
 - a. The decoder shall use "hybrid" technology in providing both analog and network connections with the purpose of allowing users to integrate existing equipment and digital IP products.

1) The decoder shall provide one composite video output connection and one DVI or HDMI output.

2) The decoder shall provide one Ethernet connection.

b. The decoder shall have the following digital resolution:

- 1) All resolutions up to D1: 720 x 576.
- 2) 1280 x 720, 720p.

c. The decoder shall have a digital frame rate of up to 30 frames per second (NTSC) at 720x480 resolution or 15 fps at 1280×720 resolution.

d. The decoder shall use the following protocols:

- 1) TCP/IP
- 2) UDP/IP
- 3) DHCP
- 4) Multicast
- 5) Data Throttle
- 6) Heart beat
- e. The decoder shall have the following connectors:

- 1) Power connector.
- 2) I/O connector.
- 3) Video output connector.
- 4) Ethernet port: RJ-45 for connecting to a network.
- f. The decoder shall have the following indicators:
 - 1) Power LED
 - 2) Link indicates activity on the Ethernet port

2.4 VIDEO DISPLAY EQUIPMENT

A. Video Display Equipment

1. Will consist of color monitors and shall be EIA 375A compliant.

2. Shall be able to display analog, digital, and other images in either NTSC or MPEG format associated with the operation of the Security Management System (SMS).

3. Shall:

- a. Have front panel controls that provide for power on/off, horizontal and vertical hold, brightness, and contrast.
- b. Accept multiple inputs, either directly or indirectly.
- c. Have the capabilities to observe and program the VASS System.
- d. Be installed in a manner that they cannot be witnessed by the general public.

Sync Format	PAL/NTSC
Display Tube	90° deflection angle
Horizontal Resolution	250 TVL minimum, 300 TVL typical
Video Input	1.0 Vp-p, 75 Ohm
Front Panel Controls	Volume, Contrast, Brightness, Color
Connectors	BNC

B. Color Video Monitors Technical Characteristics:

- C. Liquid Crystal Display (LCD) Flat Panel Display Monitor
- D. The color LCD monitor shall have a flat screen and consist of an LCD panel, bezel, and stand.
- E. The monitor shall meet or exceed the following specifications:
 - 1. The monitor shall incorporate an active matrix TFT LCD panel.
 - a. The pixel pitch of the monitor's LCD panel shall be 0.485 mm horizontal and 0.485 mm vertical.
 - b. The monitor shall have a maximum resolution of 1920 x 1080.
 - c. The contrast ratio shall be a minimum of 800:1.

- d. The typical brightness shall be a minimum of 500 \mbox{cd}/\mbox{m}^2
- e. The monitor shall display at least 16.7 million colors.
- f. The light source for the LCD panel shall have a lifetime of 50,000 hours.
- g. The scan frequency horizontal shall be 30 K to 80 KHz and the scan frequency vertical shall be 56 to 75 Hz.
- h. The viewing angle for the monitor shall be 170 degrees horizontal and 170 degrees vertical.
- 2. The monitor shall have automatic NTSC or PAL recognition.
- 3. The monitor shall have a picture-in-picture function.
- 4. The monitor shall use the following signal connectors:
 - a. Video 1.0 V peak-to-peak at 75 ohms
 - b. BNC in/out
 - c. Y/C (S-video) in
 - d. Audio in
 - e. VGA 15-pin D-Sub
 - f. HDMI in, flat panel $\geq 42"$
 - g. DVI in, flat panel $\geq 42"$
 - h. RGB in, flat panel $\geq 42"$
 - i. Component in, flat panel $\geq 42"$
- 5. The monitor shall have one audio speaker.
 - a. The speaker shall be 0.5 W minimum.
- 6. The monitor shall have the following control panel buttons:
 - a. Power on/off
 - b. LED indicator
 - c. Mode
 - d. Increase (volume)
 - e. Decrease (volume)
 - f. Menu

7. The monitor shall have the following options for adjustment in an onscreen display menu:

- a. Color
- b. Tint
 - 1) NTSC mode only
 - a) Brightness
 - b) Contrast
 - c) Sharpness
 - d) Volume
 - e) Language

- f) Scan
- g) Color Temp
- h) H-Position
- i) Recall
- F. The environmental specifications for the monitor shall be as follows:
 - 1. Operating temperature shall be 32 to 104 degrees Fahrenheit or 0 to
 - 40 degrees Celsius.
 - 2. Operating humidity shall be 10 to 85 percent.
- G. The monitor shall conform to these compliance standards:
 - 1. FCC
 - 2. CE (EMC/LVD)3. UL

2.5 CONTROLLING EQUIPMENT

- A. Shall be utilized to call up, operate, and program all cameras associated VASS System components.
- B. Will have the ability to operate the cameras locally and remotely. A matrix switcher or a network server shall be utilized as the VASS System controller.
- C. The server shall be able to fit into a standard 47.5 cm (19 inch) equipment rack.
- D. Control and programming keyboards shall be provided with its own type of switcher. All keyboards shall:
 - 1. Be located at each monitoring station.
 - 2. Be addressable for programming purposes.
 - 3. Provide interface between the operator and the VASS System.
 - 4. Provide full control and programming of the switcher.
 - 5. Have the minimum following controls:
 - a. programming
 - b. switching
 - c. lens function
 - d. P/T/Z
 - e. environmental housing
 - f. annotation

2.6 VIDEO CAMERAS

- A. The cameras shall be high-resolution color video cameras with wide dynamic range capturing capability.
- B. The camera shall meet or exceed the following specifications:1. The image capturing device shall be a 1/3 or 1/4-inch image sensor designed for capturing wide dynamic images.

- a. The image capturing device shall have a separate analog-todigital converter for every pixel.
- b. The image capturing device shall sample each pixel multiple times per second.
- c. The dynamic range shall be 95 dB typical and 120 dB maximum.
- 2. The camera shall optimize each pixel independently.
- 3. The camera shall have onscreen display menus for programming of the camera's settings.
- 4. The signal system shall be NTSC.
- C. The camera shall have composite video output.
- D. The camera shall come with a manual varifocal lens.
- E. The video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- F. Fixed Color Camera

1. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.

- 2. Comply with UL 639.
- 3. Pickup Device: 1/3 or 1/4 CCD or CMOS interline transfer.

4. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.

- 5. With AGC, manually selectable on or off.
- 6. Manually selectable modes for backlight compensation or normal lighting.

7. Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.

8. White Balance: Auto-tracing white balance, with manually selectable fixed balance option.

Pickup device	1/3" or 1/4" interline transfer CCD or CMOS
Total pixels	1280 x 960
Effective pixels	1.3 Megapixel
Resolution	1280 x 960
Sync. System	Internal Sync
Scanning system	Progressive Scan
S/N ratio	More than 48 dB
Electronic shutter	Auto 1/30 ~1/10,000 sec.

