

Specifications

H.J. Heinz Campus VA Pittsburgh Healthcare System 1010 Delafield Road | Pittsburgh, Pennsylvania 15215

HZ Prosthetic B71/49 (Phased)

VA Contract No. VA244-17-D-0029 Station Project No. 646-18-101 Bancroft-AE Project No. 16-128

> Volume 2 Divisions 23-28

> **Bid Documnets**

April 30, 2019

DIVISION 23

HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

08-01-17

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ac: Alternating Current
 - 2. ACR: Air Conditioning and Refrigeration
 - 3. AI: Analog Input
 - 4. AISI: American Iron and Steel Institute
 - 5. AO: Analog Output
 - 6. ASJ: All Service Jacket
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Networking Protocol
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. bhp: Brake Horsepower
 - 13. Btu: British Thermal Unit
 - 14. Btu/h: British Thermal Unit Per Hour
 - 15. CDA: Copper Development Association
 - 16. C: Celsius
 - 17. CD: Compact Disk
 - 18. CFM: Cubic Foot Per Minute
 - 19. CH: Chilled Water Supply
 - 20. CHR: Chilled Water Return
 - 21. CLR: Color
 - 22. CO: Carbon Monoxide
 - 23. COR: Contracting Officer's Representative
 - 24. CPD: Condensate Pump Discharge
 - 25. CPM: Cycles Per Minute

- 26. CPVC: Chlorinated Polyvinyl Chloride
- 27. CRS: Corrosion Resistant Steel
- 28. CTPD: Condensate Transfer Pump Discharge
- 29. CTPS: Condensate Transfer Pump Suction
- 30. CW: Cold Water
- 31. CWP: Cold Working Pressure
- 32. CxA: Commissioning Agent
- 33. dB: Decibels
- 34. dB(A): Decibels (A weighted)
- 35. DDC: Direct Digital Control
- 36. DI: Digital Input
- 37. DO: Digital Output
- 38. DVD: Digital Video Disc
- 39. DN: Diameter Nominal
- 40. DWV: Drainage, Waste and Vent
- 41. EPDM: Ethylene Propylene Diene Monomer
- 42. EPT: Ethylene Propylene Terpolymer
- 43. ETO: Ethylene Oxide
- 44. F: Fahrenheit
- 45. FAR: Federal Acquisition Regulations
- 46. FD: Floor Drain
- 47. FED: Federal
- 48. FG: Fiberglass
- 49. FGR: Flue Gas Recirculation
- 50. FOS: Fuel Oil Supply
- 51. FOR: Fuel Oil Return
- 52. FSK: Foil-Scrim-Kraft facing
- 53. FWPD: Feedwater Pump Discharge
- 54. FWPS: Feedwater Pump Suction
- 55. GC: Chilled Glycol Water Supply
- 56. GCR: Chilled Glycol Water Return
- 57. GH: Hot Glycol Water Heating Supply
- 58. GHR: Hot Glycol Water Heating Return
- 59. gpm: Gallons Per Minute
- 60. HDPE: High Density Polyethylene
- 61. Hg: Mercury
- 62. HOA: Hands-Off-Automatic

- 63. hp: Horsepower 64. HPS: High Pressure Steam (60 psig and above) 65. HPR: High Pressure Steam Condensate Return 66. HW: Hot Water 67. HWH: Hot Water Heating Supply 68. HWHR: Hot Water Heating Return 69. Hz: Hertz 70. ID: Inside Diameter 71. IPS: Iron Pipe Size 72. kg: Kilogram 73. klb: 1000 lb 74. kPa: Kilopascal 75. lb: Pound 76. lb/hr: Pounds Per Hour 77. L/s: Liters Per Second 78. L/min: Liters Per Minute 79. LPS: Low Pressure Steam (15 psig and below) 80. LPR: Low Pressure Steam Condensate Gravity Return 81. MAWP: Maximum Allowable Working Pressure 82. MAX: Maximum 83. MBtu/h: 1000 Btu/h 84. MBtu: 1000 Btu 85. MED: Medical 86. m: Meter 87. MFG: Manufacturer 88. mg: Milligram 89. mg/L: Milligrams Per Liter 90. MIN: Minimum 91. MJ: Megajoules 92. ml: Milliliter 93. mm: Millimeter 94. MPS: Medium Pressure Steam (16 psig through 60 psig) 95. MPR: Medium Pressure Steam Condensate Return 96. MW: Megawatt 97. NC: Normally Closed 98. NF: Oil Free Dry (Nitrogen)
- 99. Nm: Newton Meter

08-01-17 100. NO: Normally Open 101. NOx: Nitrous Oxide 102. NPT: National Pipe Thread 103. NPS: Nominal Pipe Size 104. OD: Outside Diameter 105. OSD: Open Sight Drain 106. OS&Y: Outside Stem and Yoke 107. PC: Pumped Condensate 108. PID: Proportional-Integral-Differential 109. PLC: Programmable Logic Controllers 110. PP: Polypropylene 111. PPE: Personal Protection Equipment 112. ppb: Parts Per Billion 113. ppm: Parts Per Million 114. PRV: Pressure Reducing Valve 115. PSIA: Pounds Per Square Inch Absolute 116. psig: Pounds Per Square Inch Gauge 117. PTFE: Polytetrafluoroethylene 118. PVC: Polyvinyl Chloride 119. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 120. PVDF: Polyvinylidene Fluoride 121. rad: Radians 122. RH: Relative Humidity 123. RO: Reverse Osmosis 124. rms: Root Mean Square 125. RPM: Revolutions Per Minute 126. RS: Refrigerant Suction 127. RTD: Resistance Temperature Detectors 128. RTRF: Reinforced Thermosetting Resin Fittings 129. RTRP: Reinforced Thermosetting Resin Pipe 130. SCFM: Standard Cubic Feet Per Minute 131. SPEC: Specification 132. SPS: Sterile Processing Services 133. STD: Standard 134. SDR: Standard Dimension Ratio 135. SUS: Saybolt Universal Second 136.SW: Soft water

- 137. SWP: Steam Working Pressure
- 138. TAB: Testing, Adjusting, and Balancing
- 139. TDH: Total Dynamic Head
- 140. TEFC: Totally Enclosed Fan-Cooled
- 141. TFE: Tetrafluoroethylene
- 142. THERM: 100,000 Btu
- 143. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 144. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire
- 145. T/P: Temperature and Pressure
- 146. USDA: U.S. Department of Agriculture
- 147.V: Volt
- 148. VAC: Vacuum
- 149. VA: Veterans Administration
- 150. VAC: Voltage in Alternating Current
- 151. VA CFM: VA Construction & Facilities Management
- 152. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 153. VAMC: Veterans Administration Medical Center
- 154. VHA OCAMES: Veterans Health Administration Office of Capital Asset Management Engineering and Support
- 155. VR: Vacuum condensate return
- 156. WCB: Wrought Carbon Steel, Grade B
- 157.WG: Water Gauge or Water Column
- 158.WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section 05 50 00, METAL FABRICATIONS.
- E. Section 07 84 00, FIRESTOPPING.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING.
- H. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- I. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.

08-01-17

- J. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- K. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- L. Section 23 07 11, HVAC INSULATION.
- M. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- N. Section 23 36 00, AIR TERMINAL UNITS.
- O. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- P. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- Q. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA): 410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans
- C. American Society of Mechanical Engineers (ASME): B31.1-2014.....Power Piping B31.9-2014....Building Services Piping ASME Boiler and Pressure Vessel Code: BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications
- D. American Society for Testing and Materials (ASTM):
 - A36/A36M-2014.....Standard Specification for Carbon Structural Steel

A575-1996(R2013)e1.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E. Association for Rubber Products Manufacturers (ARPM):

IP-20-2015.....Specifications for Drives Using Classical V-Belts and Sheaves

- IP-21-2009.....Specifications for Drives Using Double-V (Hexagonal) Belts
- IP-24-2010.....Specifications for Drives Using Synchronous Belts
- IP-27-2015..... Specifications for Drives Using Curvilinear Toothed Synchronous Belts

08-01-17

F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.: SP-58-2009.....Pipe Hangers and Supports-Materials, Design,

Manufacture, Selection, Application, and

Installation

SP-127-2014a.....Bracing for Piping Systems: Seismic-Wind-

Dynamic Design, Selection, and Application

G. Military Specifications (MIL):

MIL-P-21035B-2003.....Paint High Zinc Dust Content, Galvanizing Repair (Metric)

- H. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC) 101-2015....Life Safety Code
- I. Department of Veterans Affairs (VA):
 PG-18-10-2016.....Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. If the project is phased submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall

correct at no additional cost or time to the Government even if a submittal was approved.

- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- H. Samples: Samples will not be required, except for insulation or where materials offered differ from specification requirements. Samples shall be accompanied by full description of characteristics different from specification. The Government, at the Government's expense, will perform evaluation and testing if necessary. The Contractor may submit samples of additional material at the Contractor's option; however, if additional samples of materials are submitted later, pursuant to Government request, adjustment in contract price and time will be made.
- I. Mock-ups: Mock-ups are required for critical items and typical component installations replicated numerous times throughout the project as indicated in the individual Division 23 sections. The COR and VAMC representatives shall review and approve the mock-up prior to installation of additional applicable components.
- J. Coordination/Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.

- 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
- Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
- 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- K. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- L. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the

path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.

- M. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
 - 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
 - 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
 - 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

- Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
 - Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution.

Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.

- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
- 3. Complete coordination/shop drawings shall be required in accordance with Paragraph, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- I. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.

- 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
- 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- 6. Protect plastic piping and tanks from ultraviolet light (sunlight).
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all

circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
 - 2. As-built drawings are to be provided, with a copy of them on AutoCAD version 2017 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data

08-01-17

on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 65 degrees F minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made

and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

G. Temporary Facilities: Refer to Paragraph, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 5000 feet per minute.
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 10 horsepower and smaller.
 - b. Fan speeds over 1800 RPM: 23 horsepower and smaller.
 - Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustablepitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 5000 feet per minute.
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed and ends shall be bent into flanges and the flanges shall be drilled and attached to

pump base with minimum of four 1/4 inch bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.

- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts. 1 inch diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 1 inch diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same

08-01-17

class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.

- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 3/16 inch high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 3/16 inch high riveted or bolted to the equipment.
- D. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS and Section 23 36 00, AIR TERMNAL UNITS.
 - Valve tags: Engraved black filled numbers and letters not less than 1/2 inch high for number designation, and not less than 1/4 inch for service designation on 19-gauge 1-1/2 inches round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 8-1/2 inches by 11 inches showing tag number, valve function and area of

control, for each service or system. Punch sheets for a 3-ring notebook.

- Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.
- F. Ceiling Grid Labels:
 - 2 inch long by 1/2 inch wide by 1 mil thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
 - 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - Equipment: Equipment rails shall be galvanized steel, minimum 18 gauge, with integral baseplate, continuous welded corner seams, factory installed 2 by 4 inches treated wood nailer, 18 gauge galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 11 inches. For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.

- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 4 inches thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 4 inches thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - Welded attachment: MSS SP-58, Type 22. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 7/8 inch outside diameter.
- F. Attachment to existing structure: Support from existing floor/roof frame.
- G. Attachment to Wood Construction: Wood screws or lag bolts.
- H. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 1-1/2 inches minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 1-5/8 inches by 1-5/8 inches, 12 gauge, designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 200 pounds.
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 1/4 inch U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 1/2 inch galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields.

Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.

- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic-coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 2 inches and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
 - c. Piping with Vertical Expansion and Contraction:
 - Movement up to 3/4 inch: Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 3/4 inch: Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.

- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.
- K. Pre-insulated Calcium Silicate Shields:
 - 1. Provide 360-degree water resistant high density 140 psigcompressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal.
 Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 600 psig compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- L. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 1 inch above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 1-1/2 inch angle set in silicone adhesive around opening.
 - For drilled penetrations: Provide 1-1/2 inch angle ring or square set in silicone adhesive around penetration.

- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 1 quart of oil, and 1 pound of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 3/32 inch for floor plates. For wall and ceiling plates, not less than 0.025 inch for up to 3-inch pipe, 0.035 inch for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate

piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control

08-01-17

devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.

- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 3000 psig minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, values and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.

M. Inaccessible Equipment:

- Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.

- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 1/2 inch clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 6-inch pipe, 30 feet long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 2 inch excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 6 inches on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.
 - 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of

operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.

- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.7 CLEANING AND PAINTING

A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.

08 - 01 - 17

- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Nameplates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
 - 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and Feedwater: 100 degrees F on insulation jacket surface and 250 degrees F on metal pipe surface.
 - b. Steam: 125 degrees F on insulation jacket surface and 374 degreesF on metal pipe surface.
 - Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
 - 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 3/16 inch high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 1 quart of oil and 1 pound of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.

- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.

3.13 COMMISSIONING (NOT USED)

08-01-17

3.14 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- F. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA):

9-2015.....Load Ratings and Fatigue Life for Ball Bearings 11-2015....Load Ratings and Fatigue Life for Roller

- Bearings
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

90.1-2013.....Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings

D. Institute of Electrical and Electronics Engineers (IEEE):

112-2004..... Standard Test Procedure for Polyphase Induction Motors and Generators

841-2009..... and Chemical

Industry-Premium-Efficiency, Severe-Duty,

- Totally Enclosed Fan-Cooled (TEFC) Squirrel
- Cage Induction Motors--Up to and Including 370 kW (500 hp)
- E. National Electrical Manufacturers Association (NEMA): MG 1-2014......Motors and Generators

08-01-17 MG 2-2014.....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators 250-2014.....Enclosures for Electrical Equipment (1000 Volts

Maximum)

F. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 AS-BUILT DOCUMENTATION BE SUBMITTED FOR CONTENT REVIEW AS PART OF THE CLOSE-OUT DOCUMENTS.

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and

08 - 01 - 17

pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.

08 - 01 - 17

- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 100 hp, connected to 240-volt or 480-volt systems: 208-230/460 volts, dual connection.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 1/2 hp: Single phase.
 - 2. Motors, 1/2 hp and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 1 hp, may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.
- J. Motor Enclosures:
 - Shall be the NEMA types as specified and/or shown in the Contract Documents.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.

08-01-17

- K. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - The insulation system shall be rated minimum of Class B, 266 degrees
 F.
 - 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, (176 degrees F.
 - The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.
- L. Mechanical Design Requirements:
 - Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
 - 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.
 - 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
 - 6. Vibration shall not exceed 0.15 inch per second, unfiltered peak.
 - 7. Noise level shall meet the requirements of the application.
 - Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
 - 9. All external fasteners shall be corrosion resistant.

08-01-17

- Condensation heaters, when specified, shall keep motor windings at least 9 degrees F above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- M. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed160 degrees
 F shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- N. Additional requirements for specific motors, as indicated in the other sections listed in paragraph, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 1 hp or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 1 hp or more with open, drip-proof, or TEFC enclosures shall

08 - 01 - 17

be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

_		Efficienc	ies	Minimum Premium Efficiencies Totally Enclosed Fan-Cooled (TEFC)				
Rating kW (hp)	pen Drip- 1200 RPM	1800 RPM	3600 RPM	Rating kW (hp)	1800 RPM	3600 RPM		
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%	
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%	
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%	
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%	
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%	
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%	
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%	
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%	
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%	
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%	
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%	
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%	
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%	
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%	
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%	
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%	
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%	
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%	
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%	

P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.

08-01-17

Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 1 hp shall meet the requirements of the DOE Small Motor Regulation.

Polypl Average f	nase Oper ull load		ncy	Capacitor-start capacitor-run capacitor-start induction r open motors Average full load efficiend			
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	2 poles		
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the

various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for one/ hourto instruct each VA personnel responsible in operation and maintenance of the system.

- - - E N D - - -

08-01-17

Pittsburgh, Pennsylvania

HZ PROSTHETIC B71/49 (PHASED) 02-01-15 SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, seismic restraints for equipment, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Audio Speech Pathology	25
Audio Suites	25
Auditoriums, Theaters	35-40
Bathrooms and Toilet Rooms	40
Chapels	35
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors(Public)	40
Dining Rooms, Food Services/ Serving	40
Examination Rooms	35
Gymnasiums	50
Kitchens	50
Laboratories (With Fume Hoods)	45 to 55
Laundries	50
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Operating Rooms	40

Patient Rooms	35
Phono/Cardiology	25
Recreation Rooms	40-45
Shops	50
SPD (Decontamination and Clean Preparation)	45
Therapeutic Pools	45
Treatment Rooms	35
Warehouse	50
X-Ray and General Work Rooms	40

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 0.20 inch per second RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
- 3. Seismic restraint provisions and bolting.
 - 4. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- 1.5 APPLICABLE PUBLICATIONS
 - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
 - B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): 2009Fundamentals Handbook, Chapter 7, Sound and Vibration
 - C. American Society for Testing and Materials (ASTM):

A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

A307-07b.....Standard Specification for Carbon Steel Bolts

and Studs, 60,000 PSI Tensile Strength

D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness

D. Manufacturers Standardization (MSS): SP-58-2009.....Pipe Hangers and Supports-Materials, Design and

Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-10Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA):

001-2008..... Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.

H. International Code Council (ICC):

2009 IBC..... Conternational Building Code.

I. Department of Veterans Affairs (VA):
H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.
- bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators

shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.

- 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
- 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. Isolators shall have a minimum seismic rating of one G.
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.

- 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel

2.4 BASES

A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and

belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.

- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4 inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING (NOT USED)

- - - E N D - - -

H.J. Heinz Campus VA Pittsburgh Healthcare System

Pittsburgh, Pennsylvania

HZ PROSTHETIC B71/49 (PHASED) 02-01-15

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	EQUIPMENT ON GRADE		20FT FLOOR SPAN		30FT FLOOR SPAN		40FT FLOOR SPAN			50FT FLOOR SPAN					
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEF L
COMPRESSORS AN	D VACU	JUM PI	JMPS						•						
UP THROUGH 1-1/2 HP		D,L, W	0.8		D,L, W	0.8		D,L, W	1.5		D,L, W	1.5		D,L, W	
2 HP AND OVER:														1	
500 - 750 RPM		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
750 RPM & OVER		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
ABOVE OCCUPIED AREA	AS:												1	Г	1
5 HP & OVER				СВ	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0
CENTRIFUGAL FA	NS														
UP TO 200 RPM	В	N	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300 RPM	В	N	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500 RPM	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM & OVER	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

02-01-15

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Air Systems: Includes all supply air, return air, and exhaust air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 07 11, HVAC INSULATION:
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Equipment Insulation.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

H. Section 23 31 00, HVAC DUCTS AND CASINGS

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist

loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air terminal units (maximum values): Minus 2 percent to plus 10 percent.
- b. Minimum outside air: 0 percent to plus 10 percent.
- c. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects and within 60 days for design-build projects after the system layout on air and water side is completed by the Contractor.
 - Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.

- Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 - 2011HVAC Applications ASHRAE Handbook, Chapter 38, Testing, Adjusting, and Balancing and Chapter 48, Sound and Vibration Control
- C. Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB): 7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems 2nd Edition 2006Procedural Standards for the Measurement of

Sound and Vibration

- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

 $3^{\rm rd}$ Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

A. Refer to TAB Criteria in Article, Quality Assurance.

B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
 - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
 - C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre-construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 5 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, and laboratory fume hoods and biological safety cabinets.
 - Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section

23 05 11, COMMON WORK RESULTS FOR HVAC Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.

- 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
- 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.

3.8 VIBRATION TESTING (NOT USED)

3.9 SOUND TESTING (NOT USED)

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 COMMISSIONING (NOT USED)

- - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty,

specified services and items required for complete and fully functional Controls Systems.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall accommodate1 Engineering Control Centerand the control system shall accommodate5 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in

writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:

- Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
- 2. Unitary HVAC equipment rooftop air conditioning units, split systemscontrols. These include:
 - a. Discharge temperature control.
 - b. Flowrate control.
 - c. Setpoint reset.
 - d. Time of day indexing.
 - e. Status alarm.
- 3. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 4. The following systems have limited control (as individually noted below) from the ECC:
 - a. Constant temperature rooms: temperature out of acceptable range and status alarms.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A

09 - 11

	TIC B/1/49	(I IMOLD)		09-11
Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
VFDs	23 09 23	26	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU unit-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26

- F. This facility's existing direct-digital control system is manufactured by Johnson Control. The existing system's top-end communications is via Metasys. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
- G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System

Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.

- The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
- 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
- 4. Responsibility Table:

Item/Task	Section	Control	VA
	23 09 23	system	
	contactor	integrator	
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	Х		
and equipment			
Point addressing: all hardware and	Х		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		

Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

- H. Refer to equipment specifications and as indicated in project documents. Application of standalone unitary controls is limited to at least those systems wherein remote monitoring, alarm and start-up are not necessary. Examples of such systems include:
 - 1. Light-switch-operated toilet exhaust
 - 2. Vestibule heater
 - 3. Exterior stair heater
 - 4. Attic heating and ventilation
 - 5. Mechanical or electrical room heating and ventilation.
- I The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 22 13, Steam and Condensate Heating Piping.
- C. Section 23 31 00, HVAC Ducts and Casings.
- D. Section 23 36 00, Air Terminal Units.
- E. Section 23 74 13, Packaged, Outdoor, Central-Station Air-Handling Units.
- F. Section 26 05 11, Requirements for Electrical Installations.
- G. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- H. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- I. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- J. Section 26 09 23, Lighting Controls.
- K. Section 26 27 26, Wiring Devices.
- L. Section 26 29 11, Motor Starters.
- M. Section 28 31 00, Fire Detection and Alarm.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one

bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).

- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are

generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side. FF. GIF: Abbreviation of Graphic interchange format.

- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.

- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - 4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
 - 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide

professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
 - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every

one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.

9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Water pressure	$\pm 2\%$ of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.
 - 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.

- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:

- a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
- b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 4 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.

- 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 4 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
- D. American Society of Testing Materials (ASTM): B32-08.....Standard Specification for Solder Metal

в88-09	Standard Specifications for Seamless Copper
	Water Tube
B88M-09	Standard Specification for Seamless Copper
	Water Tube (Metric)
B280-08	Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	Standard Specification for Polyethylene (PE)
	Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11	.National	Elec	ctric Code		
90A-09	.Standard	for	Installation	of	Air-Conditioning
	and Venti	lati	ion Systems		

H. Underwriter Laboratories Inc (UL):

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10....Access Control System Units 486A/486B-10....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10....Energy Management Equipment 1076-10....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.

- The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software

and programming to allow data communications between the controls systems and building systems supplied by other trades.

- 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
 - 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
 - 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.

- The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
- B. Each controller shall have a communication port for connection to an operator interface.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
- C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.

- ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive.
 - a. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store:
 - 1) All required operator workstation software
 - A DDC database at least twice the size of the delivered system database
 - One year of trend data based on the points specified to be trended at their specified trend intervals.
 - b. Real-time clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
 - c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
 - d. Parallel port: Enhanced.
 - e. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.
 - f. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm.
 - g. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
 - h. Mouse: Standard, compatible with installed software.

- i. Removable disk storage: Include the following, each with appropriate controller:
 - Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
- j. Network interface card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector.
- Cable modem: 42.88 MBit/s, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity.
- 3. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
- 4. Auto-dial modem: 56,600 bps, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction, and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.
- 5. Audible Alarm: Manufacturer's standard.
- 6. Printers:
 - a. Provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the ECC through a USB interface.
 - If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
 - 2) RAM: 512 MB, minimum.
 - Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white).
 - Paper Handling: Automatic sheet feeder with 250-sheet x 8.5 inch x 11 inch paper cassette and with automatic feed.
 - b. Provide a dedicated black/white tractor-feed dot matrix printer for status/alarm message printing, minimum 10 characters per inch, minimum 160 characters per second, connected to the ECC through a USB interface.

- Paper: One box of 2000 sheets of 8-1/2x11 multi-fold type printer paper.
- 7. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
 - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
 - d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
 - e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1) NFPA 70, Type CMP.
 - 2) Flame Resistance: NFPA 262, Flame Test.
- 8. Self-contained uninterruptible power supply (UPS):
 - a. Size: Provide a minimum of six hours of operation of ECC equipment, including two hours of alarm printer operation.
 - b. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - c. Accessories:
 - 1) Transient voltage suppression.
 - 2) Input-harmonics reduction.
 - 3) Rectifier/charger.
 - 4) Battery disconnect device.
 - 5) Static bypass transfer switch.
 - 6) Internal maintenance bypass/isolation switch.

- 7) External maintenance bypass/isolation switch.
- 8) Output isolation transformer.
- 9) Remote UPS monitoring.
- 10) Battery monitoring.
- 11) Remote battery monitoring.

D. ECC Software:

- Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
- 2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
- 3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
- 4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows XP, Windows System 7, Linux, and UNIX.
- 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.
- 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The

graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.

- 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
- 9. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
- 10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and other Windows based software programs, while concurrently on-line system alarms and monitoring information.
- 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
- 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access

requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.

- 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.
 - c. Collection and analysis of historical data.
 - d. Alarm reporting, routing, messaging, and acknowledgement.
 - e. Definition and construction of dynamic color graphic displays.
 - f. Real-time graphical viewing and control of environment.
 - g. Scheduling trend reports.
 - h. Program editing.
 - i. Operating activity log and system security.
 - j. Transfer data to third party software.
- 14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.
 - c. Event scheduling.
 - d. Dynamic trend definition and presentation.
 - e. Program and database editing.
 - f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically

be logged off the system if no keyboard or mouse activity is detected for a selected time.

- 15. Graphic Displays:
 - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
 - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
 - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
 - d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
 - e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
 - f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
 - g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with

graphical representation and the other half with sequence of operation of the same HVAC system.

- 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g. List of weekly schedules.
 - h. List of holiday programming.
 - i. List of limits and dead bands.
 - j. Custom reports.
 - k. System diagnostic reports, including, list of digital controllers on the network.
 - 1. List of programs.
- 19. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
 - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.
 - 21. Alarm Management:
 - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.

- b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
- c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
- d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
- e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- The system shall have the ability to dial 22. Remote Communications: out in the event of an alarm. Receivers shall include operator workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself.
- 23. System Configuration:
 - a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all other network devices to allow the development of global control strategies.
 - b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.
- 2.5 PORTABLE OPERATOR'S TERMINAL (POT) (NOT USED)

2.6 BACNET PROTOCOL ANALYZER

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The

"network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.

- The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1.

STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the

Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.

- 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
- The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
- 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-

removable, modular terminal strips or to a termination card connected by a ribbon cable.

- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.

- d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
- e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.

2.10 SPECIAL CONTROLLERS (NOT USED)

2.11 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
 - f. Wire: Twisted, shielded-pair cable.
 - g. Output Signal: 4-20 ma.

- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.

2.12 Control cables

A. General:

- Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have polished or brushed aluminum manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.

- c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
- d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: Except as specified in subparagraph 2 below, maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.

- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating values shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating values shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
 - 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting

the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

- a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
- 3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
- 4. See drawings for required control operation.

2.15 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Electronic Thermal Type:1. Air Flow Sensor Probe:

- a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
- b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan

capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.

4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
 - 7. Install equipment level and plum.
- A. Electrical Wiring Installation:
 - 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - 2. Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital

communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.

- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:

- a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
- b. Calibrate sensors to accuracy specified, if not factory calibrated.
- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.

- b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software

to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

- C. Demonstration
 - System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.

- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration
 with database.
 - Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.
 ----- END -----

08-01-17

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping for HVAC systems.
 - 3. Glycol-water piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT AND STEAM GENERATION Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for piping.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- G. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B1.20.1-2013......Pipe Threads, General Purpose (Inch) B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300 B16.4-2011.....Gray Iron Threaded Fittings: (Classes 125 and 250) B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard

08-01-17 B16.9-2012.....Factory Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.18-2012.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 B16.39-2014.....Malleable Iron Threaded Pipe Unions: Classes 150, 250, and 300 B16.42-06.....Ductile Iron Pipe Flanges and Flanged Fittings B31.9-2014.....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code: BPVC Section VIII-2015..Rules for Construction of Pressure Vessels C. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2015.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-2004 (R2014).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A183-2014.....Standard Specification for Carbon Steel Track Bolts and Nuts A216/A216M-2014e1.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A307-2014.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A536-1984 (R2014).....Standard Specification for Ductile Iron Castings

08-01-17 B62-2015..... Standard Specification for Composition Bronze or Ounce Metal Castings B88-2014..... Standard Specification for Seamless Copper Water Tube F439-2013.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-2015.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 D. American Welding Society (AWS): B2.1/B2.1M-2014.....Standard for Welding Procedure and Performance Specification E. Expansion Joint Manufacturer's Association, Inc. (EJMA): EJMA..... Association Joint Manufacturer's Association Standards, Tenth Edition F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-2011.....Butterfly Valves SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2011.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2011.....Gray Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-2010.....Gray Iron and Ductile Iron In-line, Spring-Loaded, Center-Guided Check Valves G. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2007....9th Edition

1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gauges.
 - 15. Thermometers and test wells.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
- E. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.
- F. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.

08-01-17

- 3. One complete set of drawings in electronic AutoCAD and pdf format.
- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than oneyear old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

08-01-17

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.//
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

- 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES
 - A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water, Condenser Water, Heating Hot Water, and Glycol-Water, and Vent Piping:
 - 1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:
 - From air handling units: Copper water tube, ASTM B88, Type M, or Schedule 40 PVC plastic piping.
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type M for runouts and Type L for mains.
- D. Chemical Feed Piping for Condenser Water Treatment: CPVC, Schedule 80, ASTM F441/F441M.
- E. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.

```
08-01-17
```

- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING

- A. Schedule 40, socket type for solvent welding.
- B. Schedule 40 PVC drain piping: Drainage pattern.
- C. Chemical feed piping for condenser water treatment: CPVC, Schedule 80, ASTM F439.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chromeplated ball with full port and Teflon seat at 2758 kPa (400 psig working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 65 mm (2-1/2 inch) and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS SP-67, flange lug type rated 1200 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Butterfly valves are prohibited for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47/A47M electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
 - c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.

- Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
- 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
- 3) Gate Valves:
 - a) 50 mm (2 inches) and smaller: MSS SP-80, Bronze, 1035 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke. MSS SP-70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for globe valves.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for angle.

F. Check Valves:

- 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig), 45-degree swing disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-71 for check valves.
- 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.

- a. Body: MSS SP-125 cast iron, ASTM A126, Class B, or steel, ASTM A216/A216M, Class WCB, or ductile iron, ASTM 536, flanged or wafer type.
- b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball style valve.
 - 2. A dual-purpose flow balancing valve and adjustable flow meter, with bronze or cast-iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of 27 to 393 kPa (4 to 57 psig). Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - Gray iron ASTM A126 or brass body rated 1200 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - 2. Brass or ferrous body designed for 2070 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
 - 4. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.
- I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.9 WATER FLOW MEASURING DEVICES (NOT USED)

2.10 STRAINERS

- А. У Туре.
 - Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165 psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.

2.12 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association (EJMA) Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 345 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.9.

- External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
- 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.9.
 - 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint (Contractor's Option): 2413 kPa (350 psig) maximum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, PTFE modified polyphenylene sulfide coated slide section, with welded or flanged ends, suitable for axial end movement to 75 mm (3 inch).
- G. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

I. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.13 HYDRONIC SYSTEM COMPONENTS

- A. Heat Exchanger (Water to Water): Shell and tube type, U-bend removable tube bundle, heating fluid in shell, heated fluid in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.001.
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Cast iron or steel.
 - 4. Construction: In accordance with ASME BPVC Section VIII for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Plate and Frame Heat Exchanger:
 - Fixed frame with bolted removable corrugated channel plate assembly, ASME code stamped for 1035 kPa (150 psig) working pressure.
 - 2. Corrugated channel plates shall be type 316 or 304 stainless steel.
 - Channel plate ports to be double gasketed to prevent mixing or cross-contamination of hot side and cold side fluids. Gaskets to be EPPM.
 - 4. Channel plate carrying bars to be carbon steel with zinc yellow chromate finish.
 - 5. Fixed frame plates and moveable pressure plates to be corrosion resistant epoxy painted carbon steel.
 - 6. Piping connections 50 mm (2 inch) and smaller to be carbon steel NPT tappings. Piping connections 100 mm (4 inch) and larger to be studded port design to accept ANSI flange connections. Connection ports to be integral to the frame or pressure plate.
 - 7. Finished units to be provided with OSHA required, formed aluminum splash guards to enclose exterior channel plate and gasket surfaces.
 - Provide two sets of replacement gaskets and provide one set of wrenches for disassembly of plate type heat exchangers.
 - 9. Performance: As scheduled on drawings.

08-01-17

- C. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of converters, pumps, and other components, pre-piped and prewired supported on a welded steel frame or skid. Refer to Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING, for additional requirements.
- D. Air Purger: Cast iron or fabricated steel, 861 kPa (125 psig) water working pressure, for in-line installation.
- E. Tangential Air Separator: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless-steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless-steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the crosssectional area of connecting piping.
- F. Diaphragm Type Pre-Pressurized Expansion Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, welded steel shell, rustproof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 115 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).
- G. Pressure Relief Valve: Bronze or iron body and bronze or stainlesssteel trim, with testing lever. Comply with ASME BPVC Section VIII and bear ASME stamp.
- H. Automatic Air Vent Valves (where shown on drawings): Cast iron or semisteel body, 1035 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.14 WATER FILTERS AND POT CHEMICAL FEEDERS

A. See Section 23 25 00, HVAC WATER TREATMENT, paragraph, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.15 GAUGES, PRESSURE AND COMPOUND

A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale

(Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.

- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

2.16 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.
- B. Provide one each of the following test items to the COR:
 - 1. 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel
 pressure gauge adapter probe for extra-long test plug.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 101 kPa (30 inches Hg) to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.17 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, twodegree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Glycol-Water: 0 to 38 degrees C (32 to 100 degrees F).

2. Hot Water and Glycol-Water: 38 to 93 degrees C (100 to 200 degrees F).

2.18 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.19 ELECTRICAL HEAT TRACING SYSTEMS (NOT USED)

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one

08 - 01 - 17

08-01-17

end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.

- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 SEISMIC BRACING ABOVEGROUND PIPING (NOT USED)

3.5 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any

⁰⁸⁻⁰¹⁻¹⁷

08-01-17 system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as

necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.

- C. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.7 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.

- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.8 ELECTRIC HEAT TRACING (NOT USED)

3.9 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. Adjust red set hand on pressure gauges to normal working pressure.

3.10 COMMISSIONING (NOT USED)

3.11 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

- - - E N D - - -

08-01-17

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings.

B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2012......Factory Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.42-2011.....Ductile Iron Pipe Flanges and Flanged Fittings: Classes 150 and 300 B31.1-2014.....Power Piping B31.9-2014.....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments C. American Society for Testing and Materials (ASTM): A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2015.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A216/A216M-2014e1.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service

08-01-17 A536-1984 (R2014).....Standard Specification for Ductile Iron Castings D. American Welding Society (AWS): B2.1/B2.1M-2014.....Specification for Welding Procedure and Performance Qualifications Z49.1-2012.....Safety in Welding and Cutting and Allied Processes E. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves F. Military Specifications (Mil. Spec.): MIL-S-901D-1989.....Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems G. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves H. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2007....9th Edition 1.4 SUBMITTALS A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification. C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers. 2. Pipe and tubing, with specification, class or type, and schedule. 3. Pipe fittings, including miscellaneous adapters and special fittings. 4. Flanges, gaskets and bolting. 5. Valves of all types. 6. Strainers. 7. Pipe alignment guides.

- 8. Expansion joints.
- 9. Expansion compensators.
- 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
- 11. All specified steam system components.
- 12. Gauges.
- 13. Thermometers and test wells.
- D. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:

- 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.
- 2. Comply with provisions in ASME B31.9.
- 3. Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.
- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- D. ASME Compliance: Comply with ASME B31.9 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION (NOT USED)

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.
 - 4. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.

3. Welding flanges and bolting: ASME B16.5:

degrees F) and 10,342 kPa (1500 psig).

- a. Steam service: Weld neck or slip-on, raised face, with nonasbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 400 degrees C (750
- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.

- b. 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke.
 1) High pressure steam 110 kPa (16 psig) and above system): Cast steel body, ASTM A216/A216M grade WCB, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - 2) All other services: Forged steel body, Class B, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze face wedge and seats, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.
 - b. 65 mm (2-1/2 inches) and larger:
 - Globe valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: Steel body, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronzefaced disc (Teflon or composition facing permitted) and seat, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger:
 - Angle valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.

- All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- F. Swing Check Valves:
 - 1. 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45degree swing disc.
 - 2. 65 mm (2-1/2 inches) and Larger:
 - a. Check valves for high pressure steam 110 kPa (16 psig) and above system: Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1035 kPa (150 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel, rated for saturated steam at 1034 kPa (150 psig) threaded ends.
 - 2. 65 mm (2-1/2 inches) and larger: Cast steel rated for 1034 kPa (150 psig) saturated steam with 1034 kPa (150 psig) ASME flanged ends or forged steel with 1724 kPa (250 psig) ASME flanged ends.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel body.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, cast steel body.
- D. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (1/8 inch) diameter perforations for liquids.

⁰⁸⁻⁰¹⁻¹⁷

2.7 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-29 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-123 psig): Rated 1035 kPa (150
 psig) at 186 degrees C (366 degrees F).
 - c. Steam Service 869-1035 kPa (126-150 psig): Rated 1380 kPa (200
 psig) at 194 degrees C (381 degrees F).
 - d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C
 (309 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - 3. Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 345 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.

- 5. Conform to the standards of EJMA and ASME B31.1.
- 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.8 FLEXIBLE BALL JOINTS

- A. Design and Fabrication: One-piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1725 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 762 mm (30 inches). Joints through 355 mm (14 inches) shall have forged pressure retaining members; while size 406 mm (16 inches) through 762 mm (30 inches) shall be of one-piece construction.
- B. Material:
 - Cast or forged steel pressure containing parts and bolting in accordance with ASME BPVC Section II or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME BPVC Section II SA 515, Grade 70.
 - 2. Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - Low pressure leakage test: 41 kPa (6 psig) saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 3447 kPa (500 psig) saturated steam.
 - Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.

5. Vibration: 170 hours on each of three mutually perpendicular axes at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.10 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.9 STEAM SYSTEM COMPONENTS

- A. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control value: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - 2. Trap bodies: Steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The use of 4 bolt raised face flange is required. The use of unions is unacceptable for steam trap maintenance. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.
 - 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
 - 4. Valves and seats: Suitable hardened corrosion resistant alloy.
 - 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
 - 6. Floats: Stainless steel.
 - 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- B. Thermostatic Air Vent (Steam): Steel body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall

^{4.} Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.

be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.

2.10 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 4-1/2 inches in diameter, 1/4 inch NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide steel, lever handle union cock. Provide steel or stainlesssteel pressure snubber for gauges in water service. Provide steel pigtail syphon for steam gauges.
- C. Pressure gauge ranges shall be selected such that the normal operating pressure for each gauge is displayed near the midpoint of each gauge's range. Gauges with ranges selected such that the normal pressure is displayed at less than 30 percent or more than 70 percent of the gauge's range are prohibited. The units of pressure shall be psig.

2.11 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 1. 1/4 inch FPT 1/8 inch diameter stainless steel pressure gauge adapter probe for extra-long test plug. Pressure/temperature plug is an example.
 - 3-1/2 inch diameter, one percent accuracy, compound gauge, 30 inches Hg to 100 psig range.
 - 3. 32 to 220 degrees F pocket thermometer one-half degree accuracy, 1 inch dial, 5 inch long stainless-steel stem, plastic case.

2.12 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.13 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets

08-01-17

and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.