9. Fixed Color Cameras Technical Characteristics:

Min. illumination	0.3 lux color, 0.2 lux B/W, F1.3 shutter 1/30 sec.
Video output	Composite 1.0 Vp-p/75 ohm for adjustment
White balance	Auto
Automatic gain control	ON
Video Output (Main)	100 Base TX network interface
Lens type	Board lens varifocal lens
Focal length	3-10mm
Power source	DC12V or AC24 or PoE/PoE+
Power consumption	< 5W (Max)

10. Fixed color camera shall be enclosed in dome and have board

mounted varifocal lens.

- 11. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter

2.7 AUTOMATIC COLOR DOME CAMERA - ANALOG

- A. Indoor/Outdoor Fixed Mini Dome System (IP)
 - The indoor/outdoor fixed mini dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.
 - 3. The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.

Imaging Device	1/3-inch imager
Picture Elements	NTSC/PAL 720 (H) x 540 (V) 720 (H) x 540 (V)
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace (progressive option on CW/DW models only
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Varifocal with auto iris
Format Size	1/3-inch

Focal Length	3.0 mm-10 mm
Operation	Iris Auto (DC-drive) Focus Manual Zoom Manual
Minimum Illumination	Color (day): 0.8 lux, SENS 8X: 0.2 lux, B-W (night): 0.08 lux, SENS 8X: 0.02 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
	Color (day): 0.15 lux, B-W (night): 0.015 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
	Color (day): 0.8 lux, SENS 8X: 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
Compression	MPEG-4, MJPEG in Web viewing mode
Video Streams	3, simultaneous
Video Resolutions	NTSC PAL 4CIF 704 x 480 704 x 576 2CIF 704 x 240 704 x 288 CIF 352 x 240 352 x 288 QCIF 176 x 120 176 x 144
Bit Rate	Configurable, 20 kbps to 2 Mpbs per stream
Web User Interface	
Environment	Low temperature, indoor/outdoor
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI-X
Cabling	CAT6 cable or better for 100BASE-TX
Input Voltage	24 VAC (18-36) or PoE input voltage
Power Consumption	<7.5 Watts,<13 Watts with heaters 24VAC: <0.5 Amps, <0.9 Amps with heaters
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 360°, tilt 80° (20° to 100° range), and rotation 360°

Light Attenuation	<pre>smoked bubble, f/1.5 light loss; clear bubble, zero light loss</pre>
CERTIFICATIONS	CE, Class B UL Listed Meets NEMA Type 4X and IP66 standards

- 4. Accessories
- a. Pendant mount
- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount
- B. Megapixel High Definition Integrated Digital Network Camera
 - The network camera shall offer dual video streams with up to 3.1 megapixel resolution (2048 x 1536) in progressive scan format.
 - An alarm input and relay output shall be built in for integration with hard wired external sensors.
 - 3. The network camera shall be capable of firmware upgrades through a network using a software-based device utility.
 - 4. The network camera shall offer auto back focus (ABF) functionality through a push button on the camera. ABF parameters shall also be configurable through a standard Web browser interface.
 - The network camera shall offer a video output port providing an NTSC/PAL analog video output signal for adjusting field of view and focus at the camera.
 - The network camera shall provide advanced low-light capabilities for color and day/night models with sensitivity down to 0.12 lux in color and 0.03 lux in black-white (B-W).
 - 7. The network camera shall have removable IR cut filter mechanism for increased sensitivity in low-light installations. The sensitivity of IR cut filter removal shall be configurable through a Web browser.
 - 8. The network camera shall support two simultaneous, configurable video streams. H.264 and MJPEG compression formats shall be available for primary and secondary streams with selectable unicast and multicast protocols. The streams shall be configurable in a variety of frame rates and bit rates.
 - 9. The network camera shall support industry standard Power over Ethernet (PoE).

- 10. IEEE 802.3af to supply power to the camera over the network. The network camera shall also offer a 24 VAC power input for optional use.
- 11. The network camera shall use a standard Web browser interface for remote administration and configuration of camera parameters.
- 12. The network camera shall have a window blanking feature to conceal user-defined privacy areas that cannot be viewed by an operator. The network camera shall support up to four blanked windows. A blanked area shall appear on the screen as a solid gray window.
- 13. The network camera shall support standard IT protocols.
- 14. The network camera shall support open architecture best practices with a published API available to third-party network video recording and management systems.
- 15. Megapixel High Definition Integrated Digital Network Camera Technical Specifications:

Imaging Device	1/3-inch, effective
Imager Type	CMOS, Progressive scan
Maximum Resolution	2048 x 1536
Signal-to-Noise Ratio	50 dB
Auto Iris Lens Type	DC drive
Electronic Shutter Range	1~1/100,000 sec
Wide Dynamic Range	60 dB
White Balance Range	2,000° to 10,000°K
Sensitivity	<pre>f/1.2; 2,850K; SNR >24dB Color (1x/33ms) 0.50 lux Color SENS (15x/500 ms) 0.12 lux Mono SENS (15x/500 ms) Mono (1x/33ms)0.25 lux 0.03 lux</pre>
Dome Attenuation	Clear Zero light loss Smoke f/1.0 light loss
Compression	H.264 in base profile and MJPEG
Video Streams	Up to 2 simultaneous streams, the second Stream variable based on the setup of the primary stream
Frame Rate	Up to 30, 25, 24, 15, 12.5, 12, 10, 8, 7.5, 6.5, 4, 3, 2, and 1 (depending upon coding, resolution, and stream configuration
Available Resolutions	3.1 MPx2048 x 1536; 4:3 aspect ratio; 2.0 ips max., 10.0 Mbps bit rate for MJPEG; 3.0 ips max., 2.6