08-01-17

- J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross-sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping 25 mm (1 inch) in 12 m (40 feet) 0.25 percent in direction of flow. Provide a drip pan elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 300 mm (12 inches) above the roof or through the wall minimum 2.4 m (8 feet) above grade with down turned elbow.

2.14 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
 - 2. Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.

08-01-17 E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior

- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:

to welding. Conform to specified standards.

- 1. Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.
- 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
- 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.

J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

2.15 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

2.16 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.

2.17 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.
- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

2.18 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

2.19 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. Adjust red set hand on pressure gauges to normal working pressure.

- - - E N D - - -

02-01-15

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Field refrigerant piping for direct expansion HVAC systems. Field refrigerant piping and associated drain , including required pipe insulation.

B. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.

C. Definitions:

- Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
- Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

G. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

I. Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.

- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Flexible metal hose
 - g. Liquid-suction interchanges
 - h. Oil separators (when specified)
 - i. Gages
 - j. Pipe and equipment supports
 - k. Refrigerant and oil
 - 1. Pipe/conduit roof penetration cover
 - m. Soldering and brazing materials
 - Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002).....Standard for Refrigerant Liquid Receivers

730-2005......Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers

C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE):

ANSI/ASHRAE 15-2007....Safety Standard for Refrigeration Systems (ANSI)

- ANSI/ASHRAE 17-2008....Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI)
- 63.1-95 (RA 01).....Method of Testing Liquid Line Refrigerant Driers (ANSI)
- D. American National Standards Institute (ANSI): ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems Z535.1-2006.....Safety Color Code
- E. American Society of Mechanical Engineers (ASME): ANSI/ASME B16.22-2001 (R2005) Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI)

ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer Components (ANSI)

ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments ANSI/ASME B40.200-2008..Thermometers, Direct Reading and Remote Reading

F. American Society for Testing and Materials (ASTM) A126-04.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe FittingsB32-08 Standard Specification for Solder Metal

02-01-15 B88-03.....Standard Specification for Seamless Copper Water Tube B88M-05.....Standard Specification for Seamless Copper Water Tube (Metric) B280-08.....Standard Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field Service G. American Welding Society, Inc. (AWS): Brazing Handbook

A5.8/A5.8M-04.....Standard Specification for Filler Metals for Brazing and Braze Welding

- H. Federal Specifications (Fed. Spec.)
 Fed. Spec. GG
- I. Underwriters Laboratories (U.L.): U.L.207-2009.....Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 4 inch use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
 - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M,45 percent silver brazing alloy, Class BAg-5.
 - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
 - 2. Steel fittings: ASTM wrought steel fittings.
 - a. Refrigerant piping Welded Joints.
 - 3. Flanges and flanged fittings: ASME B16.24.
 - 4. Refrigeration Valves:

- a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
- b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
- c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, twoposition, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location and normally open holding coil.
- d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
- e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 5. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication. Provide screwed brass seal caps.

- 7. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.
- Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.
- 9. Water Piping Valves and Accessories: Refer to specification Section 23 21 13, HYDRONIC PIPING.

2.3 THERMOMETERS AND WELLS

A. Refer to specification Section 23 21 13, HYDRONIC PIPING.

2.4 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.6 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.8 PIPE INSULATION FOR DX HVAC SYSTEMS

Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 3. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally locate value stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end values. Control values usually require reducers to connect to pipe sizes shown on the drawing.
- B. Joint Construction:
 - 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.

02-01-15

- a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
- b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
- d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.

3.2 PIPE AND TUBING INSULATION

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

- A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
 - Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct

02-01-15

equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.

- A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of Resident Engineer. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
 - Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
 - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group A1 refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.
- B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
 - Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 10 psi gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.

- Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
- 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in microns. Pull the system down to 500 microns2245.6 inches of mercury at 60 degrees F and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room, exposed to weather.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. Seismic Reinforcing: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. Duct Insulation: Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
- F. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- G. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- H. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.

E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
 - 9. Instrument test fittings.
 - 10 Details and design analysis of alternate or optional duct systems.
 - 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11- Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE):

	ASCE7-05	
	Structures	
C		
ι.	American Society for Testing and Materials (ASTM):	
	A167-99(2009)Standard Specification for Stainless and	
	Heat-Resisting Chromium-Nickel Steel Plate,	
	Sheet, and Strip	
	A653-09Standard Specification for Steel Sheet,	
	Zinc-Coated (Galvanized) or Zinc-Iron Alloy	
	coated (Galvannealed) by the Hot-Dip process	
	A1011-09aStandard Specification for Steel, Sheet and	
	Strip, Hot rolled, Carbon, structural, High-	
	Strength Low-Alloy, High Strength Low-Alloy with	
	Improved Formability, and Ultra-High Strength	
	B209-07Standard Specification for Aluminum and	
	Aluminum-Alloy Sheet and Plate	
	C1071-05e1 Glass Duct	
	Lining Insulation (Thermal and Sound Absorbing	
	Material)	
	E84-09aBtandard Test Method for Surface Burning	
	Characteristics of Building Materials	
D.	National Fire Protection Association (NFPA):	
	90A-09of Air	
	Conditioning and Ventilating Systems	
	96-08 Control and Fire	
	Protection of Commercial Cooking Operations	
Ε.	Sheet Metal and Air Conditioning Contractors National Association	
	(SMACNA):	
	2nd Edition - 2005HVAC Duct Construction Standards, Metal and	
	Flexible	
	1st Edition - 1985HVAC Air Duct Leakage Test Manual	
	6th Edition - 2003Fibrous Glass Duct Construction Standards	
F.	Underwriters Laboratories, Inc. (UL):	
	181-08 Air Connectors	
	555-06Standard for Fire Dampers	
	555S-06Standard for Smoke Dampers	
PART 2 - PRODUCTS		
2.1 DUCT MATERIALS AND SEALANTS		

A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.

- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Optional Duct Materials:
 - Grease Duct: Double wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust duct. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown on the drawings will have to be converted to equivalent round size.
- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 2 inch
 - > 2 inch to 3 inch
 - > 3 inch to 4 inch

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on

the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.

- Elbows: Diameters 3 through 8 inches shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
- Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.
 Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 20 inches wide by 48 - 54 inches high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- Q. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- 2.3 DUCT LINER (WHERE INDICATED ON DRAWINGS) (NOT USED)
- 2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS
 - A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:

- 1. Each duct mounted coil and humidifier.
- 2. Each fire damper (for link service), smoke damper and automatic control damper.
- 3. Each duct mounted smoke detector.
- For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 20 feet intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 12 inch by 12 inch minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 160 degrees F fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 14 gage, required to provide installation equivalent to the damper manufacturer's UL test installation.
 - Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS

- A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 1500 fpm. Maximum static pressure loss: 0.13 inch W.G..
- B. Maximum air leakage, closed damper: 4.0 CFM per square foot at 3 inchW.G. differential pressure.
- C. Minimum requirements for dampers:
 - Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - Frame: Galvanized steel channel with side, top and bottom stops or seals.

- 3. Blades: Galvanized steel, parallel type preferably, 12 inch maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
- 4. Shafts: Galvanized steel.
- 5. Bearings: Nylon, bronze sleeve or ball type.
- 6. Hardware: Zinc plated.
- 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.8 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 160 degrees F fusible link, 3 hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.9 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 5 feet. Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 8 inches in diameter shall be Class 1. Ducts 8 inches in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 75 degrees F mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per foot of straight duct, at 500 Hz, based on 6 inch duct, of 2500 fpm.
- D. Application Criteria:

- 1. Temperature range: 0 to 200 degrees F internal.
- 2. Maximum working velocity: 4000 feet per minute.
- 3. Minimum working pressure, inches of water gage: 10 inches positive, 2 inches negative.
- E. Duct Clamps: 100 percent nylon strap, 175 pounds minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 29 ounce neoprene coated fiberglass fabric approximately 6 inches wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 2 inches on center. Fabric shall not be stressed other than by air pressure. Allow at least one inch slack to insure that no vibration is transmitted.

2.11 SOUND ATTENUATING UNITS (NOT USED)

2.12 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 12 inches above finish roof service, continuous welded corner seams, treated wood nailer, 1-1/2 inch thick, 3 pound/cubic feet density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.13 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.14 SEISMIC RESTRAINT FOR DUCTWORK

Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.15 DUCT MOUNTED THERMOMETER (AIR) (NOT USED)

2.16 DUCT MOUNTED TEMPERATURE SENSOR (AIR) (NOT USED)

2.17 INSTRUMENT TEST FITTINGS

A. Manufactured type with a minimum two inch length for insulated duct, and a minimum one inch length for duct not insulated. Test hole shall have a

flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.

B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.18 AIR FLOW CONTROL VALVES (AFCV) (NOT USED)

2.19 LEAD COVERED DUCT

- A. Sheet Lead: 1/8 inch thick, securely installed, free of waves, lumps or wrinkles and with as few joints as possible.
- B. Joints shall be made to obtain X-ray absorption equivalent to adjacent sheet lead, and finished smooth and neat.

2.20 ELECTROSTATIC SHIELDING

- A. At the point of penetration of shielded rooms ducts shall be made electrically discontinuous by means of a flexible, nonconductive connection outside shielded room.
- B. Metallic duct portion inside shielded room shall be electrically bonded to shielding.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.

- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 5 feet long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by

experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.

- 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the Resident Engineer on ductwork constructed to the 2" WG duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 2" WG duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.

- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY (NOT USED)

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION $% \left({{\left[{{{\rm{STET}}} \right]_{\rm{T}}}} \right)$

- - - E N D - - -

02-01-15

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

I. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41,
 - NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point

- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - Centrifugal fans, motors, drives, accessories and coatings.
 c. Up-blast exhaust fans.
 - 3. Prefabricated roof curbs.
 - 4. Power roof ventilators.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-86.....Standards Handbook 210-06....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-09.....Directory of Products Licensed to bear the AMCA

Certified Ratings Seal - Published Annually

HZ PROSTHETIC B/1/49 (PHASED)	1 1 5
02-0 300-08Reverberant Room Method for Sound Testing of	1-15
Fans	
C. American Society for Testing and Materials (ASTM):	
B117-07aStandard Practice for Operating Salt Spray	
(Fog) Apparatus	
D1735-08 Standard Practice for Testing Water Resistan	ce
of Coatings Using Water Fog Apparatus	
D3359-08Adhesion	by
Tape Test	
G152-06Standard Practice for Operating Open Flame	
Carbon Arc Light Apparatus for Exposure of N	on-
Metallic Materials	
G153-04 Enclosed Car	bon
Arc Light Apparatus for Exposure of Non-	
Metallic Materials	
D. National Fire Protection Association (NFPA):	
NFPA 96-08Standard for Ventilation Control and Fire	
Protection of Commercial Cooking Operations	
E. National Sanitation Foundation (NSF):	
37-07Air Curtains for Entrance Ways in Food and F	ood
Service Establishments	
F. Underwriters Laboratories, Inc. (UL):	
181-2005Factory Made Air Ducts and Air Connectors	
1.6 EXTRA MATERIALS	
A. Provide one additional set of belts for all belt-driven fans.	
PART 2 - PRODUCTS	
2.1 FAN SECTION (CABINET FAN)	
Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-	
HANDLING UNITS.	
2.2 CENTRIFUGAL FANS	
A. Standards and Performance Criteria: Refer to Paragraph, QUALITY	
ASSURANCE. Record factory vibration test results on the fan or furni	sh
to the Contractor.	
B. Fan arrangement, unless noted or approved otherwise:	
1. DWD1 fans: Arrangement 3.	
2. SWSl fans: Arrangement 1, 3, 9 or 10.	

- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 1/2 inches wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.
 - Belt Drives: Factory installed with final alignment belt adjustment made after installation.
 - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
 - 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
 - 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION for controller/motor combination requirements.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.

02 - 01 - 15

C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.

- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream

2.4 POWER WALL VENTILATOR (NOT USED)

2.5 PACKAGED HOOD MAKE-UP AIR UNITS (NOT USED)

2.6 CENTRIFUGAL CEILING FANS (SMALL CABINET FAN) (NOT USED)

- 2.7 PROPELLER FANS (NOT USED)
- 2.8 VANE AXIAL FANS (NOT USED)
- 2.9 AIR CURTAIN UNITS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.

02 - 01 - 15

C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

02-01-15

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
 - 2. Air flow control valves.
- C. Samples: Provide one typical air terminal unit for approval by the Resident Engineer. This unit will be returned to the Contractor after all similar units have been shipped and deemed acceptable at the job site.
- D. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- E. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

- 02-01-15 B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-08.....Air Terminals Addendum to ARI 888-98 incorporated into standard posted 15th December 2002
- C. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems
- D. Underwriters Laboratories, Inc. (UL):

181-08.....Standard for Factory-Made Air Ducts and Air Connectors

E. American Society for Testing and Materials (ASTM): C 665-06.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
 - 2. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.

02-01-15

- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule (...) shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.
 - Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2)

02-01-15

IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.

- 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
- Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

2.3 AIR FLOW CONTROL VALVE (AFCV) (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- - - E N D - - -

02-01-15

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 08 90 00, LOUVERS and VENTS.
- B. Section 11 53 13, LABORATORY FUME HOODS.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EOUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th

Edition

C. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures

Station Project No.: 646-18-101 23 37 00 - 1

D. American Society for Testing and Materials (ASTM): A167-99 (2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip B209-07....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate E. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems F. Underwriters Laboratories, Inc. (UL): 181-08.....UL Standard for Safety Factory-Made Air Ducts

PART 2 - PRODUCTS

2.1 GRAVITY INTAKE/EXHAUST VENTILATORS (ROOF MOUNTED)

A. Aluminum, ASTM B209, louvered, spun, or fabricated using panel sections with roll-formed edges, 1/2 inch mesh aluminum welded wire bird screen, with gravity or motorized dampers where shown, accessible interior, designed for wind velocity specified in Paragraph 3.3.

and Connectors

- Spun Intake/Exhaust Ventilators: Spun aluminum structural components shall be constructed of minimum 16 Gauge marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. The spun aluminum baffle shall have a rolled bead for added strength.
- 2. Louvered Intake/Exhaust Hoods: Louvered hood constructed from 0.081 Gauge extruded aluminum tiers welded to a minimum 8 Gauge aluminum support structure. The aluminum hood shall be constructed of a minimum 0.064 marine alloy aluminum and provided with a layer of anti-condensate coating. The aluminum base shall have continuously welded curb cap corners for maximum leak protection.
- 3. Low Silhouette Intake/Exhaust Ventilator: The unit shall be of bolted and welded construction utilizing corrosion resistant fasteners. The aluminum hood shall be constructed of minimum 14 Gauge marine alloy aluminum, bolted to a minimum 8 Gauge aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. Birdscreen constructed of 1/2 inch mesh shall be mounted across the relief opening.

- B. See ventilator schedule on the drawings. Sizes shown on the drawings designate throat size. Area of ventilator perimeter opening shall be not less than the throat area.
- C. Dampers for Gravity Ventilators without Duct Connection: Construct damper of the same material as the ventilator and of the design to completely close opening or remain wide open. Hold damper in closed position by a brass chain and catch. Extend chains 12 inches below and engage catch when damper is closed.
- E. Provide Roof Curb by unit manufacturer. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION for additional requirements.

2.2 EQUIPMENT SUPPORTS

Refer to Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 AIR OUTLETS AND INLETS

A. Materials:

- 1. Steel or aluminum. Provide manufacturer's standard gasket.
- Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.

02 - 01 - 15

- c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.
- 4. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 1-1/4 inches wide.
 - b. Bar spacing: 3/4 inch maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- 5. Supply Grilles: Same as registers but without the opposed blade damper.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 1-1/4 inch margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 1/2 inch by 1/2 inch core with 1-1/4 inch margin.
 - 5. Linear Type: To match supply units.
 - 6. Door Grilles: Are furnished with the doors.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.

02 - 01 - 15

2.4 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 1/2 inch galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 1-1/2 inch margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

2.5 FILTER RETURN/EXHAUST GRILLE (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY (NOT USED)

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION $% \left({{\left[{{{\rm{ST}}} \right]} \right]_{\rm{TOT}}} \right)$

- - - E N D - - -

SECTION 23 74 13 PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof top air handling units including integral components specified herein.
- B. Definitions: Roof Top Air Handling Unit(Roof Top Units, RTU): A factory fabricated assembly consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Sound and vibration requirements.
- D. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Piping and valves.
- E. Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: HVAC controls.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing, adjusting and balancing of air and water flows.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Air Handling Units Certification
 - Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.

- b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4 SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish a complete submission for all roof top units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for RTUs shall include fans, drives, motors, coils, humidifiers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc) and rigging points.
 - 2. Submittal drawings of section or component only, will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details; if the unit cannot be shipped in one piece, the contractor shall

indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.

- 3. Submit sound power levels in each octave band for fan and at entrance and discharge of RTUs at scheduled conditions. Include sound attenuator capacities and itemized internal component attenuation. Internal lining of supply air ductwork with sound absorbing material is not permitted. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design cubic feet per minute and 110 percent of design static pressure.
- 5. Submit total fan static pressure, external static pressure, for RTU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- F. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
 - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).

04-11 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 260-01.....Sound Rating of Ducted Air Moving and Conditioning Equipment

410-01.....Standard for Forced-Circulation Air-Heating and Air-Cooling Coils

430-09.....Standard for Central Station Air Handling Units AHRI-DCAACP.....Directory of Certified Applied Air Conditioning

- C. Air Moving and Conditioning Association (AMCA): 210-07.....Laboratory Methods of Testing Fans for Rating
- D. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA): 9-90 (R2008).....Load Ratings and Fatigue life for Ball Bearings
- E. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE):

51-2007......Laboratory Methods of Testing Fans for Rating F. American Society for Testing and Materials (ASTM):

A653/653M-02.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

B117-07a.....Salt Spray (Fog) Testing

C1071-05e1.....Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)

- D1654-08.....Standard Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
- D1735-08......Water Resistance of Coatings Using Water Fog Apparatus
- D3359-08.....Standard Test Methods for Measuring Adhesion by Tape Test
- E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials

- G. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA): 9-90.....Load Ratings and Fatigue life for Ball Bearings
- H. Military Specifications (Mil. Spec.): DOD-P-21035A-2003.....Paint, High Zinc Dust Content, Galvanizing _____
- I. National Fire Protection Association (NFPA): NFPA 90A.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- J. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 ROOF TOP AIR HANDLING UNITS

- A. General:
 - Roof top units (RTU) shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing is specified in paragraph 2.1.C. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.90 oz. of zinc per square footG90. Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
 - 2. The contractor and the RTU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
 - 3. RTUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
 - 4. The RTU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to

supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative.

- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 Pa (8 inches water gage) or higher.
- B. Base:
 - Provide a heavy duty steel base for supporting all major RTU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 5 inch10 Gauge steel base rails. Welded or bolted cross members shall be provided as required for lateral stability
 - RTUs shall be completely self supporting for installation on roof curb
 - 3. The RTU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - 1. General: RTU casing shall be entirely double wall insulated panels, integral of or attached to a structural frame. Construction shall be such that removal of any panel shall not affect the structural integrity of the unit. Casing finished shall meet salt-spray test as specified in paragraph 2.1.C.10. All casing and panel sections shall be tightly butted and gasketed. No gaps of double wall construction will be allowed where panels bolt to air handling unit structural member. Structural members, not covered by the double wall panels, shall have equivalent insulated double wall construction.
 - 2. Double wall galvanized steel panels, minimum 51 mm (2 inches) thick, constructed to limit wall, roof and floor deflection to not exceed an

04-11 L/240 ratio when the unit casing is pressurized to (±1245 Pa (±5 in. w.g.). Deflection shall be measured at the midpoint of the panel height. Total housing leakage shall not exceed 1% of rated cfm when the unit casing is pressurized to ±5 in. w.g. (±1245 Pa). The outer (skin) and inner panels shall be solid.

- 3. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 4. Insulation: Insulation shall be injected polyurethane foam encased in double-wall casing between exterior and interior panels such that no insulation can erode to the air stream. Insulation shall be 2 inch) thick, and 3.0 lb/ft³)ensity with a total thermal resistance (R-value) of approximately.0 hr-ft^{2 o}F/BTU. Units with less 2 inchof insulation in any part of the walls, floor, roof or drain pan shall not be acceptable. The insulation shall comply with NFPA 90-A for the flame and smoke generation requirements. Also, refer to specification Section 23 07 11, HVAC and BOILER PLANT INSULATION.

Table 2.1.C.4

Outer Panel	0.8 mm (22 Gage) Minimum
Inner Panel	0.8 mm (22 Gage) Minimum
Insulation	Foam
Thickness	50 mm (2 inch) Minimum
Density	$48 \text{ kg/m}^3 (3.0 \text{ lb/ft}^3)$ Minimum
Total R Value	2.3 m ² .K/W (13.0 ft ² . ⁰ F.hr/Btu)
	Minimum

- 5. The thickness of insulation, mode of application, and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU.
- 6. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 2 inches thick with same double wall construction as the unit casing. Doors shall be a minimum of 24 inches wide, unless shown of different size on

drawings, and shall be the full casing height up to a maximum of 6 feet. Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, humidifierand coil section shall include a minimum 6 inch x 6 inch double thickness, with air space between glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.

- a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 100 pound weight hung on latch side of door.
- b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 45 degrees further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 8 inches water gage.
- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- 9. Roof of the unit shall be sloped to have a minimum pitch of 1/4 inch per foot. The roof shall overhang the side panels by a minimum of three inches to prevent precipitation drainage from streaming down the unit side panels.
- 10. Casing finished shall meet ASTM B117, 500-hour salt spray test, using 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no sign of blistering, wrinkling, or cracking, no loss of adhesion, and the specimen shall show no sign of rust creepage beyond 1/8-inch on either side of scratch mark.

- D. Unit floor shall be level without offset space or gap and designed to support a minimum of 100 pounds per square foot distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 1.7 inches and shall handle all condensate without overflowing. Drain pan shall be double wall construction, Type 304 stainless steel and have a minimum of 2 inch insulation, and shall be sloped to drain. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - 1. An intermediate condensate drip pan shall be provided on stacked cooling coils and shall be constructed of type 304 stainless steel with copper downspouts factory piped to main condensate pan. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
 - Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Housed Centrifugal Fan Sections:
 - Fans shall be minimum Class II construction, double width, double inlet centrifugal, backward inclinedor forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B(10) life of not less than 40,000 hours and an L(50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.

- 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.20 inch per second RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- H. Plenum Fans Single and/or Multiple Fans in an Array
 - General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally

isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.

- 2. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC. The fan wheel shall meet or exceed guidelines in AMCA 801-92 for dynamic balancing requirements. The complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
- 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
- 6. Fan Motor, Drive and Mounting Assembly: Fan Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS
- L. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - 1. Filters including one complete set for temporary use at site shall be provided independent of the RTU. The RTU manufacturer shall install

filter housings and racks in filter section compatible with filters furnished. The RTU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for RTU testing.

- 2. Factory-fabricated filter section shall be of the same construction and finish as the RTU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- N. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections.
- 2. Integral Face and Bypass Steam Coils: Provide integral vertical face and bypass dampers. shall be furnished and mounted by the RTU manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- O. Humidifier: When included in design, coordinate the humidification requirements with section 23 84 13 Humidifiers. Provide humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and
- R. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.

- 3. Provide a convenience duplex weatherproof receptacle next to the light switch.
- 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof top unit in conformance with ARI 435.
- B. Assemble roof top unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035A. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air-handling units clean prior to operation.
- C. Install seismic restraints for roof top units. Refer to specification Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
 - D. Leakage and test requirements for roof top units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
 - E. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - F. Seal and/or fill all openings between the casing and RTU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

- - - E N D - - -

DIVISION 26 ELECTRICAL

01-01-16

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts,

certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

- B. Definitions:
 - 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
 - Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.

- 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the

contractor. In addition, the following requirements shall be complied with:

- The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
- When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.

5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment,

barriers to be installed, safety equipment to be used, and exit pathways.

- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system

Station Project No.: 646-18-101 26 05 11 - 6

shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

installation of materials and equipment which has not had prior

B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or

01-01-16

- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION 01 33 23".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.

approval will not be permitted.

- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.

Station Project No.: 646-18-101 26 05 11 - 8

04-30-2019

- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 POLYCHLORINATED BIPHENYL (PCB) EQUIPMENT (NOT USED)

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

01-01-17

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.

a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.

01-01-17

b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials

- D3005-10..... Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
- C. National Electrical Manufacturers Association (NEMA):
 WC 70-09.....Power Cables Rated 2000 Volts or Less for the
 Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):

44-14.....Thermoset-Insulated Wires and Cables

83-14..... Thermoplastic-Insulated Wires and Cables

- 467-13.....Grounding and Bonding Equipment
- 486A-486B-13.....Wire Connectors

486C-13.....Splicing Wire Connectors

486D-15.....Sealed Wire Connector Systems

486E-15..... Equipment Wiring Terminals for Use with

- Aluminum and/or Copper Conductors
- 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-12.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 10 AWG and larger: Stranded.
 - 3. No. 12 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.

7. Color code for isolated power system wiring shall be in accordance with the NEC.

01-01-17

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zincplatedsteel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.

- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplatedsteel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes,.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:

- Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
- 2. Use nonmetallic pull ropes.
- 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
- 4. All conductors in a single conduit shall be pulled simultaneously.
- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES (NOT USED)

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes,. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 DIRECT BURIAL CABLE INSTALLATION (NOT USED)

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

01-01-17

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:

a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.

01 - 01 - 17

- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-13.....Standard Specification for Hard-Drawn Copper Wire

B3-13.....Standard Specification for Soft or Annealed Copper Wire

- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-12..... IEEE Guide for Measuring Earth Resistivity,

- Ground Impedance, and Earth Surface Potentials
- of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC)
 - 70E-15.....National Electrical Safety Code
 - 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL): 44-14Thermoset-Insulated Wires and Cables 83-14Thermoplastic-Insulated Wires and Cables 467-13Grounding and Bonding Equipment
- PART 2 PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.

- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS (NOT USED)

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-platedsteel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS (NOT USED)

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.

3.4 RACEWAY

A. Conduit Systems:

- 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
- Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
- 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).

04-30-2019

01 - 01 - 17

- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.5 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.6 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined

01 - 01 - 17

resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

---END---

01-01-18

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.

c. Layout of required conduit penetrations through structural elements.

01-01-18

- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12.....North American Specification for the Design of

Cold-Formed Steel Structural Members

C. National Electrical Manufacturers Association (NEMA): C80.1-15.....Electrical Rigid Steel Conduit C80.3-15.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit FB1-14....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13....Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic

Tubing)

Station Project No.: 646-18-101 26 05 33 - 2

	01-01-18
FB2.20-14	.Selection and Installation Guidelines for
	Fittings for use with Flexible Electrical
	Conduit and Cable
TC-2-13	.Electrical Polyvinyl Chloride (PVC) Tubing and
	Conduit
TC-3-13	.PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
National Fire Protectio	n Association (NFPA):
70-17	.National Electrical Code (NEC)
Underwriters Laboratori	es, Inc. (UL):
1-05	.Flexible Metal Conduit
5-16	.Surface Metal Raceway and Fittings
6-07	.Electrical Rigid Metal Conduit - Steel
50-15	.Enclosures for Electrical Equipment
360-13	.Liquid-Tight Flexible Steel Conduit
467-13	.Grounding and Bonding Equipment
514A-13	.Metallic Outlet Boxes
514B-12	.Conduit, Tubing, and Cable Fittings
514C-14	.Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-11	.Schedule 40 and 80 Rigid PVC Conduit and
	Fittings
651A-11	.Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-07	.Electrical Metallic Tubing
1242-14	.Electrical Intermediate Metal Conduit - Steel
2 - PRODUCTS	
	TC-2-13 TC-3-13 National Fire Protection 70-17 Underwriters Laboratorin 1-05 5-16 6-07 50-15 360-13 467-13 514A-13 514B-12 514B-12 514C-14 651A-11 797-07

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Size: In accordance with the NEC, but not less than 13 mm (0.5inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.

- 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.

- c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.

3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.

01-01-18

- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the CORwhere working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.

B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.

- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.
 - Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
 - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 - Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 10. Conduit installations under fume and vent hoods are prohibited.
 - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.

- 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.

4. Connect recessed lighting fixtures to conduit runs with maximum 1.8M (6 feet) of flexible metal conduit extending from a junction box to the fixture.

01-01-18

5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.6 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.7 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.8 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an

01 - 01 - 18

additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.9 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.

- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

01-01-18

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA): C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15.....Standard for Industrial Control and Systems General Requirements ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-16....Standard for Industrial Controls and Systems Enclosures
- C. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

20-10.....Standard for General-Use Snap Switches

98-16..... Switches

773-16.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

01-01-18	3		
773A-16Switches for			
Lighting Control			
916-15 Equipment Standard for Energy Management Equipment			
Systems			
917-06Clock Operated Switches			
924-16 Emergency Lighting and Power Equipment (for use			
when controlling emergency circuits).			

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
 - Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.

- 1. Sensitivity Adjustment: Separate for each sensing technology.
- 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).

01-01-18

C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.2INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 5 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.
- E. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory-authorized technician who will verify all adjustments and sensor placements.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

3.4 INSTRUCTION

- A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the lighting control system on the dates requested by the COR.
- B. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

- - - E N D - - -

01-01-18

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.
- G. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11......Panelboards

250-14.....Enclosures for Electrical Equipment (1,000V Maximum)

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

70E-18..... Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL):

50-15..... Enclosures for Electrical Equipment

67-09....Panelboards

489-16..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100%rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.

5. Include removable inner dead front cover, independent of the panelboard cover.

B. Trims:

- 1. Hinged "door-in-door" type.
- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10xBreaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY/Breaker magnetic trip setting shall be set to maximum, unless otherwise noted.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.

- 6. Electrically and mechanically trip free.
- 7. An operating handle which indicates closed, tripped, and open positions.
- 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
- 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
- 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims with finishes to match surrounding surfaces after the panelboards have been installed. Do not paint nameplates.F
- G. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of

enclosures with rust-preventive paint before the new interior components are installed. Provide new trim. Trim shall fit tight to the enclosure.

H.Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

01-01-18

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

01-01-18

- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015).....General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-16.....Surface Metal Raceways and Fittings
 - 20-10..... General-Use Snap Switches
 - 231-16.....Power Outlets
 - 467-13.....Grounding and Bonding Equipment
 - 498-17.....Attachment Plugs and Receptacles
 - 943-16.....Ground-Fault Circuit-Interrupters
 - 1449-14.....Surge Protective Devices
 - 1472-15.....Solid State Dimming Controls
- PART 2 PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

 Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.

- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivoryin color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be grayin color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.

2) Screws exposed while the wall plates are in place shall be the tamperproof type.

01-01-18

- C. Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.

 Bodies shall be //brown// // // nylon.
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.
- F. Surge Protective (TVSS) Receptacles shall have integral surge suppression in line to ground, line to neutral, and neutral to ground modes.
 - TVSS Components: Multiple metal-oxide variators; with a nominal clamp-level rating of 400 Volts, and minimum single transient pulse energy dissipation of 210 Joules.
 - 2. Active TVSS Indication: LED, visible in face of device to indicate device is active or no longer in service.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
 - C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
 - D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
 - E. Duplex Receptacles on Emergency Circuit: // Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.// // Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.//

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- H. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- J. Install horizontally mounted receptacles with the ground pin to the right.
- K. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- L. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - 2. Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

01-01-17

SECTION 26 43 13 SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: For factory-installed or
- C. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.

b. Certification by the Contractor that the SPD has been properly installed.

01 - 01 - 17

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02.....Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits IEEE C62.45-08.....Surge Testing for Equipment Connected to Low-

Voltage (1000 V and Less) AC Power Circuits

C. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

- D. Underwriters Laboratories, Inc. (UL):
 - UL 1283-15..... Electromagnetic Interference Filters
 - UL 1449-14.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 PANELBOARD SPD

- A. General Requirements:
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - 2. Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

2.2 ENCLOSURES

A. Enclosures: NEMA 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Factory-installed SPD: Switchgear, switchboard, or panelboard manufacturer shall install SPD at the factory.
- C. Field-installed SPD: Contractor shall install SPD with conductors or buses between SPD and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 - Provide a circuit breaker as a dedicated disconnecting means for TVSS as shown on drawings.
- D. Do not perform insulation resistance tests on switchgear, switchboards, panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
 - d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - f. Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the COR.

`---END---

01-01-18

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts. E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- F. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- H. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.

- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings
- C. Environmental Protection Agency (EPA):
 40 CFR 261.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices

01-01-18 CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment E. Illuminating Engineering Society of North America (IESNA): LM-79-08..... Measurements of Solid-State Lighting Products LM-80-15..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995).....Surge Voltages in Low Voltage AC Power Circuits G. International Code Council (ICC): IBC-15..... International Building Code H. National Electrical Manufacturer's Association (NEMA): C78.376-14.....Chromaticity of Fluorescent Lamps C82.1-04(R2015)..... Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02(R2016).....Method of Measurement of Fluorescent Lamp Ballasts C82.4-17..... Hamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-17..... Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL 9-11......Dimming of T8 Fluorescent Lighting Systems SSL 1-16.....Electronic Drivers for LED Devices, Arrays, or Systems I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18.....Life Safety Code J. Underwriters Laboratories, Inc. (UL): 496-17....Lampholders 924-16..... Emergency Lighting and Power Equipment 1598-08.....Luminaires 8750-15.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- D. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
 - 3. Exterior finishes shall be as shown on the drawings.
- E. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.

2.3 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch.
 - 1. Enclosure: Shall be impact-resistant thermoplastic. Enclosure shall be suitable for the environmental conditions in which installed.
 - 2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
 - 3. Lamps: Shall be sealed-beam MR-16 halogen, rated not less than 12watts at the specified DC voltage.
 - 4. Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be minimum of 10 years.
 - 5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.
 - 6. Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.4 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - 1. Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings.

Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.

- G. Voltage: Multi-voltage (120 277V).
- H. Provide 90 minutes battery pack complete with charger and self diagnostic.

2.10 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20 $^{\circ}$ C. (-4 $^{\circ}$ F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed lighting fixtures:
 - a. All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.
 - b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.

- Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
- 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
- d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 7. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - The outlet box is supported vertically from the building structure.

- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 8. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 9. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform the following:

- 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
- 2. Electrical tests:

01-01-18

- a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
- b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

DIVISION 27 COMMUNICATIONS

06-01-15

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also
	Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station
CAD	AutoCAD
CBOPC	Community Based Out Patient Clinic

CBC

CCS

CFE

CFM

CFR

CIO

сm CO

COR

CPU

CSU

CUP

dB

dBm dBmV

DC

DEA

CBOC

Coupled Bonding Conductor
Community Based Out Patient Clinic (refer to CBOPC,
OPC, VAMC)
TIP's Cross Connection System (refer to VCCS and
HCCS)
Contractor Furnished Equipment
US Department of Veterans Affairs Office of
Construction and Facilities Management
Consolidated Federal Regulations
Communication Information Officer (Facility, VISN or
Region)
Centimeters
Central Office
Contracting Officer Representative
Central Processing Unit
Customer Service Unit
Conditional Use Permit(s) - Federal/GSA for VA
Decibel
Decibel Measured
Decibel per milli-Volt
Direct Current
United States Drug Enforcement Administration
Data Service Unit
Equipment Bonding Conductor
Engineering Control Center (refer to DCR, EMCR)
Enhanced Data (Rates) for GSM Evolution

	5
DSU	Data Service Unit
EBC	Equipment Bonding Conductor
ECC	Engineering Control Center (refer to DCR, EMCR)
EDGE	Enhanced Data (Rates) for GSM Evolution
EDM	Electrical Design Manual
EMCR	Emergency Management Control Room (refer to DCR, ECC)
EMI	Electromagnetic Interference (refer to RFI)
EMS	Emergency Medical Service
EMT	Electrical Metallic Tubing or thin wall conduit
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,
	LEC)

	HZ PROSTHETIC B/1/49 (PHASED)
EPBX	Electronic Digital Private Branch Exchange
ESR	Vendor's Engineering Service Report
FA	Fire Alarm
FAR	Federal Acquisition Regulations in Chapter 1 of Title
	48 of Code of Federal Regulations
FMS	VA's Headquarters or Medical Center Facility's
	Management Service
FR	Frequency (refer to RF)
FTS	Federal Telephone Service
GFE	Government Furnished Equipment
GPS	Global Positioning System
GRC	Galvanized Rigid Metal Conduit
GSM	Global System (Station) for Mobile
HCCS	TIP's Horizontal Cross Connection System (refer to
	CCS & VCCS)
HDPE	High Density Polyethylene Conduit
HDTV	Advanced Television Standards Committee High-
	Definition Digital Television
HEC	Head End Cabinets (refer to HEIC, PA)
HEIC	Head End Interface Cabinets (refer to HEC, PA)
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
HSPA	High Speed Packet Access
ΗZ	Hertz
IBT	Intersystem Bonding Termination (NEC 250.94)
IC	Intercom
ICRA	Infectious Control Risk Assessment
IDEN	Integrated Digital Enhanced Network
IDC	Insulation Displacement Contact
IDF	Intermediate Distribution Frame
ILSM	Interim Life Safety Measures
IMC	Rigid Intermediate Steel Conduit
IRM	Department of Veterans Affairs Office of Information
	Resources Management

\cap	6 -	-01	_ 1	5
0	0-	- U T	- T	Э.

	06-01
ISDN	Integrated Services Digital Network
ISM	Industrial, Scientific, Medical
IWS	Intra-Building Wireless System
LAN	Local Area Network
LBS	Location Based Services, Leased Based Systems
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)
LED	Light Emitting Diode
LMR	Land Mobile Radio
LTE	Long Term Evolution, or 4G Standard for Wireless Data
	Communications Technology
М	Meter
MAS	Medical Administration Service
MATV	Master Antenna Television
MCR	Main Computer Room
MCOR	Main Computer Operators Room
MDF	Main Distribution Frame
MH	Manholes or Maintenance Holes
MHz	Megaherts (10 ⁶ Hz)
mm	Millimeter
MOU	Memorandum of Understanding
MW	Microwave (RF Band, Equipment or Services)
NID	Network Interface Device (refer to DEMARC)
NEC	National Electric Code
NOR	Network Operations Room
NRTL	OSHA Nationally Recognized Testing Laboratory
NS	Nurse Stations
NTIA	U.S. Department of Commerce National
	Telecommunications and Information Administration
OEM	Original Equipment Manufacturer
T&IO	Office of Information and Technology
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)
OSH	Department of Veterans Affairs Office of Occupational
	Safety and Health

	HZ PROSTHETIC B71/49 (PHASED)
OSHA	United States Department of Labor Occupational Safety
	and Health Administration
OTDR	Optical Time-Domain Reflectometer
PA	Public Address System (refer to HE, HEIC, RPEC)
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)
PCR	Police Control Room (refer to SPCC, could be
	designated SCC)
PCS	Personal Communications Service (refer to UPCS)
PE	Professional Engineer
PM	Project Manager
PoE	Power over Ethernet
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,
	PBX)
PSTN	Public Switched Telephone Network
PSRAS	Public Safety Radio Amplification Systems
PTS	Pay Telephone Station
PVC	Poly-Vinyl Chloride
PWR	Power (in Watts)
RAN	Radio Access Network
RBB	Rack Bonding Busbar
RE	Resident Engineer or Senior Resident Engineer
RF	Radio Frequency (refer to FR)
RFI	Radio Frequency Interference (refer to EMI)
RFID	RF Identification (Equipment, System or Personnel)
RMC	Rigid Metal Conduit
RMU	Rack Mounting Unit
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,
	PA)
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security

	HZ PROSTHETIC B71/49 (PHASED)
SFO	Solicitation for Offers
SME	Subject Matter Experts (refer to AHJ)
SMR	Specialized Mobile Radio
SMS	Security Management System
SNMP	Simple Network Management Protocol
SPCC	Security Police Control Center (refer to PCR, SMS)
STP	Shielded Balanced Twisted Pair (refer to UTP)
STR	Stacked Telecommunications Room
TAC	VA's Technology Acquisition Center, Austin, Texas
ТСО	Telecommunications Outlet
TER	Telephone Equipment Room
TGB	Telecommunications Grounding Busbar (also Secondary
	Bonding Busbar (SBB))
TIP	Telecommunications Infrastructure Plant
TMGB	Telecommunications Main Grounding Busbar (also
	Primary Bonding Busbar (PBB))
TMS	Traffic Management System
TOR	Telephone Operators Room
TP	Balanced Twisted Pair (refer to STP and UTP)
TR	Telecommunications Room (refer to STR)
TWP	Twisted Pair
UHF	Ultra High Frequency (Radio)
UMTS	Universal Mobile Telecommunications System
UPCS	Unlicensed Personal Communications Service (refer to
	PCS)
UPS	Uninterruptible Power Supply
USC	United States Code
UTP	Unshielded Balanced Twisted Pair (refer to TP and
	STP)
UV	Ultraviolet
V	Volts
VAAR	Veterans Affairs Acquisition Regulation
VACO	Veterans Affairs Central Office

	06-01-1
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)
VCCS	TIP's Vertical Cross Connection System (refer to CCS
	and HCCS)
VHF	Very High Frequency (Radio)
VISN	Veterans Integrated Services Network (refers to
	geographical region)
VSWR	Voltage Standing Wave Radio
M	Watts
WEB	World Electronic Broadcast
WiMAX	Worldwide Interoperability (for MW Access)
WI-FI	Wireless Fidelity
WMTS	Wireless Medical Telemetry Service
WSP	Wireless Service Providers

B. Definitions:

- Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- 2. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EQUIPMENT AND SYSTEMS.

- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions. Additional units are typically provided in facility's emergency room, designated nurses stations, director's office, Disaster Control Center, SCC, ECC.
- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.

06 - 01 - 15

- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:
 - 1. Federal Communications Commission, (FCC) CFR, Title 47:

Part 15	Restrictions of use for Part 15 listed RF
	Equipment in Safety of Life Emergency Functions
	and Equipment Locations
Part 47	Chapter A, Paragraphs 6.1-6.23, Access to
	Telecommunications Service, Telecommunications
	Equipment and Customer Premises Equipment
Part 58	Television Broadcast Service
Part 73	Radio and Television Broadcast Rules
Part 90	Rules and Regulations, Appendix C
Form 854	Antenna Structure Registration
Chapter XXIII	National Telecommunications and Information
	Administration (NTIA, P/O Commerce, Chapter
	XXIII) the 'Red Book'- Chapters 7, 8 & 9 $$
	compliments CFR, Title 47, FCC Part 15, RF
	Restriction of Use and Compliance in "Safety of
	Life" Functions & Locations

2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-630 Design of Aerial Cable Plants RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations RUS Bull 1751F-643 Underground Plant Design RUS Bull 1751F-815 Electrical Protection of Outside Plants,

		06-01-15
	RUS Bull 1753F-201	Acceptance Tests of Telecommunications Plants (PC-4)
	RUS Bull 1753F-401	Splicing Copper and Fiber Optic Cables (PC-2)
	RUS Bull 345-50	Trunk Carrier Systems (PE-60)
	RUS Bull 345-65	Shield Bonding Connectors (PE-65)
	RUS Bull 345-72	Filled Splice Closures (PE-74)
	RUS Bull 345-83	Gas Tube Surge Arrestors (PE-80)
3.	US Department of Comr	merce/National Institute of Standards
	Technology, (NIST):	
	FIPS PUB 1-1	Telecommunications Information Exchange
	FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
		Circuit Terminating Equipment for operation
		with Packet Switched Networks, or Between Two
		DTEs, by Dedicated Circuit
	FIPS PUB 140/2	Telecommunications Information Security
		Algorithms
	FIPS PUB 143	General Purpose 37 Position Interface between
		DTE and Data Circuit Terminating Equipment
	FIPS 160/2	Electronic Data Interchange (EDI),
	FIPS 175	Federal Building Standard for
		Telecommunications Pathway and Spaces
	FIPS 191	Guideline for the Analysis of Local Area
		Network Security
	FIPS 197	Advanced Encryption Standard (AES)
	FIPS 199	Standards for Security Categorization of
		Federal Information and Information Systems
4.	US Department of Defe	ense, (DoD):
	MIL-STD-188-110	Interoperability and Performance Standards for
		Data Modems
	MIL-STD-188-114	Electrical Characteristics of Digital Interface
		Circuits
	MIL-STD-188-115	Communications Timing and Synchronizations
		Subsystems
	MIL-C-28883	Advanced Narrowband Digital Voice Terminals
	MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial,
		Radio Frequency, (Series BNC (Uncabled), Socket
		Contact, Jam Nut Mounted, Class 2)

- 06-01-15 5. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules 6. US Department of Justice: 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD). 7. US Department of Labor, (DoL) - Public Law 426-62 - CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at http://www.osha.gov/dts/otpca/nrtl/faq nrtl.htm l) Subpart 35 Compliance with NFPA 101, Life Safety Code Subpart 36 Design and Construction Requirements for Exit Routes Subpart 268 Telecommunications Wiring Methods, Components, and Equipment for Subpart 305 General Use Americans with Disabilities Act Accessibility Subpart 508 Guidelines; technical requirement for accessibility to buildings and facilities by individuals with disabilities
- 8. US Department of Transportation, (DoT):
 - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.

- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/dts/otpca/nrtl/index.html
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL):

1-2005	Flexible	Metal	. Conduit	-	
5-2011	Surface I	Metal	Raceway	and	Fittings

	06-01-15
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit

	HZ P	ROSTHETIC B71/49 (PHASED)
	1449-2006	06-01-15 Standard for Transient Voltage Surge
		Suppressors
	1479-2003	Fire Tests of Through-Penetration Fire Stops
	1480-2003	Speaker Standards for Fire Alarm, Emergency,
		Commercial and Professional use
	1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
		Flame Tests
	1685-2007	Vertical Tray Fire Protection and Smoke Release
		Test for Electrical and Fiber Optic Cables
	1861-2012	Communication Circuit Accessories
	1863-2013	Standard for Safety, communications Circuits
		Accessories
	1865-2007	Standard for Safety for Vertical-Tray Fire
		Protection and Smoke-Release Test for
		Electrical and Optical-Fiber Cables
	2024-2011	Standard for Optical Fiber Raceways
	2024-2014	Standard for Cable Routing Assemblies and
		Communications Raceways
	2196-2001	Standard for Test of Fire Resistive Cable
	60950-1 ed. 2-2014	Information Technology Equipment Safety
D. II	ndustry Standards:	
1	. Advanced Television	Systems Committee (ATSC):
	A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
		Digital Television System
	A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
		RF/Transmission System Characteristics
	A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
		Service Multiplex and Transport System
		Characteristics
	A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
		2 Video System Characteristics
	A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
		Audio System Characteristics
	A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
		Enhanced AC-3 Audio System Characteristics
2	. American Institute d	of Architects (AIA): 2006 Guidelines for Design &

 American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities.

		06-01-15
3.	American Society of M	Mechanical Engineers (ASME):
	A17.1 (2013)	Safety Code for Elevators and Escalators
		Includes Requirements for Elevators,
		Escalators, Dumbwaiters, Moving Walks, Material
		Lifts, and Dumbwaiters with Automatic Transfer
		Devices
	17.3 (2011)	Safety Code for Existing Elevators and
		Escalators
	17.4 (2009)	Guide for Emergency Personnel
	17.5 (2011)	Elevator and Escalator Electrical Equipment
4.	American Society for	Testing and Materials (ASTM):
	B1 (2001)	Standard Specification for Hard-Drawn Copper
		Wire
	B8 (2004)	Standard Specification for Concentric-Lay-
		Stranded Copper Conductors, Hard, Medium-Hard,
		or Soft
	D1557 (2012)	Standard Test Methods for Laboratory Compaction
		Characteristics of Soil Using Modified Effort
		56,000 ft-lbf/ft3 (2,700 kN-m/m3)
	D2301 (2004)	Standard Specification for Vinyl Chloride
		Plastic Pressure Sensitive Electrical
		Insulating Tape
	B258-02 (2008)	Standard Specification for Standard Nominal
		Diameters and Cross-Sectional Areas of AWG
		Sizes of Solid Round Wires Used as Electrical
		Conductors
	D709-01(2007)	Standard Specification for Laminated
		Thermosetting Materials
	D4566 (2008)	Standard Test Methods for Electrical
		Performance Properties of Insulations and
		Jackets for Telecommunications Wire and Cable
5.	American Telephone an	nd Telegraph Corporation (AT&T) - Obtain
	following AT&T Public	cations at https://ebiznet.sbc.com/SBCNEBS/):
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
		Environmental, and Physical Design Requirements
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
		Requirements

			06-01-15
	ATT-TP-76305	(2013)	Common Systems Cable and Wire Installation and
			Removal Requirements - Cable Racks and Raceways
	ATT-TP-76306	(2009)	Electrostatic Discharge Control
	ATT-TP-76400	(2012)	Detail Engineering Requirements
	ATT-TP-76402	(2013)	AT&T Raised Access Floor Engineering and
			Installation Requirements
	ATT-TP-76405	(2011)	Technical Requirements for Supplemental Cooling
			Systems in Network Equipment Environments
	ATT-TP-76416	(2011)	Grounding and Bonding Requirements for Network
			Facilities
	ATT-TP-76440	(2005)	Ethernet Specification
	ATT-TP-76450	(2013)	Common Systems Equipment Interconnection
			Standards for AT&T Network Equipment Spaces
	ATT-TP-76461	(2008)	Fiber Optic Cleaning
	ATT-TP-76900	(2010)	AT&T Installation Testing Requirement
	ATT-TP-76911	(1999)	AT&T LEC Technical Publication Notice
6.	British Stand	lards Ins	stitution (BSI):
	BS EN 50109-2	2	Hand Crimping Tools - Tools for The Crimp
			Termination of Electric Cables and Wires for
			Low Frequency and Radio Frequency Applications
			- All Parts & Sections. October 1997
7.	Building Indu	stry Co	nsulting Service International(BICSI):
	ANSI/BICSI 00	2-2011	Data Center Design and Implementation Best
			Practices
	ANSI/BICSI 00	4-2012	Information Technology Systems Design and
			Implementation Best Practices for Healthcare
			Institutions and Facilities
	ANSI/NECA/BIC	CSI	
	568-2006		Standard for Installing Commercial Building
			Telecommunications Cabling
	NECA/BICSI 60	7-2011	Standard for Telecommunications Bonding and
			Grounding Planning and Installation Methods for
			Commercial Buildings
	ANSI/BICSI 00	5-2013	Electronic Safety and Security (ESS) System
			Design and Implementation Best Practices
8.	Electronic Co	mponent	s Assemblies and Materials Association,(ECA).

	HZ PI	ROSTHETIC B71/49 (PHASED) 06-01-15
	ECA EIA/RS-270 (1973)Tools, Crimping, Solderless Wiring Devices -
		Recommended Procedures for User Certification
	EIA/ECA 310-E (2005)	Cabinets, and Associated Equipment
9.	Facility Guidelines	Institute: 2010 Guidelines for Design and
	Construction of Heal	th Care Facilities.
10.	Insulated Cable Engi	neers Association (ICEA):
	ANSI/ICEA	
	S-80-576-2002	Category 1 & 2 Individually Unshielded Twisted-
		Pair Indoor Cables for Use in Communications
		Wiring Systems
	ANSI/ICEA	
	S-84-608-2010	Telecommunications Cable, Filled Polyolefin
		Insulated Copper Conductor, S-87-640(2011)
		Optical Fiber Outside Plant Communications
		Cable
	ANSI/ICEA	
	S-90-661-2012	Category 3, 5, & 5e Individually Unshielded
		Twisted-Pair Indoor Cable for Use in General
		Purpose and LAN Communication Wiring Systems
	S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,
		Polyolefin Insulated, Copper Conductors
	S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
		Insulated, Copper Conductors
	ICEA S-102-700	
	(2004)	Category 6 Individually Unshielded Twisted Pair
		Indoor Cables (With or Without an Overall
		Shield) for use in Communications Wiring
		Systems Technical Requirements
11.	Institute of Electri	cal and Electronics Engineers (IEEE):
	ISSN 0739-5175	March-April 2008 Engineering in Medicine and
		Biology Magazine, IEEE (Volume: 27, Issue:2)
		Medical Grade-Mission Critical-Wireless
		Networks
	IEEE C2-2012	National Electrical Safety Code (NESC)
	C62.41.2-2002/	

	06-01-15
Cor 1-2012 IEEE	Recommended Practice on Characterization of
	Surges in Low-Voltage (1000 V and Less) AC
	Power Circuits 4)
C62.45-2002	IEEE Recommended Practice on Surge Testing for
	Equipment Connected to Low-Voltage (1000 V and

81-2012 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System

Less) AC Power Circuits

100-1992IEEE the New IEEE Standards Dictionary of
Electrical and Electronics Terms602-2007IEEE Recommended Practice for Electric Systems
in Health Care Facilities1100-2005IEEE Recommended Practice for Powering and

- Grounding Electronic Equipment
- 12. International Code Council:

AC193 (2014) Mechanical Anchors in Concrete Elements

- 13. International Organization for Standardization (ISO):
- ISO/TR 21730 (2007) Use of Mobile Wireless Communication and Computing Technology in Healthcare Facilities -Recommendations for Electromagnetic Compatibility (Management of Unintentional Electromagnetic Interference) with Medical Devices
- 14. National Electrical Manufacturers Association (NEMA):
 - NEMA 250 (2008) Enclosures for Electrical Equipment (1,000V Maximum)
 - ANSI C62.61 (1993) American National Standard for Gas Tube Surge Arresters on Wire Line Telephone Circuits
 - ANSI/NEMA FB 1 (2012)Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing EMT) and Cable
 - ANSI/NEMA OS 1 (2009)Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports
 - NEMA SB 19 (R2007) NEMA Installation Guide for Nurse Call Systems TC 3 (2004) Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing

HZ PROSTHETIC B71/49 (PHASED) 06-01-15		
	NEMA VE 2 (2006)	Cable Tray Installation Guidelines
15.	National Fire Protec	tion Association (NFPA):
	70E-2015	Standard for Electrical Safety in the Workplace
	70-2014	National Electrical Code (NEC)
	72-2013	National Fire Alarm Code
	75-2013	Standard for the Fire Protection of Information
		Technological Equipment
	76-2012	Recommended Practice for the Fire Protection of
		Telecommunications Facilities
	77-2014	Recommended Practice on Static Electricity
	90A-2015	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	99-2015	Health Care Facilities Code
	101-2015	Life Safety Code
	241	Safeguarding construction, alternation and
		Demolition Operations
	255-2006	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2014	Standard for the Installation of Lightning
		Protection Systems
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
16.	Society for Protectiv	ve Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17.	Society of Cable Tele	ecommunications Engineers (SCTE):
	ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
		Distribution Coaxial Cable
18.		ndustry Association (TIA):
	TIA-120 Series	Telecommunications Land Mobile communications
		(APCO/Project 25) (January 2014)

HZ P	ROSTHETIC B71/49 (PHASED)
TIA TSB-140	06-01-15 Additional Guidelines for Field-Testing Length,
	Loss and Polarity of Optical Fiber Cabling
	Systems (2004)
TIA-155	Guidelines for the Assessment and Mitigation of
	Installed Category 6 Cabling to Support
	10GBASE-T (2010)
TIA TSB-162-A	Telecommunications Cabling Guidelines for
	Wireless Access Points (2013)
TIA-222-G	Structural Standard for Antenna Supporting
	Structures and Antennas (2014)
TIA/EIA-423-B	Electrical Characteristics of Unbalanced
	Voltage Digital Interface Circuits (2012)
TIA-455-C	General Requirements for Standard Test
	Procedures for Optical Fibers, Cables,
	Transducers, Sensors, Connecting and
	Terminating Devices, and other Fiber Optic
	Components (August 2014)
TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5-µ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)

HZ P.	ROSTHETIC B/1/49 (PHASED)
TIA-492E000	06-01-15 Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4
	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)
TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)

HZ P.	O6-01-15
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
 - 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
 - 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.

- General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
- 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
- Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
- General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 14. Underground ducts, raceways, precast manholes and pull boxes: Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.
- 15. Lightning protection: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- 16. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- 17. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 18. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 19. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.

- 20. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 21. Detection and screening systems: Section 28 13 53, SECURITY ACCESS DETECTION.
- 22. Intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions: Section 28 16 11, INTRUSION DETECTION EQUIPMENT AND SYSTEMS.
- 23. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
- 24. Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.
- 25. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.
- 26. Emergency Call telephones, intercom systems, with blue strobe light and equipment: Section 28 52 31, SECURITY EMERGENCY CALL/DURESS ALARM/COMMUNICATIONS SYSTEM AND EQUIPMENT.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - 2. Movement of materials: Unload materials and equipment delivered to site. //Pay costs for rigging, hoisting, lowering and moving equipment on and around site, in building or on roof.//
 - Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. // Plan for large equipment requiring positioning prior to closing in building. //
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service

companies, and controlling agencies; provide required connection for each service.

- 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.

- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 - Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.
 - f. Spectrum analyzer.
 - g. Color video monitor with audio capability.
 - h. Video waveform monitor.
 - i. Video vector scope.//
 - j. 100 MHz oscilloscope with video adapters.
 - 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
 - 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:

- Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
- Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.

- 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
- Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
- Provide a Table of Contents and assemble files to conform to Table of Contents.
- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
 - Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
 - 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm

 $(24'' \times 36'')$ with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).

- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- Deliver Record Wiring Diagrams as CAD files in .dwg or.rvt formats as determined by COR.
- Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - Identify factory wiring on equipment being furnished and on wiring diagrams.

- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

- Warranty material and equipment to be free from defects, workmanship, and remain so for a period of one year for Emergency Systems from date of final acceptance of system by Government; provide OEM's equipment warranty document to COR.
- Government maintenance personnel must have ability to contact OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time; contractor and OEM must provide this capability.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.
- B. In cases of renovations in historic or otherwise restrictive buildings, where it has been determined as impossible to follow above stated guidelines, exceptions must not modify maximum distances set forth in TIA 568 and 569; and exceptions must not in any way effect performance of entire TIP system.
- C. Modification to administrative issues requires written approvals from COR with concurrence from SMCS 0050P2H3, OEM, contractor, and local authorities.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.4 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.

- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.5 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.

- c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
- Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
- Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following

conditions and then only after arranging to provide temporary utility services, according to requirements indicated:

- a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
- b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.

- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and

acceptance testing and demonstrations after verification of system operation and completeness by Contractor.

- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for // T568B // T568A // pin assignments and cabling connections are in compliance with TIA standards.
 - 6. Visually confirm minimum // Category 5e // Category 6 //____ // cable marking at TCOs, CCSs locations, patch cords and origination locations.

- Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:

- a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
- b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
- Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:
 - a. Utility provider entrance.
 - b. Buried conduit duct locations.
 - c. Maintenance Holes (Manholes) and hand holes.
 - d. ENTR or DEMARC.
 - e. PBX interconnections.
 - f. MCR interconnections.
 - g. MCOR interconnections.
 - h. TER interconnections.
 - i. TOR interconnections.
 - j. Control room interconnections.
 - k. TR interconnections.
 - 1. System interfaces in locations listed herein.
 - m. HE interconnections.
 - n. Antenna (outside and inside) interconnections.
 - o. System and lightning ground interconnections.
 - p. Communications circulating ground system.
 - q. UPS areas.
 - r. Emergency generator interconnections.
 - s. Each general floor areas.
 - t. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.
- I. Acceptance Test:
 - Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.

- Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - EMS Representatives: Police, Sherriff, City, County or State representatives.
- Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.

- If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - 2. A system inventory including available spare parts must be taken at this time.
 - 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - Inventory system diagrams, record drawings, equipment manuals, pretest results.
 - Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:
 - Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
 - 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of

the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.

- M. Proof of Performance Certification:
 - If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

06-01-15

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28 .

1.2 RELATED WORK

- A. Requirements for a lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- B. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.

- B. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- C. Telecommunication System Ground Busbars: (EXISTING)
- D. Equipment Rack and Cabinet Ground Bars: (EXISTING)
- E. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- F. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- G. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- H. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Install telecommunications bonding backbone conductor throughout building via telecommunications backbone pathways effectively bonding all interior telecommunications grounding busbars in telecommunications rooms, antenna headend equipment room, telephone operators room, VoIP active equipment room,// and //network operations room// to telecommunications main grounding busbar in Demarc room after testing bond to verify bonding conductor for telecommunications from grounding electrode conductor is installed per NEC. Size telecommunications bonding backbone conductor as specified in TIA-607-B.

- B. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- C. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- D. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- E. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- F. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 5. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
 - 6. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.

- 7. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
- 8. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
 - c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
 - d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.
- G. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
 - 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:

- Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
- Install 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.
- H. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
 - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
 - d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- I. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- J. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- K. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.

 Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.

06 - 01 - 15

- 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- L. Communications Cable Tray Systems (EXISTING)
- M. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
- N. Ground Resistance:
 - Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
 - Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

10-01-18

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Bedding of conduits: Section 31 20 00, EARTH MOVING.
- B. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- C. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- D. Fabrications for deflection of water away from building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- E. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- F. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:

- 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
- 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
- 3. Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
- 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
- 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Conform to UL 5.
- 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:

- 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
- Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- g. Provide OEM approved fittings.
- 2. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of
 "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 3. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 5. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps

to prevent wires and cables from changing from one partitioned pathway to another.

- 6. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 8. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.

- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
 - 5. Size: Metric Designator 53 (trade size 2) or smaller.
 - Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
 - 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
 - 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
 - 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
 - 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- I. Outlet Boxes:

- Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
- Flush wall mounted 12.7 cm (5 inches) square x 7.3 cm (2-7/8 inches); deep pressed galvanized steel.
- 3. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.
- K. Cable Tray:
 - Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
 - 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
 - Provide continuous welded top side wire to protect cable insulation and installers.
 - High strength steel wires formed into a 50 x 100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
 - 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: 105 mm (4 inch) // 150 mm (6 inches) // .
 c. Width: 300 mm (12 inches) .
 - 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
 - 7. Provide accessories to protect, support and install wire basket tray system.
- L. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- M. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

Grounding27 05 26Conduit Not RequiredControl, Communication and Signal Wiring27 10 00Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable LaddersCommunications Structured Cabling27 15 00Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable TrayMaster Antenna Television Equipment and Systems27 41 31Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable TrayPublic Address and Mass Notification Systems27 51 16Complete conduitIntercommunications and Program systems27 52 23Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable TrayNurse Call27 52 31Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable TrayMiscellaneous Medical Systems27 52 41Complete ConduitGrounding and Bonding for Electronic Safety and Security28 05 26Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable TrayPhysical Access Control System28 13 10Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable TrayPhysical Access Control System28 13 53Complete ConduitVideo Surveillance28 23 00Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable TrayPhysical Access Detection System28 13 60Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cabl	System	Specification Section	Installed Method
Control, Communication and Signal Wiringin Non-Partitioned Cable Tray or Cable LaddersCommunications Structured Cabling27 15 00Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable TrayMaster Antenna Television Equipment and Systems27 41 31Conduit to Cable Tray, Partitioned Cable TrayPublic Address and Mass Notification Systems27 51 16Complete conduitIntercommunications and Program systems27 51 23Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable TrayNurse Call27 52 31Conduit to Cable Tray, Partitioned Cable TrayPhysical Access Control System28 13 16Conduit to Cable Tray, 	Grounding	27 05 26	Conduit Not Required
Structured CablingPartitioned Cable TrayMaster Antenna Television Equipment and Systems27 41 31Conduit to Cable Tray, Partitioned Cable TrayPublic Address and Mass Notification Systems27 51 16Complete conduitIntercommunications and Program systems27 52 23Conduit to Cable Tray, Partitioned Cable Tray, Partitioned Cable Tray, Partitioned Cable TrayNurse Call27 52 31Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable Tr	,	27 10 00	in Non-Partitioned Cable
Equipment and SystemsPartitioned Cable TrayPublic Address and Mass Notification Systems27 51 16Complete conduitIntercommunications and Program systems27 51 23Conduit to Cable Tray, Partitioned Cable TrayNurse Call27 52 23Complete ConduitSecurity Emergency Call, Duress Alarm, and Telecommunications27 52 31Conduit to Cable Tray, Partitioned Cable TrayMiscellaneous Medical Systems27 52 41Complete ConduitDistributed Radio Antenna Equipment and System28 05 26Conduit to Cable Tray, Partitioned Cable TrayGrounding and Bonding for Electronic Safety and System28 13 00Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable TrayPhysical Access Control System28 13 16Conduit to Cable Tray Partitioned Cable Tray, Partitioned Cable		27 15 00	
Notification Systems27 51 23Conduit to Cable Tray, Partitioned Cable TrayIntercommunications and Program systems27 52 23Complete ConduitNurse Call27 52 23Complete ConduitSecurity Emergency Call, Duress Alarm, and Telecommunications27 52 31Conduit to Cable Tray, Partitioned Cable TrayMiscellaneous Medical Systems27 52 41Complete ConduitDistributed Radio Antenna Equipment and System28 05 26Conduit to Cable Tray, Partitioned Cable TrayGrounding and Bonding for Electronic Safety and Security28 13 00Conduit to Cable Tray Partitioned Cable TrayPhysical Access Control System28 13 16Conduit to Cable Tray, Partitioned Cable TraySecurity Access Detection28 13 53Complete ConduitIntrusion Detection System28 13 20Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable TraySecurity Access Detection28 13 20Conduit to Cable Tray, Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray, Partitioned Cable Tray, Par		27 41 31	
Program systemsPartitioned Cable TrayNurse Call27 52 23Complete ConduitSecurity Emergency Call, Duress Alarm, and Telecommunications27 52 31Conduit to Cable Tray, Partitioned Cable TrayMiscellaneous Medical Systems27 52 41Complete ConduitDistributed Radio Antenna Equipment and System27 53 19Conduit to Cable Tray, Partitioned Cable TrayGrounding and Bonding for Electronic Safety and System28 05 26Conduit to Cable Tray Partitioned Cable TrayPhysical Access Control System28 13 00Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable TrayPhysical Access Control System28 13 16Conduit to Cable Tray Partitioned Cable Tray, Partitioned Cable Tray, <br< td=""><td></td><td>27 51 16</td><td>Complete conduit</td></br<>		27 51 16	Complete conduit
Security Emergency Call, Duress Alarm, and Telecommunications27 52 31Conduit to Cable Tray, Partitioned Cable TrayMiscellaneous Medical Systems27 52 41Complete ConduitDistributed Radio Antenna Equipment and System27 53 19Conduit to Cable Tray, Partitioned Cable TrayGrounding and Bonding for Electronic Safety and System28 05 26Conduit Not Required Unless Required by CodePhysical Access Control System28 13 00Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable TrayPhysical Access Control System28 13 16Conduit to Cable Tray Partitioned Cable Tray, Partitioned Cable Tray,		27 51 23	_
Duress Alarm, and TelecommunicationsPartitioned Cable TrayMiscellaneous Medical Systems27 52 41Complete ConduitDistributed Radio Antenna Equipment and System27 53 19Conduit to Cable Tray, Partitioned Cable TrayGrounding and Bonding for Electronic Safety and Security28 05 26Conduit Not Required Unless Required by CodePhysical Access Control System28 13 00Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable TrayPhysical Access Control System and Database Management28 13 16Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable TraySecurity Access Detection System28 13 53Complete ConduitVideo Surveillance28 23 00Complete ConduitElectronic Personal Protection System28 26 00Conduit to Cable Tray, Partitioned Cable Tray,	Nurse Call	27 52 23	Complete Conduit
NumberInternationInternationSystemsInternationInternationDistributed Radio Antenna Equipment and System27 53 19Conduit to Cable Tray, Partitioned Cable TrayGrounding and Bonding for Electronic Safety and Security28 05 26Conduit Not Required Unless Required by CodePhysical Access Control System28 13 00Conduit to Cable Tray Partitioned Cable TrayPhysical Access Control System and Database Management28 13 16Conduit to Cable Tray Partitioned Cable Tray Partitioned Cable Tray, Partitioned Cable T	Duress Alarm, and	27 52 31	_
Equipment and SystemPartitioned Cable TrayGrounding and Bonding for Electronic Safety and Security28 05 26Conduit Not Required Unless Required by CodePhysical Access Control System28 13 00Conduit to Cable Tray Partitioned Cable Tray, Partitioned Cable Tray, Partitioned Cable Tray Partitioned Cable Tray Partitioned Cable Tray, Partitioned Cable Tray, Part		27 52 41	Complete Conduit
Electronic Safety and SecurityUnless Required by CodePhysical Access Control System28 13 00Conduit to Cable Tray Partitioned Cable TrayPhysical Access Control System and Database Management28 13 16Conduit to Cable Tray Partitioned Cable TraySecurity Access Detection28 13 53Complete ConduitIntrusion Detection System28 16 00Conduit to Cable Tray, Partitioned Cable TrayVideo Surveillance28 23 00Complete ConduitElectronic Personal Protection System28 26 00Conduit to Cable Tray, Partitioned Cable Tray, Partitioned Cable Tray		27 53 19	_
SystemPartitioned Cable TrayPhysical Access Control System and Database Management28 13 16Conduit to Cable Tray Partitioned Cable TraySecurity Access Detection28 13 53Complete ConduitIntrusion Detection System28 16 00Conduit to Cable Tray, Partitioned Cable TrayVideo Surveillance28 23 00Complete ConduitElectronic Personal Protection System28 26 00Conduit to Cable Tray, Partitioned Cable Tray, Partitioned Cable Tray	Electronic Safety and	28 05 26	
System and Database ManagementPartitioned Cable TraySecurity Access Detection28 13 53Complete ConduitIntrusion Detection System28 16 00Conduit to Cable Tray, Partitioned Cable TrayVideo Surveillance28 23 00Complete ConduitElectronic Personal Protection System28 26 00Conduit to Cable Tray, Partitioned Cable Tray, Partitioned Cable Tray		28 13 00	
Intrusion Detection System28 16 00Conduit to Cable Tray, Partitioned Cable TrayVideo Surveillance28 23 00Complete ConduitElectronic Personal Protection System28 26 00Conduit to Cable Tray, Partitioned Cable Tray	System and Database	28 13 16	1
SystemPartitioned Cable TrayVideo Surveillance28 23 00Complete ConduitElectronic Personal Protection System28 26 00Conduit to Cable Tray, Partitioned Cable Tray	Security Access Detection	28 13 53	Complete Conduit
Electronic Personal Protection System28 26 00Conduit to Cable Tray, Partitioned Cable Tray		28 16 00	
Protection System Partitioned Cable Tray	Video Surveillance	28 23 00	Complete Conduit
Fire Detection and Alarm 28 31 00 Complete Conduit		28 26 00	_
	Fire Detection and Alarm	28 31 00	Complete Conduit

- B. Penetrations:
 - 1. Cutting or Holes:

- a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
- b. Make holes through concrete and masonry in new // and existing // structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
- c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
- d. Waterproofing at Floor, Exterior Wall, and Roof Conduit
 Penetrations:
 - Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS or directed by waterproofing manufacturer.
 - 2) Where work to be performed by _____ .
- C. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
 - Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
 - 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.

- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).

- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Conduit installations under fume and vent hoods are prohibited.
- 20. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 21. Do not use aluminum conduits in wet locations.
- 22. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 23. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 24. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.

- Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
- Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
- e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - 1. Rigid steel, IMC or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- G. Expansion Joints:
 - Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.

- Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.
- H. Seismic Areas:
 - 1. In seismic areas, follow H-18-8 Seismic Design Requirements.
 - Rigidly secure conduit to building structure on opposite sides of a building expansion joint with pull boxes on both sides of joint.
 - 3. Connect conduits to pull boxes with 375 mm (15 inches) of slack flexible conduit.
 - Install green copper wire minimum #6 AWG in flexible conduit for bonding jumper.
- I. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
 - 6. Fastening to Hollow Masonry: Toggle bolts are permitted.

- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- Bolts supported only by plaster or gypsum wallboard are not acceptable.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- J. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
 - In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
 - Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
 - 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
 - Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- K. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.

- 4. Make bends manually to assure internal diameter of tubing is not effectively reduced.
- 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 // and 28 //.

1.2 RELATED WORK

- A. Excavation and backfill for cables that are installed in conduit: Section 31 20 00, EARTH MOVING.
- B. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - 3. Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.

- D. Power: Provide specific voltage, amperage, phases, // generator equipment // and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:
 - Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
 - 2. Provide certified OEM sweep test tags from each cable reel to COR.
 - Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
 - Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
 - 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).

- Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
- 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:
 - 1) 18 AWG, minimum, Outside.
 - 2) 20 AWG, minimum, Inside.
 - d. Color Coding: Required, EIA industry standard.
 - e. Bend Radius: 10 times cable outside diameter.
 - f. Impedance: As required.
 - g. Shield Coverage: As required by OEM specification.
 - h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum	
0.7	5.2	
1.0	6.5	
4.0	14.0	
8.0	19.0	
16.0	26.0	
20.0	29.0	
25.0	33.0	
31.0	36.0	
50.0	52.0	

- E. Distribution System Signal Wires and Cables:
 - Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
 - Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
 - 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems // ; provide not less than TIA Performance Category 5e // .
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
 - Provide connectors for transmission lines, and signal extensions to maintain uninterupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
 - Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.
 - 2) Data Cable Shields.

- 3) Equipment Racks.
- 4) Equipment Cabinets.
- 5) Conduits.
- 6) Ducts.
- 7) Cable Trays.
- 8) Power Panels.
- 9) Connector Panels.
- 10) Grounding Blocks.
- b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.
 - a. Voice (or Telephone):
 - Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 5e, //6//.

- 2) IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 5e, // 6// and the size and type of cable used.
- 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
- 4) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 100.
 - b) Number of Terminals per Row: Minimum 4.
 - c) Terminal Protector: Required for each used or unused terminal.
 - d) Insulation Splicing: Required between each row of terminals.
- b. Digital or High Speed Data:
 - Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 5E (or on a case by case basis Category 6// 6A// for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
 - 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.
 - c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
 - d. Pull multiple cables into a single conduit together.
- B. Installation in Maintenance or Man holes:
 - Install and support cables in maintenance holes on steel racks with porcelain or equal insulators.
 - 2. Train cables around maintenance hole walls, but do not bend to a radius less than six times overall cable diameter.
 - 3. //Fireproofing:
 - a. Install fireproofing where low voltage cables are installed in same maintenance holes with high voltage cables; also cover low voltage cables with arc proof and fireproof tape.
 - b. Use tape of same type used for high voltage cables, and apply tape in a single layer, one-half lapped or as recommended by manufacturer. Install tape with coated side towards the cable and extend minimum 25 mm (1 inch) into each duct.
 - c. Secure tape in place by a random wrap of glass cloth tape. //
- C. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.

- 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
- 5. Concealed splices are not allowed.
- Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
- 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
- Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
- Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
 - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
 - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
 - d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.

- e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
- f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.
- D. AC Power:
 - Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
 - 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
 - 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
 - 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.
 - 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
 - 3. Install labels retaining their markings after cleaning.
 - 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.

B. Labeling:

1. Industry Standard: ANSI/TIA-606-B.

- 2. Print lettering for voice and data circuits using // laser printers // thermal ink transfer process //____ //; handwritten labels are not acceptable.
- 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.
- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

- - - E N D - - -

06-01-15

SECTION 27 31 00 VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies a complete and fully functional emergency voice communication switching and routing equipment and system (hereinafter referred to as the "system") to be installed in the // _____ // facility, (hereinafter referred to as the "facility") that includes an emergency voice and dial processing switch, government accepted equipment cabinets, interface enclosures, radio relay racks, stand-by batteries (UPS), combiners, traps, and filters; interconnection nodes and amplifiers; voice station instruments; auxiliary systems; and passive devices such as: protectors, isolators, splitters, couplers, cable patch, punch down, and cross-connector blocks or devices, cable management items, and associated hardware.
- B. Government defines system as a Critical Service Communication System and is so listed by NFPA. Its installation and operation must adhere to appropriate National, Government, and Local Life Safety and Emergency Communication Support Codes, whichever are more stringent for this facility.

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. Lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- F. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- G. Voice and data cable distribution system and associated equipment: Section 27 15 00, COMMUNICATIONS STRUCTURED CABLING.

- H. Extension of a voice communication switching and routing system: Section 27 31 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT EXTENSION.
- I. Emergency Service Public Address System (PAS) and associated equipment: Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS submit the following:
 - 1. Bill of Materials.
 - 2. System cabinet and each interface cabinet layout drawing, as each is expected to be installed.
 - 3. Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.
 - 4. Engineering drawings of system, showing calculated signal levels at system output, each input and output distribution point, proposed telephone outlet values, and signal level at each telephone outlet multi-pin jack.
 - 5. List of test equipment.
- B. Environmental Requirements: Confirm environmental specifications for physical TR areas occupied by system. Identify requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power Requirements: Provide specific voltage, amperage, phases, and quantities of circuits required.
 - 5. Air Conditioning, Heating, and Humidity Requirements:
 - a. Identify ambient temperature and relative humidity operating ranges required to prevent equipment damage.
 - b. Air conditioning requirements expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards.
 - Proposed floor plan, based on expanded system configuration of proposed system for this facility.
 - Conduit size requirement (between main TR, remote TR, Telephone Equipment Room, MCR and devices).

- C. Submit samples of reports generated by TMS with technical submittal for evaluation of formats and compliance with information field content.
- D. Needs Analysis Report: Provide summary report of the needs analysis conducted per requirements of this section.
- E. Provide current and qualified OEM training certificates and OEM certification for contractor installation, maintenance, and supervisory personnel.
- F. Proof of Performance Test Plan: Provide COR and SMCS 0050P2H3 (202) 461-5310 with a Proof of Performance Test Plan 90 days prior to cutover of system.
 - Include tests to demonstrate system's capabilities of providing indicated services.
 - Use only test equipment accepted by SMCS 0050P2H3 (202) 461-5310 and COR included with acceptance test plan.
 - 3. Submit test equipment certification verifying calibration within six months of system cut-over.
- G. Closeout Submittals:
 - 1. Provide two copies of OEM developed training video presentation for evaluation and approval by COR.
 - 2. Provide spreadsheet with details of the complete record program in memory for associated station assignments.
 - Provide a written commitment from system equipment OEM to supply parts and on-site engineering support services for one year warranty service (materials and labor).
 - Provide OEM certification allowing, OEM or authorized distributor to fully support contract (initial installation, warranty service for warranty period of the contract).
 - a. System equipment OEM's signatory of certified written commitment must be of an individual who has full authority to obligate OEM to this commitment.
 - b. Include names, corporate addresses, and telephone numbers of individuals who have this authority as a part of the commitment.
- H. Maintenance Material Submittals:
 - 1. Furnish 5 percent spare protectors for lightning protection system.
 - 2. Furnish one spare audio monitor panel.
 - 3. Furnish on spare electrical supervision panel.

06-01-15

4. Furnish a complete set of system electronic modules and cards to be used as on-hand operational emergency spare equipment. One each of T-1, DS-**, interface cards etc. is the minimum required or a compliment as directed by OEM. Confer with SMCS 0050P2H3 to determine other spare items required to equip system with emergency repair capabilities that completely adhere to system warranty requirements.