	Mbps bit rate H.264
	2.1 MPx1920 x 1080; 16:9 aspect ratio: 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 5.0 ips max., 2.7 Mbps bit rate H.264 3.1.9 MPx1600 x 1200; 4:3 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 6.0 ips max., 2.6 Mbps bit rate H.264
	1.3 MPx1280 x 1024; 5:4 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 8.0 ips max., 2.5 Mbps bit rate H.264
	1.2 MPx1280 x 960; 4:3 aspect ratio; 15.0 ips max., 9.8 Mbps bit rate for MJPEG; 9.8 ips max., 8.5 Mbps bit rate H.264 6.0.9 MPx1280 x 720; 16:9 aspect ratio; 30.0 ips max.,10.0 Mbps bit rate for MJPEG; 12.5 ips max., 2.5 Mbps bit rate H.264
	<pre>0.5 MPx800 x 600; 4:3 aspect ratio; 30.0 ips max., 5.8 Mbps bit rate for MJPEG; 25.0 ips max., 2.0 Mbps bit rate H.264 8.0.3 MPx640 x 480; 4:3 aspect ratio; 30.0 ips max., 3.7 Mbps bit rate for MJPEG; 30.0 ips max.,1.6 Mbps bit rate H.264</pre>
	0.1 MPx320 x 240; 4:3 aspect ratio; 30.0 ips max., 0.9 Mbps bit rate for MJPEG; 30.0 ips max., 0.4 Mbps bit rate H.264
	Additional640 x 512, 640 x 352, 480 x 368, 480 x 272, 320 x 256, 320 x 176
Supported Protocols	TCP/IP, UDP/IP (Unicast, Multicast IGMP), UPnP, DNS, DHCP, RTP, RTSP, NTP,IPv4, SNMP, QoS, HTTP, HTTPS, LDAP(client), SSH, SSL, STMP, FTP, MDNS(Bonjour), and 802.1x (EAP)
Security Access	Password protected
Software Interface	Web browser view and setup, up to 16 cameras
Connectors	RJ-45 for 100Base-TX, Auto MDI/MDI- X
Cable	Cat6 cable or better for 100Base-TX
Input Voltage	24 VAC or PoE (IEEE802.3af class 3)
Power Consumption	6 W
Current Consumption	PoE <200 mA maximum 24 VAC <295 mA nominal; <390 mA maximum

Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Lens Mount	CS mount, adjustable
Pan/Tilt Adjustment	Pan 368°
	Tilt 160° (10° to 170°)
	Rotate 355°

16. Accessories

- a. Pendant mount
- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount
- 17. Recommended Lenses
 - a. Megapixel lens, varifocal, 3.0-10.0 mm, f/1.3~2.0
- C. Indoor/Outdoor PT2 Camera Dome System
 - The indoor/outdoor camera dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - The indoor/outdoor camera dome system shall operate in openv architecture connectivity for third-party software recording solutions.
 - 3. The indoor/outdoor VASS camera dome system shall be a discreet camera dome system consisting of a dome drive with a variable speed/high speed pan/tilt drive unit with continuous 360° rotation; 1/4-inch high resolution color, or color/black-white CCD camera; motorized zoom lens with optical and digital zoom; auto focus; and an enclosure consisting of a back box, lower dome, and a quickinstall mounting.

Imaging Device	1/4-inch CCD
Picture Elements	NTSC/PAL 768 x 494/752 x 582
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Lens f/1.4 (focal length, 3.4~119 mm; 35X optical zoom, 12X digital zoom)

4. Indoor/Outdoor fixed dome system technical specifications:

Focus	Automatic with manual override
Pan Speed	Variable between 400 per second continuous pan to 0.1° per second
Vertical Tilt	Unobstructed tilt of +2 to -92
Manual Control Speed	Pan speed of 0.1 to 80 per second, and pan at 150 per second in turbo mode. Tilt operation shall range from 0.1 to 40 per second
Automatic Preset Speed	Pan speed of 400 and a tilt speed of 200 per second
Presets	256 positions with a 20-character label available for each position; programmable camera settings, including selectable auto focus modes, iris level, LowLight™ limit, and backlight compensation for each preset; command to copy camera settings from one preset to another; and preset programming through control keyboard or through dome system on-screen menu 128 positions with a 20-character label available for each position; programmable camera settings, including selectable auto focus modes, iris level, LowLight limit, and backlight compensation for each preset; command to copy camera settings from one preset to another; and preset programming through control keyboard or through dome system on-screen menu
Preset Accuracy	± 0.1
Zones	8 zones with up to 20-character labeling for each, with the ability to blank the video in the zone
Limit Stops	Programmable for manual panning, auto/random scanning, and frame scanning
Alarm Inputs	7
Alarm Output Programming	Auxiliary outputs can be alternately programmed to operate on alarm
Alarm Action	Individually programmed for 3 priority levels, initiating a stored pattern or going to a preassigned preset position
Resume after Alarm	After completion of alarm, dome returns to previously programmed state or its previous position

Window Blanking	8, four-sided user-defined shapes,
	each side with different lengths; window blanking setting to turn off at user-defined zoom ratio; window blanking set to opaque gray or translucent smear; blank all video above user-defined tilt angle; blank all video below user-defined tilt angle
Patterns	8 user-defined programmable patterns including pan/tilt/zoom and preset functions, and pattern programming through control keyboard or through dome system on- screen menu
Scheduler	Internal scheduling system for programming presets, patterns, window blanks, alarms, and auxiliary functions based on internal clock settings
Auto Flip	Rotates dome 180° at bottom of tilt travel
Password Protection	Programmable settings with optional password protection
Compass Display	On-screen display of compass heading and user-definable compass setup
Camera Title Overlay	20 user-definable characters on the screen camera title display
Video Output Level	User-selectable for normal or high output levels to compensate for long video wire runs
Motion Detection	User-definable motion detection settings for each preset scene, can activate auxiliary outputs, and contains three sensitivity levels per zone
Electronic Image Stabilization	Electronic compensation for external vibration sources that cause image blurring; user selectable for 2 frequency ranges, 5 Hz (3-7 Hz) and 10 Hz (8-12 Hz)
Wide Dynamic Range	128X
Video Output	1 Vp-p, 75 ohms
Minimum Illumination	NTSC/EIA 0.55 lux at 1/60 sec shutter speed (color), 0.063 lux at 1/4 sec shutter speed (color), 0.00018 lux at 1/2 sec shutter speed (B-W)
	PAL/CCIR 0.55 lux at 1/50 sec

	<pre>shutter speed (color), 0.063 lux at 1/3 sec shutter speed (color), 0.00018 lux at 1/1.5 sec shutter speed (B-W)</pre>	
Compression	MPEG-4, MJPEG	
Video Streams	3, simultaneous	
Video Resolutions	NTSC PAL 4CIF 704 x 480 704 x 576 2CIF 704 x 240 704 x 288 CIF 352 x 240 352 x 288 QCIF 176 x 120 176 x 144	
Bit Rate	Configurable, MPEG-4 30 ips, 2 Mbps for primary stream, MJPEG 15 ips, 3 Mbps, MJPEG	
Web User Interface		
Environment	Low temperature, indoor/outdoor	
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI- X	
Cabling	CAT6 cable or better for 100BASE-TX	
Input Voltage	18 to 32 VAC; 24 VAC nominal 22 to 27 VDC; 24 VDC nominal	
Power Consumption	24 VAC 23 VA nominal (without heater);73 VA nominal (with heater) 24 VDC 0.7 A nominal (without heater);3 A nominal (with heater)	
Alarm Input	7	
Alarm Output	1	
CERTIFICATIONS	CE, Class B UL Listed Meets NEMA Type 4X and IP66 standards	

- 5. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
 - d. Pole adapter for wall mount
- D. Vandal Resistant Fixed Dome Camera
 - The dome camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. The camera shall meet or exceed the following specifications:
 - a. The camera shall have the form factor as typical of a traditional VASS dome video camera.

- b. The image capturing device shall be a 1/3-inch image sensor designed for capturing wide dynamic images.
- 3. The camera shall optimize each pixel independently.
- 4. The camera shall have onscreen display menus for programming of the camera's settings.
- 5. The signal system shall be NTSC or PAL selectable.
- 6. The resolution that the camera provides shall be 1280x960.
- 7. The camera shall have 1.3 million picture elements.
- 8. The scanning system shall be 525/60 lines NTSC or 625/50 lines PAL.
- 9. The synchronizing system shall be internal/AC line-lock.
- 10. The sensitivity shall be 0.6 lux at f1.2, 30 IRE.
- 11. The signal-to-noise ratio shall be 50 dB.
- 12. The electronic shutter shall have automatic adjustment, and operate from 1/60 NTSC to 1/100,000 second, automatic.
- The camera shall have an automatic white balance range of 2800 to 11000 K.
- 14. The camera shall have automatic gain control.
- 15. The camera shall include a shroud to conceal the camera's position inside the dome.
- 16. The camera shall have composite video output.
- 17. The housing shall have the following specifications:
 - a. Construction: Aluminum
 - b. The housing shall be heavy duty and tamper resistant.
 - c. Dome housing construction: 0.13-in polycarbonate.
 - d. Finish: Powder coat
 - 18. The camera shall come with a manual varifocal 3 to 10 mm lens.
 - 19. The electrical specifications for the camera shall be as follows:
 - a. Input voltage shall be 24 VAC or 12 VDC.
 - b. Power consumption shall be 12 VDC, 455 mA; or 24 VAC, 160 mA.
 - c. Power source shall be universal 18 to 30 VAC or 10 to 30 VDC.
 - d. Video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- 20. The environmental specifications for the camera shall be as follows: Operating temperature shall be -10 to 45 degrees Celsius or 14 to 113 degrees Fahrenheit.
- 21. Accessories shall include:
 - a. Surface mount adapter

- b. Wall mount adapter
- c. Flush mount adapter
- E. Indoor/Outdoor Fixed Mini Dome System
 - The indoor/outdoor fixed mini dome system shall include a built-in 100 Base-TX network interface for live streaming to a standard Web browser.
 - 2. The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.
 - 3. The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.

Imaging Device	1/3-inch imager
Picture Elements	NTSC/PAL 720 (H) x 540 (V) 720 (H) x 540 (V)
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace (progressive option on CW/DW models only
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Varifocal with auto iris
Format Size	1/3-inch
Focal Length	3.0 mm-10 mm
Operation	Iris Auto (DC-drive) Focus Manual
	Zoom Manual
Minimum Illumination	Color (day): 0.8 lux, SENS 8X: 0.2 lux, B-W (night): 0.08 lux, SENS 8X: 0.02 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
	Color (day): 0.15 lux, B-W (night): 0.015 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
	Color (day): 0.8 lux, SENS 8X: 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
Compression	MPEG-4, MJPEG in Web viewing mode
Video Streams	3, simultaneous

Video Resolutions	NTSC PAL
	4CIF 704 x 480 704 x 576
	2CIF 704 x 240 704 x 288
	CIF 352 x 240 352 x 288
	QCIF 176 x 120 176 x 144
Bit Rate	Configurable, 20 kbps to 2 Mpbs per stream
Web User Interface	
Environment	Low temperature, indoor/outdoor
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI- X
Cabling	CAT6 cable or better for 100BASE-TX
Input Voltage	24 VAC (18-36) or PoE input voltage
Power Consumption	PoE: <15.4 Watts with heaters
	24VAC: <0.9 Amps with heaters
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 360°, tilt 80° (20° to 100° range), and rotation 360°
Light Attenuation	<pre>smoked bubble, f/1.5 light loss; clear bubble, zero light loss</pre>
CERTIFICATIONS	CE, Class B
	UL Listed
	Meets NEMA Type 4X and IP66 standards

- 4. Accessories
- a. Pendant mount
- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount

F. NETWORK CAMERAS

- 1. Shall be IEEE 802.3af compliant.
 - a. Shall be utilized for interior and exterior purposes.
 - b. A Category CAT6 cable will be the primary source for carrying signals up to 100 m(300 ft.) from a switch hub or network

server. If any camera is installed greater than 100 m (300 ft.) from the controlling device then the following will be required:

 A local or remote 12 VDC or 24 VAC power source will be required from a Class 2, UL compliant power supply.
 A signal converter will be required to convert from a CAT6 cable over to a fiber optic or standard signal cable. The signal will need to be converted back to a CAT6 cable at the controlling device using a signal converter card.

- c. Shall be routed to a controlling device via a network switch.
- d. Shall be of hybrid design with both an Internet Protocol (IP) output and a monitor video output which produces a picture equivalent to an analog camera, and allows simultaneous output of both.
- e. Shall be a programmable IP address that allows for installation of multiple units in the same Local Area Network (LAN) environment.
- f. Incorporate a minimum of Transmission Control Protocol (TCP)/IP, User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Internet Control Message Protocol (ICMP0, Address Resolution Protocol (ARP), Real-Time Transport Protocol (RTP), Dynamic Host Configuration Protocol (DHCP), Network Time Protocol (NTP), Simple Mail Transfer Protocol (SMTP), Internet Group Management Protocol (IGMP), and Differentiated Service Code Point (DSCP) protocols for various network applications.
- G. Fixed Network Camera

Video Standards	MPEG-4; M-JPEG
Video Data Rate	9.6 Kbps - 6 Mbps Constant & variable
Image Resolution	768x494 (NTSC)
Video Resolution	704 x 576/480 (4CIF: 25/30 IPS) 704 x 288/240 (2CIF: 25/30 IPS) 352 x 288/240 (CIF: 25/30 IPS) 176 x 144/120 (QCIF: 25/30 IPS)
Select Frame Rate	1-25/30 IPS (PAL/NTSC);Field/frame based coding
Network Protocols	RTP, Telnet, UDP, TCP, IP, HTTP,

1. The fixed network camera shall have the following technical characteristics:

	IGMP, ICMP
Software Update	Flash ROM, remote programmable
Configuration	Via web browser, built-in web server interfaces
Video Out	1x Analog composite: NTSC or PAL; BNC connector 75 Ohm
Sensitivity	1 0.65 lux (color) 0.26 lux (NightSense)
Minimum Illumination	0.30 lux (color)0.12 lux (NightSense)
Video Signal-to-Noise Ratio	50 dB
Video Signal Gain	21 dB, (max) Electronic Shutter Automatic, up to 1/150000 sec. (NTSC)
Alarm In	Automatic sensing (2500 - 9000 K)
Input Voltage	+5 V nominal, +40 VDC max VDC: 11-36 V (700 mA) VAC: 12-28 V (700 mA) PoE: IEEE 802.3af compliant

- 2. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter
- H. LENSES
 - Camera Field of View shall be set by the Contractor to produce desired view. Follow the project construction drawings for design intent.
 - 2. Camera Lenses shall be of the type supplied with the camera from the manufacture. All cameras which are not supplied with lenses from the factory are specified in this specification. The lens shall be equipped with an auto-iris mechanism unless otherwise specified. Lenses having auto-iris, DC iris, or motor zoom functions shall be supplied with connectors, wiring, receiver/drivers, and controls as needed to operate the lens functions. Lenses shall have sufficient circle of illumination to cover the image sensor evenly. Lenses shall not be used on a camera with an image format larger than the lens is designed to cover. Lenses shall be provided with pre-set capability.
 - 3. Lenses shall have optical-quality coated optics, designed specifically for video surveillance applications, and matched to

specified camera. Provide color-corrected lenses with color cameras, megapixel lenses for megapixel cameras, and lenses with day/night for color/b&w cameras.