1.4 QUALITY ASSURANCE

- A. Supervision:
 - Provide a full time on-site project manager, effective on issuance of notice to proceed, responsible to coordinate and supervise contractor and sub-contractor personnel in all phases of installation, training, inspection, cutover, and final acceptance of system. Deliver project manager a complete copy of these specifications to include all amendments prior to start of installation.
 - 2. Coordinate and conduct system data base survey with SMCS 0050P2H3, (202) 461-5310, COR and a member of IT Service identifying all programming of features, classes of service, and equipment installed by type and physical location as specified in this document and all attachments thereto. After survey is completed, turn over a complete list of equipment to COR for approval by SMCS 0050P2H3, (202) 461-5310, prior to start of installation.
 - 3. Ensure that project manager and skilled personnel remain on premise until items on the punch list, developed during inspection, cutover, and acceptance testing of system are completed, inspected, and accepted by COR.
 - 4. Be responsible for any and all coordination with LEC relative to interface with commercial telephone system; be responsible for removal of voice and data equipment and cabling abandoned by LEC, Government, or other organizations and not retained for exclusive use by Government as a result of this installation.
- B. Needs Analysis (required for replacement of existing systems): Conduct a needs analysis of existing facility with representatives from IRM and various departments to determine system's requirements. Depict system features and capacities, in addition to specific site requirements.

06-01-15

1. System:

ITEM WIRED	EQUIPPED CAPACITY	WIRED CAPACITY
Main Station Lines:		
Single Line		
Multi Line		
(Equipped for direct inward dialing)		
Central Office Trunks:		
Two Way		
DID		
Two-way Dial Repeating Tie Line		
Foreign Exchange (FX)		
Conference		
Audio Paging Access		
Off-Premise Extensions		
CO Trunk By-Pass		
Monitors w/keyboard(s)		
Printer(s)		
Operator Console(s)		
T-1 Access/Equipment		
Maintenance Terminal		

 Projected Maximum Growth: Identify projected maximum growth for each item identified in this section. For this purpose, the following definitions are provided to detail system's capability:

- a. Provide software and hardware required to equip system with items listed under equipped capacity, 30 days prior to system cut-over.
- b. Wired Capacity to include wiring and equipment listed under wired capacity, with the exception of line, data, and trunk cards, provided and tested 30 days prior to system cutover.
- c. Expand system to projected maximum growth through use of printed circuit boards and modular cabinets that do not require extensive re-wiring and reprogramming.
- 3. Cable Distribution System: Refer to Section 27 15 00, COMMUNICATIONS STRUCTURED CABLING, for specific cable distribution system requirements. Contractor is required to formulate a projected cable

06-01-15

and TCO count that coincides with projected maximum growth described herein.

4. Telephone Instruments (Stations): Telephone instruments are an integral component of system. Indicate each instrument location, type of instrument and class of service as determined by the needs analysis // or as shown on drawings //.

1.5 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Conform to CFM OI&T Design Guide.
- B. Conform to CFM Electrical Design Manual (EDM-PG18-10, current edition).
- C. Perform the following minimum services designed in accordance with and supported by OEM:
 - 1. Provide continuous inter- and intra-facility voice service.
 - 2. Capacity size and install systems so that loss of connectivity to an external telephone systems, VoIP and facility's LAN/WAN systems does not affect facility's operation in specific designated emergency operating locations and instruments including the Commission and NFPA 101 listed Analog Emergency By-Pass Phones; Police Emergency Call Equipment (elevator cabs, parking lots, stairwells, Duress Alarms and Locator); Code Blue (One, FAX, Patient Phones).
 - 3. Inter-operate, connect, and function fully with existing Local (Telephone) Exchange Company (LEC) Networks, Federal Telephone Service (FTS) Inter-city Networks, Inter-exchange Carriers, Integrated Services Digital Network (ISDN) and Voice over Internet Protocol (VoIP) at a minimum (NOTE: VoIP Service is not allowed to perform Facility Safety of Life Functions as well as facility's LAN/WAN. Contact SMCS 0050P2H3, (202) 461-5310 for specific technical assistance and approvals.
 - Contain control and switching equipment, voice and digital system, with attendant consoles.
 - 5. Contain voice mail and automatic attendant functions and continuous intra- and inter-facility voice service.

- Provide universal night answering function from facility designated remote locations.
- 7. Direct access to trunk level equipment including audio paging, Industry Standard "T" and "DS" carrier protocols, and external protocol converters.
- 8. Provide connections to "T" and "DS" access/equipment or Customer Service Units (CSU or DTE) used in Federal telephone service and other trunk applications. Provide T-1 equipment required to terminate and make operational the quantity of circuits designated. Connect CSUs to system's emergency battery power supply. Provide system capable of operating in industry standard DS protocol and provide that level of service when required.
- 9. Contain attendant and operator consoles, video monitors with keyboards, and printers to provide employee directory access from Traffic Management System (TMS). Provide identical capabilities at console positions, video monitors, and keyboards. Provide attendant consoles accepting a mixture of trunk types and extend calls received via these trunks to station users.
- 10. Be capable of interfacing and operating with Direct-Incoming-Dial (DID) service to stations as identified herein without affecting intra-facility operation. Provide DID trunk group that must operate as a separate trunk group from other Central Office (CO) trunks.
- 11. Contain the designated number of telephone instruments, where each instrument (also referred to as "station") has ability to direct dial other facility telephone stations, public telephone network, tie-lines, and FTS telephone numbers without attendant assistance. Provide dual tone multi-frequency (DTMF) for intra-facility and external-facility calling at each station. The term DTMF, as used herein, is defined as "a dialing or analog operation".
- Provide standard digital // VoIP // telephone instruments at designated TCOs.
- 13. Provide at designated TCOs and locations shown on drawings, "Special Hands Free" digital // VoIP // telephone instruments.
- 14. Receive specified telephone signals acquired from LEC and FTS contracted carrier, process and distribute them to designated telephone stations, as determined by Class of Service (CoS).

- 15. At a minimum, provide four // or ____ // TCOs on each TER //, MCR//, and TR// wall and on either side of each door opening.
- 16. Interface and connect telephone multi-pin jack to system via 110 type punch blocks in TER //, MCR//, and TR// meeting Category 5E level of service.
- 17. Perform adjacent channel operation a minimum of local, long distance, and Federal telephone service telephone signals. Install and interface system equipment according to OEM's schematic diagram for adjacent telephone channel operation. Provide testing capability in each equipment cabinet, rack, interface point and test ports that provide access for each telephone channel without need to disconnect distribution cables or equipment. Process each telephone channel as a single channel. Include a means of monitoring complete system with appropriate printout and archiving of each processed and distributed channel.
- 18. Design system to minimize cross talk, background processor noise, inter-modulation, and other signal interference. Install and interface system equipment according to OEM head-end schematic diagram for adjacent audio channel operation. Process each audio input channel as a single separate channel and combine into one output channel. Provide, in the telephone switch room, an audio and visual monitoring panel to test each converted audio input and distribution channel and analog channels, transmitted and received signal functions. Electrically supervise system's Alternating Current (AC) power input, stand by batteries and charger, internal Direct Current (DC) power supply primary voltages and currents; and each remote control unit, audio //, and analog RF// interface unit, from TER. Provide in TER, telephone operator room, MCR, Police Security Service Control Console //, MAS Emergency Room, //, and // to check supervisory signals, signal level, audio sound and visual level, and alert personnel to problems.
- 19. //Provide Digital Signal Processor Resources for a non-blocking telephone system.//
- 20. Point Of Local (Telephone) Exchange Company Demarc: Notify COR if signals at LEC interface point do not meet minimum signal level and

//.

quality, detailing the nature of the deficiencies, and expected effect on the telephone signals in the new system.

- 21. System must acquire telephone signals at //
- 22. A minimum of // _____ // analog emergency telephone
 connections must be acquired at // _____ // and connected to
 // _____ // analog back up circuits.
- 23. System Location Selection: Locate system cabinets and associated equipment in the building // // floor.
- D. System Performance:
 - 1. Support and fully operate in the following functional modes:
 - a. ISDN Integrated Services for Digital Networks:
 - 1) Basic Rate Interface (BRI).
 - 2) Primary Rate Interface (PRI).
 - b. Fiber-optic Distributed Data Interface (FDDI).
 - System Sensitivity: Provided satisfactory service for at least 3,000 feet for all voice locations.
 - 3. //Other //
 - 4. Minimum System Operating Parameters:
 - a. System Speed: Minimum 1.0 giga-Bits (gb) per second.
 - b. Impedance: 600 Ohms, BAL.
 - c. Cross Modulation: -60 deci-Bel (dB).
 - d. Hum Modulation: -55 dB.
 - e. System Data Error: Minimum 10 to the -10 Bits per second (Bps).
 - f. Loss: Measured at frame output with reference Zero (0) deci-Bel measured (dBm) at 1,000 Hertz (Hz) applied to frame input:
 - 1) Trunk to station: Maximum 1.5 dB.
 - 2) Station to station: Maximum 3.0 dB.
 - Internal switch crosstalk: -60 dB when a signal of + 10 dBm, 500-2,500 Hz range is applied to primary path.
 - g. Idle channel noise: 25 dB relative noise per channel (rnC) or 3.0 dBm at 0 above (terminated) ground noise, whichever is greater.
 - h. Traffic Grade of Service for Voice: Minimum grade P-01 with an average traffic load of 7.0 One Hundred Call Seconds (CCS) per station per hour.

- i. Average CCS per Voice Station: CCS capacity maintained at 7.0 CCS and a Time Between Failures (TBF) of 99.99 percent when system is expanded up to the projected maximum growth.
- E. Voice and Audio Standards:
 - 1. Input and Output Signal Level: 0.0 dBm at 1 kilo Hertz (kHz) test tone modulation level.
 - 2. Input and Output Impedance: 600 Ohms Balanced (BAL).
 - 3. Input and Output Signals: Terminated on each system unit.
 - 4. Frequency Range: Minimum 50 Hertz (Hz) to 3.0 kHz + 1.0 percent.
 - 5. Signal-to-Noise Ratio: 60 deci-Bell per mili-Volt (dBmV) + 1.0 dBmV.
 - 6. Cross Modulation: -46 dB.
 - 7. Hum Modulation: -55 dB.
 - 8. Isolation (control unit to unit): Minimum 24 dB.
- F. Control Signal Standards:
 - 1. Input and Output Signal: 0.0 dBmV + 1.0 dBmV Level.
 - 2. Input and Output Signals Terminated on each system unit.
 - 3. Input and Output Impedance: 600 Ohms, BAL.
 - 4. Channel Bandwidth Voice: Minimum 50 Hz to 3.0 kHz, + 5.0 percent.
 - 5. S/N Ratio: 60 dBmV + 1.0 dBmV.
- G. Telephone Outlet (TCO):
 - 1. Isolation (outlet-outlet): Minimum 24 dB.
 - 2. Impedance: 600 Ohms.
 - 3. Signal Level: 0 dBmV + 0.1 dBmV.
 - 4. System Speed: Minimum 100 mega-Bits (mb) per second.
 - 5. System Data Error: Minimum 10 to the -6 Bits per second.
- H. Auxiliary Systems:
 - // Provide Public Address System (PA) interface as described in Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS. //
 - 2. // Provide direct access to selected zones and all zones paging from each telephone console. //
 - 3. // Provide console attendant "priority access" (or ALL CALL or CODE ONE or BLUE) to all zones. Selected station users have access to appropriate zones via sub zones, by dialing the proper access. //
 - 4. // Provide required NFPA and UL certified devices for PA to be interfaced to a designated critical care emergency communications telephone system. //

- 5. // Provide feature to prevent PA from being "locked up" by a user placing system on hold or leaving receiver off-hook. //
- I. General Product Requirements:
 - Provide current model of standard products of OEM of record. OEM of record to be defined as a commercial business enterprise manufacturing items of equipment and which:
 - a. Maintains a factory production line for equipment submitted.
 - b. Maintains a stock of replacement parts for equipment submitted.
 - c. Maintains engineering drawings, specifications, and operating manuals for equipment submitted.
 - d. Has published and distributed descriptive literature and equipment specifications on equipment submitted at least 30 days prior to the Invitation for Bid.
 - Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated.
 - 3. Where standards are established for supplies, materials or equipment, furnish supplies, materials and equipment listed by NRTL.
 - 4. Provide equipment labeled with approved seal of NRTL.
 - 5. Provide COR with verification, at time of installation type of cable being provided is recommended and approved by OEM. Provide cabling meeting requirements of NRTL, TIA Wiring Standards and requirements of NFPA 70. Coordinate correct protection, cable duct and conduit with subcontractors.
 - 6. Interface with telephone //, PA// and, _____// systems utilizing interfacing methods approved by OEM and Government. Acceptable interfacing method requires not only a physical and mechanical connection, but includes matching of signal, voltage, and processing levels, with regard to signal quality and impedance. Provide separation of Critical Care, Life Safety, and Emergency systems.
 - 7. Connect //PA// interface cabling from system via its system telephone interface unit using telephone equipment and //PA interface equipment// as interface point. Furnish telephone interface unit //and PA interface unit; do not install connections to PA system. //

- Provide solid state active electronic component rated for continuous duty service and complying with FCC standards, for telephone equipment, systems, and service.
- 9. Provide passive distribution equipment with -80 dB radiation shielding specifications or greater.
- 10. Terminate interconnecting twisted pair cables on equipment terminal boards, punch blocks, breakout boxes, splice blocks. Terminate unused equipment ports/taps according to OEM's instructions for telephone cable systems without adapters. Terminate unused or spare twisted pair cable, and fiber-optic cable that is unconnected, loose or unsecured.
- 11. Utilize microprocessor components for signaling, programming circuits and functions. Ensure program memory is non-volatile or protected from erasure during power outages for a minimum of three days.
- 12. Provide continuous electrical supervision of system equipment, interconnecting cabling, distribution cable plant, and UPS back up battery and charger to determine change in status and to assist in trouble shooting system faults.
- Voltage: Not to exceed 30V AC Root Mean Squared (RMS) or 42V direct current (DC), except for primary power to power supply circuits.
- 14. Color Coded Distribution Wiring: Conform to ANSI/TIA-606-B standard. Clearly and permanently label equipment, cable duct and conduit, enclosures, wiring, terminals, and cables according ANSI/TIA 606-B standard record wiring diagrams, to facilitate installation and maintenance.
- Connect primary input power to critical branch of emergency AC power distribution system.
- 16. Provide UPS sized for equipment to function and operate normally during input power fluctuations or loss of power for a minimum of four hours.
- 17. Provide plug-in connectors to connect equipment.
- Utilize barrier terminal screw type connectors, at a minimum for base band cable systems.
- 19. Crimp Type Connectors:

- a. Type installed with a ratchet tool are an acceptable alternative if cable dress, pairs, shielding, grounding, connections and labeling are provided same as barrier terminal strip connectors.
- b. Tape of any type, wire nuts, or solder type connections will not be permitted.
- 20. Provide stainless steel, anodized aluminum faceplates, or UL approved cycolac plastic matching equipment.
- 21. Provide noise filters and surge protectors for each equipment (including interface cabinets) control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches.

2.2 EQUIPMENT

A. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
Power Line Frequency	60 Hz ±2.0 Hz
Operating Temperature	O to 50 degrees centigrade (C)
Humidity	80 percent minimum rating

SPEC WRITER NOTE:

1. VoIP systems require prior acceptance of SMCS 0050P2H3 202-461-5310 and COR prior to incorporating in design.

- B. System Equipment:
 - 1. Self-contained, electronic, digital // and VoIP // in operation,
 providing the following minimum functions:
 - a. Intra-facility station-to-station four digit direct dialing to include those telephone instruments equipped with DID features.
 - b. Direct-output-dial (DOD) from any unrestricted telephone instrument to any CO trunk, ISDN, or FTS access lines by dialing a pre-designated access code.
 - c. DOD from any station to tie lines by dialing a pre-designated access code.
 - d. Ability of incoming calls from FTS access lines and tie lines to direct dial system stations without attendant assistance.
 - e. Access to outside lines through operator's console at restricted telephone instruments.

- f. Access to features, functions, CO trunks, FTS access lines, tielines, toll free numbers, and long distance directory assistance from unrestricted telephone instruments.
- g. Minimum 40 Class-of-Service (COS) restrictions to be applied individually or in combination as dictated by individual telephone number service requirements. Describe number and type of COS restrictions available in submittals.
- Provide station users with standard feature package listed by this paragraph, andprovide ability to restrict any of these features on a station by station basis.
 - a. Line Hunt Capability: Assign sequential and circular line hunting lines to a hunt group submit number of hunt groups available and capacity of each group.
 - b. Consultation Hold: Capability to place an incoming call on hold while making a consulting call, then return to original call.
 - c. Call Transfer: Permit a user to transfer an incoming or outgoing CO trunk, FTS, or tie-line call to another system station without attendant assistance.
 - d. Call Pick-Up: Answer a ringing, but unanswered call, within a pre-designated group of station lines by dialing a feature code or activating a feature button.
 - e. Call Forwarding "Follow Me" Functions: Automatically reroute incoming calls to another selected telephone number. Activate and deactivating this feature from selected telephone instruments at their discretion.
 - f. "Busy and Don't Answer" Functions: Automatically reroute calls to a pre-programmed secondary telephone instrument when a given telephone instrument is busy or does not answer within a prescribed time interval.
 - g. Call Queuing: Telephone instrument encountering a busy trunk, e.g. CO, FTS, Foreign Exchange Service (FX), and tie-lines, can be automatically connected to the trunk when it becomes available.
 - h. Call Back/Ring Back: Call back/ring back is activated at calling instrument initiating call to another internal busy instrument by an access code or feature button. Automatically ring calling

06-01-15

instrument when both instruments become idle, and when answered, rings called instrument without preventing calling instrument from originating or receiving other calls.

- i. Music on Hold: Provide music on hold to system station lines, CO trunks, FTS access lines, and tie-lines when placed on hold. Acceptable music source is digital media player as accepted by SMCS 0050P2H3 and COR. Off air radio or non-royalty sources cannot be used for this function.
- j. Conferencing: A telephone instrument initiated conference (minimum of three parties) which allows stations to conference any combination of telephone instrument, CO, or FTS calls.
- k. Automatic Number Identification: A facility where directory number or equipment number of a calling instrument is obtained automatically for use in message accounting.
- Station to Station Call Waiting: Busy telephone instruments allowed to receive a second incoming call from another telephone instrument. Play call waiting tone on busy instrument, upon receiving a second incoming call. The busy instrument has ability to place initial call on hold and answer second call and alternate between both calls.
- m. Station and System Speed Dialing:
 - System Speed Dialing: Minimum 50 numbers allow designated telephone instruments to originate speed calls to CO, FTS, FX, or tie lines.
 - Station Speed Dialing: Ten numbers per instrument; instrument includes capability of entering, removing, or changing numbers programmed on their Station Speed dialing list.
- n. Call Park: Telephone instrument feature must be provided that allows non-preselected internal instruments to access an attendant initiated feature in response to an internal/external paging situation.
- o. Universal Night Answer Service: Provide a means of night service transfer for answering incoming calls, which would normally be answered at console, from locations other than console. Chimes, with cut-off switches, to announce incoming calls placed at two locations.

- p. Line Load Control: A pre-programmed attendant controlled feature which, when activated from console positions, restricts all but selected stations from accessing FTS and CO trunks during emergency conditions. Activation of line load control must not affect intra-facility communications, e.g., station to station, access to Public Address system, audio-page, etc.
- q. Dual Common Controls: The following are the minimum features required:
 - Provide a redundant common processing unit with automatic transfer capability offering a stored program technology control feature.
 - Either common control is capable of handling the total system traffic load without degradation of service.
 - 3) In event of failure of primary common control automatically switch to redundant unit with no interruption to calls in progress and no loss of program features.
- r. Line Lock Out:
 - In event a telephone instrument handset is not replaced in telephone instrument cradle, after a pre-determined time interval with no dial action lock out that station line, i.e., not tie up system switch equipment.
 - 2) Apply audible tone to locked out station lines.
 - Automatically restore associated station line to full service when a locked-out telephone instrument handset is replaced.
- s. Supervisory Telephone (not Electrical or Electronic) Signaling and Ringing:
 - Provide dual solid state signal generating devices, or equivalent, which produce standard supervisory signaling, i.e., ringing, dial tone, busy tone, etc. A maximum one-third of installed main station line capacity can be affected by failure of any one signal generating device.
 - Provide automatic transfer to alternate signal generating device in event of failure of primary device for dual solid state signal generating devices.
 - 3) Supervisory Signaling and Ringing:

- a) Provide tones to indicate progress of a call through the exchange, i.e. dial tone to indicate that switching equipment is ready to receive dial digits and, when required, provide a secondary dial tone for FTS 2000 access; busy tone (60 to 120 interruptions per minute) to indicate that a busy line or trunk has been encountered; audible ring back tone to indicate to calling subscriber that the number dialed is being called.
- b) Provide supervisory signaling and ringing devices capable of operating from emergency DC power source.
- t. Fusing:
 - Equip system with fuses to protect total telephone system and individual segments of system so that a problem in one segment can be isolated without damaging the total system.
 - Provide alarm indicating type fuses with their rating designated by numerical or color code on fuse panels that are easily visible.
- u. Equipment Power Supply:
 - Equip system with a complete on-line power supply consisting of AC surge protection, dual load-sharing rectifiers/chargers, batteries, and inverter.
 - Capacity of power supply must support system including projected maximum growth and as required in this specification for interfaced equipment.
 - 3) Coordinate with Local Exchange Company (LEC) to determine CO trunk, FTS access line, and other required interface unit power requirements and provide power to interface units so they can continue to function in event of a commercial AC power failure.
- v. UPS with Battery Back-up or Reserve Battery Power Supply:
 - 1) Provide reserve battery power supply with capacity to supply system for a minimum of four hours including projected maximum growth and interfaced equipment consisting of minimum // 24 //____ // sealed maintenance-free cells. Dry cell batteries are not acceptable. Include capability of adjustable voltage for float or equalizing batteries.

- Provide fully redundant system (not including batteries and inverter) with rectifier or charger capacity to support combined load requirements of system at its maximum growth and interfaced equipment.
- w. Alarms and Trouble Indicators: It is acceptable to combine required electrical and electronic supervision functions in these panels provided supervisory standards are met.
 - Provide and make operational visual and audible alarms, equipped with cut-off switches, indicating AC power failure, rectifier failure, major and minor trouble, temperature/humidity, electrical or electronic supervisory alarms. Provide sensors for remote environmental alarms at attendant console area and one other location. Separate these alarms in addition to major and minor alarms on attendant consoles.
 - 2) Provide small red indicator lamps on alarm panel for each alarm with cut-off switches or one switch for all alarms and distinctive audible alarms. If one cutoff switch is provided for all audible alarms, restore alarms to ready status condition for audible registration of additional alarms.
 - 3) On submittal describe other system alarms that are remote and describe system alarms/indicators of malfunctions that are located on the equipment.
- x. Provide capability of system to provide four-digit intra-station dialing and desired functions described herein.
- y. Due to varied trunk group requirements and possible future trunk group requirements, e.g. public address system access, alternate access codes can be proposed. Grouping of similar type trunk group/features, e.g. 5-1 public address system (all call), 5-2 public address system zone 1, etc. is acceptable.
- z. Provide emergency numbers accessible by system station users. Label numbers on console or a multi-line instrument and at least one other designated location. Provide a distinctive audible and visual signal associated with emergency number to ensure an immediate response to calls. Provide capability of priority answering emergency number and extending the call as situation

06-01-15

dictates at console or multi-line instrument. A modified trunk circuit can be used for this purpose.

- aa. Provide sensitivity for voice service up to 914.4 m (3,000 feet).
- 3. Voice Mail Requirements:
 - a. Requirement is an automated call processing capability. Connect automated attendant to system and configured to answer and route calls received on a predetermined number of central office trunks. Configure system so that, if called extension is busy or does not answer within a predetermined number of rings, route caller to person's voice mail box. Provide complete voice mail system allowing predetermined number of users to send complete and confidential messages in users' voice and receive complete and confidential messages in senders' own voice 24 hours per day, 7 days per week. Integrate into operation of system and be compatible with local telephone company central office.
 - b. Provide capacity for the following number of ports (minimum):

	Equipped	Wired
	Capacity	Capacity
Automated Attendant	12	20
Voice Mail	12	20

- c. Provide voice mail system for 500 mailboxes and 40 hours of storage with growth to 60 hours of storage.
- 4. Voice Mail Features:
 - a. Access to system and its features from any instrument anywhere that provides DTMF signaling.
 - b. Ability of those leaving a message to review message and edit message that is being placed in mailbox.
 - c. Privacy/Security through use of a password.
 - d. Ability to send messages to users on voice mail system in the following manner:
 - 1) To any user on same voice mail system.
 - To more than one user on same voice mail system an ad hoc distribution list determined by sender at time of message transmission.
 - 3) To a predetermined distribution list.
 - 4) Broadcast to users on same voice mail system.

- e. Verification, with Receipt: Ability of a user to request and receive verification of when a message is played through the use of a touch-tone command. Indicate time and date of when a message is played and place that information in sender's mailbox.
- f. Envelope Information: Ability of a user to request and receive time and date information of when specific messages were left in user's mailbox.
- g. Connects to voice mail system through system extension number or a seven/ten digit telephone number from LEC.
- h. Message "PROMPTS" for every transaction: Provide Messages for "GREETINGS" and "INSTRUCTIONS FOR RECORDING OR EDITING A MESSAGE".
- i. Notify user that messages are in user's mailbox with a message waiting tone, lamp, and display.
- j. Notify user, upon accessing system, of how many messages are in user's mailbox.
- k. Message Response Alternatives:
 - Respond or send a reply to another user on same voice mail system.
 - 2) Route message to another user on same voice mail system.
 - 3) Delete message.
 - 4) Save message.
- 1. Ability to fast forward or rewind messages.
- m. Present messages to user on a "FIFO" basis.
- n. User Administration: Provide management information and statistics in the following categories:
- o. Port Usage: Traffic statistics on each access path into system.
- p. Usage of Storage Capacity: Remaining storage capacity at any one time and during peak periods.
- q. Mailbox Usage: Connect time and number of new or saved messages.
- r. User administration terminal to allow for "Class of Service Controls" in the following areas and for the following parameters:
 - 1) Initial Authorization:
 - a) Ability to enable a mailbox.
 - b) Record "Owner's" name.

- c) Set initial Pass Number.
- 2) Usage Control:
 - a) Length of personal greeting.
 - b) Length of messages received.
 - c) Number of messages.
 - d) Message retention time.
- 3) Feature Authorizations: Allowed or not.
 - a) Group List Creation.
 - b) Group List Usage.
 - c) Broadcast Messages.
- C. Voice Traffic Management System (TMS):
 - 1. Provide complete and self-contained on-site TMS.
 - 2. Functions:
 - a. Provide laser printer for reports generated by system and maintenance administration terminal.
 - b. Connect TMS to system emergency battery power supply.
 - c. Screen menus to provide access to each category of reports.
 - d. Traffic Accounting and Management Call Detail Recording (CDR) for Voice Circuits (TMS):
 - Include hardware, software, and interconnections for complete system.
 - 2) Contain a database stored on non-volatile media.
 - 3) Provide line numbers, physical locations of equipment by building and room number, department to which a line is assigned, name of persons assigned to a number, type of equipment, and any comments regarding system features.
 - 4) Support additional input and output (I/O) ports for video monitors or other terminals that allows a passive display of data bases by authorized medical center personnel other than those individuals responsible for data input and conducting studies.
 - 5) Protect data bases with user ID and password.
 - 6) Provide separate voice line reports, on demand and predetermined schedule, for automatic printing. The following reports are required:
 - a) Originating trunk traffic by trunk group, expressed in CCS.

- b) Terminating trunk traffic by trunk group, expressed in CCS.
- c) All trunks busy, by trunk group, expressed as blocked call count.
- d) All equipment busy, i.e., no dial tone and failure to complete cross-office call because of all equipment busy, expressed in blocked call count.
- e) List of equipment alarms, error tables, trouble logs, history files, etc.
- e. Measurements for each console:
 - 1) Incoming calls.
 - 2) Calls answered.
- f. Provide remote video monitors compatible with TMS hardware and software in immediate vicinity of telephone operators for use as an on-line directory lookup system of facility personnel.
- g. Print reports in English notation that do not require interpretation of abbreviations or codes by the user.
- h. Provide storage on disk to prevent a purge of stored data.
 Maintain call record and facility usage data in database for a minimum 30 days with storage capability of accommodating a minimum 5,000 calls per day.
- i. Furnish normal system traffic data to appropriate facility staff within seven days of a facility request. Prepare quarterly and submit, to appropriate facility staff, a comprehensive traffic study, including the required traffic data with the contractor's comments and recommendations.
- j. Load and maintain directory that includes, name, title, organization, location, extension, and class-of-service.
- k. Provide cable plant management function with the following minimum requirements:
 - A list of off-premise cable by circuit number, numbers of pairs for each circuit, and circuit definition.
 - 2) Complete cable plant distribution record to identify location (cable pair) on main distribution frame, riser, cable size, cable pair in-use (main cable feeder and station cable), building and room number of termination, and equipment type terminated.

- Automatically provide the cable number and pair assignments, when service order is entered.
- Provide equipment inventory list containing the following minimum requirements:
 - System cabinets, cards (active and spares), batteries, current and surge protectors, rectifiers, peripheral equipment, i.e. public address etc.
 - Quantity of single and multi-line telephones, speakerphones, dial intercom units, speakers, gongs, loud horns, bells, chimes, recorders, etc.
 - A list of equipment as being used or spare; ordered or received; installed date, warranty date, cost, location, serial number, etc.
- m. Provide electrical and/or electronic supervisory alarms and faults reports.

D. Attendant Console:

- Attendant consoles must be compatible with local commercial telephone system:
 - a. Powered from system's emergency battery power supply.
 - b. Load sharing to ensure that all incoming calls are evenly distributed among consoles regardless of traffic load.
 - c. Telephone signal (not electrical or electronic) supervision over all calls connected through console providing indication of:
 - 1) Called party answer (revert back to attendant if no answer).
 - 2) Trunk group busy.
 - 3) Station Recall to Attendant: In event of an incoming call being placed (in a hold status) prior to a station being dialed after a specified time this call must revert to the attendant.
 - d. Call transfer capability by attendant.
 - e. Automatic ring of called station with ring back tone provided to calling party.
 - f. Console designed for operation as far as 304.8 m (1,000 feet) from PBX equipment cabinets serviced by a 0.205 mm2 (24 AWG) cable.
 - g. Attendant console must provide:

- Ability to enter any on-going voice call, regardless of whether call was connected through console, direct-in-dial, or originated as an intra-station call. Apply warning tone when attendant enters an on-going voice call.
- "Call-splitting" ability that permits attendant to exclude either outside or inside party when handling trunk calls.
- 3) "Camp-on busy" feature, that permits attendant to place incoming voice calls on hold until called station number, is available. Tone burst to be applied to busy line to alert that a call is waiting.
- 4) When busy line becomes free, the waiting call is automatically connected. If waiting call is not connected after a predetermined time, the waiting call reverts to the attendant.
- 5) Universal Night Answering Service: Provide ability for incoming calls to be answered from a location other than console.
- 6) On-the-ear models attendant headsets, equipped with coiled cord, plug-In case amplifier, and quick disconnect for 10 attendants. Submit type of headsets to be provided.
- One supervisor plug-in handset with a push-to-talk button and a nine-foot cord.
- Dual tone multi-frequency dialing for attendant completion of incoming, outgoing, and intra-station calls.
- h. Automated Attendant Features:
 - Access from any instrument anywhere that provides DTMF signaling.
 - 2) Voice "PROMPTS" for every transaction.
 - 3) Introductory greeting.
 - Ability of caller to enter extension of the person being called and connection to that extension or enter zero for connection to operator.
 - 5) Capability of providing caller with a directory and subdirectories of telephone numbers and ability to enter desired extension at any time while listening to directory.
- E. Cross-Connection System (CCS) Equipment: Breakout, termination connector (or bulkhead), patch panels, and connection assemblies, in

06-01-15

addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION, must include the following:

- Connector panels made of flat smooth 3 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet.
- Bulkhead equipment connectors mounted on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel.
- 3. Each panel color matching cabinet installed.
- F. Voice (or Telephone):
 - 110-type punch blocks certified for Category 6 represent the minimum requirement for voice or telephone, and control wiring instead of patch panels. Category 6 IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS. Secure punch block strips to OEM designed physical anchoring unit located on a wall in Demarc Room, Telephone Equipment Room, and TR. However, console, cabinet, rail, panel, etc. mounting is allowed at OEM recommendation and as accepted by COR. Punch blocks will not be accepted for Class II or 120 VAC power wiring.
 - 2. Technical Characteristics:
 - a. Number of Horizontal Rows: Minimum 100.
 - b. Number of Terminals per Row: Minimum 4.
 - c. Terminal protector: Required for each used or unused terminal.
 - d. Insulation Splicing: Required between each row of terminals.
- G. Fiber Optic and Analog Audio:
 - Product reference type must be tele wire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel can be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with proper connectors. This panel will not be permitted for 120 VAC power connections.
 - 2. Technical Characteristics:
 - a. Height: Minimum two RUs, 89 mm (3.5").
 - b. Width: Minimum 484 mm (19 1/16"), EIA.
 - c. Number of Connections: Minimum 12 pairs.
 - d. Audio Service: Use RCA 6.35 mm (1/4 inch) Phono, XL or Barrier Strips, surface mounted with spade lugs (punch block or wire wrap

06-01-15

type strips are acceptable alternates for barrier strips as long as system design is maintained).

- e. Control Signal Service: Barrier strips surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained).
- f. Low Voltage Power (Class II): Barrier strips with spade lugs and clear full length plastic cover, surfaced mounted.
- g. Fiber Optic: "LC" Stainless steel, female.
- H. Mounting Strips and Blocks:
 - 1. Barrier Strips:
 - a. Barrier strips are permitted for AC power, data, voice, and control cable or wires that accommodate size and type of audio spade (or fork type) lugs used with insulating and separating strips between terminals for securing separate wires in orderly fashion.
 - b. Provide barrier strips with audio spade lug, which is connected to an individual screw terminal on barrier strip at each cable or wire end.
 - c. Secure barrier strips to console, cabinet, rail, panel, etc. Do not connect 120 VAC power wires to signal barrier strips.
 - 2. Technical Characteristics:
 - a. Terminal Size: Minimum 6-32.
 - b. Terminal Count: Any combination.
 - c. Wire Size: Minimum 20 AWG.
 - d. Voltage Handling: Minimum 100 V.
 - e. Protective Connector Cover: Required for Class II and 120 VAC power connections.
 - 3. Solderless Connectors: Crimp-on insulated lug to fit 6-32 minimum screw terminal. Install fork connector using standard crimp tool.
 - 4. Furnish items for balancing and minimizing interference capable of passing telephone signals in frequency bands selected, in directions specified, with low loss, and high isolation and with minimum delay of specified frequencies and signals. Provide equipment necessary to meet requirements of this section and system performance standards.
- I. Audio Monitor Panel:

- EIA standard panel for mounting in upper portion of 480 mm (19 inches) system equipment cabinet. This unit can be combined in system's Annunciating System and Electrical Supervision Panel, in order to achieve the minimum electrical supervision requirements of system. Refer to system technical data for additional required specifications.
- 2. Technical Characteristics:
 - a. Monitor Speaker: A permanent magnet, 76 mm (3 inch) minimum diameter, and a monitor volume control.
 - b. Audiometer: Easy to read volume unit (vu) or similar meter with illuminated scale and meter calibrating control.
 - c. Channel Selector Switch: Six positions (Off, 1, 2, 3, 4, and Spare) which connect monitor speaker and VU meter to selected audio channel.
- J. Electrical Supervision Panel:
 - 1. Provide electrical supervision panel in system cabinet and Telephone Operator, // and _____// locations and as designated on drawings compatible with system's Trouble Annunciation Panel and Audio Monitor Panel, to generate electrical and electronic supervising signals to continuously monitor operating condition for system, CSU, telephone instruments // , and _____ // , and interconnecting cable trunks. Generate an audible and visual signal when system's supervising system detects system, CSU, //, and //, or trunk line is malfunctioning.
 - 2. Technical Characteristics:
 - a. Silence Button or Switch: Silence the audible signal; visual signal must continue until supervisory circuit indicates fault is corrected.
 - b. Visual Enunciators: Visually show amplifier and trunk-line unit or supervisory circuit is in fault condition.
- K. Telephone Instruments:
 - Provide telephone instruments equipped with inductive capability to radiate a magnetic field required to activate hearing aid telecoil and to provide personnel, who use hearing aids, access to all telephones within facility.

- Provide station equipment consisting of standard single line instruments, patient bedside instruments, and multi-line digital electronic telephone instruments with digital display, of latest design.
- 3. Provide telephone instruments except patient bedside phones, with a flash button (or equivalent feature button) with pre-determined timing feature to initiate consultation hold and other features normally initiated by operation of hook-switch. Flash button must be distinct from hook-switch.
- 4. Attach laminated faceplate listing most common user features and their appropriate access codes to telephone instruments, except patient bedside phones. Faceplates can be an integral part of instrument housing or be an adhesive backed decal applied over tone pad area of housing at time of telephone set installation.
- 5. Provide station instruments feature compatible and with transmission characteristics compatible with proposed system.
- Provide telephone instrument signaling by means of standard adjustable, buzzers, chimes, or electronic tone, unless otherwise specified.
- 7. Single Line Instruments:
 - a. Single line instruments can be electronic or 2500-type analog phones.
 - b. Single line instruments used must be capable of supporting bridged cabling to allow a single phone number on multiple instruments without using multiple switch ports.
 - c. Single line instruments must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment without using multiple switch ports.
- 8. Multi-Line Instruments, Digital and Electronic Features:
 - Digital read-out display and with minimum 14 programmable (lines or features) buttons.
 - b. Adjustable electronic tone to announce calls.
 - c. Detect an incoming call to multi-button instrument and provide an audible signal only on designated lines.

06-01-15

- d. Lights to identify called line and remain illuminated for duration of call.
- e. Associate telephone intercom systems with these instruments.
- f. Equipment associated with intercom systems can require special features such as built in microphone and speaker. Provide secretaries with a means of announcing calls to offices with extensions or pickups on system. Identify provision of intercom systems during required data base survey and provide any required intercom systems.
- g. This equipment must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment. Use of analog switch ports to provide ringing voltage, if required, is acceptable and include these switch ports in equipped capacity.
- h. Provide hot line telephones between two identified points equipped with two-way automatic ring and cut-off controlled by telephone hook-switch, i.e. when near-end hand set is removed from hook switch, far-end telephone rings until hand set is removed from hook-switch.

SPEC WRITER NOTE:
1. Requirements for hands-free operated
 facilities to be identified on
 drawings.

- i. Configure speaker on hands-free telephone stations to be used as both transmitter and receiver to answer or initiate a call. These facilities to normally be used as a hot line between two points.
- 9. Patient Bedside Instruments Features:
 - a. Maintenance free, sanitized packet, and capable of supporting table top, side-rail, top bed-rail, or wall mounting. Provide each phone with minimum 15 feet of self-contained line cord.
 - b. At the discretion of the facility, patient bedside instruments can be discarded, cleaned for reuse, or given to the patient, as appropriate. Expected anticipated cost per instrument does not exceed ten dollars.
- L. Lightning Protection System: Provide totally external to building. The use of internal electrical wiring for lightning grounding systems will not be permitted.

- Provide ground system, cabinets, racks, wire management systems, cable shields, etc. with copper wire run external to building and bond to grounding electrode conductor or inter system bonding termination. If these items are installed in an area not protected by lightning protection system, immediately notify COR of lightning strike hazard.
- 2. Telephone, Data, Audio, and Coaxial Cable Lightning Protector:
 - a. Provide in-line device with screw type connectors to match coaxial and STP or UTP cable specified. Locate at each building entrance where each cable enters a building from the outside and grounded with stranded copper wire run external to building bonded to grounding electrode conductor to shunt high current surges to earth ground and have a minimal effect on quality of signal being received or transmitted. Provide protector made of non-corrosive metal and waterproof. Refer to system technical data for additional required specifications.
 - b. Technical Characteristics:
 - 1) Peak Pulse Power: 1500 W at 25 degrees C (77 degrees F).
 - 2) Protection Device: Gas Tube or as required by OEM.
 - 3) Dissipation: 1.0 Milliseconds (MS).
 - 4) Response Time: 5.0 nS.
 - 5) Connectors: As specified.
 - 6) Ground Wire: Minimum #6 AWG Stranded Copper, or as required by OEM and Government.

2.3 AUXILIARY SYSTEMS

- A. Interface system to Public Address System identified in Section 27 51
 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS with technical instructions from COR.
 - Provide console attendants direct access to selected zones and all zones paging. Provide attendant "priority access" to all zones.
 - Provide selected station users access to appropriate zones, by dialing proper access.
 - 3. Provide required interface devices to PA. Provide a feature to prevent PA from being "locked up" by a user placing the system on hold or leaving receiver "off-hook".

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install according to following Industry Standards:
 - 1. NFPA Section 70, National Electrical Code (NEC), Article 517 and Chapter 7.
 - 2. NFPA Section 99, Health Care Facilities, Chapter 3-4.
 - 3. NFPA Section 101, Life Safety Code, Chapters 7, 12, and 13.
 - 4. Joint Commission Manual for Health Care Facilities, Life Safety and Support guidelines.
 - 5. These specifications.
 - 6. OEM installation, design, recommendations, and instructions.
- B. System Installation:
 - Install suitable filters, traps, directional couplers, splitters, telephone outlets, and pads for minimizing interference and for balancing amplifiers and distribution systems.
 - Connect passive equipment according to OEM's specifications to insure correct termination, isolation, impedance match and signal level balance at each telephone outlet.
 - Terminate lines in a suitable manner to facilitate future expansion of system.
 - Terminate vertical and horizontal copper and fiber optic //, and coaxial // lines in system, TER, MCR and TR equipment only.
 - 5. Install terminating resistors or devices on unused branches, outlets, and equipment ports of system designed for purpose of terminating fiber optic or twisted pair //, and coaxial // cables carrying telephone //, and analog video// signals in telephone //, and analog // systems.
 - 6. Install equipment outdoors in weatherproof enclosures with hinged doors and locks if equipment is not weatherproof. Provide a minimum of two keys for each lock.
 - Install equipment indoors in metal cabinets with hinged doors and locks. Provide a minimum of two keys for each lock and VA Police Access Control System.
 - 8. Install a triplex outlet with modular jacks and stainless steel face plate for each telephone outlet shown on drawings. Provide appropriate modular jack (single or triplex) with appropriate face plate for each outlet location identified and verified on drawings.

- Install patient and wall telephone instruments on a single modular jack designed for wall telephone instruments and patient wall or PBPU installations.
- 10. Install permanent telephone cables in conduit or an enclosed duct system. Obtain acceptance for installation, as determined by Government requirements, without conduit or enclosed duct system in cable tray or mechanically supported and separated from other signal cable systems.
- 11. Where cables penetrate fire/smoke partitions, firewalls, or floors, coordinate installation of firestopping material of type accepted by COR.
- 12. Install equipment in accordance with specifications for system as recommended by OEM.
- 13. Replace ceiling tiles damaged during installation and maintenance service of cable and wire distribution system. Restore immediate areas damaged during system installation and maintenance service.
- 14. Run all cross connects to established circuits during installation and maintenance service for contract life.
- Remove, on a daily basis, debris and scrap generated in conduct of work.
- C. Rack and Cabinet Equipment Mounting:
 - Install rack mounted equipment on enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustments can be conveniently made.
 - 2. Heavy Equipment:
 - a. Install heavy equipment using rack slides or rails allowing servicing from front of enclosure.
 - b. Install additional support to supplement front panel mounting screws for heavy equipment.
 - 3. Install cable slack to permit servicing by removal of equipment from front of enclosure.
 - 4. Install a color matched blank panel (spacer) of 44 mm (1-3/4 inches) high, between each piece of equipment (active or passive) to ensure adequate air circulation maintaining enclosure design for efficient equipment cooling and air ventilation.

06-01-15

- Provide 380 mm (15 inches) of front vertical space opening for additional equipment. Install color matched blank panels to cover any unused enclosure openings.
- Mount equipment located indoors installed in metal racks or enclosures with hinged doors so it can be accessible for maintenance without interference to other nearby equipment.
- Fasten cables to equipment racks or enclosures in a manner that allows doors or access panels to open and close without disturbing or damaging cables.
- Install distribution hardware allowing access to connections for testing and provide room for doors or access panels to open and close without disturbing cables.
- D. Conduit, Cables And Wiring, Cable Tray, Raceways, Signal Ducts, Etc:
 - Conduits installed in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING.
 - Ensure that Telephone //, and PA // systems (as identified by NEC Section 517) are separated and protected from other systems.

3.2 FIELD QUALITY CONTROL

- A. Interim Inspection:
 - Conduct an interim inspection of installed equipment in presence of COR, prior to proof of performance testing. Verify that equipment provided, adheres to installation requirements of this section.
 - Install 50 percent of system equipment to include system, interface, origination and junction enclosures powered with permanent AC wiring, outlets, conduit and cables, before interim inspection can take place.

- Notify COR of estimated date contractor expects to be ready for interim inspection, at least seven working days before requested inspection date.
- 4. Furnish results of interim inspection to COR and PM. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation. SMCS 0050P2H3, (202) 461-5310, must be a part of this inspection team.
- 5. COR, in conjunction with PE, will determine if an additional inspection is required, or if contractor will be permitted to proceed with the installation. In either case, re-inspection of deficiencies noted during the interim inspections are to be part of the proof of performance test. The interim inspection is not permitted to affect the system's completion date. Include test documents as part of system's record wiring diagrams.
- B. Pretesting: Align and balance system, upon completing installation of the system. Pretest entire system.
- C. Pretesting Procedure: During system pretest, verify (utilizing the accepted spectrum analyzer and test equipment) that system is fully operational and meets the system performance requirements. Measure and record the aural carrier levels of each system telephone, at each of the following points in the system:
 - 1. Local Exchange Company (LEC) inputs.
 - 2. System inputs and outputs.
 - 3. TER, MCR and TR amplifiers, channel processor and converter inputs and outputs.
 - 4. System output S/NR for each telephone.
 - Signal level at each interface point to distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
 - Submit four copies of recorded system pretest measurements along with pretest certification, to COR.
- D. Pretesting Certification: After pretesting system, notify COR that system is ready for proof of performance testing in presence of a SMCS 0050P2H3, (202) 461-5310, and COR, and that it meets requirements stated in construction documents. Submit notification of system

06-01-15

readiness no later than twenty working days prior to scheduled Government proof of performance test. Failure of contractor to comply with these pretest requirements, automatically cancels the scheduled acceptance test.

- E. Acceptance Test:
 - After system has been pretested and contractor has submitted pretest results and certification to COR, schedule an acceptance test date and give COR thirty days written notice prior to date acceptance test is expected to begin include expected length (in time) of test. Test in the presence of COR and an OEM certified representative. Test utilizing accepted test equipment to certify proof of performance. Verify that total system meets specified requirements under operating conditions, and complies with listed system performance standards.
 - 2. Make only those operator adjustments required to show proof of performance. Demonstrate and verify that installed system does comply with operational requirements. under operating conditions. Rate system as either acceptable or unacceptable at conclusion of the test. Failure of any part of system, that precludes completion of system testing and cannot be repaired within four hours, terminates the acceptance test of system.
 - Declare entire system unacceptable if repeated failures result in a cumulative time of eight hours to effect repairs and retesting entire system at the convenience of Government.
- F. Acceptance Test Procedure:
 - 1. Mechanical and Physical Inspection:
 - a. COR will tour major areas where system and sub-systems are located, to ensure they are properly installed in place, and are ready for proof of performance acceptance testing. A system inventory including available spare parts must be taken at this time. Verify equipment to ensure appropriate UL certification labels are affixed.
 - b. Review system diagrams, record drawings, equipment manuals, AutoCAD files, intermediate and pretest results.
 - c. Failure of system to meet installation requirements of this specification terminates testing.

- 2. Subsystem Operational Test:
 - a. After the mechanical and physical inspection, perform an operational test of each sub-system to verify that equipment is properly connected, interfaced and is operational to meet requirements of this section. If any sub-system is not functionally ready, that sub-system will be declared unacceptable and testing terminated. At this point, contractor is only permitted one hour to correct deficiencies.
 - b. Mutually agree with COR, at this time, to wait one hour or to commence testing of next sub-system.
 - c. Repeated failures of sub-system testing or total system testing, that results in a cumulative time of four hours to effect repairs, is grounds for declaring entire system unacceptable and testing to be terminated. Reschedule retesting at convenience of Government.
- 3. Sub-system Performance Test: After operational test of each subsystem, verify that performance requirements and standards are met using test equipment. Verify there are no visible signal distortions, such as intermodulation, beats, etc. appearing on any received or generated telephone with A spectrum analyzer, signal level meter and bit error rate analyzer (BERT).
- Total System Test: Commences only after system and sub-systems have been tested and accepted.
 - a. LEC Point of Demarcation: Check system outputs.
 - b. System: Test within 30 days following successful pretesting of system. In addition to compliance with technical characteristics and quantities of equipment specified herein, the final acceptance test provision that 30 continuous days of uninterrupted telephone service, must be completed prior to contractor being deemed in compliance with the contract.
 - For purpose of final acceptance, telephone service is considered interrupted when failure of any contractor provided telephone equipment including batteries, results in an interruption of service. This includes a failure of more than 20 percent of any trunk group, 15 percent of any number group (15 or more stations), operator console, or telephone service

06-01-15

to any area determined to be critical by Facility Director. Response time to restore service has bearing upon the term "interrupted service".

- 2) To facilitate system acceptance test and to allow familiarization and training of government employees, activate system, including operator consoles, stations, and equipment a minimum 30 days prior to acceptance test date. Test installed equipment and circuits prior to acceptance by Government. During this "burn-in" period, de-bug the system. Make system available for in-house communications and demonstrate required features to facility staff. Government and contractor will make available trunks // and tie line circuits // are available to system during this "burn-in" period for testing.
- 5. Individual Item Test: COR can select individual items of equipment for detailed proof-of-performance testing to verify items selected meet or exceed minimum requirements of the specification.
- Interface Cable Sub-system: Check minimum 75 percent of system outlets and interface points to ensure that system meets performance requirements.
 - a. Each sub-system interface, junction, and connection point or location will be checked.
 - b. Each distribution active and passive item of equipment, signal inputs and outputs must be tested.
- Distribution Cable Plant Sub-system: For specific distribution testing instructions refer to Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING.
- G. Test Conclusion:
 - At conclusion of acceptance test, using the generated punch list (or discrepancy list), Government will reschedule testing on deficiencies and shortages.
 - 2. If system is declared unacceptable without conditions, retest expenses are borne by the contractor.

3.3 SYSTEM STARTUP

A. Provide personnel (switch technicians, installers, trainers, project manager, etc.) on premise for seven consecutive days after cutover to

06-01-15

clear any malfunctions that develop, to assign/reassign any software features/COS, and conduct any additional training as required.

- B. Connect telephone equipment located in TER to telecommunications grounding busbar.
- C. Provide system ground between system and interfaced systems such as PA system equipment chassis, etc.
- D. Ensure that other dedicated telecommunications systems applications within facility (i.e., pay stations, electro-writing equipment, facsimile etc.) that require space within TER, MCR and TRs, conduits, and cable pair are accommodated. Coordination between applicable parties is necessary to ensure accommodation of these systems.
- E. Verify all portions of system installation conform to local building and fire codes.

3.4 TRAINING

- A. Furnish services of an OEM trained and certified engineer or technician for two eight-hour classes to instruct designated facility maintenance personnel. Include cross connection, corrective, and preventive maintenance of telephone system and equipment.
- B. Furnish services of an OEM trained and certified engineer or technician, familiar with functions and operation of system and equipment, for two eight-hour periods to train designated facility IRM personnel. Instruct staff personnel in each area where system is installed under this contract. When multiple areas are involved, classes are to be grouped. Coordinate periods of training with COR to ensure all shifts receive required training. Include instructions utilizing hands-on operation and functions of the system.
- C. Before system can be accepted by Government, this training must be accomplished. Schedule training at the convenience of Facilities CO and Chief of Engineering Service.

3.5 MAINTENANCE

- A. Provide COR the ability to contact OEM's central emergency assistance maintenance center and request remote diagnostic testing and assistance in resolving technical problems at any time, during warranty period. Provide remote diagnostic testing and assistance capability to Government.
- B. Response Time during Warranty Period:

- Respond on-site, during the standard work week, to a routine trouble call within 24 hours of its report. A routine trouble is considered a trouble that causes a sub-system to be inoperable.
- Respond on-site to an emergency trouble call within four hours of its report. An emergency trouble is when failure:
 - a. Causes a system to be inoperable at any time.
 - b. Involves more than 20 voice circuits.
 - c. Is of a common control unit, power supply, signal generating device or attendant console.
- Respond on-site to a catastrophic trouble call within two hours of its report. System failure is considered a catastrophic trouble call.
 - a. If system failure cannot be corrected within six hours, provide an alternate CPU/Key System/mini- system equipped for a minimum of 100 main station lines, 10 CO trunks, 10 FTS access lines and two operator's consoles.
 - b. Install alternate system to provide emergency service to critical areas as determined by Facility Director within 12 hours (time to commence at end of the six hour trouble shooting period).
 - c. Provide to Facility Contracting Officer (CO), prior to cut-over of main telephone system, a pre-written program disk from programmable alternate system.
- Catastrophic trouble calls include failures affecting operation of critical emergency health care facilities (i.e., cardiac arrest teams, intensive care units, etc.) if so determined by Facility Director.
- 5. Respond on-site to installation of station or equipment requests for service within:
 - a. Eight hours for emergency installations designated by Facility CO.
 - b. Three working days for routine installations designated by Facility CO.
- C. A standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.

- E. COR and Facility CO are contractor's reporting and contact officials for system trouble calls, during warranty period.
- F. Required On-Site Visits during Warranty Period:
 - Visit, once every twelve weeks, to perform system preventive maintenance, equipment cleaning and operational adjustments to maintain system.
 - a. Arrange facility visits with COR or Facility CO prior to performing maintenance visits.
 - b. Perform preventive maintenance in accordance with OEM's recommended practice and service intervals during non-busy times agreed to by COR or Facility CO.
 - c. Provide preventive maintenance schedule to COR and Facility CO for approval.
 - d. Provide on-site replacement spare parts and equipment, plus test equipment, ensuring they meet OEM's minimum recommended spare parts stock sizing requirements for this specific system.
 - Provide Facility CO a report itemizing each deficiency found and corrective action performed during each visit or official reported trouble call. Provide COR or Facility CO with sample copies of reports for review and approval at beginning of acceptance test. Minimum reports required:
 - a. Monthly summary of equipment and sub-systems serviced during warranty period to COR or Facility CO by fifth working day after end of each month. Describe services rendered, parts replaced, repairs performed and prescribe anticipated future needs of equipment and systems for preventive and predictive maintenance.
 - b. Separate log entry for each item of equipment and each sub-system of system listing dates and times of scheduled, routine, and emergency calls. Describe details of the nature and causes of each emergency call, emergency steps taken to rectify situation and specific recommendations to avoid such conditions in the future.

06-01-15

c. Include in Warranty GFE accepted by contractor, interfaced and installed in system; attach GFE List.

- - - E N D - - -

06-01-15

SECTION 27 31 31 VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT EXTENSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies a complete extension of an emergency voice communication switching and routing system (here-in-after referred to as "system"), including equipment cabinets, interface enclosures, radio relay racks, stand-by batteries, combiners, traps, and filters; distribution nodes, amplifiers; voice stations or instruments; auxiliary systems; and passive devices including protectors, isolators, splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, cable management items, and associated hardware.
- B. Government defines system as a Critical Service Communication System and is so listed by NFPA.

1.2 RELATED WORK

- A. Section 26 27 26, WIRING DEVICES.
- B. Lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- C. General requirements common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS
- E. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- F. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- G. Voice and data cable distribution system and associated equipment: Section 27 15 00, COMMUNICATIONS STRUCTURED CABLING.
- H. Physical access control system field-installed controllers connected by data transmission network: Section 28 13 00, Physical Access Detection.
- I. Security emergency call communication system: Section 28 52 31, SECURITY EMERGENCY CALL, DURESS ALARM, AND TELECOMMUNICATIONS

1.3 COORDINATION

A. Coordinate and conduct system data base survey with SMCS 0050P2H3 (202) 461-5310, COR and a member of OI&T Service identifying programming of features, classes of service, and equipment installed by type and

06-01-15

physical location as specified in this document and attachments thereto.

1.4 SUBMITTALS

- A. On-Site Survey: Provide on-site system equipment location, cable pathway, TR, TCO, and interconnection survey no later than 18 months prior to completion of facility.
 - Walk through facility and existing locations with construction documents (including accepted changes) and existing survey provided by IRM department.
 - Identify differences in locations between the two surveys and provided to COR in writing within 30 days of the completion of survey.
- B. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - Drawing showing location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
 - 2. Interface cabinet layout drawing.
 - 3. Distribution cabinet layout drawing.
 - 4. Equipment technical literature detailing electrical and technical characteristics of each item of equipment.
 - 5. Engineering drawings of system, indicating calculated signal levels at:
 - a. CSU/DSU output.
 - b. Each input and output distribution point.
 - c. Proposed system outlet values.
 - d. Signal level at each system outlet multi-pin jack.
 - Proposed floor plan, based on expanded system configuration of contractor's proposed system for this facility.
 - Proposed main backbone, trunk line, riser, and horizontal cable pathways, cable duct, and conduit size requirements (between main TR, remote TR, TER, MCR and devices).
 - Two copies of an OEM developed training video presentation for evaluation and approval by COR.
 - 9. Table with details of complete record program in spreadsheet for associated station assignments.

- C. Environmental Requirements: Confirm environmental specifications for physical TR areas occupied by system. Identify requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: Provide specific voltage, amperage, phases, and quantities of circuits required.
 - 5. Air Conditioning, Heating, and Humidity Requirements:
 - a. Identify ambient temperature and relative humidity operating ranges required to prevent equipment damage.
 - b. Air conditioning requirements expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards.
- D. System Data Base Survey Report: After completing survey required under Quality Assurance, submit complete list of equipment to COR for approval by SMCS 0050P2H3, (202) 461-5310, prior to start of installation.
- E. Needs Analysis Report: Submit a summary report of the needs analysis of existing facility.
 - Report CSU compatible with existing or projected system in a format similar to:

ITEM WIRED	EQUIPPED CAPACITY	WIRED CAPACITY
Main Station Lines:		
Single Line		
Multi Line		
(Equipped for DID)		
Two-way DRTL		
Foreign Exchange (FX)		
WATS		
Conference		
Dial Dictation Access		
Radio Paging Access		
Audio Paging Access		
Off-Premise Extensions		
CO Trunk By-Pass		

06-01-15

ITEM WIRED	EQUIPPED CAPACITY	WIRED CAPACITY
Monitor w/keyboards		
Printers		
Operator Consoles		
T-1 Access/Equipment		
Maintenance Terminal		

2. Identify projected maximum growth for each item. Identify printed circuit boards and modular cabinets that do not require extensive re-wiring and reprogramming for expanding system to projected maximum growth.

3. Cable Distribution System: Report projected cable and TCO count that coincides with projected maximum growth. Indicate a copper and fiber-optic //, and analog RF,// video, or audio coaxial // distribution requirements plan using following paragraphs as an example:

Column	Explanation	
From Building	Identifies building by number or title	
Floor	Identifies floor by number (i.e. 1st, 2nd, etc.)	
Room Number	Identifies room from which cabling is installed by number	
Number of Cable Pair	Identifies cable pair required to be terminated on floor designated by number or number of cable pair (Government Owned) to be retained	
Building	Identifies building by number or title	
Room	Identifies room number	

a. Twisted Pair Requirements and Column Explanation:

b. Fiber Optic Cabling Requirements and Column Explanation:

Column	Explanation
From Building	Identifies building, by number or location, from which cabling is installed
Room Number	Identifies room, by number, from which cabling is installed
To Building	Identifies building, by number or location, to which cabling is installed
Room Number	Identifies room, by number, to which cabling is installed

Number of Strands	Identifies number of strands in each run of fiber optic cable
Installed Method	Identifies method of installation in accordance with requirements as designated herein
Notes	Identifies a note number for a special feature or equipment
Building	Identifies building by number or title

- 4. Indicate each instrument location, type of instrument and class of service as determined by the needs analysis // or as shown on drawings //. Indicate requirements for each system instrument and compare total count to locations identified above.
- Indicate projected system port count requirements; include total number of spares.

Column	Explanation
MSL	Number of Main Station Lines (MSL) to be associated with instrument.
Instrument and Outlets	Assign following codes:
DS	Desk type - single line
WS	Wall type - single line
DM	Desk type - multi-line
WM	Wall type - multi-line
Jack	Type of jack (i.e. wall, single, dual, triplex, etc.).
Notes	Identifies a note number which spells out a requirement for a special feature or function associated with circuits and equipment on that particular line of the station.
SVC	Identifies using SERVICE.
Position	Identifies primary user of instrument by position description or function.

- 6. Telecommunication Outlets (TCO): Indicate this category for each outlet location and compare total count to the locations identified and shown on the drawings as a part of the summary report; indicate total number of spares.
- F. Voice Traffic Management System (TMS) Submittals:
 - Submit samples of reports generated by TMS with technical submittal for evaluation of formats and compliance with information field content.

- 2. Submit detailed description of method to be used to measure traffic data in the technical submittal.
- 3. Submit normal system traffic data to appropriate facility staff within seven days of a facility request. Prepare and submit a complete and comprehensive traffic study, including the required traffic data with the contractor's comments and recommendations, quarterly to appropriate facility staff.
- G. Proof of Performance Test Plan: Provide COR and SMCS 0050P2H3 (202) 461-5310 with a Proof of Performance Test Plan 90 days prior to cutover of system.
 - Include tests to demonstrate system's capabilities of providing indicated services.
 - Use only test equipment accepted by SMCS 0050P2H3 (202) 461-5310 and COR included with acceptance test plan.
 - Submit test equipment certification verifying calibration within six months of system cut-over.
- H. Provide current and qualified OEM training certificates and OEM certification for all contractor installation, maintenance, and supervisory personnel.
- I. Closeout Submittals:
 - Provide a written commitment from system equipment OEM to supply parts and on-site engineering support services for one year warranty service (materials and labor).
 - Provide OEM certification allowing, OEM or authorized distributor to fully support contract (initial installation, warranty service for warranty period of the contract).
 - a. System equipment OEM's signatory of certified written commitment must be of an individual who has full authority to obligate OEM to this commitment.
 - b. Include names, corporate addresses, and telephone numbers of individuals who have this authority as a part of the commitment.
- J. Maintenance Material Submittals:
 - Provide a complete set of system electronic modules and cards to be used as on-hand operational emergency spare equipment. One each of T-1, DS-**, interface cards etc. minimum or a compliment as directed by OEM.

1.5 QUALITY ASSURANCE

- A. Supervision:
 - 1. Provide a full time on-site project manager, effective with issuance of notice to proceed to coordinate and supervise contractor and installer personnel in every phase of installation, training, inspection, cutover, and final acceptance of system. This individual to prepare and deliver COR a complete copy of specifications to include amendments prior to start of installation.
 - 2. Coordinate final location of station equipment with COR prior to installation.
 - Ensure that the project manager and skilled personnel remain on premise until all items on the punch list for system are completed, inspected, and accepted by COR.
 - 4. Be responsible for coordination with LEC relative to interface with commercial telephone system. Also be responsible for removal of voice and data equipment and cabling abandoned by the LEC, Government, or other organizations and not retained for exclusive use by Government as a result of this installation.
- B. Needs Analysis: Perform a needs analysis of existing facility conducted with representatives from IRM and various departments, to determine system's requirements, and prepare Summary Report.
 - 1. Determine projected maximum growth for each item of system.
 - Provide software and hardware required to equip CSU with items listed under equipped capacity, thirty days prior to system cutover.
 - Reported "Wired Capacity" to include provision for wiring and equipment listed under wired capacity, with exception of line, data, and trunk cards, and testing thirty days prior to system cutover.
 - Determine printed circuit boards and modular cabinets that do not require extensive re-wiring and reprogramming for expanding system to projected maximum growth.
 - 5. Cable Distribution System:
 - a. Formulate for summary report a projected cable and TCO count that coincides with projected maximum growth.
 - b. Provide systems CCS, cable distribution, and TCO requirements to develop a copper and fiber-optic //, and analog RF,// video, or audio coaxial // distribution requirements plan.

- 6. System Instruments (Stations): Determine each instrument location, type of instrument and class of service // in addition to those shown on drawings //. Determine projected system port count requirements, including spares.
- 7. Telecommunication Outlets (TCO): Develop plan for this category by outlet location and compare total count to locations identified and shown on drawings, including spares.
- 8. Summary Report:
 - Depict system features and capacities, in addition to specific site requirements.
 - b. Provide analysis of CSU compatibility with existing or projected system.

1.6 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 SYSTEM DESIGN CRITERIA

- A. Extend following services generated by existing telephone system. If these services are not generated by an operating existing telephone system, system must be compatible and capable of providing minimum services. Perform following minimum services designed in accordance with and supported by an OEM:
 - 1. Provide continuous inter and intra-facility voice service.
 - 2. Size and install so loss of connectivity to external telephone system, VoIP and facility's LAN/WAN systems does not affect facility's operation in specific designated emergency operating locations and instruments - i.e. Joint Commission and NFPA 101 listed Analog Emergency By-Pass Phones; Police Emergency Call (elevator cabs, parking lots, stairwells, Duress Alarms & Locator) Equipment; emergency call system, Code Blue, Facsimile machines (fax), Patient Phones.
 - 3. Inter-operate, connect, and function with existing Local (Telephone) Exchange Company (LEC) Networks, Federal Telephone System (FTS) Inter-city Networks, Inter-exchange Carriers, Integrated Services Digital Network (ISDN) and Voice over Internet Protocol (VoIP). VoIP Service is not allowed to perform Facility Safety of Life Functions

as well as facility's LAN/WAN. Contact SMCS 0050P2H3, (202) 461-5310 for specific technical assistance and approvals.

- Provide control and switching equipment (voice and digital system) with attendant consoles.
- Interoperate with current voice mail and automatic attendant functions and continuous intra and inter facility voice service.
- Provide universal night answering function from facility designated remote locations.
- 7. Provide direct digital connection to trunk level equipment compatible with audio paging, radio paging, Federal Information Processing Standards [FIPPS] publications, Industry Standard digitally multiplexed terrestrial signal carrier (t-carrier) and digital signal level protocols, and external protocol converters.
- Connect to "T" and "DS" access/equipment or Customer Service Units (CSU or DTE) used in FTS and other trunk applications.
- 9. Provide T-1 equipment required to terminate and make operational quantity of circuits designated. Connect CSUs to system's emergency battery power supply. Provide system capable of operating in Industry Standard "DS" protocol and provide that level of service when required.
- 10. Contain attendant and operator consoles, video monitors with keyboards, and printers to provide employees directory access from Traffic Management System (TMS) if not provided by existing telephone system or deactivated by system installation. Provide identical capabilities at console positions, video monitors and keyboards. Provide attendant consoles accepting a mixture of trunk types and extend calls received via these trunks to station users.
- 11. Provide interfacing for operating with Direct-Incoming-Dial (DID) service to stations without affecting intra-facility operation. Provide DID trunk group, operating as a separate trunk group from other Central Office (CO) trunks.
- 12. Provide designated number of telephone instruments, where each instrument (also referred to as "station") has ability to direct dial other facility telephone stations, public telephone network, tie-lines, and FTS telephone numbers without attendant assistance. Provide dual tone multi-frequency (DTMF) for intra-facility and

external-facility calling at each station. The term DTMF, as used herein, is defined as "a dialing or analog operation".

- Provide standard digital // VoIP // telephone instruments at designated TCOs.
- 14. Provide at designated TCOs and locations on drawings "Hands Free" digital // VoIP // telephone instruments.
- 15. Receive specified telephone signals acquired from the LEC and FTS contracted carrier, process and distribute them to designated telephone stations, as determined by Class of Service (CoS).
- 16. At a minimum, provide one // or ____ // TCOs on each room wall and on either side of each door opening. Only exception is specifically identified "special" locations (e.g., surgical suites, radiology, MRI rooms, labs, patient rooms, warehouse, loading docks, storage rooms, etc.) where usually only two //, or ____// active TCOs are designated and as shown on drawings.
- 17. Interface and connect telephone multi-pin jack to system via 110 type punch blocks in TR.
- 18. Perform adjacent channel operation of existing telephone system's local, long distance, and FTS telephone signals. Install and interface system equipment according to OEM's schematic diagram for adjacent telephone channel operation. Provide testing capability in each equipment cabinet, rack, interface point and test ports that provide access for each telephone channel without need to disconnect distribution cables or equipment. Process each telephone channel as a single channel. Include a means of monitoring complete system along with appropriate printout and archiving of each processed and distributed channel.
- 19. Design system to minimize cross talk, background processor noise, inter-modulation, and other signal interference. Install and interface equipment according to OEM head-end schematic diagram for adjacent audio channel operation. Process each audio input channel as a single separate channel and combine into one output channel. If not provided in existing telephone system, or deactivated by system installation, provide capability in telephone switch room audio and visual monitoring panels to test each converted audio input and distribution channel and analog channels, transmitted and received signal functions. Electrically supervise system's Alternating

06-01-15

Current (AC) power input, stand by batteries and charger, and internal Direct Current (DC) power supply primary voltages and currents; each remote control unit, audio //, and analog RF// interface unit, from TER. Provide capability in TER, telephone operator room, MCR, Police Security Service Control Console //, MAS Emergency Room, //, and _____// to check supervisory signals, signal level, audio sound and visual level, and alert personnel to problems.

- B. System must be capable of interfacing with existing or future planned system.
- C. System designs "looping" distribution cables from room to room are not acceptable.
- D. //Provide digital signal processor resources for a non-blocking telephone system.//
- E. Point Of Local (Telephone) Exchange Company Demarc:
 - Acquire telephone signal at existing telephone system equipment cabinet or as designated in telephone switch room TC.
 - a. Notify COR, in writing, if signals at existing telephone system interface point do not meet minimum signal level and quality, detailing nature of deficiencies, and expected effect on telephone signals in new system.
 - 2. System must acquire telephone signals at // _____ //.
 - 3. A minimum of // _____ // analog emergency telephone connections must be acquired at // _____ // and connected to // _____ // analog back up circuits.
- F. System Location Selection: Locate system cabinets and associated equipment in building // // floor.
- G. System Performance Criteria:
 - 1. Support and operate in the following functional modes:
 - a. Integrated Services for Digital Networks (ISDN):
 - 1) Basic Rate Interface (BRI).
 - 2) Primary Rate Interface (PRI).
 - b. Fiber-optic Distributed Data Interface (FDDI).
 - System Sensitivity: Provide satisfactory service for at least 3,000 feet for voice locations.
 - 3. //Other _____
 - 4. System Controller/Manager:

| |

- a. System speed: Minimum 1.0 giga-Bits (gb) per second.
- b. Impedance: 600 Ohms, BALANCED
- c. Cross Modulation: -60 deci-Bel (dB)
- d. Hum Modulation: -55 dB.
- e. System Data Error: Minimum 10 to -10 Bits per second (Bps).
- f. Loss: Measured at frame output with reference 0 deci-Bel measured (dBm) at 1,000 Hertz (Hz) applied to frame input:
 - 1) Trunk to station: Maximum 1.5 dB.
 - 2) Station to station: Maximum 3.0 dB.
 - Internal switch crosstalk: -60 dB when a signal of + 10 dBm, 500-2,500 Hz range is applied to primary path.
- g. Idle channel noise: 25 dB relative noise per channel (rnC) or 3.0 dBm at 0 above (terminated) ground noise, whichever is greater.
- h. Traffic Grade of Service for Voice: Minimum grade P-01 with an average traffic load of 7.0 One Hundred Call Seconds (CCS) per station per hour.
- i. Average CCS per voice station: CCS capacity maintained at 7.0 CCS and a Time Between Failures (TBF) of 99.99 percent when system is expanded up to projected maximum growth.
- H. Voice and Audio Standards:
 - 1. Input and Output Signal Level: 0.0 dBm at 1 kilo Hertz (kHz) test tone modulation level; each level variable over a 6.0 dB range.
 - 2. Input and Output Impedance: 600 Ohms Balanced (BAL).
 - 3. Input and Output Signals: Terminated on each system unit.
 - 4. Frequency Range: Minimum 50 Hertz (Hz) to 3.0 kHz + 1.0 percent.
 - 5. S/N Ratio: 60 deci-Bell per mili-Volt (dBmV) + 1.0 dBmV.
 - 6. Cross Modulation: -46 dB.
 - 7. Hum Modulation: -55 dB.
 - 8. Isolation (control unit to unit): Minimum 24 dB.
- I. Control Signal Standards:
 - 1. Input and Output Signal: 0.0 dBmV + 1.0 dBmV Level.
 - 2. Input and Output Signals: Terminated on each system unit.
 - 3. Input and Output Impedance: 600 Ohms, BAL.
 - 4. Channel Bandwidth: Voice, minimum 50 Hz to 3.0 kHz, + 5.0 percent.
 - 5. S/N Ratio: 60 dBmV + 1.0 dBmV.
- J. Telecommunication Outlet (TCO) Standards:
 - 1. Isolation (outlet-outlet): 24 dB.

06-01-15

- 2. Impedance: 600 Ohms.
- 3. Signal Level: 0 dBmV + 0.1 dBmV
- 4. System Speed: Minimum 100 mega-Bits (mb) per second.
- 5. System Data Error: Minimum 10 to -6 Bits per second.
- K. Auxiliary Systems:
 - // Provide Public Address System (PA) interface as described in Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS. //
 - 2. // Provide direct access to selected zones or all zone paging from
 each system console. //
 - 3. // Provide console attendant "priority access" (or ALL CALL or CODE ONE or CODE BLUE) to all zones. Selected station users to have access to appropriate zones via sub zones, by dialing proper access. //
 - 4. // Provide required NFPA and NRTL certified devices for Security Management System (SMS) to be interfaced to a designated critical care emergency communications system. //
 - 5. // Install according to appropriate Life Safety Code Standards. //
 - 6. // Provide feature to prevent system from being "locked up" by a user placing system on hold or leaving the receiver off-hook. //

2.2 EQUIPMENT

- A. General Product Requirements:
 - Provide current model of standard products of OEM of record. OEM of record to be defined as a commercial business enterprise manufacturingitems of equipment and which:
 - a. Maintains a factory production line for item submitted.
 - b. Maintains a stock of replacement parts for item submitted.
 - c. Maintains engineering drawings, specifications, and operating manuals for items submitted.
 - d. Has published and distributed descriptive literature and equipment specifications on items of equipment submitted at least one year prior to // Invitation for Bid // //.
 - Where standards are established for supplies, materials or equipment, provide supplies, materials and equipment listed by NRTL.
 - 3. Provide equipment labeled with approved seal of NRTL.
 - 4. Provide COR with verification, at time of installation, that type of cable being provided is recommended and approved by OEM. Provide cabling conforming to requirements of NRTL, TIA Wiring Standards and

requirements of NFPA 70. Coordinate correct protection, cable duct and conduit with installers.

- 5. Interface with SMS // telephone, // PA, // Radio Paging, // and, ______// systems utilizing interfacing methods approved by OEM and Government. Acceptable interfacing method requires not only a physical and mechanical connection, but includes matching of signal, voltage, and processing levels, with regard to signal quality and impedance. Provide separation of Critical Care, Life Safety, and Emergency systems.
- 6. Connect SMS // PA // Radio equipment // interface cabling from system headend via its System interface unit using system equipment and SMS // PA // Radio // interface equipment // as interface point. Provide system interface unit and SMS // PA // and radio // interface units //; do not install connections to PA system // and radio system //.
- Provide electronic components rated for continuous duty service, and complying with FCC standards for system equipment, systems, and service.
- Provide passive distribution equipment with -80 dB radiation shielding specifications or greater.
- 9. Terminate interconnecting twisted pair cables on equipment terminal boards, 110 style punch blocks, or breakout boxes. Terminate unused equipment ports/taps according to OEM's instructions for system cable systems without adapters. Terminate unused or spare twisted pair cable, and fiber-optic cable that is unconnected, loose or unsecured.
- 10. Utilize microprocessor components for signaling, programming circuits and functions. Ensure program memory is non-volatile or protected from erasure during power outages for a minimum of two hours.
- 11. Provide continuous electrical supervision of system equipment, interconnecting cabling, distribution cable plant, and UPS back up battery and charger to determine change in status and to assist in trouble shooting system faults.
- 12. Voltage: Not to exceed 30V AC RMS or 42V DC, except for primary power to power supply circuits.

- 13. Color Code Distribution Wiring: Conform to TIA administration standard.
- 14. Permanently label equipment, cable duct and conduit, enclosures, wiring, terminals, and cables according TIA 606-B standard and record on wiring diagrams, to facilitate installation and maintenance.
- 15. Coordinate connection of primary input power to critical branch of electrical distribution system.
- 16. Verify existing UPS system supports extensions' additional power requirement. If adequate capacity is not present, provide additional equipment required to support normal operation and functions of system including extension (as if there was no AC power failure) in event of an AC power failure for a minimum of four hours.
- 17. Provide plug-in connectors to connect equipment.
- 18. Utilize barrier terminal screw type connectors, at a minimum for base band cable systems.
 - a. Crimp type connectors installed with a ratchet type installation tool are an acceptable alternative as long as cable dress, pairs, shielding, grounding, connections and labeling are provided same as barrier terminal strip connectors.
 - b. Tape of any type, wire nuts, or solder type connections will not be permitted.
- 19. Provide stainless steel, anodized aluminum faceplates, or UL approved cycolac plastic matching equipment.
- 20. Provide noise filters and surge protectors for each equipment (including interface) cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches.
- B. Equipment Functional Characteristics:
 - 1. Input Voltage: 105 to 130 VAC.
 - 2. Power Line Frequency: 60 Hz ±2.0 Hz.
 - 3. Operating Temperature: 0 to 50 degrees Centigrade (C).
 - 4. Humidity: 80 percent minimum rating.
- C. Customer Service Unit (CSU)/Data Service Unit (DSU) Equipment:
 - Self-contained, electronic, digital // and VoIP // in operation, and provide, fully compatible with existing telephone equipment, a system as a minimum with following functions:

- a. Intra-Facility station-to-station four digit direct dialing to include those telephone instruments equipped with direct incoming dial features.
- b. Direct-output-dial (DOD) from any unrestricted telephone instrument to any CO trunk, ISDN, or FTS access lines by dialing a pre-designated access code.
- c. DOD from any station to tie lines by dialing a pre-designated access code.
- d. Ability of Incoming calls from FTS access lines and tie lines to direct dial system stations without attendant assistance.
- e. Access to outside lines through operator's console at restricted telephone instruments.
- f. Access to features, functions, CO trunks, FTS access lines, tielines, toll free numbers, and long distance directory assistance from unrestricted telephone instruments.
- g. Provide Class-of-Service (COS) restrictions to match existing telephone system to be applied individually or in combination as dictated by individual telephone number service requirements. Describe number and type of COS restrictions available in submittals.
- Provide station users with feature package to match existing telephone system and at a minimum, those listed by this paragrpah. Provide ability to restrict any of these features on a station by station basis.
 - a. Line Hunt Capability: Assign sequential and circular line hunting lines to a hunt group; submit number of hunt groups available and capacity of each group.
 - b. Consultation Hold: Capability to place an incoming call on hold, making a consulting call, and then return to original call.
 - c. Call Transfer: Permit a user to transfer an incoming or outgoing CO trunk, FTS, or tie-line call to another system station without attendant assistance.
 - d. Call Pick-Up: Answer a ringing, but unanswered call, within a pre-designated group of station lines by dialing a feature code or activating a feature button.
 - e. Call Forwarding "Follow Me" Functions: Automatically reroute incoming calls to another selected telephone number. Activate and

deactivating this feature from selected telephone instruments at their discretion.