- 4. Auto-Iris Lens: Electrically controlled iris with circuit set to maintain a constant video level in varying lighting conditions.
- 5. Zoom Lenses: Motorized, remote-controlled units.
- 6. Lenses: Shall be utilized in a manner that provides maximum coverage of the area being monitored by the camera. The lenses shall:
 - a. Be all glass with coated optics.
 - b. Have mounts that are compatible with the camera selected.
 - c. Be packaged and supplied with the camera.
 - d. Have a maximum f-stop of f/1.3 for fixed lenses, and a maximum fstop of f/1.6 for variable focus lenses.
 - e. Be equipped with an auto-iris mechanism.
 - g. Have sufficient circle of illumination to cover the image sensor evenly.
 - h. Not be used on a camera with an image format larger than the lens is designed to cover.
 - i. Be provided with pre-set capability.
- 7. Two types of lenses shall be utilized for both interior and exterior fixed cameras:
 - a. Auto Iris Variable Focus
 - b. Auto Iris Fixed
 - 1. 8. Manual Variable Focus:
 - a. Shall be utilized in large areas that are being monitored by the camera. Examples of this are perimeter fence lines, vehicle entry points, parking areas, etc.
 - b. Shall allow for setting virtually any angle of field, which maximizes surveillance effects.
 - c. Technical Characteristics:

Image format	1/3 or 1/4 inch
Focal length	3-10mm
Iris range	F1.4 to close
Focus range	lm (3.3 ft)
Back focus distance	10.05 mm (0.4 in)
Angle view Wide (1/3 in)	H:100.3° x V.73.5°
Angle view Tele (1/3 in)	H:27.7° x V:20.8°
Iris control	Auto

Focus ctrl	manual
Zoom ctrl	manual

I. CAMERA HOUSINGS AND MOUNTS

- This section pertains to all interior and exterior housings, domes, and applicable wall, ceiling, corner, pole, and rooftop mounts associated with the housing. Housings and mounts shall be specified in accordance to the type of cameras used.
- All cameras and lenses shall be enclosed in a tamper resistant housing. Any additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
- 3. The camera and lens contained inside the housing shall be installed on a camera mount. All additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
- 4. Shall be manufactured in a manner that are capable of supporting the weight of a maximum of three (3) cameras with housings, and meet environmental requirements for the geographical area the camera support equipment is being installed on or within.
- 5. Environmentally Sealed
 - a. Shall be designed in manner that it provides a condensation free environment for correct camera operation.
 - b. Shall be operated in a 100 percent condensing humidity atmosphere.
 - c. Shall be constructed in a manner that:

 Is equipped with a humidity indicator that is visible to the eye to ensure correct atmospheric conditions at all times.
 The leak rate of the housing is not to be greater than
 8kPa or 2 pounds per square inch at sea level within a 90 day period.

3) It shall contain camera mounts or supports as needed to allow for correct positioning of the camera and lens.

4) The housing and sunshield are to be white in color.6. All electrical and signal cables required for correct operations shall be supplied in a hardened carrier system from the controller to the camera.

7. The mounting bracket shall be adjustable to allow for the housing weight of the camera and the housing unit it is placed in.

8. The camera and housing shall be accessible for service.

J. Indoor Mounts

- 1. Ceiling Mounts:
 - a. This enclosure and mount shall be installed in a finished or suspended ceiling.
 - b. The enclosure and mount shall be fastened to the finished ceiling, and shall not depend on the ceiling tile grid for complete support.
 - c. Suspended ceiling mounts shall be low profile, and shall be suitable for replacement of 610mm x 610mm (2 foot by 2 foot) ceiling tiles.
- 2. Wall Mounts:
 - a. The enclosure shall be installed in manner that it matches the existing décor and placed at a height that it will be unobtrusive, unable to cause personal harm, and prevents tampering and vandalism.
 - b. The mount shall contain a manual pan/tilt head that will provide 360 degrees of horizontal and vertical positioning from a horizontal position, and has a locking bar or screw to maintain its fixed position once it has been adjusted.
- K. Interior PT2 Domes

1. The interior dome shall be a pendant mount, pole mount, ceiling mount, surface mount, or corner mounted equipment.

2. The lower portion of the dome that provides camera viewing shall be made of black opaque acrylic and shall have a light attenuation factor of no more that 1 f-stop.

3. The housing shall be equipped with integral pan/tilt capabilities complete with wiring, wiring harness, connectors, receiver/driver, pan/tilt control system, pre-position cards, or any other hardware and equipment as needed to fully provide a fully functional pan/tilt dome.

- 4. The pan/tilt mechanism shall be:
 - a. Constructed of heavy duty bearings and hardened steel gears.
 - b. Permanently lubricated to ensure smooth and consistent movement of all parts throughout the life of the product.
 - c. Equipped with motors that are thermally or impedance protected against overload damage.
 - d. Pan movements shall be 360 degrees and tilt movement shall no be less than +/- 90 degrees.
 - e. Pan speed shall be a minimum of 10 degrees per second.

L. Exterior Domes

1. The exterior dome shall meet all requirements outlined in the interior dome paragraph above.

2. The housing shall be constructed to be dust and water tight, and fully operational in 100 percent condensing humidity.

M. Exterior Wall Mounts

1. Shall have an adjustable head for mounting the camera.

2. Shall be constructed of aluminum, stainless steel, or steel with a corrosion-resistant finish.

3. The head shall be adjustable for not less than plus and minus 90 degrees of pan, and not less than plus and minus 45 degrees of tilt. If the bracket is to be used in conjunction with a pan/tilt, the bracket shall be supplied without the adjustable mounting head, and shall have a bolt-hole pattern to match the pan/tilt base.