- f. "Busy and Don't Answer" Functions: Automatically reroute calls to a pre-programmed secondary telephone instrument when a given telephone instrument is busy or does not answer within a prescribed time interval.
- g. Call Queuing: Telephone instrument encountering a busy trunk, e.g. CO, FTS, Foreign Exchange (F/X), and tie-lines, can be automatically connected to trunk when it becomes available.
- h. Call Back/Ring Back: Call back/ring back is activated at calling instrument initiating call to another internal busy instrument by an access code or feature button. Automatically ring calling instrument when both instruments become idle, and when answered, rings called instrument without preventing calling instrument from originating or receiving other calls.
- Conferencing: Telephone instrument initiated conference (minimum of three parties) which allows stations to conference any combination of telephone instrument, CO, or FTS calls.
- j. Automatic Number Identification: A facility where directory number or equipment number of a calling instrument is obtained automatically for use in message accounting.
- k. Station-to-Station Call Waiting: Busy telephone instruments are allowed to receive a second incoming call from another telephone instrument. Play call waiting tone on busy instrument, upon receiving a second incoming call. Busy instrument has ability to place initial call on hold and answer second call and alternate between both calls.
- 1. Station and System Speed Dialing:
 - System Speed Dialing: Minimum 50 numbers; allow designated telephone instruments to originate speed calls to CO, FTS, FX, or tie lines.
 - Station Speed Dialing: Ten numbers per instrument; instrument must include capability of entering, removing, or changing numbers programmed on their station speed dialing list.
- m. Call Park: Allows non-preselected internal instruments to access an attendant initiated feature in response to an internal/external paging situation.

- n. Universal Night Answer Service: Provide a means of night service transfer for answering incoming calls, which would normally be answered at console, from locations other than console. Provide chimes, with cut-off switches, to announce incoming calls strategically placed at two locations.
- o. Line Load Control: A pre-programmed attendant controlled feature which, when activated from console positions, restricts all but selected stations from accessing FTS and CO trunks during emergency conditions. Activation of line load control must not affect intra-facility communications (i.e. station-to-station, access to public address system, audio-page, etc.).
- p. Dual Common Controls: Provide following minimum features:
 - A redundant common processing unit with automatic transfer capability offering a stored program technology control feature.
 - Either common control capable of handling total system traffic load without degradation of service.
 - Automatic switch, in event of primary common control failure, to redundant unit with no interruption to calls in progress and no loss of program features.
- q. Line Lock Out:
 - Lock out station line in the event a telephone instrument handset is not replaced in telephone instrument cradle, after a pre-determined time interval with no dial action (i.e. not tie up system switch equipment).
 - 2) Apply audible tone to locked out station lines.
 - Automatically restore associated station line to full service when a locked out telephone instrument handset is replaced.
- r. Supervisory Telephone (not Electrical or Electronic) Signaling and Ringing:
 - Provide dual solid state signal generating devices, or equivalent, which produce standard supervisory signaling, i.e., ringing, dial tone, busy tone, etc. A maximum one-third of installed main station line capacity can be affected by failure of any one signal generating device.

- Provide automatic transfer to alternate signal generating device in the event of failure, of primary device, for dual solid state signal generating devices.
- s. Supervisory Signaling and Ringing:
 - Provide tones to indicate progress of a call through the exchange, i.e. dial tone - to indicate that switching equipment is ready to receive dial digits and, when required, provide a secondary dial tone for FTS 2000 access; busy tone (60 to 120 interruptions per minute) - to indicate that a busy line or trunk has been encountered; audible ring back tone to indicate to calling subscriber that the number dialed is being called.
 - Provide supervisory signaling and ringing devices capable of operating from emergency DC power source.
- t. Fusing:
 - Equip CSU/DSU with fuses to protect telephone system and individual segments of CSU so a problem in one segment can be isolated without damaging total CSU/DSU.
 - Provide alarm indicating type fuses with their rating designated by numerical or color code on fuse panels that are visible.
- u. Equipment Power Supply:
 - Equip CSU/DSU with a complete on-line power supply consisting of AC surge protection, dual load-sharing rectifiers/chargers, batteries, and inverter.
 - Provide capacity of power supply to support the CSU/DSU including projected maximum growth and as required in this specification for interfaced equipment.
 - 3) Provide UPS with battery back-up or reserve battery power supply with capacity to power CSU for four hours including projected maximum growth and interfaced equipment. Provide battery power supply of minimum 24 sealed (dry cells are not acceptable), maintenance-free cells.
 - Provide system capable of adjustable voltage for float or equalizing batteries.
 - 5) Provide fully redundant system (not including batteries and inverter) so each rectifier or charger has capacity to support

combined load requirements of existing system as configured including maximum growth and interfaced equipment.

- 6) Coordinate with local facility system contractor, through COR and Facility Contracting Officer, CO trunk, FTS access line, and other required interface units, power requirements to interface units so they can continue to function in event of a commercial AC power failure.
- v. Alarms and Trouble Indicators:
 - Provide visual and audible alarms, equipped with cut-off switches, indicating AC power failure, rectifier failure, major and minor trouble, and temperature/humidity alarms. Provide sensors for remote environmental alarms at existing telephone system and one other location. Separate these alarms in addition to major and minor alarm functions.
 - 2) Provide small red indicator lamps on alarm panel for each alarm with cut-off switches or one switch for alarms and distinctive audible alarms that can be heard over ambient noise in its respective location. If one cutoff switch is provided for all audible alarms, restore alarms to ready status condition for audible registration of additional alarms.
 - 3) On submittal describe other CSU/DSU alarms that are remote and describe CSU/DSU alarms/indicators of malfunctions that are located on the equipment.
- w. Provide capability of CSU/DSU to provide four-digit intra-station dialing and desired functions described herein.
- x. Due to varied trunk group requirements and possible future trunk group requirements (i.e. public address system access) alternate access codes can be proposed. Grouping of similar type trunk group/features (i.e. 5-1 public address system all call, 5-2 public address system zone 1, etc.) is acceptable.
- y. Provide emergency numbers accessible by CSU/DSU station users. Label numbers on console or a multi-line instrument and at least one other designated location. Provide a distinctive audible and visual signal associated with the emergency number to ensure an immediate response to calls. Provide capability of priority answering emergency number and extending call as the situation

dictates at console or multi-line instrument; a modified trunk circuit can be used for this purpose.

- z. Provide sensitivity for voice service up to 914.4 m (3,000 feet).
- aa. Provide CSU compatible with existing EBPX or equipped with
 following features:
 - 2
 - 1) AC to DC power supplies.
 - 2) Emergency battery power supply.
 - DC to AC inverter power supply (connected to CSU emergency battery power supply).
 - 4) Dual common controls.
 - 5) Redundant signaling supply units or equivalent.
 - 6) Cable distribution frame.
 - 7) Cable distribution system.
 - 8) Programmable emergency telephone numbers.
 - 9) On-site automatic program loading device (tape drives are not acceptable) to reload system memory in case of power or system failure (connected to CSU emergency battery power supply).
 - 10) On-site maintenance administration terminal (MAT) with monitor, keyboard and printer (connected to CSU emergency battery power supply).
 - 11) Automatic central office trunk connection to pre-determined stations for emergency trunk by-pass/cut-through service. Provide capability to immediately, upon failure of GFE system, have stations process calls. Equip each of these stations with automatic ground start for outgoing calls if required. Provide single line instruments, if required.
- 3. Voice Mail Requirements:
 - a. General: Provide complete voice mail system allowing predetermined number of users to send complete and confidential messages in user's own voice and receive complete and confidential messages in sender's own voice 24 hours per day, 7 days per week. Integrate into operation of existing telephone system and be compatible with local telephone company central office.
 - b. Provide capacity for the following number of ports (minimum):

	Equipped	Wired
	Capacity	Capacity
Automated Attendant	12	20
Voice Mail	12	20

- c. Provided voice mail system for 500 mailboxes and 40 hours of storage with growth to 60 hours of storage.
- 4. Voice Mail Features:
 - a. Access to system and its features from any instrument anywhere that provides dual tone multi-frequency (DTMF) signaling.
 - b. Ability of those leaving a message to review the message and edit the message that is being placed in the mailbox.
 - c. Privacy/Security through use of a password.
 - d. Ability to send messages to users on voice mail system in the following manner:
 - 1) To any user on same voice mail system.
 - To more than one user on same voice mail system; an ad hoc distribution list determined by sender at time of message transmission.
 - 3) To a predetermined distribution list.
 - 4) Broadcast to all users on same voice mail system.
 - e. Verification with Receipt: Ability of a user to request and receive verification of when a message is played through the use of a touch-tone command. Indicate time and date of when a message is played and place that information in sender's mailbox.
 - f. Envelope Information: Ability of a user to request and receive time and date information of when specific messages were left in user's mailbox.
 - g. Connection to voice mail system through extension number of existing telephone system or a seven/ten digit telephone number from LEC.
 - h. Message "PROMPTS" for every transaction; provide messages for "GREETINGS" and "INSTRUCTIONS FOR RECORDING OR EDITING A MESSAGE".
 - i. Notification that messages are in user's mailbox with a message waiting tone, lamp, and display.
 - j. Notification upon accessing system, of how many messages are in the user mailbox.

- k. Message response alternatives:
 - 1) Respond or send a reply to another user on same voice mail system.
 - 2) Route message to another user on same voice mail system.
 - 3) Delete message.
 - 4) Save message.
- Ability to fast forward or rewind recorded messages while being reviewed by user.
- m. Messages presented to user on a First-In, First-Out (FIFO) basis.
- n. User Administration: Provide management information and statistics in the following categories:
 - Port Usage: Traffic statistics on each of the different access paths into system.
 - Usage of Storage Capacity: Remaining storage capacity at any one time and during peak periods.
 - Mailbox Usage: Connect time and number of new or saved messages.
- O. User administration terminal that allows for "Class of Service Controls" in the following areas and for the following parameters:
 - 1) Initial Authorization.
 - a) Ability to enable a mailbox.
 - b) Record "Owner's" name.
 - c) Set initial Pass Number.
 - 2) Usage Control:
 - a) Length of personal greeting.
 - b) Length of messages received.
 - c) Number of messages.
 - d) Message retention time.
 - 3) Feature Authorizations: Allowed or not.
 - a) Group List Creation.
 - b) Group List Usage.
 - c) Broadcast Messages.
- D. Call Detail Reporting (CDR):
 - 1. Provide complete and self-contained on-site CDR compatible with existing telephone system.
 - 2. Functions:

- a. Provide laser printer for reports generated by system and maintenance administration terminal.
- b. Connect CDR to system emergency battery power supply.
- c. Include screen menus to provide access to each category of reports.
- E. Traffic Accounting and Management System (TMS) for voice circuits:
 - 1. Include hardware, software, and interconnections to CSU/DSU.
 - 2. Include a database stored on non-volatile media.
 - 3. Provide line numbers, physical locations of equipment by building and room number, the department to which a line is assigned, name of persons assigned to a particular number, type of equipment, and any comments regarding CSU/DSU features.
 - 4. Support additional input and output (I/O) ports for video monitors or other terminals that allows a passive display of data bases by authorized medical center personnel other than those individuals responsible for data input and conducting studies.
 - 5. Protect data bases with user ID and password.
 - Provide separate voice line reports, on demand and predetermined schedule, for automatic printing. The following reports are required:
 - a. Originating trunk traffic by trunk group, expressed in CCS.
 - b. Terminating trunk traffic by trunk group, expressed in CCS.
 - c. All trunks busy, by trunk group, expressed as blocked call count.
 - d. All equipment busy, i.e., no dial tone and failure to complete cross-office call because of all equipment busy, expressed in blocked call count.
 - e. List of equipment alarms, error tables, trouble logs, history files, V&H coordinates etc.
 - 7. Measurements for each Console:
 - a. Incoming calls.
 - b. Calls answered.
 - Provide remote video monitors compatible with TMS hardware and software in immediate vicinity of telephone operators for use as an on-line directory lookup system of facility personnel.
 - 9. Print reports in English notation that does not require interpretation of abbreviations or codes by user.

- 10. Provide storage on disk to prevent a purge of stored data. Maintain call record and facility usage data in database for a minimum 30 days with storage capability of accommodating a minimum 5,000 calls per day.
- Load and maintain directory that includes, name, title, organization, location, extension, and class-of-service.
- 12. Provide cable plant management function with the following minimum requirements:
 - a. A list of off-premise cable by circuit number, numbers of pairs for each circuit, and circuit definition.
 - b. Complete cable plant distribution record to identify location (cable pair) on main distribution frame (MDF), the riser, the size cable, cable pair in-use (main cable feeder and station cable), building and room number of the termination, and equipment type terminated.
 - c. Cable number and pair assignments provided automatically when service order is entered.
- 13. Provide equipment inventory list containing the following minimum requirements:
 - a. CSU cabinets, cards (active and spares), batteries, current and surge protectors, rectifiers, peripheral equipment (i.e. public address, radio page, etc.).
 - b. Quantity of single and multi-line telephones, speakerphones, dial intercom units, speakers, gongs, loud horns, bells, chimes, recorders, etc.
 - c. A list of equipment as being used or spare; ordered or received; installed date, warranty date, cost, location, serial number, etc.

14. Electrical or electronic supervisory alarms and faults reports.

- F. Cross-Connection System (CCS) Equipment: Breakout, termination connector (or bulkhead), patch panels, and connection assemblies, in addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, must include the following:
 - Connector panels made of flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in the cabinet.

- 2. Bulkhead equipment connectors mounted on the panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through the panel.
- 3. Each panel color matching cabinet installed.
- G. Voice:
 - 1. 110-type punch blocks certified for category six represent the minimum requirement for voice, and control wiring instead of patch panels. Category six IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS. Secure punch block strips to OEM designed physical anchoring unit located on a wall in Demarc Room, Telephone Equipment Room, and TR. However, console, cabinet, rail, panel, etc. mounting is allowed with OEM recommendation and as accepted by COR. Punch blocks will not be permitted for Class II or 120 VAC power wiring.
 - 2. Technical Characteristics:
 - a. Number of Horizontal Rows: Minimum 100.
 - b. Number of Terminals per Row: Minimum 4.
 - c. Terminal Protector: Required for each used or unused terminal.
 - d. Insulation Splicing: Required between each row of terminals.
- H. Fiber Optic and Analog Audio:
 - Product reference type is Tele wire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel can be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with proper connectors. This panel will not be permitted for 120 VAC power connections.
 - 2. Technical Characteristics:
 - a. Height: Minimum two RUs, 89 mm (3-1/2 inches).
 - b. Width: Minimum 484 mm (19-1/16 inches), EIA.
 - c. Number of Connections: Minimum 12 pairs.
 - d. Connectors:
 - Audio Service: Use RCA, 6.35 mm (1/4 inch Phono), XL or Barrier Strips, surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained).
 - Control Signal Service: Barrier strips surface mounted with spade lugs (punch block or wire wrap type strips are

acceptable alternates for barrier strips as long as system design is maintained).

- 3) Low Voltage Power (Class II): Barrier strips with spade lugs and clear full length plastic cover, surfaced mounted.4) Fiber Optic: "LC" Stainless steel, female.
- I. Mounting Strips and Blocks:
 - 1. Barrier Strips:
 - a. Barrier strips must be approved for AC power, data, voice, and control cable or wires that accommodate size and type of audio spade (or fork type) lugs used with insulating and separating strips between terminals for securing separate wires in orderly fashion.
 - b. Provide barrier strips with audio spade lug, which is connected to an individual screw terminal on the barrier strip at each cable or wire end.
 - c. Secure barrier strips to console, cabinet, rail, panel, etc. Do not connect 120 VAC power wires to signal barrier strips.
 - 2. Technical Characteristics:
 - a. Terminal Size: Minimum 6-32.
 - b. Terminal Count: Any combination.
 - c. Wire Size: Minimum 20 AWG.
 - d. Voltage Handling: Minimum 100 V.
 - e. Protective Connector Cover: Required for Class II and 120 VAC power connections.
 - f. Solderless Connectors: Crimp-on insulated lug to fit 6-32 minimum screw terminal. Install fork connector using standard crimp tool.
 - g. Furnish items for balancing and minimizing interference capable of passing telephone signals in the frequency bands selected, in directions specified, with low loss, and high isolation and with minimum delay of specified frequencies and signals.
- J. System Instruments:
 - Provide system instruments equipped with inductive capability to radiate a magnetic field required to activate hearing aid telecoil and to provide personnel, who use hearing aids, access to instruments within facility.
 - 2. Provide station equipment consisting of standard single line instruments, patient bedside instruments, and multi-line digital

electronic system instruments with digital display, of latest stateof-the-art design.

- 3. Provide system instruments except patient bedside phones, with a flash button (or equivalent feature button) with pre-determined timing feature to initiate consultation hold and other features normally initiated by operation of hook-switch. Flash button distinct from hook-switch.
- 4. Attach laminated faceplate listing the most common user features and their appropriate access codes to system instruments, except patient bedside phones. Faceplates can be an integral part of instrument housing or be an adhesive backed decal applied over tone pad area of the housing at time of system set installation.
- 5. Provide station instruments with transmission characteristics compatible with proposed system.
- 6. Provide system instrument signaling by means of standard adjustable, buzzers, chimes, or electronic tone, unless otherwise specified.
- 7. Single Line Instruments:
 - a. Single line instruments can be electronic or 2500-type analog phones.
 - b. Single line instruments used must be capable of supporting bridged cabling to allow a single phone number on multiple instruments without using multiple switch ports.
 - c. Single line instruments must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment without using multiple switch ports.
- 8. Multi-Line, Digital and Electronic Instruments Features:
 - a. Digital read-out display and with less than 14 programmable (lines or features) buttons.
 - b. Adjustable ringer, bell, buzzer, chime or electronic tone to announce calls.
 - c. Detect an incoming call to multi-button instrument and provide an audible signal only on designated lines.
 - d. Lights to identify called line and remain illuminated for duration of call.
 - e. Associate telephone intercom systems with these instruments.

- f. Equipment associated with intercom systems can require special features such as built in microphone and speaker. Provide a means of announcing calls to offices with extensions or pickups on system. Identify provision of intercom systems during data base survey required and provide any required intercom systems.
- g. Equipment must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment. The use of analog switch ports to provide ringing voltage, if required, is acceptable and include these switch ports in specified equipped capacity.
- h. Provide hot line telephones between two identified points provided with two-way automatic ring and cut-off controlled by telephone hook-switch, i.e. when near-end hand set is removed from hook switch, the far-end telephone rings until the hand set is removed from hook-switch.
- i. Configure speaker on hands free system stations to be used as both transmitter and receiver to answer or initiate a call. These facilities to normally be used as a hot line between two points.
- 9. Patient Bedside Instruments Features:
 - a. Maintenance free, sanitized packet, and capable of supporting table top, side-rail, top bed-rail, or wall mounting. Provide each phone with minimum 15 feet of self-contained line cord.
 - b. At the discretion of the facility, patient bedside instruments can be discarded cleaned for reuse, or given to the patient, as appropriate. Expected anticipated cost per instrument does not exceed ten dollars.

2.3 // AUXILIARY SYSTEMS //

A. //Provide CSU/DSU compatible with system providing a minimum six interfaces with Radio Paging System identified in Section 27 32 41, TWO-WAY RADIO EQUIPMENT, and with technical instructions from COR. If system is not interfaced with a radio paging system, include with CSU/DSU the capability of performing this function. Provide a feature to prevent radio paging system from being "locked up" by a user or an operator putting system on hold or leaving the receiver "off-hook". Coordinate with radio paging company and Government to identify interface requirements of system. Test during non-working hours at least 30 days before cutover. Provide and install any required

peripheral interface device. Notify Government to provide the interface device if it is a card or option in radio paging equipment. //

- B. //Provide CSU/DSU compatible with system that is interfaced to Public Address System (PA) identified in Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS, and with technical instructions from COR. If system is not interfaced with a PA system, CSU must be capable of performing this function.//
- C. Provide console attendants direct access to selected zones and all zones paging. Provide attendant "priority access" to all zones. Provide selected station users access to appropriate zones, by dialing the proper access. Provide required interface devices to PA. Provide a feature to prevent PA from being "locked up" by a user placing system on hold or leaving the receiver "off-hook". //
- D. //Provide SMS connections and compatible system operation as specified by Section 28 52 31, EMERGENCY CALL SYSTEM and Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEM.//

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install system according to this section and the following:
 - 1. NFPA 70, National Electrical Code (NEC), Article 517, Chapter 7, and Chapter 9.
 - 2. NFPA 99, Health Care Facilities, Chapters 3, and 4.
 - 3. NFPA 101, Life Safety Code, Chapters 7, 12, and 13.
 - Joint Commission/NFPA Life Safety Book for Health Care Organizations (June 2013).
 - 5. OEM recommendations and instructions, when more stringent than requirements of this section.
- B. System Installation:
 - 1. Ensure that installation personnel understand requirements of this specification.
 - Install filters, traps, directional couplers, splitters, system outlets, and pads for minimizing interference and for balancing amplifiers and distribution systems.
 - Connect passive equipment according to OEM specifications to insure correct termination, isolation, impedance match and signal level balance at each system outlet.

- 4. Install one outlet for each instrument where TCOs are installed adjacent to each other.
- 5. Terminate lines in a suitable manner to facilitate future expansion of system. Provide a minimum of one spare 25 pair cable at each distribution point on each floor.
- 6. Terminate vertical and horizontal copper and fiber optic //, and coaxial // lines in CSU / DSU, TER, MCR and TR equipment only.
- 7. Install terminating resistors or devices on unused branches, outlets, and equipment ports of system designed for the purpose of terminating fiber optic or twisted pair //, and coaxial // cables carrying system //, and analog video// signals in system //, and analog // systems.
- Install equipment outdoors in weatherproof enclosures with hinged doors and locks if equipment is not weatherproof. Provide minimum two keys for each lock.
- Install equipment indoors in metal cabinets with hinged doors and locks. Provide minimum two keys for each lock and VA Police Access Control System.
- C. Rack and Cabinet Equipment Mounting:
 - Install rack mount equipment on enclosures' equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustments can be conveniently made.
 - 2. Heavy Equipment:
 - a. Install heavy equipment using rack slides or rails allowing servicing from front of enclosure.
 - b. Install additional support to supplement front panel mounting screws for heavy equipment.
 - 3. Install cable slack to permit servicing by removal of equipment from front of enclosure.
 - 4. Install color matched blank panel (spacer) of 44 mm (1-3/4 inches) high, between each piece of equipment (active or passive) to ensure adequate air circulation maintaining enclosure design for efficient equipment cooling and air ventilation.
 - Provide 380 mm (15 inches) of front vertical space opening for additional equipment. Install color matched blank panels to cover any unused enclosure openings.

- 6. Connect signal connector, patch, and bulkhead panels (i.e. PA, system, control, etc.) so that outputs from each source, device or system component enters panel at top row of jacks, beginning left to right as viewed from front; designate these as "inputs". Install connection to load, device or system component to exit panel at bottom row of jacks, beginning left to right as viewed from front; designate these as "inputs".
- Mount equipment located indoors installed in metal racks or enclosures with hinged doors so it can be accessible for maintenance without interference to other nearby equipment.
- Fasten cables to equipment racks or enclosures in a manner that allow doors or access panels to open and close without disturbing or damaging cables.
- 9. Install distribution hardware allowing access to connections for testing and provide room for doors or access panels to open and close without disturbing cables.
- 10. Install a quad outlet with modular jacks and stainless steel face plate for each system outlet. Provide appropriate modular jack (single or quad) with appropriate face plate for each 'outlet' location identified and verified.
- 11. Install wall system and pole instruments on a single modular jack designed for wall and pole system instruments and patient wall or PBPU installations.
- 12. Install permanent telephone cables in conduit or an enclosed duct system. Obtain acceptance for installation, as determined by Government requirements, without conduit or enclosed duct system in cable tray or mechanically supported and separated from other signal cable systems.
- 13. Where cables penetrate fire/smoke partitions, firewalls, or floors, coordinate installation of fire stopping material of type accepted by COR.
- 14. Replace ceiling tiles damaged during installation and maintenance service of cable and wire distribution system. Restore immediate areas damaged during system installation and maintenance service.
- Run cross connects to established circuits during installation and maintenance service.

- Remove debris and scrap generated in conduct of work, on a daily basis.
- D. Installation of Conduit, Cables And Wiring, Cable Tray, Raceways, Signal Ducts:
 - General: Conduits installed in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING.
 - Ensure that system, SMS //, and PA // Systems (as identified by NEC Section 517) are separated and protected from other systems.
 - 3. Install cable junctions and taps to be accessible. Do not install multi-taps or other distribution equipment items inside cable ducts or raceways. Use minimum 200 mm x 200 mm x 100 mm (8" X 8" X 4") junction box attached to cable duct or raceway for installation of distribution system passive equipment. Ensure equipment and tap junctions are accessible.
 - Install and fasten cables without causing sharp bends or rubbing of cables against sharp edges. Fasten with hardware that does not damage or distort cables.
 - 5. Identify cables with permanent labels at terminals of electronic and passive equipment and at each junction point in system. Lettering on cables must correspond with lettering on the record wiring diagrams.
 - 6. Group cables to not change position throughout cable run.
 - 7. Test cables after installation and replace any defective cables.

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

- Conduct an interim inspection of installed equipment in presence of COR prior to proof of performance testing. Verify that equipment provided, adheres to installation requirements.
- Install 50 percent of system extension equipment to include CSU, interface, origination and junction enclosures powered with permanent AC wiring, outlets, conduit and cables, before interim inspection can take place.
- Notify COR of estimated date the contractor expects to be ready for interim inspection, minimum seven working days before requested inspection date.
- 4. Furnish results of interim inspection to COR and Project Manager. If major or multiple deficiencies are discovered, COR can require a

second interim inspection before permitting contractor to continue with system installation; SMCS 0050P2H3, (202) 461-5310 must be a part of this inspection team.

- 5. COR in conjunction with RE determine if an additional inspection is required, or if contractor will be allowed to proceed with installation. In either case, re-inspection of deficiencies noted during interim inspections, must be part of proof of performance test. Interim inspection is not permitted to affect the system's completion date. Include test documents as part of system's record wiring diagrams.
- B. Pretesting: Align and balance system. Upon completing the installation of system, pretest entire system.
- C. Pretesting Procedure: During system pretest, verify (utilizing accepted spectrum analyzer and test equipment) that system is fully operational and meets system performance requirements. Measure and record aural carrier levels of each system instrument, at each of the following points in system:
 - 1. Telephone System inputs.
 - 2. CSU/DSU inputs and outputs.
 - 3. TER, MCR and TR amplifiers, channel processor and converter inputs and outputs.
 - 4. CSU/DSU output signal-to-noise ratio for each instrument.
 - 5. Signal level at each interface point to distribution system, last outlet on each trunk line and outlets installed as part of this project.
 - 6. Submit recorded system pretest measurements along with pretest certification, to COR.
- D. Pretesting Certification: After pretesting system, notify COR that system is ready for proof of performance testing in presence of a SMCS 0050P2H3, (202) 461-5310, and others specifically identified by COR, and that system complies with documented requirements. Submit notification of system readiness no later than twenty working days prior to beginning of scheduled Government proof of performance test. Failure of contractor to comply with these pretest requirements, automatically cancels scheduled acceptance test.
- E. Acceptance Test:

- 1. After system has been pretested and contractor has submitted pretest results and certification to COR, schedule an acceptance test date and give COR 30 days written notice prior to date acceptance test is expected to begin; include expected duration of time for test. Test in presence of a COR and OEM certified representative. Test utilizing test equipment to certify proof of performance and Life Safety Compliance. Verify that total system meets specified requirements under operating conditions, and complies with listed system performance standards.
- 2. Make only those operator adjustments required to show proof of performance. Demonstrate and verify that installed system does comply with operational requirements under operating conditions. Rate system as either acceptable or unacceptable at conclusion of test. Failure of any part of system, that precludes completion of system testing and cannot be repaired within four hours, terminates acceptance test of system.
- Declare entire system unacceptable if repeated failures result in a cumulative time of eight hours to effect repairs and retesting entire system at convenience of Government.
- F. Acceptance Test Procedure:
 - 1. Mechanical and Physical Inspection:
 - a. COR may tour major areas where system and sub-systems are located to ensure they are completely and properly installed in place and are operationally ready for proof of performance acceptance testing. A system inventory including available spare parts must be taken at this time. Verify equipment to ensure appropriate UL certification labels are affixed.
 - b. Review system diagrams, record drawings, equipment manuals, AutoCAD files, intermediate and pretest results.
 - c. Failure of system to meet installation requirements of this specification will terminate testing.
 - 2. Sub-system Operational Test:
 - After mechanical and physical inspection, perform operational test of each sub-system to verify that equipment is connected, interfaced and operational to meet requirements of this section.
 If any sub-system is not ready, that sub-system will be declared

06-01-15

unacceptable and all testing terminated. At this point, Contractor is only permitted one hour to correct deficiencies.

- b. Agree with COR, at this time, to wait one hour or to commence testing of next sub-system.
- c. Repeated failures of sub-system testing or total system testing that results in a cumulative time of four hours to effect repairs, is grounds for declaring entire system unacceptable and testing to be terminated. Reschedule retesting at the convenience of Government.
- 3. Sub-system Performance Test: After operational test of each subsystem, verify that all performance requirements and standards are met. Verify there are no visible signal distortions, such as intermodulation, beats, etc. appearing on any received or generated system with spectrum analyzer, signal level meter and BERT.
- 4. Total System Test: Commences after system and sub-systems have been tested and accepted.
 - a. Existing System Point of Demarcation: Check system outputs.
 - b. CSU/DSU: Test within 30 days following successful pretesting of CSU/DSU. In addition to compliance with technical characteristics and quantities of equipment specified herein, the final acceptance test provision that 30 continuous days of uninterrupted system service, must be completed prior to Contractor being deemed to be in compliance with contract.
 - For purpose of final acceptance, system service is considered interrupted when failure of any contractor provided telephone equipment including batteries, results in an interruption of service. This includes a failure of more than 20 percent of any trunk group, 15 percent of any number group (15 or more stations), operator console, or telephone service to any area determined to be critical by Facility Director. Response time to restore service has bearing upon term "interrupted service".
 - 2) To facilitate CSU/DSU acceptance test and to allow familiarization and training of government employees, activate CSU/DSU, including operator consoles, stations, and equipment a minimum 30 days prior to acceptance test date. Test installed equipment and circuits prior to acceptance by

06-01-15 Government. During this "burn-in" period, de-bug CSU/DSU. Make CSU/DSU available for in-house communications and demonstrate features to facility staff. Government and contractor will ensure trunks // and tie line circuits // are available to CSU/DSU during this "burn-in" period for testing.

- 3) At conclusion of Acceptance Test, if Project Manager, SMCS and COR agree to the results of the test, reschedule testing on deficiencies and shortages, if any. The 30 days of uninterrupted service provision begins when test shows the system performs in accordance with the specifications. If any retests are needed to reach agreement on the results of tests or to establish compliance with these specifications, such retesting is provided at contractor's expense.
- 5. Individual Item Test: COR can select individual items of equipment for detailed proof-of-performance testing to verify items selected meet or exceed minimum requirements of the specification.
- 6. Interface Cable Sub-system: To ensure that system meets performance requirements, check a minimum 75 percent of system outlets and interface points. Additionally check each sub-system interface, junction, and connection point or location. Each distribution active and passive item of equipment, signal inputs and outputs must be tested.
- Distribution Cable Plant Sub-system: For specific distribution testing instructions refer to Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING.
- G. Test Conclusion:
 - Government will reschedule testing on deficiencies and shortages, using generated punch list (or discrepancy list).
 - If system is declared unacceptable without conditions, retesting is provided at contractor's espense.

3.3 SYSTEM STARTUP

- A. Provide personnel (switch technicians, installers, trainers, and project manager, etc.) on premise for seven consecutive days after cutover, to clear any malfunctions that develop, to assign/reassign any software features/COS, and conduct any additional training as required.
- B. Connect system equipment located in TR and TER to telecommunications grounding busbar.

- C. Provide system ground between CSU/DSU and interfaced systems such as existing SMS, // // system, system equipment chassis, etc.
- D. Ensure that other dedicated telecommunications systems applications within facility (i.e., pay stations, electro-writing equipment, facsimile etc.) that require space within TER, MCR and TRs, conduits, and cable pair are accommodated. Coordination between applicable parties is necessary to ensure accommodation of these systems.
- E. Verify system installation conforms to local building and fire codes.

3.4 TRAINING

- A. Provide services of OEM trained and certified engineer or technician for two eight-hour classes to instruct designated facility maintenance personnel. Include cross connection, corrective, and preventive maintenance of system and equipment.
- B. Provide services of OEM trained and certified engineer or technician, familiar with functions and operation of system and equipment, for two eight-hour periods to train designated facility IRM personnel. Instruct staff personnel in each area where system is installed under this contract. Group classes when multiple areas are involved. Coordinate periods of training with COR to ensure all shifts receive required training. Include instructions utilizing "hands-on" operation and functions of system.
- C. Before system can be accepted by Government, this training must be accomplished. Schedule training at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.5 MAINTENANCE

- A. Provide COR the ability to contact OEM's central emergency assistance maintenance center and request remote diagnostic testing and assistance in resolving technical problems at any time, during warranty period. Provide remote diagnostic testing and assistance capability to Government.
- B. Response Time during Warranty Period:
 - Respond on-site, during the standard work week, to a routine trouble call within 24 hours of its report. A routine trouble is considered a trouble that causes a sub-system to be inoperable.
 - Respond on-site to an emergency trouble call within four hours of its report. An emergency trouble is when failure:
 a. Causes a system to be inoperable at any time.

06-01-15

06-01-15

- b. Involves more than 20 voice circuits.
- c. Is of a common control unit, power supply, signal generating device or attendant console.
- Respond on-site to a catastrophic trouble call within two hours of its report. System failure is considered a catastrophic trouble call.
 - a. If system failure cannot be corrected within six hours, provide an alternate CPU/Key System/mini- system equipped for a minimum of 100 main station lines, 10 CO trunks, 10 FTS access lines and two operator's consoles.
 - b. Install alternate system to provide emergency service to critical areas as determined by Facility Director within 12 hours (time to commence at end of the six hour trouble shooting period).
 - c. Provide to Facility Contracting Officer (CO), prior to cut-over of main telephone system, a pre-written program disk from programmable alternate system.
- 4. Catastrophic trouble calls include failures affecting operation of critical emergency health care facilities (i.e., cardiac arrest teams, intensive care units, etc.) if so determined by Facility Director.
- Respond on-site to installation of station or equipment requests for service within:
 - a. Eight hours for emergency installations designated by Facility CO.
 - b. Three working days for routine installations designated by Facility CO.
- C. A standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
- D. Provide compatible temporary equipment returning system or sub-system to full operational capability, until repairs are completed for any trouble that cannot be corrected within one working day.
- E. COR and Facility CO are contractor's reporting and contact officials for system trouble calls, during warranty period.
- F. Required On-Site Visits during Warranty Period:
 - Visit, once every twelve weeks, to perform system preventive maintenance, equipment cleaning and operational adjustments to maintain system.

06-01-15

- a. Arrange facility visits with COR or Facility CO prior to performing maintenance visits.
- b. Perform preventive maintenance in accordance with OEM's recommended practice and service intervals during non-busy times agreed to by COR or Facility CO.
- c. Provide preventive maintenance schedule to COR and Facility CO for approval.
- d. Provide on-site replacement spare parts and equipment, plus test equipment, ensuring they meet OEM's minimum recommended spare parts stock sizing requirements for this specific system.
- Provide Facility CO a report itemizing each deficiency found and corrective action performed during each visit or official reported trouble call. Provide COR or Facility CO with sample copies of reports for review and approval at beginning of acceptance test. Minimum reports required:
 - a. Monthly summary of equipment and sub-systems serviced during warranty period to COR or Facility CO by fifth working day after end of each month. Describe services rendered, parts replaced, repairs performed and prescribe anticipated future needs of equipment and systems for preventive and predictive maintenance.
 - b. Separate log entry for each item of equipment and each sub-system of system listing dates and times of scheduled, routine, and emergency calls. Describe details of the nature and causes of each emergency call, emergency steps taken to rectify situation and specific recommendations to avoid such conditions in the future.
 - c. Include in Warranty GFE accepted by contractor, interfaced and installed in system; attach GFE List.

- - - E N D - - -

DIVISION 28

ELECTRONIC SAFETY AND SECURITY

04-01-18

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, intrusion detection, duress alarms, elevator control interface, video assessment and surveillance, video recording and storage, delayed egress, personal protection system, intercommunication system, fire alarm interface, equipment cabinetry, dedicated photo badging system and associated live camera, report printer, photo badge printer, and uninterruptible power supplies

04-01-18

(UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 11 73 SLIDING METAL FIRE DOORS. Requirements for door installation.

- D. Section 08 35 13.13 ACCORDIAN FOLDING DOORS. Requirements for door installation.
- E. Section 08 34 59 VAULT DOORS AND DAY GATES. Requirements for door and gate installation.
- F. Section 08 51 13 ALUMINUM WINDOWS. Requirements for window installation.
- G. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- H. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- I. Section 14 21 00 ELECTRIC TRACTION ELEVATORS. Requirements for elevators.
- J. Section 14 24 00 HYDRAULIC ELEVATORS. Requirements for elevators.
- K. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- L. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- M. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- N. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- O. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- P. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- Q. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- R. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- S. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for Commissioning.
- T. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.
- U. Section 28 13 16 PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.
- V. Section 28 13 53 SECURITY ACCESS DETECTION. Requirements for screening of personnel and shipments.

- W. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.
- X. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- Y. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.
- Z. Section 32 31 13 CHAIN LINK FENCES AND GATES. Requirements for fences.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.

04-01-18

- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space

- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- WW. UTP: Unshielded Twisted Pair
- XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the

equipment and material specified for this project, and shall have manufactured the item for at least three years.

- B. Product Qualification:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] <insert number> miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility

Station Project No.: 646-18-101 28 05 00 - 7

04-01-18

shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within // four // eight // hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

- A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.
- B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract

04-01-18

Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION ".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - //2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or piping so that the proposed installation can be properly reviewed. //
 - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be

considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:

- 1. The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
- 2. The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
- 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and

the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.

- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - 1) Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - 2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
 - e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the

drawing title, description of contents and drawing location at the appropriate location of the manual.

- Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply,

recommended spare parts, and name of servicing organization.

- j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with

04-01-18

information contained in Project Record Drawings to assure correct illustration of the completed installation.

- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.

- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs

- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- q. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:
 - 1) Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - 2) Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
 - 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
 - 4) Details of connections to power supplies and grounding
 - 5) Details of surge protection device installation

- Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)

Station Project No.: 646-18-101 28 05 00 - 17

04-30-2019

04-01-18

- 6) Data Gathering Panel Input Number
- 7) Door Position or Monitoring Device Type & Model Number
- 8) Lock Type, Model Number & Power Input/Draw (standby/active)
- 9) Card Reader Type & Model Number
- 10) Shunting Device Type & Model Number
- 11) Sounder Type & Model Number
- 12) Manufacturer
- 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device

14) Remarks column indicating special notes or door configurations

- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the Resident Engineer to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage
 - e. Camera Location
 - f. Floor Plan Sheet Number
 - g. Camera Type
 - h. Mounting Type
 - i. Standard Detail Reference
 - j. Power Input & Draw
 - k. Power Panel Location
 - 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing

28 05 00 - 18

submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.