4. Shall be installed at a height that allows for maximum coverage of the area being monitored.

2.8 POWER SUPPLIES

- A. Power supplies shall be a low-voltage power supplies matched for voltage and current requirements of cameras and accessories, type as recommended by camera and lens manufacturer.
- B. Technical specifications:
 - 1. Input: 115VAC, 50/60Hz, 2.7 amps
 - 2. Outputs:
 - a. Number of outputs, 1.4 or 16
 - b. Fuse protected, power limited
 - c. Output voltage & power:

1) 24VAC @ 12.5 amps (300VA) or 28VAC @ 10 amp (280VA) supply current

- 3. Surge suppression
- 4. Camera synchronization
- 5. Wall or Rack mount.
- 6. Enclosure: NEMA 250, Type 1 Indoor, Type 4X Outdoor.

2.9 POWER OVER ETHERNET (POE)

- A. Cameras may be powered PoE/PoE+ complying with 802.3af and 802.3at. Power shall be from network switch or minimum 12 port PoE mid-span injector.
- B. Mid-span injectors shall have input power of 100V to 240V and shall be managed so that power may be cycled remotely per port.

2.10 NETWORK SERVER

- A. Allow for the transmission of live video, data, and audio over either an existing Ethernet network or a dedicated security system network, requiring an IP address or Internet Explorer 5.5 or higher, or shall work as an analog-to-Ethernet "bridge" controlling matrices, multiplexers, and pan/tilt/zoom cameras. The network shall operate in a box-to-box configuration allowing for encoded video to be decoded and displayed on an analog monitor.
- B. If a VASS System network is going to be utilized as the primary means of monitoring, operating, and recording cameras then the following equipment shall be required as part of the system:
 - 1. System Server
 - 2. Computer Workstation
 - 3. Recording Device
 - 4. Encoder/Decoder
 - 5. Monitor
 - 6. Hub/Switch
 - 7. Router
 - 8. Encryptor
- C. Shall provide overall control, programming, monitoring, and recording of all cameras and associated devices within the VASS System.
- D. All equipment on the network shall be IP addressable.
- E. The VASS System network shall meet or exceed the following design and performance specifications:
 - Two MPEG-4 video streams for a total of 40 images per second will be provided. Ability to accept multiple video stream simultaneously, MPEG-4 and H.264 for line and recorded video streams.
 - PC Software that manages the installation and maintenance of all hardware transmitters and receivers on the network shall be provided.
 - 3. Video Source that supports any NTSC video source to the computer network shall be addressed.
 - Receivers that could be used to display the video on a standard analog NTSC or PAL monitor will be addressed.
- F. The system shall support the following network protocols:
 - Internet connections: RTP, Real Time Control Protocol (RTCP), UDP, IP, TCP, ICMP, HTTP, Simple Network Management Protocol (SNMP), IGMP, DHCP, and ARP.
 - 2. Video Display: MPEG-4, M-JPEG in server push mode only.

- 3. Have the ability to adjust bandwidth, image quality and image rate.
- 4. Support image sizes of a minimum of 704 x 576 pixels.
- 5. Have an audio coding format of G.711 or G.728.
- 6. Provide a video frame rate of at least 30 images per second.
- 7. Support LAN Interface Ethernet 10/100BaseT and be auto sensing.
- 8. Have a LAN Data Rate of 9.6 Kbps to 5.0 Mbps.
- 9. Utilize data interface RS-232/RS-422/RS-485.
- G. All connections within the system shall be via CAT-5 cable and RJ-45 jacks. If analog equipment is used as part of the system, then either an encoder or a decoder will be utilized to convert the analog signal to a digital one.
- H. The VASS network system shall conform to all VA agency wide security standards for administrator and operator use.
- I. Network Switch Technical Characteristics

Protocol and standard	IEEE802.3 IEEE802.3u IEEE802.3ab
Ports	24 10/100/1000M auto-negotiation RJ- 45 ports with auto MDI/MDI-X
Network media	Cat 6 UTP for 1,000Mbps
Transmission method	store-and-forward
LED	indicator power, act/link, speed

J. Router Technical Characteristics

Network Standards	IEEE 802.3, 802.3u 10Base-T Ethernet (WAN) 100Base-T Ethernet (LAN) IEEE 802.3x Flow Control IEEE802.1p Priority Queue ANS/IEEE 802.3 NWay auto-negotiation
Protocol	CSMA/CD, TCP, IP, UDP, PPPoE, AND DHCP (client and server)
VPN Supported	PPTP, IPSec pass-through
Management	Browser
Ports	4 x 10/100Base-T Auto sensing RJ45 ports, and an auto uplink RJ45port(s) 1 x 10Base-T RJ45 port, WAN
LEDs	Power, WAN Activity, LAN Link (10/100), LAN Activity

K. Encryptor Technical Characteristics:

Cryptography	Standard - Triple DES 168-bit (ANSI	
	9.52) Rijndael - AES (128, 192, 256)	

Performance	Throughput (end-to-end) @ 100 Mbps line speed: >188 Mbps full duplex (large frames) >200 kfps full duplex (small frames) Latency (end-to-end) @ 100 Mbps
Key Management	Automatic KEK/DEK Exchange Using Signed Diffie-Hellman Unit Authentication Using X.509 Certificates
Physical Interfaces	10BaseT or 10/100BaseT Ethernet (Host and Network Ports) 10BaseT Ethernet Management Port Back and Front-Panel Serial Control Port
Device Management	THALES Element Manager, Front Panel Viewer, and Certificate Manager 10Base T (RJ-45) or 9-pin Serial Control Port SNMP Network Monitoring
Security Features	Tamper Proof Cryptographic Envelope Tamper Evident Chassis Hardware Random Number Generator
Management	Channel Encrypted Using Same Algorithm as Data Traffic
Security Certifications	FIPS 140-2 Level 3 CAPS Baseline and Enhanced Grades Common Criteria EAL4 and EAL5 (under evaluation)
Regulatory	EN60950, FCC, UL, CE, EN 50082-1, and EN 55022

2.11 RECORDING DEVICES

- A. All cameras on the VASS System shall be recorded in real time using a Digital Video Recorder (DVR), Network Video Recorder (NVR), or attached storage. The type of recording device utilized should be determined by the size and type of VASS System designed and installed, and to what extent the system is to be utilized.
- B. All recording devices shall be 47.5 cm (19 inch) rack-mountable.
- C. All DVR's and NVR's that are viewable over an Intranet or Internet will be routed through an encryptor.
- D. Encryptors shall:
 - 1. Comply with FIPS PUB 140-2.
 - 2. Support TCP/IP.
 - 3. Directly interfaces to low-cost commercial routers.
 - 4. Provide packet-based crypto synchronization.
 - 5. Encrypt source and destination IP addresses.
 - Support web browser based management requiring no additional software.

- Have a high data sustained throughput 1.544 Mbps (T1) full duplex data rate.
- 8. Provide for both bridging and routing network architecture support.
- 9. Support Electronic Key Management System (EKMS) compatible.
- 10. Have remote management ability.
- 11. Automatically reconfigure when secure network or wide area network changes.
- E. Contractor shall furnish, install and configure storage for a minimum of 30fps recorded on motion only using 50% motion, 30 days duration, all cameras.
- F. Network Video Recorder (NVR)
 - Shall record video to a hard drive-based digital storage medium in MPEG, MPEG4 or H.264 format.
 - 2. Shall meet the following minimum requirements:
 - a. Record at minimum rate of 30 IPS.
 - b. Have a minimum of eight (8) alarm inputs and two (2) relay outputs.
 - c. Shall provide instantaneous playback of all recorded images.
 - d. Be IP addressable, if part of a VASS network.
 - e. Have built-in digital motion detection with masking and sensitivity adjustments.
 - f. Easy playback and forward/reverse search capabilities.
 - g. Complete audit trail database, with minimum of a six-month history that tracks all events related to the alarm; specifically who, what, where and when.
 - h. NVR management capability providing automatic video routing to a back-up spare recorder in case of failure.
 - i. Accessible locally and remotely via the internet, intranet, or a personal digital assistant (PDA).
 - j. Records all alarm events in real time, ensuring 60 seconds before and after the event are included in the recording.
 - k. Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.
 - 1. Allow for independently adjustable frame rate settings.
 - m. Be compatible with the virtual matrix switcher utilized to operate the cameras.
 - 3. Technical Characteristics:

HDD Interface	IDE or better; optional: SCSI II, SCSI Ultra, or Fiber Channel
RAM	1024 MB
Operating System	Windows 7 Professional/Server 2003 Standard
Graphic	Card VGA
Ethernet Card	100/1000 MB
Memory	20 MB
Software Setup	Centralized setup from each authorized PC; access via integrated web server
Storage Media	All storage media possible (e.g., HD, RAID), depending on operating system
Storage Mode	Linear mode, ring mode (capacity-based)
Recording Configuration	Camera name assignment, bandwidth limit, frame rate, video quality
Recording Content	Video and/or audio data
Search Parameters	Time, date, event
Playback	Playback via any IP network (LAN/WAN) simultaneous recording, playback, and backup
Network Interface	Ethernet (RJ-45, 10/100M)
Network Protocol	TCP/IP, DHCP, HTTP, UDP
Network Capabilities	Live/Playback/P/T/Z control
Recording Rate	30 ips for 720 x 240 (NTSC)
Password Protection	Menu Setup, Remote Access
Recording Capacity	160 (1 or 2 fixed HDD) 1 CD-RW
Power Interrupt	Auto recovered to recording mode

2.12 WIRES AND CABLES

- A. Shall meet or exceed the manufactures recommendation for power and signal.
- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- C. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that will allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.

- F. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.
- I. For all equipment that is carrying digital data between the Physical Access Control System and Database Management or at a remote monitoring station, shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.
- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance. The inputs and outputs shall be tested in both normal and common mode using the following wave forms:

1. A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 watts and peak current of 60 amperes.

2. An 8 microsecond rise time by 20 microsecond pulse width wave form with a peak voltage of 1000 volts and peak current of 500 amperes.

- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.
- L. Coaxial Cables
 - All video signal cables for the VASS System, with exception to the PoE cameras, shall be a coaxial cable and have a characteristic impedance of 75 ohms plus or minus 3 ohms.
 - For runs up to 750 feet use of an RG-59/U is required. The RG-59/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 23 AWG,

polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.

- 3. For runs between 750 feet and 1250 feet, RG-6/U is required. RG-6/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 18 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
- 4. For runs of 1250 to 2750 feet, RG-11/U is required. RG-11/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 14 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
- 5. All runs greater than 2750 feet will be substituted with a fiber optic cable. If using fiber optics as a signal carrier then the following equipment will be utilized:
 - a. Multimode fiber optic cable a minimum size of 62 microns
 - b. Video transmitter, installed at the camera that utilizes 12 VDC or 24 VAC for power.
 - c. Video receiver, installed at the switcher.
 - 6. Signal Cables:
 - a. Signal wiring for PoE cameras depends on the distance the camera is being installed from either a hub or the server.
 - b. If the camera is up to 300 ft from a hub or the server, then use a shielded UTP category 5 (CAT-V) cable a with standard RJ-45 connector at each end. The cable wshall comply with the Power over Ethernet, IEEE802.3af and802.3at Standard.
 - c. If the camera is over 300 ft from a hub or server then utilize a multimode fiber optic cable with a minimum size of 50 microns and associated media conversion equipment.
 - d. Provide a separate cable for power.

Number of Pairs	4
Total Number of Conductors	8
AWG	24
Stranding	Solid
Conductor Material	BC - Bare Copper
Insulation Material	PO - Polyolefin
Overall Nominal Diameter	.230 in.
IEC Specification	11801 Category 5

e. CAT-5 Technical Characteristics:

TIA/EIA Specification	568-B.2 Category 5e
Max. Capacitance Unbalance	(pF/100 m) 150 pF/100 m
Nom. Velocity of Propagation	70 %
Max. Delay	(ns/100 m) 538 @ 100MHz
Max. Delay Skew	(ns/100m) 45 ns/100 m
Max. Conductor DC Resistance	9.38 Ohms/100
Max. DCR Unbalance@ 20°C	3 %
Max. Operating Voltage	UL 300 V RMS

7. Fiber Optic Cables Technical Characteristics:

62.5 Micron
4
2.5 +/- 2.5 microns
5% Maximum
125 +/- 2 microns
1% Maximum
1.5 Microns Maximum
Acrylate
245 +/- 10 microns
Engineering Thermoplastic
900 +/- 50 microns
Aramid Yarn
PVC
Orange
.200 in.
. 275
300 meters
550 meters

8. Power Cables

- a. Will be sized accordingly and shall comply with the NEC. High voltage power cables will be a minimum of three conductors, 14
 AWG, stranded, and coated with a non-conductive polyvinylchloride (PVC) jacket. Low voltage cables will be a minimum of 18 AWG, stranded and non-conductive polyvinylchloride (PVC) jacket.
- b. Will be utilized for all components of the VASS System that require either a 110 VAC 60 Hz or 220 VAC 50 Hz input. Each feed will be connected to a dedicated circuit breaker at a power panel that is primarily for the security system.

- c. All equipment connected to AC power shall be protected from surges. Equipment protection shall withstand surge test waveforms described in IEEE C62.41. Fuses shall not be used as a means of surge protection.
- d. Shall be rated for either 110 or 220 VAC, 50 or 60 Hz, and shall comply with VA Master Spec 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- e. Low Voltage Power Cables

1) Shall be a minimum of 18 AWG, Stranded and have a polyvinylchloride outer jacket.

2) Cable size shall determined using a basic voltage over distance calculation and shall comply with the NEC's requirements for low voltage cables.

PART 3 - EXECUTION

3.1. GENERAL

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.

 The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.

C. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.

- D. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- E. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- F. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

- A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- C. The VASS System will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a complete network.
- D. For integration purposes, the VASS System shall be integrated where appropriate with the following associated security subsystems:
 - 1. PACS:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings, as well as all emergency exits utilizing a fixed color camera.

- b. Record cameras on a 24 hours basis.
- c. Be programmed go into an alarm state when an emergency exit is opened, and notify the Physical Access Control System and Database Management of an alarm event.
- d. Provide interface between the Access Control Software/Security Management System software and the Video Surveillance System to send notifications of alarms. When an alarm occurs, the nearest surveillance camera shall appear in alarm mode, shall "pop up" to the designated monitor, and, if the nearest camera is a pan/tilt/zoom camera, the camera shall move to a preset view. This interface shall be a high level data interface, an interface based completely on relays is not allowed.
- 2. IDS:
- a. Provide a recorded alarm event via a color camera that is connected to the IDS system by either direct hardwire or a security system computer network.
- b. Record cameras on a 24 hours basis.
- c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the PACS.
- d. For additional VASS System requirements as they relate to the IDS, refer to Section 28 16 00 "INTRUSION DETECTION".
- E. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- F. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- G. A complete VASS System shall be comprised of, but not limited to, the following components:
 - 1. Cameras
 - 2. Lenses
 - 3. Video Display Equipment
 - 4. Camera Housings and Mounts
 - 5. Controlling Equipment
 - 6. Recording Devices
 - 7. Wiring and Cables
- H. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect

performance of the system to the COR in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.

I. Existing Equipment

- The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
- 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- J. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving

transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.

- K. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- L. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.
- M. Cameras:
 - 1. Install the cameras with the focal length lens as indicated for each zone.
 - 2. Connect power and signal lines to the camera.
 - 3. Aim camera to give field of view as needed to cover the alarm zone.
 - 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
 - 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
 - Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
 - PTZ cameras shall have all preset positions and privacy areas defined and programmed.
- N. Monitors:
 - 1. Install the monitors as shown and specified in design and construction documents.
 - 2. Connect all signal inputs and outputs as shown and specified.
 - 3. Terminate video input signals as required.
 - 4. Connect the monitor to AC power.
- 0. Switcher:
 - Load all software as specified and required for an operational VASS System configured for the site and building requirements, including

data bases, operational parameters, and system, command, and application programs.

- 2. Provide the original and 2 backup copies for all accepted software upon successful completion of the endurance test.
- 3. Program the video annotation for each camera.
- P. Video Encoder/Decoder
 - 1. Install the Video Encoder/Decoder per design and construction documents, and as specified by the OEM.
 - 2. Connect analog camera inputs to video encoder.
 - 3. Connect network camera to video decoder.
 - 4. Connect video encoder to VASS network.
 - 5. Connect video decoder to video matrix, DVR, monitor etc.
 - 6. Connect unit to AC power (UPS).
 - Configure the video encoder/decoder per manufacturer's recommendation and project requirements.
- Q. Video Server:
 - 1. Install the video server per design and construction documents, and as specified by the OEM.
 - 2. Connect video server to AC power (UPS).
 - 3. Connect to VASS network.
 - 4. Install operating system and Video Management Software.
 - 5. Provide Video Management Software programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Camera names
 - b. Screen views
 - c. Camera recording schedules (continuous and event) driven recording. Events include alarms from other systems (sensors), manual input, and video motion detection.
 - d. Video detection zones for each camera requiring video motion detection
 - e. Alarm interface
 - f. Alarm outputs
 - g. GUI maps, views, icons and actions
 - h. PTZ controls (presets, time schedules for privacy zones etc.)
 - i. Reports

SR Video Workstation:

- Install the video workstation per design and construction documents, and as specified by the OEM.
- 2. Connect video workstation to AC power (UPS).

- 3. Connect to VASS network.
- 4. Install operating system and application software.
- 5. Provide application software programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Screen views
 - b. Graphical User Interface (GUI) maps, views, icons and actions
 - c. Alarm outputs
 - d. Reports
- S. Network Switch:
 - 1. Install the network switch per design and construction documents, and as specified by the OEM.
 - 2. Connect network switch to AC power (UPS).
 - 3. Connect network cameras to network switch.
 - 4. Configure the network switch per manufacturer's recommendation and project requirements.
- T. Network Recording Equipment
 - 1. Install the NVR or video storage unit as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect recording device to AC power (UPS).
 - 3. Connect recording device to network switch as shown and specified.
 - 4. Configure network connections
 - 5. Provide recording unit programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Camera names
 - b. Screen views
 - c. Camera recording schedules (continuous and event) driven recording. Events include alarms from other systems (sensors), manual input, and video motion detection.
 - d. Video detection zones for each camera requiring video motion detection
 - e. Alarm interface
 - f. Alarm outputs
 - g. GUI maps, views, icons and actions
 - h. PTZ controls (presets, time schedules for privacy zones etc.)
 - i. Reports
- U. Video Recording Equipment:
 - 1. Install the video recording equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video signal inputs and outputs as shown and specified.

- 3. Connect alarm signal inputs and outputs as shown and specified.
- 4. Connect video recording equipment to AC power.
- 5. Program the video recording equipment;
 - a. Recording schedules
 - b. Camera caption
- V. Video Signal Equipment:
 - 1. Install the video signal equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video or signal inputs and outputs as shown and specified.
 - 3. Terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as required.
 - 5. Connect control signal inputs and outputs as required
 - 6. Connect electrically powered equipment to AC power.
- W. Camera Housings, Mounts, and Poles:
 - Install the camera housings and mounts as specified by the manufacturer and as shown, provide mounting hardware sized appropriately to secure each camera, housing and mount with maximum wind and ice loading encountered at the site.
 - 2. Provide a foundation for each camera pole as specified and shown.
 - 3. Provide a ground rod for each camera pole and connect the camera pole to the ground rod as specified in Division 26 of the VA Master Specification and the VA Electrical Manual 730.
 - Provide electrical and signal transmission cabling to the mount location via a hardened carrier system from the Physical Access Control System and Database Management to the device.
 - 5. Connect signal lines and AC power to the housing interfaces.
 - 6. Connect pole wiring harness to camera.

3.3 SYSTEM START-UP

- A. The Contractor shall not apply power to the VASS System until the following items have been completed:
 - 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.
 - 2. A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - 3. System wiring has been tested and verified as correctly connected as indicated.
 - 4. All system grounding and transient protection systems have been verified as installed and connected as indicated.

- 5. Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.
- C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3.4 SUPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -"COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".
- B. Provide services of manufacturer's technical representative for four(4) hours to instruct VA personnel in operation and maintenance of units.

C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS".

- - - E N D - - -