- b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
- c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
- d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
- e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number
 - 4) First Relay Number
 - 5) DGP, input or output Location
 - 6) DGP Chain Number
 - 7) DGP Cabinet Tamper Input Number
 - 8) DGP Power Fail Input Number
 - 9) Number of Monitor Points Reserved For Expansion Boards
 - 10) Number of Control Points (Relays) Reserved For Expansion Boards

- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 7) DGP or input module Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).

04-01-18

- 1) DGP Control Point (Relay) Number
- 2) System (Control Point) Number
- 3) Cable ID Number
- 4) Description Field (Room Number)
- 5) Description Field (Device: Lock Control, Local Sounder, etc.)
- 6) Description Field
- 7) DGP or OUTPUT MODULE Output Location
- 8) Date Test
- 9) Date Passed Cable Type
- 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section III Construction Mock-up: In areas with exposed EMT/Conduit Raceways, contractor shall conceal raceway as much as practical and unobtrusively. In addition, historic significance must be considered to determine installation means and methods for approval by the owner.
- 5. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 6. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:

- a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 7. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.
 - 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors

Station Project No.: 646-18-101 28 05 00 - 22

- H. Group III Technical Data Package
 - 1. Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.
- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the Resident Engineer for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
 - b. New Unit Control Room:
 - Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover.

Station Project No.: 646-18-101 28 05 00 - 23

04-30-2019

Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the Resident Engineer. Instruction is not to begin until the system is operational as designed.

- 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.
- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network

Station Project No.: 646-18-101 **28 05 00 - 24** 04-30-2019

video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:

- 1) Physical Access control system components,
- 2) All intrusion detection system components,
- 3) Video surveillance, control and recording systems,
- 4) Intercom systems components,

5) All other security subsystems shown in the contract documents.

- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for

04-01-18

review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Resident Engineer as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. //Six (6) hard-copies and one (1) soft copy on CD// of each item listed below shall be delivered as a part of final systems acceptance.
 - Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
 - 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
 - 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and

shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.

- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the Resident Engineer a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.

- e. Engineering data and test.
- f. Complete nomenclature and number of replacement parts.
- g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
- h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting quide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
- i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the Resident Engineer or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the Resident Engineer for review and approval of all changes or modifications to the documents. Each sheet shall have Resident Engineer initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the

master redline documents daily. Field drawings shall not be considered "master redlines".

- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for Resident Engineer review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:

- a. Certificates received instead of labels on bulk products.
- b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the Resident Engineer prior to development of Record construction documents. The Resident Engineer shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the Resident Engineer, the Resident Engineer will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the Resident Engineer a complete set of "as-built" drawings and original master redlined marked "asbuilt" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
 - c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a

comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact infield conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

- K. FIPS 201 Compliance Certificates
 - 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Fingerprint Capture Station
 - b. Card Readers
 - c. Facial Image Capturing Camera
 - d. PIV Middelware
 - e. Template Matcher
 - f. Electromagnetically Opaque Sleeve
 - g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
 - h. <list devices and software>
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.

4. Duct sealing compound.

- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- //O. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.//

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC):

A117.1....Standard on Accessible and Usable Buildings and Facilities

C. American National Standards Institute (ANSI)/ Security Industry Association (SIA):

AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards

CP-01-00.....Control Panel Standard-Features for False Alarm Reduction

- PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity
- TVAC-01.....CCTV to Access Control Standard Message Set for System Integration
- D. American National Standards Institute (ANSI)/Electronic Industries
 Alliance (EIA):

	HZ PROSTHETIC B/1/49 (PHASED) 04-01-18
	330-09Electrical Performance Standards for CCTV Cameras
	375A-76Electrical Performance Standards for CCTV
	Monitors
Ε.	American National Standards Institute (ANSI):
	ANSI S3.2-99Method for measuring the Intelligibility of
	Speech over Communications Systems
F.	American Society for Testing and Materials (ASTM)
	B1-07 B1-07
	Wire
	B3-07for Soft or Annealed
	Copper Wire
	B8-04for Concentric-Lay-
	Stranded Copper Conductors, Hard, Medium-Hard,
	or Soft
	C1238-97 (R03)Standard Guide for Installation of Walk-Through
	Metal Detectors
	D2301-04 Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical
	Insulating Tape
G.	Architectural Barriers Act (ABA), 1968
Η.	Department of Justice: American Disability Act (ADA)
	28 CFR Part 36-2010 ADA Standards for Accessible Design
I.	Department of Veterans Affairs:
	VHA National CAD Standard Application Guide, 2006
	VA BIM Guide, V1.0 10
J.	Federal Communications Commission (FCC):
	(47 CFR 15) Part 15 Limitations on the Use of Wireless
	Equipment/Systems
Κ.	Federal Information Processing Standards (FIPS):
	FIPS-201-1Personal Identity Verification (PIV) of Federal
	Employees and Contractors
L.	Federal Specifications (Fed. Spec.):
	A-A-59544-08Cable and Wire, Electrical (Power, Fixed
	Installation)
Μ.	Government Accountability Office (GAO):

04-01-18 GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities N. Homeland Security Presidential Directive (HSPD): HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08.....Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard C2-07.....National Electrical Safety Code C62.41-02..... IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810..... Identification cards - Physical characteristics 7811.....Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange

	04-01-18
	14443 Identification cards - Contactless integrated
	circuit cards; Contactless Proximity Cards
	Operating at 13.56 MHz in up to 5 inches
	distance
	15693Contactless integrated
	circuit cards - Vicinity cards; Contactless
	Vicinity Cards Operating at 13.56 MHz in up to
	50 inches distance
	19794 Information technology - Biometric data
	interchange formats
Q	. National Electrical Contractors Association
	303-2005 (CCTV)
	Systems
R	. National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
	TC-3-04PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
	FB1-07
	for Conduit, Electrical Metallic Tubing and
	Cable
S	. National Fire Protection Association (NFPA):
	70-11 National Electrical Code (NEC)
	731-08of Electric
	Premises Security Systems
	99-2005Health Care Facilities
Т	. National Institute of Justice (NIJ)
	0601.02-03Standards for Walk-Through Metal Detectors for
	use in Weapons Detection
	0602.02-03Band-Held Metal Detectors for Use in Concealed
	Weapon and Contraband Detection
U	. National Institute of Standards and Technology (NIST):
	IR 6887 V2.1Government Smart Card Interoperability
	Specification (GSC-IS)
	Special Pub 800-37Guide for Applying the Risk Management
	Framework to Federal Information Systems
	Special Pub 800-63Electronic Authentication Guideline

04-01-18

	Special Pub 800-73-3Interfaces for Personal Identity Verification
	(4 Parts)
	Pt. 1- End Point PIV Card Application
	Namespace, Data Model & Representation
	Pt. 2- PIV Card Application Card Command Interface
	Pt. 3- PIV Client Application Programming
	Interface
	Pt. 4- The PIV Transitional Interfaces & Data
	Model Specification
	Special Pub 800-76-1Biometric Data Specification for Personal
	Identity Verification
	Special Pub 800-78-2Cryptographic Algorithms and Key Sizes for
	Personal Identity Verification
	Special Pub 800-79-1Guidelines for the Accreditation of Personal
	Identity Verification Card Issuers
	Special Pub 800-85B-1DRAFTPIV Data Model Test Guidelines
	Special Pub 800-85A-2PIV Card Application and Middleware Interface
	Test Guidelines (SP 800-73-3 compliance)
	Special Pub 800-96PIV Card Reader Interoperability Guidelines
	Special Pub 800-104AScheme for PIV Visual Card Topography
v.	Occupational and Safety Health Administration (OSHA):
	29 CFR 1910.97Nonionizing radiation
747	Section 508 of the Rehabilitation Act of 1973
	Security Industry Association (SIA):
Λ.	
	AG-01Security CAD Symbols Standards
Y.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-04 Surface Metal Raceway and Fittings
	6-07Rigid Metal Conduit
	44-05 And Cables
	50-07 Enclosures for Electrical Equipment
	83-08 Mires and Cables
	294-99 The Standard of Safety for Access Control
	System Units
	305-08Btandard for Panic Hardware
	360-09Conduit

04-01-18

444-08Safety Communications Cables
464-09Audible Signal Appliances
467-07 Electrical Grounding and Bonding Equipment
486A-03Wire Connectors and Soldering Lugs for Use with
Copper Conductors
486C-04Splicing Wire Connectors
486D-05for Systems for
Underground Use or in Damp or Wet Locations
486E-00
Aluminum and/or Copper Conductors
493-07 Thermoplastic-Insulated Underground Feeder and
Branch Circuit Cable
514A-04Metallic Outlet Boxes
514B-04Fittings for Cable and Conduit
51-05 Schedule 40 and 80 Rigid PVC Conduit
609-96 And Systems
634-07 Standards for Connectors with Burglar-Alarm
Systems
636-01Standard for Holdup Alarm Units and Systems
639-97Detection Units
651-05Conduit
651A-07 and HDPE EB and A Rigid PVC Conduit and HDPE
Conduit
752-05 Equipment
797-07Electrical Metallic Tubing
827-08Sentral Station Alarm Services
1037-09 and Devices
1635-10
1076-95Btandards for Proprietary Burglar Alarm Units
and Systems
1242-06Intermediate Metal Conduit
1479-03Fire Tests of Through-Penetration Fire Stops
1981-03Sentral Station Automation System
2058-05 High Security Electronic Locks
60950 Technology Equipment
60950-1 Safety -
Part 1: General Requirements

04-01-18

- Z. Uniform Federal Accessibility Standards (UFAS) 1984
- AA. United States Department of Commerce:

Special Pub 500-101Care and Handling of Computer Magnetic Storage Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data

04 - 01 - 18

transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Resident Engineer shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Resident Engineer shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.
- E. System Inspections
 - 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- F. Emergency Service
 - 1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with

an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.

- a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- G. Operation
 - 1. Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- H. Records & Logs
 - 1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- I. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

04-01-18

- J. System Modifications
 - 1. The Contractor shall make any recommendations for system modification in writing to the Resident Engineer. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the Resident Engineer. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- K. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REOUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - 1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected

against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.

- 2. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - 1. Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - 2. Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - 3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
 - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - 1. Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - 2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to

122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.

- 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
- 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.
- 5. Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.

- 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.
- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for [8] <insert hours> hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Emergency Generator

a. Report Printers: Unit Control Room

- b. Video Monitors: Unit Control Room
- c. Intercom Stations
- d. Radio System
- e. Lights: Unit Control Room, Equipment Rooms, & Security Offices
- f. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
- g. Security Device Power Supplies (DGP, VASS, Card Access, Lock Power, etc.) powered from the security closets or remotely: various locations
- h. Telephone/Radio Recording Equipment: Unit Control Room.
- i. VASS Camera Power Supplies: Security Closets
- j. VASS Pan/Tilt Units: Various Locations
- k. VASS Outdoor Housing Heaters and Blowers: Various Sites
- 1. Intercom Master Control System
- m. Fiber Optic Receivers/Transmitters
- n. Security office Weapons Storage
- o. Outlets that charge handheld radios
- 2. Uninterruptible Power Supply (UPS) on Emergency Power
 - a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room
 - Communications equipment: Control Equipment Room and various sites.
 - 4) VASS Matrix Switcher: Control Equipment Room
 - 5) VASS: Control Equipment Room
 - 6) Digital Video Recorders, encoders & decoders: Control Room
 - 7) All equipment Room racked equipment.
 - 8) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and

04-01-18

surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.

- 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- 2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- 3. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
- 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.
- B. Grounding and Surge Suppression
 - 1. The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, under ground-fault conditions.
 - 2. Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
 - 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
 - 4. Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
 - 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - 7. Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
 - 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - 1. Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - 2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
 - 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
 - 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.
 - 1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.

- b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
- c. d. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.
- 2. Console racks:
 - a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
 - b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.
- C. Tamper Provisions and Tamper Switches:
 - Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
 - 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.
 - 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the

door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.

- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The Resident Engineer shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the Resident Engineer stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - 1. Identity of the material or devices specified for which there is a proposed substitution.
 - Description of the segment of the specification where the material or devices are referenced.
 - Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
 - 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COTR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the Resident Engineer shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The Resident Engineer shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does

Station Project No.: 646-18-101

not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a pointby-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer. All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COTR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COTR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COTR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COTR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the

Station Project No.: 646-18-101 28 05 00 - 51

04-01-18

warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] <insert hours> hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - 1. Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 - 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.
 - 3. Controlling devices shall be utilized to interface the SMS with all field devices.
 - 4. The Security control room and security console will be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.
 - 5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:
 - a. Security Console Bays and Equipment Racks
 - b. Security Network Server and Workstation
 - c. CCTV Monitoring, Controlling, and Recording Equipment
 - d. PACS Monitoring and Controlling Equipment
 - e. IDS Monitoring and Controlling Equipment
 - f. Security Access Detection Monitoring Equipment
 - g. EPPS Monitoring and Controlling Equipment
 - h. Main Panels for all Security Systems
 - i. Power Supply Units (PSU) for all field devices
 - j. Life safety and power monitoring equipment
 - k. All other building systems deemed necessary by the VA to include, but not limited to, heating, ventilation and air conditioning (HVAC), elevator control, portable radio, fire alarm monitoring, and other potential systems.

1. Police two-way radio control consoles/units.

- B. Security Console Bays shall be EIA 310D compliant and:
 - Utilize stand-up, sit-down, and vertical equipment racks in any combination to monitor and control the security subsystems.
 - Shall be wide enough for equipment that requires a minimum 19 inch (47.5 cm) mounting area.
 - 3. Shall be made of metal, furnished with wire ways, a power strip, a thermostatic controlled bottom or top mounted fan units, a hinge mounted rear door, a hinge mounted front door made of Plexiglas, and a louvered top. When possible, pre-fabricated (standard off-theshelf) security console equipment shall be used in place of customized designed consoles.
 - 4. A wire management system shall be designed and installed so that all cables are mounted in a manner that they do not interfere with dayto-day operations, are labeled for quick identification, and so that high voltage power cables do not cause signal interference with low voltage and data carrying cables.
 - 5. Shall be mounted on lockable casters.
 - Shall be ergonomically designed so that all devices requiring repetitive interaction with by the operator can be easily accessed, observed, and accomplished.
 - 7. Controls and displays shall be located so that they are not obscured during normal operation. Control and display units installed with a work bench shall be a minimum of 3 in. (7.5 cm) from all edges of the work bench area.
 - 8. All security subsystem controls shall be installed within the same operating console bay of their associated equipment.
 - 9. Video monitors shall be mounted above all controls within a console bay and positioned in a manner that minimum strain is placed on the operator viewing them at the console.
 - 10. At least one workbench for every three (3) console bays shall be provided free of control equipment to allow for appropriate operator workspace.
 - 11. All console devices shall be labeled and marked with a minimum of quarter inch bold print.

- 12. All non-security related equipment that is required to be monitored shall be installed in a console bay separate from the security subsystem equipment and clearing be identified as such.
- 13. Console bays and related equipment shall be arranged in priority order and sequenced based upon their pre-defined security subsystem operations criticality established by the Contracting Officer.
- 14. The following minimum console technical characteristics shall be taken into consideration when designing for and installing the security console and equipment racks:

	Stand-Up	Sit-Down	Vertical Equipment Rack
Workstation Height	No Greater than 84 in. (210 cm)	No greater than 72 in. (150 cm)	No greater than 96 in. (240 cm)
Bench board Slope	21 in. (52.5 cm)	25 in. (62.5 cm)	N/A
Bench board Angle	15 degrees	15 degrees	N/A
Depth of Console	24 in. (60 cm)	24 in. (60 cm)	N/A
Leg and Feet Clearance	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front
Distance Between Console Rows	96 in. (240 cm)	96 in. (240 cm)	96 in. (240 cm)
Distance Between Console and Wall	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack

- C. Security Console Configuration:
 - 1. The size shall be defined by the number of console bays required to house and operate the security subsystems, as well as any other factors that may influence the overall design of the space. A small Access Control System and Database Management shall contain no more than four (4) security console bays. A large Access Control System and Database Management shall contain no less than five (5) and no more than eight (8) security console bays.

04 - 01 - 18

- 2. Shall meet the following minimum spacing requirements to ensure that a Access Control System and Database Management is provided to house existing and future security subsystems and other equipment listed in paragraph 2.3.C:
 - a. 500 square feet for a large Access Control System and Database Management.
 - b. 300 square feet for a small Access Control System and Database Management.
 - c. If office, training room and conference space, is a processing area as well as holding cell space is to be located adjacent to the Access Control System and Database Management, these space requirements also need to be considered.
- 3. Shall be located in an area within, at a minimum, the first level/line of security defense defined by the VA. If the Access Control System and Database Management is to be located outside the first level of security, then the area shall be constructed or retrofit to meet or exceed those requirements outlined in associated VA Master Specifications.
- 4. Shall not be located within or near an area with little to no blast mitigation standoff space protection, adjacent to an outside wall exposed to vehicle parking and traffic, within a basement or potential flood zone area, in close approximately to major utility areas, or near an exposed air intake(s).
- 5. Access shall meet UFAS and ADA accessibility requirements.
- 6. Construction shall be slab to slab and free of windows, with the exception of a service window. All penetrations into the room shall be sealed with fire stopping materials. This material shall apply in accordance with Section 07 84 00, FIRESTOPPING.
- 7. A service window shall be installed in the wall next to the main entrance of the Access Control System and Database Management or where it best can be monitored and accessed by the security console operator. The window shall meet all requirements set forth in UL 752, to include at a minimum, Class III ballistic level protection. The windows shall be set in a minimum or four (4) inches (100 mm) solid concrete units to ceiling height with either masonry or gypsum wall board to the underside of the slab above. It shall also contain

a service tray constructed in a manner that only objects no larger than 3 inches (7.5 cm) in width may pass through it.

- 8. The walls making up or surrounding the Access Control System and Database Management shall be made of materials that at a minimum offer Class III ballistic level protection for the security console operator(s).
- 9. There will be a main power cut-off button/switch located inside the Access Control System and Database Management in the event of an electrical fire or related event occurs.
- 10. Shall have a fire alarm detection unit that is tied into the main building fire alarm system and have at least two fire extinguishers located within it.
- 11. Shall utilize a fire suppression system similar to that used by the VA's computer and telecommunications room operating areas.
- 12. The floor shall be raised a minimum of 4 inches (10 cm) from the concrete floor base. Wire ways shall be utilized under the raised floor for separation of signal and power wires and cables.
- 13. Access shall be monitored and controlled by the PACS via card reader and fixed camera that utilizes a wide angle lens. A 1 in. (2.5 cm) deadbolt shall be utilized as a mechanical override for the door in the event of electrical failure of the PACS, card reader, or locking mechanism.
- 14. There shall only be one point of ingress and egress to and from the Security Control Room. The door shall be made of solid core wood or better. If a window is required for the door, then the window shall be ballistic resistant with a Millar covering.
- 15. A two-way intercom shall be placed at the point of entry into the Security Control Room for access-communication control purposes.
- 16. A remote push-button door unlocking device shall not be installed for the electronic PACS locking mechanism providing access control into the Security Control Room.
- 17. All controlling equipment and power supplies that must be wall mounted shall be mounted in a manner that maximizes usability of the Security Control Room wall space. All equipment shall be mounted to three quarter inch fire retardant plywood. The plywood shall be fastened to the wall from slab to slab and fixed to the existing walls supports.

- D. Security Control Room Ventilation
 - 1. Shall meet or exceed all requirements laid out in VA Master Specification listed in Division 23, HEATING, VENTILATION, AND AIR CONDITIONING.
 - 2. Controls shall be via a separate air handling system that provides an isolated supply and return system. The Security Control Room shall have a dedicated thermostat control unit and cut-off switch to be able to shut off ventilation to the control room in the event of a chemical, biological, or radiological (CBR) event or other related emergency.
 - 3. There shall be a louver installed in the control room door to assist with ventilation of the room. The louver shall be exactly 12×12 inches (30 x 30 cm) and closeable.
- E. Security Control Room and Security Console Lighting:
 - 1. The following factors shall be taken into consideration for lighting of the Security Control Room and console area:
 - a. Shadows: To reduce eye strain and fatique, shadows shall be avoided.
 - b. Glare: The readability of all display panels, labels, and equipment shall not be interfered with or create visibility problems.
 - 2. The following table shall provide guidance on the amount of footcandles required per work area and type of task performed:

Work Area	/Type of Task	Footcandles
Main Oper	50	
Secondary	50	
Seated Wo	100	
Reading Handwriting		100
	Typed Documents	50
	Visual Display	10
	Units	
Logbook R	100	
Maintenan	50	
Emergency/Back-up Lighting		10

- F. Remote security console access: For facilities that have a remote, secondary back-up control console or workstation shall apply the following requirements:
 - 1. The secondary stations shall the requirements outlined in Sections 2.2.A-G.

- 2. Installation of an intercom station or telephone line shall be installed and provide direct one touch call-up for communications between the primary Security Control Console and secondary Security Control Console.
- 3. Secondary stations shall not have priority over a primary Security Control Console.
- 4. The primary Access Control System and Database Management shall have the ability to shut off power and a signal to a secondary control station in the event the area has been compromised.
- G. Wires and Cables:
 - 1. Shall meet or exceed the manufactures recommendation for power and signals.
 - 2. Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
 - 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
 - 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
 - 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
 - 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
 - 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
 - 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
 - 9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each

individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 FIBER OPTIC EQUIPMENT

- A. 8 Channel Fiber Optic Transcievers (Video&PTZ Control)
 - The field-located and central-located fiber optic transceivers shall utilize wave division multiplexing to transmit and receive video and data pan-tilt-zoom control signals over two standard 62.5/125 multimode fibers.
 - 2. The units shall be capable of operating over a range of 2 km.
 - 3. The units shall be NTSC color compatible.
 - 4. The units shall support data rates up to 64 Kbps.
 - 5. The units shall be surface or rack mountable.
 - 6. The units shall be UL listed.
 - 7. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Input/Output: 1 volt pk-pk (75 ohms)
 - 2) Input/Output Channels: 8
 - 3) Bandwidth: 10 Hz 6.5 MHZ per channel
 - 4) Differential Gain: <2%
 - 5) Differential Phase: <0.7°
 - 6) Tilt: <1%
 - 7) Signal to Noise Ratio: 60 dB
 - b. Data (Control)
 - 1) Data Channels:
 - 2) Data Format: RS-232, RS-422, 2 wire or 4 wire RS-485 with Tri-State Manchester Bi-Phase and Sensornet
 - 3) Data Rate: DC 100 kbps (NRZ)
 - 4) Bit Error Rate: < 1 in 10-9 @ Maximum Optical Loss Budget
 - 5) Operating Mode: Simplex or Full-Duplex

2

- 6) Wavelength: 1310/1550 nm, Multimode or Singlemode
- 7) Optical Emitter: Laser Diode
- 8) Number of Fibers: 1
- c. Connectors
 - 1) Optical: ST
 - 2) Power and Data: Terminal Block with Screw Clamps
 - 3) Video: BNC (Gold Plated Center-Pin)

- d. Electrical and Mechanical
 - 1) Power: 12 VDC @ 500 mA (stand-alone)
 - 3) Current Protection: Automatic Resettable Solid-State Current Limiters
- e. Environmental
 - 1) MTBF: > 100,000 hours
 - 2) Operating Temp: -40 to 74 deg C (-40 to 165 deg F)
 - 3) Storage Temp: -40 to 85 deg C (-40 to 185 deg F)
 - 4) Relative Humidity: 0% to 95% (non-condensing)
- B. Fiber Optic Transmitters: The central-located fiber optic transmitters shall utilize wave division multiplexing to transmit video and signals over standard 62.5/125 multimode fibers.
 - 1. The units shall be capable of operating over a range of 4.8 km.
 - 2. The units shall be NTSC color compatible.
 - 3. The units shall support data rates up to 64 Kbps.
 - 4. The units shall be surface or rack mountable.
 - 5. The units shall be UL listed.
 - 6. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Input: 1 volt pk-pk (75 ohms)
 - 2) Bandwidth: 5H2 10 MHZ
 - 3) Differential Gain: <5%
 - 4) Tilt: <1%
 - 5) Signal-Noise: 60db
 - 6) Wavelength: 850nm
 - 7) Number of Fibers: 1
 - 8) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
 - 9) Connectors:
 - a) Power: Female plug with screw clamps
 - b) Video: BNC
 - c) Optical: ST
 - 10) Power: 12 VDC
- C. Fiber Optic Receivers: The field-located fiber optic receivers shall utilize wave division multiplexing to receive video signals over standard 62.5/125 multimode fiber.
 - 1. The units shall be capable of operating over a range of 4.8 km.
 - 2. The units shall be NTSC color compatible.

- 04-01-18
- 3. The units shall support data rates up to 64 Kbps.
- 4. The units shall be surface or rack mountable.
- 5. The units shall be UL listed.
- 6. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Output: 1 volt pk-pk (75 ohms)
 - 2) Bandwidth: 5H2 10 MHZ
 - 3) Differential Gain: <5%
 - 4) Tilt: <1%
 - 5) Signal-Noise: 60dB
 - 6) Wavelength: 850nm
 - 7) Number of Fibers: 1
 - 8) Surface Mount: 106.7 x 88.9 x 25.4 mm (4.2 x 3.5 x 1 in)
 - 9) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
 - 10) Connectors:
 - 11) Power: Female plug block with screw clamps
 - 12) Video: BNC
 - 13) Optical: ST
 - 14) Power: 12 VAC8 Channel Fiber Optic Transcievers (Video&PTZ Control)

D. Fiber Optic Sub Rack with Power Supply

- The Card Cage Rack shall provide high-density racking for fiberoptic modules. The unit shall be designed to mount in standard 483 mm (19 in) instrument racks and to accommodate the equivalent of 15 1-inch modules.
 - a. Specifications
 - 1) Card Orientation: Vertical
 - 2) Construction: Aluminum
 - 3) Current Consumption: 0.99 A
 - 4) Humidity: 95.0 % RH
 - 5) Input Power: 100-240 VAC, 60/50 Hz
 - 6) Mounting: Mounts in standard 483 mm (19 in) rack using four (4) screws (optional wall brackets purchased separately)
 - 7) Number of Outputs: 1.0
 - 8) Number of Slots 15.0

04-01-18

- 10) Ouput Voltage: 13.5 V
- 11) Output Current 6.0 A
- 12) Power Dissipation: 28.0 W
- 13) Power Factor: 48.0
- 14) Power Supply: (built-in)
- 15) Rack Units: 3RU
- 16) Redundant Capability: Yes
- 17) Weight: 2.43 kg (5.35 lb)
- 18) Width: 483 mm (19.0 in)

2.4 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION

- A. Transient Voltage Surge Suppression
 - 1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:
 - A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
 - d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, noncondensing.
- B. Physical Access Control Systems

1. Suppressors shall be installed on AC power at the point of service and shall meet the following criteria: a. UL1449 2nd Edition, 2007, listed b. UL1449 S.V.R. of 400 Volts or lower c. Status Indicator Light(s) d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 µsec) e. Maximum Continuous Current: 15 Amps f. MCOV: 125 VAC g. Service Voltage: 110-120 VAC 2. Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria: a. UL 497B b. Minimum Surge Current Capacity: 2,000 Amps per pair c. Maximum Continuous Current: 5 Amps d. MCOV: 33 Volts e. Service Voltage: 24Volts 3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria: a. Conforms with UL497B standards (where applicable) b. Clamp level for 12 and 24V power: 18VDC / 38VDC c. Clamp level for Data/LED: 6.8VDC d. Service Voltage for Power: 12VDC/24VDC e. Service Voltage for Data/LED: <5VDC f. Clamp level - PoE Access Power: 72V g. Clamp level - PoE Access Data: 7.9V h. Service Voltage - PoE Access: 48VAC - 54VAC i. Service Voltage - PoE Data: <5VDC C. Intercom Systems 1. Suppressors shall be installed on the AC power at the point of service and shall meet the following criteria: a. UL 1449 Listed b. UL 1449 S.V.R. of 400 Volts or lower c. Diagnostic Indicator Light(s) d. Integrated ground terminating post (where case/chassis ground exists)

- e. Minimum Surge Current Capacity of 13,000 Amps (8 x 20 µSec)
- Suppressors shall be installed on incoming central office lines and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Auto-reset current protection not to exceed 2 Amps per pair
 - d. Minimum Surge Current of 500 Amps per pair (8 x 20 µSec)
- 3. Suppressors shall be installed on all telephone/intercom circuits that enter or leave separate buildings and shall meet the following criteria:
 - a. UL 497A Listed (where applicable)
 - b. UL 497B Listed (horns, strobes, speakers or communication circuits over 300 feet)
 - c. Multi Stage protection design
 - d. Auto-reset over-current protection not to exceed 5 Amps per pair
 - e. Minimum Surge Current of 1000 Amps per pair (8 x 20 µSec)
- D. Intrusion Detection Systems
 - Suppressors shall be installed on AC at the point of service and shall meet the following criteria:
 - a. UL 1449, 2nd Edition 2007, listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Lights
 - d. Center screw for terminating Class II transformers
 - e. Minimum Surge Current Capacity of 32,000 Amps (8 x 20 µSec)
 - Suppressors shall be installed on all Telephone Communication Interface circuits and shall meet the following criteria:
 a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Surge Current Capacity: 9,000 Amps (8x20 µSec)
 - d. Clamp Voltage: 130Vrms
 - e. Auto reset current protection not to exceed 150 milliAmps
 - 3. Suppressors shall be installed on all burglar alarm initiating and signaling loops and addressable circuits which enter or leave separate buildings. The following criteria shall be met:
 - a. UL 497B for data communications or annunciation (powered loops)
 - b. Fail-short/fail-safe mode.

- c. Surge Current Capacity: 9,000 Amps (8x20 µSec)
- d. Clamp Voltage: 15 Vrms
- e. Joule Rating: 76 Joules per pair (10x1000 µSec)
- f. Auto-reset current protection not to exceed 150 milliAmps for UL 497A devices.

E. Video Surveillance System

- 1. Protectors shall be installed on coaxial cable systems on points of entry and exit from separate buildings. Suppressors shall be installed at each exterior camera location and include protection for 12 and/or 24 volt power, data signal and motor controls (for Pan, Tilt and Zoom systems). SPDs shall protect all modes herein mentioned and contain all modes in a single unit system. Protection for all systems mentioned above shall be incorporated at the head end equipment. Additionally a minimum 450VA battery back up shall be used to protect the DVR or VCR and monitor. Protectors shall meet the following criteria:
 - a. Head-End Power
 - 1) UL 1778, CUL (Battery Back Up)
 - 2) Minimum Surge Current Capacity: 65,000 Amps (8x20µsec)
 - 3) Minimum of two (2) NEMA 5-15R Receptacles (one (1) AC power only, one (1) with UPS)
 - 4) All modes protected (L-N, L-G, N-G)
 - 5) EMI/RFI Filtering
 - 6) Maximum Continuous Current: 12 Amps
 - b. Camera Power
 - Minimum Surge Current Capacity: 1,000 Amps (8X20µsec); 240 Amps for IP Video/PoE cameras
 - 2) Screw Terminal Connection
 - 3) All protection modes L-G (all Lines)
 - 4) MCOV <40VAC
 - c. Video And Data
 - 1) Surge Current Capacity 1,000 Amps per conductor
 - 2) "BNC" Connection (Coax)
 - 3) Protection modes: L-G (Data), Center Pin-G, Shield-G (Coax)
 - 4) Band Pass 0-2GHz
 - 5) Insertion Loss <0.3dB
- F. Grounding and Surge Suppression

- The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, undergroundfault conditions.
- The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
- Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
- 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
- 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- G. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)
 - 6. Weight: 2.88 g (0.18 lbs)
 - 7. Housing: ABS

2.5 INSTALLATION KIT

- A. General:
 - 1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or

unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:

- 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
- 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed

to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.

- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling

under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISIONIN OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 28 08 00 -COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for <insert hours> hours to instruct VA personnel in operation and maintenance of units.
- E. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at

all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.

- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the Resident Engineer on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the Resident Engineer has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:
 - a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be

Station Project No.: 646-18-101 28 05 00 - 71 04-30-2019

04-01-18

responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with Resident Engineer for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss.

- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
- The Contractor shall identify and request from the Resident Engineer, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and Resident Engineer coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

Description of Tasks

28 05 00 - 72

Descr iptio n of Syste ms	Develop System Loading Sheets	Coordina tion	Initial Set-up Configur ation	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)
SMS Setup & Confi gurat ion	e.g., program monitori ng stations , programm ing networks , intercon nections between CCTV, intercom s, time synchron ization	e.g., retrieve IP addresse s, naming conventi ons, standard event descript ions, programm ing template s, coordina te special system needs	e.g., Load system Operatin g System and Applicat ion software , general system configur ations	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. , prog ram moni tori ng stat ions , prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s, time sync hron izat ion	e.g., check all system diagno stics (e.g., client s, panels)	Load and set- up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration

						e.g., creating
						a door, door
				e.g.		configuration,
		- ~		' setu	0.0	adding request
		e.g., confirmi	e.g., enter		e.g.,	to exit, door
			data	p of devi	perfor	monitors and
	e.g.,	ng			ming	relays, door
	setup of	device	from	ce,	entry	timers, door
Elect	device,	configur	loading	door		related events
ronic	door	ations,	sheets;	grou	g to	(e.g., access,
Entry Contr	5 1	naming	configur	ps &	confir	access denied,
ol	schedule	conventi	е	sche	m	forced open,
Syste ms	s, REX,	ons,	componen	dule	correc	held open),
111.5	Locks,	event	ts, link	s,	t set-	linkages,
	link	descript	events,	REX,	up and	controlled
	graphics	ion and	cameras,	Lock	config	areas,
		narrativ	and	s,	uratio	advanced door
		es	graphics	link	n	monitoring,
				grap		time zones,
				hics		
						sequence of
						operations

Intru sion Detec tion Syste ms	e.g., enter door groups & schedule s, link devices - REX, lock, & graphics	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics		e.g. , ente r door grou ps & sche dule s, link devi ces - REX, lock , & grap hics	e.g., walk test, device positi on, and maskin g	e.g., setting up monitoring and control points (e.g., motion sensors, glassbreaks, vibration sensor, strobes, sounders) creating intrusion zones, creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader
---	---	--	---	--	---	---	--

Inter coms syste mse.g., confirmi enter ng data device from configur loading ations, naming configur configur configur loading ations, sheets; naming configur configur constant conventi e ons, call-upse.g., confir e.g., m e.g., programm ing events & conventi e ons, componen ts, link descript events, ion and es graphicse.g., confir e.g., m e.g., programm ing e.g., e.g., m e.g., setup linkages, events for activations, device troubles, land devices on graphic maps	CCTV Syste ms	e.g., programm ing call-ups recordin g	e.g., confirmi ng device configur ations, naming conventi ons	<pre>e.g., enter data from loading sheets; camera naming conventi on, sequence s, configur e componen ts)</pre>		e.g. , prog ramm ing call -ups reco rdin g	e.g., confir m area of covera ge, call- up per event genera ted and record ing rates	e.g., setting up cameras points, recording ratios (e.g., normal, alarm event) timed recording, linkages, maps placements, call-ups
graphico	coms Syste	programm ing events &	confirmi ng device configur ations, naming conventi ons, event descript ion and	enter data from loading sheets; configur e componen ts, link events, cameras,		, prog ramm ing even ts & call	confir m operat ion, SMS event genera tion and camera call-	<pre>linkages, events for activations, device troubles, land devices on</pre>
Conso per per per graphic per per Monit N/A monitor monitor monitor monitor monitor nonito N/A Note: Programming tasks are supported through the per per per per	le Monit oring Compo nents		monitor	monitor	graphic map		monito r	N/A

04-01-18

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the Resident Engineer at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COTR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the Resident Engineer before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the Resident Engineer at the conclusion of each phase of testing and prior to Resident Engineer approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the Resident Engineer within seven (7) calendar days after completion of each test.
- B. Pre-Delivery Testing
 - 1. The purpose of the pre-delivery test is to establish that a system is suitable for installation. As such, pre-delivery test shall be a mock-up of the system as planned in the contract documents. The Contractor shall assemble the Security Test System at the Contractors local project within 50-miles of the project site, and perform tests to demonstrate the performance of the system complies with the contract requirements in accordance with the approved predelivery test procedures. The tests shall take place during regular daytime working hours on weekdays. Model numbers of equipment tested shall be identical to those to be delivered to the site. Original copies of all data produced during pre-delivery testing,

28 05 00 - 78

including results of each test procedure, shall be documented and delivered to the Resident Engineer at the conclusion of pre-delivery testing and prior to Resident Engineer's approval of the test. The test report shall be arranged so all commands, stimuli, and responses are correlated to allow logical interpretation. For Existing System modifications, the contractor shall provide their own server with loaded applicable software to support PDT.

- Test Setup: The pre-delivery test setup shall include the following:
 - a. All console equipment.
 - 1) At least one of each type of data transmission media (DTM) and associated equipment to provide a fully integrated PACS.
 - The number of local processors shall equal the amount required by the site design.
 - 3) Enough sensor simulators to provide alarm signal inputs to the system equal to the number of sensors required by the design. The alarm signals shall be manually or software generated.
 - Contractor to prove to owner all systems are appropriately sized and configured as sized.
 - 5) Integration of VASS, intercom systems, other subsystems.
- 3. During the bidding process the contractor shall submit a request for information to the Owner to determine if a pre-delivery test will be required. If a pre-delivery test is not required, the contractor shall provide a written notification that the Pre-delivery Test is not required in their shop drawings submission.
- //C. Intermediate Testing
 - 1. After completion of 30-50 percent of the installation of ESS cabinet(s) and equipment, one local and remote control stations and prior to any further work, this portion of the system must be pretested, inspected, and certified. Each item of installed equipment shall be checked to ensure appropriate FCC listing & UL certification labels are affixed, NFPA, Emergency, Safety, and JCAHCO guidelines are followed, and proper installation practices are followed. The intermediate test shall include a full operational test.//
 - D. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative.

04-01-18

The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the Resident Engineer (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.

- E. Contractor's Field Testing (CFT)
 - 1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to Resident Engineer approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the Resident Engineer's acceptance testing procedures. The Contractor shall provide the Resident Engineer with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to theResident Engineer stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

F. Performance Verification Test (PVT)

- 1. Test team:
 - a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the Resident Engineer, then the Contractor shall schedule an acceptance test to date and give the Resident Engineer written, notice as described herein, prior to the date the acceptance test is

Station Project No.: 646-18-101

28 05 00 - 80

expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the Resident Engineer. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

- 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for outof-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.
- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the Resident Engineer or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the Resident Engineer prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software

Station Project No.: 646-18-101

28 05 00 - 81

- 3) All Logon and Passwords
- 4) All Cabling System Matrices
- 5) All Cable Testing Documents
- 6) All System and Cabinet Keys
- b. Inspection
 - 1) Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for Resident Engineers approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.
- 6. Partial PVT At the discretion of Resident engineer, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.
- G. Endurance Test
 - 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the Resident Engineer notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The Resident Engineer may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Resident Engineer prior to acceptance of the system.

- 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the Resident Engineer. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the Resident Engineer.
- 3. Phase II (Assessment):
 - a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the Resident Engineer. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the Resident Engineer. The meeting shall not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase I be repeated.
- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COTR.
- 5. Phase IV (Assessment):
 - 1. After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COTR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.

Station Project No.: 646-18-101 **28 05 00 - 83** 04-30-2019

- 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COTR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COTR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the Resident Engineer may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.
- H. Exclusions
 - 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

10-01-18

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.
- G. Section 31 20 00 EARTH MOVING. For excavation and backfill for cables that are installed in conduit.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.

- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating

Tape

- C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation)
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):
 - 44-05..... Thermoset-Insulated Wires and Cables
 - 83-08..... Thermoplastic-Insulated Wires and Cables
 - 467-07..... Electrical Grounding and Bonding Equipment
 - 486A-03.....Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - 486C-04.....Splicing Wire Connectors
 - 486D-05.....Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations
 - 486E-00.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
 - 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable

514B-04.....Fittings for Cable and Conduit

1479-03.....Fire Tests of Through-Penetration Fire Stops//

1.7 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

- Test optical fiber cable to determine the continuity of the strand end to end. Use [optical-fiber flashlight] [or] [optical loss test set] <Insert test>.
- Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
- 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- //A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.//
 - A. Support of Open Cabling: NRTL labeled for support of [Category 5e] [Category 6] cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars and spools.
 - 3. Straps and other devices.
 - B. Cable Trays:
 - 1. Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by [electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick] [hot-dip galvanizing, complying with ASTM A 123/A 123M Grade 0.55, not less than 0.002165 inch (0.055 mm) thick].
 - Basket Cable Trays: [6 inches (150 mm) wide and 2 inches (50 mm) deep] <Insert dimensions>. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 - Trough Cable Trays: [Nominally 6 inches (150 mm)] <Insert dimension> wide.
 - 4. Ladder Cable Trays: [Nominally 18 inches (455 mm)] <Insert dimension> wide, and a rung spacing of [12 inches (305 mm)] <Insert spacing>.
 - 5. Channel Cable Trays: One-piece construction, [nominally 4 inches (100 mm)] <Insert dimension> wide. Slot spacing shall not exceed 4-1/2 inches (115 mm) o.c.
 - 6. Solid-Bottom Cable Trays: One-piece construction, [nominally 12 inches (305 mm)] <Insert dimension> wide. Provide [with] [without] solid covers.

- C. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems."[Flexible metal conduit shall not be used.]
 - 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, [fire-retardant treated,] 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, [Category 5e] [Category 6].
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG [; or MPP, CMP, MPR, CMR, MP, or MPG].
 - b. Communications, Plenum Rated: Type CMP [; or MPP], complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR [; or MPP, CMP, or MPR], complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX[; or MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG].
 - e. Multipurpose: Type MP or MPG [; or MPP or MPR].
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR [or MPP], complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: [110-style for Category 5e] [110-style for Category 6] [66-style for Category 5e]. Provide blocks for the number of cables terminated on the block, plus [25] <Insert percentage> percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

- A. Description: Multimode, [50/125] [62.5/125]-micrometer, [24] <Insert number>-fiber, [nonconductive,] tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with [TIA/EIA-492AAAA-B] [TIA/EIA-492AAAA-A] for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG [, or OFNR, OFNP].
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR [or OFNP], complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG [; or OFNG, OFN, OFCR, OFNR, OFCP, or OFNP].
 - e. Plenum Rated, Conductive: Type OFCP [or OFNP], complying with NFPA 262.
 - 5. Conductive cable shall be [steel] [aluminum] armored type.
 - 6. Maximum Attenuation: [3.50] <Insert number> dB/km at 850 nm; [1.5] <Insert number> dB/km at 1300 nm.
 - 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- B. Jacket:
 - Jacket Color: [Aqua for 50/125-micrometer cable] [Orange for 62.5/125-micrometer cable].
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 - Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Cable Connecting Hardware: Meet the Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - Quick-connect, simplex and duplex, [Type SC] [Type ST] [Type LC] [Type MT-RJ] connectors. Insertion loss shall be not more than 0.75 dB.

2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 COAXIAL CABLE

- A. General Coaxial Cable Requirements: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- B. RG-11/U: NFPA 70, Type CATV.
 - 1. No. [14] <Insert size> AWG, solid, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 - 4. Jacketed with sunlight-resistant, black PVC or PE.
 - 5. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
- C. RG59/U: NFPA 70, Type CATVR.
 - No. [20] <Insert size> AWG, solid, silver-plated, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 - 4. Color-coded PVC jacket.
- D. RG-6/U: NFPA 70, Type CATV or CM.
 - No. [16] <Insert size> AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 - 3. Jacketed with black PVC or PE.
 - 4. Suitable for indoor installations.
- E. RG59/U: NFPA 70, Type CATV.
 - No. [20] <Insert size> AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 - 3. PVC jacket.
- F. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 - No. [20] <Insert size> AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.

- 2. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
- 3. Copolymer jacket.
- G. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655, and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 - 1. CATV Cable: Type CATV[, or CATVP or CATVR].
 - 2. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 - CATV Riser Rated: Type CATVR[; or CATVP, CATVR, or CATV], complying with UL 1666.
 - 4. CATV Limited Rating: Type CATVX.

2.8 COAXIAL CABLE HARDWARE

A. Coaxial-Cable Connectors: Type BNC, 75 ohms.

2.9 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.10 RS-485 CABLE

- A. Standard Cable: NFPA 70, Type CM[or CMG].
 - 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. PVC insulation.

- 3. Unshielded.
- 4. PVC jacket.
- 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.11 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.12 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, [Type THHN-THWN, in raceway] [power-limited cable, concealed in building finishes] [power-limited tray cable, in cable tray] complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.13 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, [not less than] [No. 18 AWG] [<Insert wire size> AWG] [size as recommended by system manufacturer].
 - Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.14 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.15 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over

frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.

- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.16 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.17 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less

than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.

- 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer/COTR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - 2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.

- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] <Insert dimension> apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- M. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.
 - Install cabling after the flooring system has been installed in raised floor areas.
 - 3. Coil cable [72 inches (1830 mm)] <Insert size> long shall be neatly coiled not less than [12 inches (300 mm)] <Insert size> in diameter below each feed point.
- N. Outdoor Coaxial Cable Installation:
 - Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors to keep out moisture.
 - Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).
- O. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

- Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
- 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6
 inches (150 mm).
- Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - Install plenum cable in environmental air spaces, including plenum ceilings.
 - Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:

- Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
- Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is[not] permitted.
- 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.
- D. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.
- E. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.

- 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- 5. Coaxial Cable Tests: Comply with requirements in Division 27 Section "Master Antenna Television System."
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

10 - 01 - 18

- - - E N D - - -

SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 26 41 00 FACILITY LIGHTNING PROTECTION. Requirements for a lightning protection system.
- C. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.
- E. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies
 of the following to the //Resident Engineer// //COTR//:
 - Certification that the materials and installation are in accordance with the drawings and specifications.

2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07.....Standard Specification for Hard-Drawn Copper Wire

B3-07.....Standard Specification for Soft or Annealed Copper Wire

B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

C2-07.....National Electrical Safety Code

- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-2005.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):

44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.

B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 GROUND RODS

- A. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance.

2.3 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 - Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide (3/8 inch x ¾ inch).

2.5 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.6 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

2.7 COMPUTER ROOM GROUND

A. Provide 50mm2 (1/0 AWG) bare copper grounding conductors bolted at mesh intersections to form an equipotential grounding grid. The equipotential grounding grid shall form a 600mm (24 inch) mesh pattern. The grid shall be bonded to each of the access floor pedestals.

2.8 SECURITY CONTROL ROOM GROUND

- A. Provide 50mm2 (1/0 AWG) stranded copper grounding conductor(s) color coded with a green jacket, bolted at the Room's Communications System Grounding Electrode Cooper Plate and circulate to each equipment rack ground buss bar through the wire management system. Connect each equipment rack, wire management system's cable tray, ladder, etc. to the circulating ground wire with a minimum 25mm2 (4AWG) stranded Cooper Wire, color coded with a green jacket.
 - 1. Connect each equipment rack ground buss bar to the circulating ground wire a indicated in 2.9.A, and
 - 2. Connect each additional room item to the circulating ground wire as indicated in 2.9.A.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes,

cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 COMPUTER ROOM/SECURITY EQUIPMENT ROOM GROUNDING

- A. Conduit: Ground and bond metallic conduit systems as follows:
 - Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm² (6AWG) bonding jumpers.
 - 2. Bond at all intermediate metallic enclosures and across all joints using 16 $\rm mm^2$ (6 AWG) bonding jumpers.

3.6 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 - 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 - 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.7 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to earth ground externally to the building. Under no condition shall the electrical system's third of fourth ground electrode system, or the telecommunications system circulating ground system be connected to the lightning protection system. The Facility's structural steel may be used to connected the lightning protection system at the direction of the Resident Engineer certified by an independent certified grounding contractor.

3.8 EXTERIOR LIGHT/CAMERA POLES

A. Provide 20 ft [6.1 M] of No. 4 bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

3.9 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the //Resident Engineer// //COTR// prior to backfilling. The contractor shall notify the //Resident Engineer// //COTR// 24 hours before the connections are ready for inspection.

3.10 GROUND ROD INSTALLATION

A. Drive each rod vertically in the earth, not less than 3000 mm (10 feet) in depth.

- B. Where permanently concealed ground connections are required, make the connections by the exothermic process to form solid metal joints. Make accessible ground connections with mechanical pressure type ground connectors.
- C. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

//3.11 GROUNDING FOR RF/EMI CONTROL

- A. Install bonding jumpers to bond all conduit, cable trays, sleeves and equipment for low voltage signaling and data communications circuits. Bonding jumpers shall consist of 100 mm (4 inches) wide copper strip or two 6 mm² (10 AWG) copper conductors spaced minimum 100 mm (4 inches) apart. Use 16 mm² (6 AWG) copper where exposed and subject to damage.
- B. Comply with the following when shielded cable is used for data circuits.
 - 1. Shields shall be continuous throughout each circuit.
 - 2. Connect shield drain wires together at each circuit connection point and insulate from ground. Do not ground the shield.
 - 3. Do not connect shields from different circuits together.
 - 4. Shield shall be connected at one end only. Connect shield to signal reference at the origin of the circuit. Consult with equipment manufacturer to determine signal reference.//

3.12 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer //and at the grounding electrode conductor where exposed//.
 - Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.13 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

- Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
 - 2. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
- J. Section 31 20 00 EARTH MOVING. For bedding of conduits.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
 - Handholes and boxes for underground wiring, including the following:
 a. Duct entry provisions, including locations and duct sizes.

- b. Frame and cover design.
- c. Grounding details.
- d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
- e. Joint details.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- H. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 16 Section "Electrical Supports and Seismic Restraints." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified [and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event]."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- I. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 50-07.....Enclosures for Electrical Equipment 360-09.....Liquid-Tight Flexible Steel Conduit 467-07.....Grounding and Bonding Equipment 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit 514C-02......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.

- Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
- 3. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
- Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
- 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.

3. Set screw fittings: Not permitted for use with aluminum conduit.

- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:

- 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
- 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- F. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 2. As recommended by the conduit manufacturer.
- G. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- H. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.

- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

2.10 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. Description: Comply with SCTE 77.
 - 1. Color of Frame and Cover: Gray.
 - 2. Configuration: Units shall be designed for flush burial and have closed bottom, unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, as indicated for each service. <Insert legend.>
 - 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 7. Handholes 300 mm wide by 600 mm long (2 inches wide by 24 inches long) <Insert dimensions> and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel or fiberglass or a combination of the two.

- C. Fiberglass Handholes and Boxes with Polymer-Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester-resin enclosure joined to polymer-concrete top ring or frame.
- D. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with covers of [polymer concrete] [reinforced concrete] [cast iron] [hot-dip galvanized-steel diamond plate] [fiberglass].

2.11 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.12 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: [EPDM] [NBR] <Insert sealing element> interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - Pressure Plates: [Plastic] [Carbon steel] [Stainless steel]. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: [Carbon steel with corrosion-resistant coating] [Stainless steel] of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.13 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. WIRELINE DATA TRANSMISSION MEDIA FOR SECURITY SYSTEMS//

PART 3 - EXECUTION

3.1 PENETRATIONS

A. Cutting or Holes:

- Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COTR prior to drilling through structural sections.
- 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made

up wrench tight. Do not make conduit connections to junction box covers.

- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COTR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.

- c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage

rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.
- //D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper green ground bonding jumper installed.//

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).

- c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

A. Install the electronic safety and security raceway system as shown on drawings.

- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Video Surveillance System, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes video surveillance system consisting of cameras, data transmission wiring, and a control station with its associated equipment.
- C. Video surveillance system Video assessment & surveillance system shall be integrated with monitoring and control system specified in Division 28 Section [INTRUSION DETECTION] [PHYSICAL ACCESS CONTROL] [SECURITY ACCESS DETECTION] [ELECTRONIC PERSONAL PROTECTION SYSTEM] that specifies systems integration.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 14 21 00 ELECTRIC TRACTION ELEVATORS. Requirements for elevators.
- E. Section 14 24 00 HYDRAULIC ELEVATORS. Requirements for elevators.
- F. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- G. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- H. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- I. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- J. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- K. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

- L. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- M. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- N. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for commissioning, systems readiness checklists, and training.
- O. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system integration.
- P. Section 28 13 16 PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.
- Q. Section 28 13 53 SECURITY ACCESS DETECTION. Requirements for screening of personnel and shipments.
- R. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.
- S. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).
- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): a encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. ips: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: a video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.
- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option

to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COTR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within // four // eight // hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, Shop Drawings, Product Data, and Samples, and Section 02 41 00, Demolition Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.

- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
 - 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.

- d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.
- Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent

- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Electronic Industries
 Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV

- 375A-76.....Electrical Performance Standards for CCTV Monitors
- C. Institute of Electrical and Electronics Engineers (IEEE): C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits

802.3af-08.....Power over Ethernet Standard

- D. Federal Communications Commision (FCC):
- (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems
- E. National Electrical Contractors Association (NECA):

303-2005.....Installing Closed Circuit Television (CCTV)

Systems

- F. National Fire Protection Association (NFPA): 70-08.....Article 780-National Electrical Code
- G. Federal Information Processing Standard (FIPS):

09-11 140-2-02.....Security Requirements for Cryptographic Modules H. Underwriters Laboratories, Inc. (UL): 983-06.....Standard for Surveillance Camera Units 3044-01....Standard for Surveillance Closed Circuit Television Equipment

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of video surveillance equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

- A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Video signal format shall comply with the NTSC standard composite video, interlaced. Composite video signal termination shall be 75 ohms.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge

protection for external wiring of each conductor entry connection to components.

- C. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- D. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

- A. All Cameras will be EIA 330 and UL 1.Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.
- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:
 - Will be charge coupled device (CCD cameras and shall conform to National Television System Committee (NTSC) formatting.
 - Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and are to be utilized to complement the fixed cameras.
 - 3. Shall be powered by either 12 volts direct current (VDC) or 24 volts alternate current (VAC). Power supplies shall be Class 2 and UL compliant and have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
 - 4. Shall be powered over Ethernet. Network switches supporting PoE cameras shall have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
 - 5. Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.
 - 6. Will be home run to a monitoring and recording device via a controlling device such as a matrix switcher or network server and

monitored on a 24 hour basis at a designated Security Management System location.

- Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.
- 8. Shall come with built-in video motion detection that shall automatically monitor and process information from each camera. The camera motion detection shall detect motion within the camera's field of view and provide automatic visual, remote alarms as a result of detected motion.
- 9. Shall be programmed to digitally flip from color to black and white at dusk and vice versa at low light conditions.
- 10. Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.
- 11. P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.
- 12. Dummy or fake cameras will not be utilized at any time.
- 13. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

2.3 VIDEO MANAGEMENT SYSTEM (ANALOG)

- A. The Video Management System (VMS) shall provide features and functions as specified below:
 - 1. Supports minimum of [20] <insert number> client connections.
 - 2. The Video Management System shall be capable of recording more than [32] <insert number> days on [1.6] <insert number> TB of internal hard drive storage using the following parameters:
 - a. Resolution 4CIF
 - b. Video Mode NTSC
 - c. Quality Normal
 - d. Sensitivity Normal
 - e. Number of Cameras 16
 - f. Record Audio On
 - g. Motion [50%] <insert number representing percentage of the time
 with motion during the day divided by 24 hours>.

- 3. The Digital Video Management System shall, at a minimum, combine multiplexing, alarm detection, video motion detection, video, audio, and text recording.
- B. System Chassis
 - The Video Management System must utilize a chassis no larger than [three] <insert number> rack units in height, and be suitable for either desktop or rack mount installations. The unit must fit within a standard video rack as well as a server rack.
 - The Video Management System's chassis shall include three indicator lights easily viewed from the front panel. These indicator lights must be colored red, yellow, and green to signify system status.
 - 3. The Video Management System's chassis shall incorporate a minimum of four front accessible, swappable drive bays. The bays must be behind a locking front cover that restricts access not only to the drives, but also to the power switch and reset switch.
- C. Operating System
 - The Video Management System's operating system and application must be installed on a separate solid-state system drive (flash memory card), with no moving parts to wear out or fail, to reduce the risk of system failure. Units with the operating system and/or application installed on a hard drive are not acceptable.
- D. Recording
 - The Digital Video Management System shall use record mode settings as continuous or event activated.
 - 2. The Digital Video Management System shall provide for simultaneous recording, playback, transmitting, database searching and archiving.
 - 3. //One channel of audio and up to sixteen text inputs shall be supported with required hardware properly installed and set up according to manufacturer's instructions. Live audio shall be available for listening while viewing live video. Up to 15 cameras shall be configurable as visible or covert by the authorized user.//
 - 4. The unit must simultaneously record, play back and archive video, text //and audio// while using sophisticated search functions to define and find only those important events that meet certain criteria. The system must also have the ability to host multiple remote users, archive data, and search for data, all while recording multiple video and text streams.

- 5. The Video Management System shall offer recording rates of up to 480 ips at 1CIF, 480 ips at 2CIF, and 480 ips at 4CIF. The unit shall be able to mix record speeds and quality settings on a "per camera" basis.
- 6. The Video Management System shall have the ability to capture critical information with higher frame rates for certain cameras, and assign the remainder of the available images per second (ips) to non-critical cameras.
- 7. The Video Management System shall be available with up to [4] insert number TB of internal hard drive storage. A RAID 5 version shall be available with up to [3] <insert number> TB of internal hard drive storage.
- 8. The Video Management System's recording format must give each image a unique identification "stamp" to ensure even though the file structure is PC compatible, the original video images cannot be altered or modified, enabling a solid chain of evidence.
- 9. The Video Management System shall be able to store recorded video on the RAID Storage System (RSS) via an iSCSI interface.
- 10. The Video Management System shall be able to manage storage of video, audio and text by exporting to Network Attached Storage (NAS), Storage Area Network (SAN) and Direct Attached Storage (DAS) devices using optional software.
- 11. //The system shall provide option to set up the Video Management System in advanced security mode to enable both IT and security managers to collectively integrate the unit into existing IT network without compromising the security protocols in place. //
- E. Network Access
 - The Video Management System shall provide network access through two internal network connections that support [1/10] <insert number> GB network operation.
- F. User Interface
 - The Video Management System's user interface must be easy to use, allowing the user to access all operations using one-click buttons, pull-down menus, adjustable sliders, and tabbed screens.
 - 2. The Video Management System shall include the ability to accept text through a network connection, as well as through a serial input with

an RS-232 connection. The unit shall be able to mix serial inputs and TCP/IP inputs in any combination up to 16 channels of text.

- 3. The system shall provide ability for user to specify text criteria, such as a specific ASCII text stream, to schedule recording and search for video, allowing for recording only the video associated with the specified text.
- G. Live Video Display
 - The Digital Video Management System's live video display must provide real-time motion in any screen format (full, 2x2, 3x3, and 4x4). The operator shall have the ability to expand any view to full screen with a single click of the mouse.
- H. Self-Monitoring Analysis
 - The Digital Video Management System must incorporate Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.), incorporating a suite of advanced diagnostics that monitor the internal operation of a drive and provide early warning for many types of potential problems. This shall allow for the drive to be repaired or replaced before any data is lost or damaged.
- I. External Storage
 - 1. Using the integrated CD/DVD writer (CD-RW or DVD-RW), the Digital Video Management System shall allow users to save video, audio, and text to a standard recordable CD or DVD. The option to include the player software on the CD or DVD shall be available so that no additional software needs to be purchased. The unit must include the ability to export the latest video, audio, and text to a CD or DVD until the CD or DVD is full.
- J. Alarm Recording Settings:
 - The Digital Video Management System shall allow for the following Alarm Recording settings:
 - a. Image Rate
 - b. Quality
 - c. Sensitivity
- K. Adjustable Alarm Duration
 - The Digital Video Management System shall incorporate an adjustable alarm duration with the pre-alarm and minimum alarm duration programmable from five seconds to five minutes. The units must also

allow programmable recording times (alarm schedules) for each day of the week, in thirty minute increments.

- L. Supported Dome Camera handlers
 - The Digital Video Management System shall work with the following dome camera handlers: AD168, MP48, AD1024 matrix, VM96RTT, RS422 Dome Control, VM16/ADTT16, VM16E/ADTT16E, Pelco Matrix Switch (models 6700, 6800, 8500, 9500, 9750 or 9760 Pelco P, Pelco D, Bosh, Autodome, BBV Starcard and USB-CCTV.
- M. Alarm-Triggered Dome Events
 - The Digital Video Management System must include alarm-triggered dome events, allowing the operator to configure domes to respond to alarm conditions via Network Client[™] or Intellex GUI (using supported dome control handlers). The event can be a motion filter (motion detection, perimeter protection, light change and motion exception), a wired alarm, video loss, or a manually generated alarm. The unit must have the ability to move a single dome, or multiple domes, to preset positions or patterns. This feature must be supported by the dome.
- N. Email Support
 - The Digital Video Management System must include the ability to send an email via an email server to anyone, or any group, based upon an event. The events must include, but not necessarily limited to, the following:
 - a. System Event
 - b. Video Loss
 - c. Generated Alarm
 - d. Any Filter Alarm
 - e. Any Input Alarm
 - f. Individual Camera Alarm
- O. API Support
 - 1. The Digital Video Management System shall easily integrate with third party software application using an Application Programmers Interface (API). The manufacturer of the unit shall offer a Software Developers Kit (SDK) to select third party manufactures, in addition to sample modular programs with their source codes in both Visual Basic and Visual C++, allowing programmers to develop their own software to control the unit's functions.

- The Digital Video Management System's API must be backwards compatible with previous versions of the software equal to or greater than v3.2
- P. Recorded Event Search
 - In order to instantly retrieve recorded video of any event, the Digital Video Management System shall use a patented search feature to filter through hours of video to find only the essential events. The operator must have the ability to isolate video containing motion, and find video where perimeters were crossed, lights were turned on or off, alarms were triggered, and numerous additional scenarios.
 - 2. In addition to the standard motion based mode, using advanced video analysis tools, the Digital Video Management System shall enable the user to schedule recording and search for video if the movement of an object meets specified size, speed, direction and Motion Exception criteria.
- Q. Covert Camera Operation:
 - The Digital Video Management System shall include the ability to configure up to 15 cameras for "covert" operation, restricting their use to only those who are authorized.
- R. Activity Log:
 - 1. To provide for more effective security management, the Digital Video Management System must also allow for audits of the activity log to monitor changes to the settings and configurations. The activity log shall include, but not necessarily be limited to, the following information:
 - a. User Name Login name of the user
 - b. Date/Time Date and Time the action was performed
 - c. Access Loc Whether the action was local to the unit or done through remote software
 - d. Category The actions category
 - e. Activity The action performed within the category
 - f. Data Description of the action
 - 2. The operator shall have the ability to export the entire log file, export the displayed log file, print the log file, or print the displayed log file locally and remotely through Network Client v4.3 software.

- S. Antivirus Protection
 - The Digital Video Management System shall be compatible with the leading brands of anti-virus software in order to detect and deactivate malicious software that may attempt to attack the system.
- T. Remote Configuration and Management software:
 - The Digital Video Management System must include support for Remote Configuration and Management software to allow a user to remotely configure the unit, view live video, or select video segments by time, date, alarm, or search results. The operator must have the ability to save, annotate, and organize copied video into "incident folders" to aid with investigations.
 - The remote management software must allow for up to 64 live video sessions, allowing the operator to view up to sixty four different cameras, from up to 64 different remote sites, simultaneously.
 - 3. The remote management software shall also allow the exporting of video clips to an .avi file to play on any Microsoft Windows based PC. The software shall have the ability to enhance, print, or convert the individual images to standard formats.
 - 4. The remote management software shall allow an operator to select units, cameras, and timeframes for automatic retrieval of video clips to an operators PC. This allows for downloads to be scheduled during times that network traffic restrictions are not an issue.
- U. Playback and Multi-screen Playback
 - The Digital Video Management System shall incorporate playback and multi-screen playback functionality to allow the user to locate and select a single stored image to be enhanced using tools. The tools shall include, but not necessarily be limited to, the following:
 - a. Brightness
 - b. Contrast
 - c. Hue
 - d. Saturation
 - e. Lightness
 - f. Balance Light
 - g. Edge Detect
 - h. Enhance Light
 - i. Noise Reduction
 - j. Sharpen

- k. Sharpen More
- 1. Smooth
- m. Smooth More
- n. Brightness Chart
- V. Browser Client
 - A browser-based viewer (Browser Client) must also be available free of charge, enabling users to host and customize their own website to provide live viewing of the Digital Video Management System through a standard browser interface. Multiple viewers shall have the ability to access video and control domes remotely.
- W. Minimum Performance Specifications

Power Supply	100-240 VAC, 50/60 Hz, 3.0/1.5A
Physical Characteristics:	Rack Mount Chassis Version Unit Dimensions (HxWxD) 130 mm (5.125") High , 429 mm (16.895") Wide, 546 mm (21.5") Deep
	Rack Height Three (3) units
	Desktop Chassis Version(HxWxD) 130 mm (5.125") High429 mm (16.895") Wide546 mm (21.5") Deep
Environmental Requirements	Operating Temperature 5° to 35° C (41° to 95° F)
	Humidity 5%-95% RH non- condensing
Regulatory	Immunity EN50130-4 (1996) (An Uninterruptable Power Supply must be used to fully comply with EN50130-4)

X. MATRIX SWITCHER

- 1. The matrix switcher shall meet the following minimum requirements:
 - a. Take multiple camera inputs and route them to multiple monitoring stations.
 - b. Allow for centralized user management controlling configurations.
 - c. Provide live viewing of all cameras.
 - d. Provide P/T/Z, focus, and iris control of all unitized cameras.
 - e. Be expandable to allow for the addition of multiple cameras and monitoring stations over the life of the system visual

identification system by utilizing input and output video and controller cards.

- f. Input cards shall allow for the addition of a minimum of four(4) camera inputs per card.
- g. Output cards shall allow for the addition of a minimum of eight (8) outputs per card.
- h. Have the ability to be programmed either locally or remotely.
- i. Remotely operate multiple cameras from multiple stations.
- j. Be able to fully interface with a digital video recorder (DVR) for recording of all events.
- k. Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.
- Shall have an alarm interface that is compatible with all associated security subsystems. Alarm inputs shall be via either a relay or an EIA ANSI/EIA/TIA-232-F interface. The interface shall allow for a minimum of 24 alarm inputs and 12 alarm outputs.
- m. The switcher response time to an alarm input shall not be less than 200 milliseconds from the time an alarm is sensed until a picture is displayed on a monitor.
- n. The switcher shall have a built in buffer to allow for backlog of alarms. These alarms shall be viewable by an operator.
- Be addressable in the event multiple matrix switchers are connected to the SMS.
- p. Be configured, i.e. camera names, monitor names, sequences, alarms and alarm actions, etc. utilizing the configuration program and tools provided by the matrix manufacturer.
- 2. The matrix switcher shall meet the following minimum input/output requirements:

Camera inputs	16
Video outputs	4
Keyboard/Controller Outputs	4
Alarm inputs	323

3. The matrix switcher will have the following components and technical characteristics:

a. Main Unit:

	00 1.	
Functions	Monitor control Camera selection, tour sequence, group sequence, group preset, OSD display, Camera/Receiver control via coaxial or RS-485 cable communication, Recorder control	
Alarm control	Alarm event, Alarm Acknowledge, Alarm reset, Alarm suspension, Alarm History Display, Timer event, and Camera event	
RS-485 (Camera)Port	6-conductor modular jack x 12 (2- wire or 4- wire communication, With termination switches (MODE 1 to 4))	
Extension Port	6-conductor modular jack x 2(With a (EXTENSION 1 IN, OUT) termination switch (TERM: ON, OFF))	
Extension Port	37-pin D-sub connector x 2(EXTENSION IN 2 or 3)	
Extension Port	37-pin D-sub connector x 2(EXTENSION OUT 2 or 3)	

b. Input Board:

Camera Input	1 V [P-P]/75 Ohm (BNC), composite video signal 0.5 V [P- P]/75 Ohm data signal and 2.5 V [P- P]/75 Ohm (25 pin D sub connector x 4)
Alarm Input	N.O. (Normally Open contact) or N.C. (Normally Close contact) selectable x 32 (37 pin D sub connector)

c. Output Board:

Monitor Output	1 V [P-P]/75 Ohm (BNC)	
Alarm Output	Open collector output x 32, Max. 24 VDC, 100 mA	
Extension Port	6-conductor modular jack x 2	
Serial Port	9-pin D-sub connector x 2	

Y. IP Network Encoder

- The units shall be used for video monitoring and surveillance over IP networks. IP Network Encoder shall encode analog video to MPEG-4 digital video.
- 2. The encoder shall use MPEG-4 compression for distribution of images over a network.
- 3. The encoder shall be [rack][surface] <erase one> mounted unit.
- 4. The encoder shall include, but not be limited to the following:
 - a. The encoder shall use "hybrid" technology in providing both analog and network connections with the purpose of allowing users to integrate existing equipment and digital IP products.

- The encoder shall provide [one] <insert number of video inputs> composite video input(s).
- 2) The encoder shall provide one Ethernet connection.
- b. The encoder shall have the following digital resolution:
 - a) D1: 720x576 (NTSC); 720x480 (PAL)
 - b) CIF: 352 x 288 (NTSC); 352 x 240 (PAL)
 - c) QCIF: 160 x 144 (NTSC); 160 x 112 (PAL)
- c. The encoder shall have a digital frame rate of up to 30 frames per second (NTSC) at 720x480 resolution or 25 fps (PAL) at 720x586 resolution.
- d. The encoder/decoder shall use the following protocols:
 - 1) TCP/IP
 - 2) UDP/IP
 - 3) DHCP
 - 4) Multicast
 - 5) Data Throttle
 - 6) Heart beat
- e. The encoder shall have the following connectors:
 - Power connector: 3-pin male for connecting the external power supply
 - I/O connector: 16-pin male for connecting alarm, audio, RS-232, RS-485 input and output
 - Video I/O connector: SVHS style for input and output connection of two composite monitors
 - 4) Ethernet port: RJ-45 for connecting to a network
- f. The encoder/decoder shall have the following indicators:
 - 1) Power LED
 - 2) Link indicates activity on the Ethernet port
 - 3) Tx activity
 - 4) Rx activity
- q. The encoder shall have the following additional specifications:
 - 1) Video
 - a) Video signal input: 1 V p-p ±10% 75 ohms, autosensing
 - b) Input termination: 75 ohm
 - c) Video compression standard: MPEG-4
 - d) Audio compression standard: MPEG-1 Layer 2
 - 2) Audio

04-30-2019

- a) Audio input: 315 mV, 40 kOhms, unbalanced
- b) Audio output: 315 mV, 600 ohms, unbalanced
- 3) Electrical
 - a) External power supply: 100 to 240 VAC
 - b) Output voltage: 13.5 V, 1.33 A
 - c) Power consumption: 0.5 W maximum

2.3 DIGITAL BASED VIDEO MANAGEMENT SYSTEM

- A. Key Features
 - Open Platform: Open API/SDK, supports seamless integration with third party applications.
 - Multi-server and multi-site video surveillance solution: Unlimited recording of video from IP cameras, IP video encoders and selected DVRs with analog cameras.
 - 3. Optimized Recording Storage Management: Unique data storage and archiving solution that combines superior performance and scalability and cost efficient long-term video storage
 - Wide IP camera and device support: Supports connection of more than 839 IP cameras, IP video encoders and selected DVR models from over 79 different vendors through dedicated device integration
 - 5. ONVIF™ and PSIA compliant: Supports ONVIF™ and PSIA compliant cameras and devices
 - 6. Wide compression technology support: Supports the news compression methods; MPEG4 ASP, MxPEG and H.264, besides MJEPG and MPEG4
 - System configuration wizards: Guides the user through the process of adding cameras, configuring video and recording, adjustment of motion detection and user configuration
 - 8. Sequence Explorer: Displaying sequences and time intervals in thumbnail pre-views, the Sequence Explorer gives unparalleled visual overview of recorded video combined with smooth navigation
 - 9. Overlay buttons: Intuitive control of cameras, camera-integrated devices and other integrated systems- directly from the camera view
 - 10. Independent Playback: Instant and independent playback function allows you to independently playback recorded video for one or more cameras, while in live viewing or playback mode
 - 11. Built-in Video Motion Detection: Independent of camera model and supporting up to 64 cameras simultaneously per server

- 12. Multiple language support: Let operators use the system in their native language with support for 20 different languages
- 13. Multi-channel, two-way audio: Communicate with people at gates/entrances or broadcast messages to many people at once with multichannel, two-way audio
- 14. Fast evidence export: Quickly deliver authentic evidence to public authorities by exporting video to various formats, including video from multiple cameras with viewer, logs, and user notes included
- B. Administration Features
 - 1. Single Management Application: A new Management Application provides a consolidated single point management access to Recording Servers.
 - System configuration wizards: Guides the user through the process of adding cameras, configuring video and recording, adjustment of motion detection and user configuration.
 - Automated device discovery: Enables fast discovery of camera devices using methods such as Universal Plug And Play, Broadcast and IP Range scanning.
 - Smart bulk configuration option: Change settings across multiple devices simultaneously and in a very few clicks.
 - 5. Adaptable application behavior: Guides novice users, while expert users can optimize the application for efficient use.
 - 6. Export/import of system and user configuration data: System backup for reliable system operation and fast system recovery. System cloning for efficient rollout of multiple systems with the same, or similar, configuration.
 - 7. Import of off-line configuration data: Enabling off-line editing of configuration data, including camera and device definitions.
 - 8. Automatic system restore points: A 'Restore Point' is created each time a configuration change is confirmed.
 - 9. Enables easy rollback to previously defined system configuration points and enables cancelation of undesired configuration changes and restoration of earlier valid configurations.
- C. Integration Options
 - Open Software Development Kit (SDK) makes it possible to video enable your business processes, through seamless integration of third party applications, such as video analytics, access systems, etc.

- Compatible with Central for alarm overviews and operational status in larger video surveillance installations.
- 3. Integrate with physical access control systems, alarms, gates, building management systems, etc. using hardware I/O, internal events and TCP/IP events
- Create, import and use HTML pages for navigation between views or to trigger a Smart Wall preset
- 5. Develop third party plug-ins for the Smart Client to expand with new functionality
- D. Server Modules
 - 1. Recording Server
 - a. Simultaneous digital multi-channel video and audio recording and live viewing (relaying).
 - b. Two-way audio enables integrated control of microphones and speakers connected to IP devices.
 - c. Bandwidth optimized multi-streaming by splitting a single camera video stream to differentiated streams for live view and recording, where each can be optimized independently with respect to frame rate and resolution.
 - d. Connectivity to cameras, video encoders and selected DVRs supports MJPEG, MPEG4, MPEG4 ASP*, H.264* and MxPEG.
 - e. Auto-detect camera models during setup.
 - Flexible multi-site, multi-server license structure charged per camera.
 - Unlimited number of installed cameras; simultaneous recording and live view of up to 64 cameras per server.
 - 4. Recording technology: secure high speed database holding JPEG images or MPEG4 and MxPEG streams including audio.
 - 5. Recording speed: 30+ frames per second per camera, limited only by hardware.
 - Recording quality depends entirely on camera and video encoder capabilities: no software limitation.
 - 7. Start cameras on live view requests from clients.
 - Unlimited recording capacity with multiple archives possible per day.

- Hourly to daily database archiving with optional automatic move to network drive saves storage capacity on the local server - with images still available transparently for playback
- 10. Built-in, real-time, camera independent motion detection (VMD); fully adjustable sensitivity, zone exclusions, recording activation with frame rate speed up, and alert activation through email or SMS.
- 11. Start recording on event.
- 12. Client initiated start of recording based on pre-defined recording time and access privileges.
- 13. Pan Tilt Zoom (PTZ) preset positions, up to 50 per camera.
- 14. Absolute* and relative PTZ positioning.
- 15. PTZ go-to preset position on events.
- 16. Combine PTZ patrolling and go-to positions on events.
- 17. Set multiple patrolling schedules per camera per day: i.e. different for day/night/weekend.
- 18. PTZ scanning on supported devices: viewing or recording while moving slowly between PTZ positions.
- 19. VMD-sensitive PTZ patrolling among selected presets allows sending of Wipe and Wash commands to supported PTZ models.
- 20. On pre-defined events Matrix remote commands are automatically sent to display live video remotely on computers running the Matrix Monitor or the Smart
- 21. Client with Matrix Plug-in.
 - a. Flexible notification (sound, e-mail and SMS) and camera patrolling scheduling, triggered by time or event.
- E. Recording Server Manager
 - 1. Local console management of the Recording Server accessible from the notification area.
 - 2. Start and stop Recording Server service.
 - 3. Access to Recording Server configuration settings.
 - 4. Access to Recording Server help system.
 - 5. View system status and log information.
- F. Image Server
 - 1. Remote access for Smart and Remote Clients.
 - 2. Built-in web server for download and launch of clients and plug-ins.
 - 3. Set up one Master and multiple Slave Servers.

- Authenticate access based on Microsoft Active Directory user account, or user name and password.
- 5. Authorize access privileges per Microsoft Active Directory user account/group, user profile or grant full access.
- 6. User profiles control access to: Live view, PTZ, PTZ presets, Output control, Events, Listen to microphone, Talk to speaker, Manual recording; Playback, AVI export, JPG export, DB export, Sequences, Smart Search and audio. As well as Set up views, Edit private views and Edit shared public views.
- 7. Audit logs of exported evidence by user and file.
- 8. Audit logs of client user activity by time, locations and cameras.
- G. Recording Viewer
 - 1. Playback recorded video and audio locally on the
- H. Recording Server.
 - 1. View up to 16 cameras time-synched during playback.
 - 2. Scrollable activity timeline with magnifying feature.
 - Instant search on recordings based on date/time and activity/alarm (Video Motion Detection).
 - 4. 'Smart Search' for highlighted image zones and objects.
 - 5. Evidence can be generated as a printed report, a JPEG image, an AVI film or in the native database format.
 - 6. Export audio recordings in WAV or AVI format.
 - 7. Export video digitally zoomed to view area of interest only and to minimize export footprint size.
 - 8. Export 'Evidence CD' containing native database and Recording Viewer for instant, easy viewing by authorities.
 - 9. Encryption & password protection option for exported recordings and files.
 - 10. Ability to add comments to exported evidence, also encrypted.
 - 11. Option to send email.
 - 12. De-interlacing of video from analog cameras.
 - 13. IPIX technology for PTZ in 360° recorded images.
- I. PDA Server
 - 1. Remote access for PDA Client.
 - Handle login and session requests between PDA clients and Image Server.

- 3. Resize video surveillance images to fit the screen layout of PDA Client.
- J. Smart Client Module
 - 1. Smart Client includes all the features of Remote Client plus more:
 - Installed per default on Recording Server for local viewing and playback of video and audio.
 - Start recording on cameras for a pre-defined time (default 5 minutes). Subject to privileges set by administrator.
 - 4. Independent Playback capability allows for instant playback of recorded video for one or more cameras, while in live and playback mode
 - 5. Live view digital zoom allows zoomed-out recordings while the operator digitally can zoom in to see details.
 - 6. 'Update On Motion Only' optimizes CPU usage by letting motion detection control whether the image should be decoded and displayed or not. The visual effect is a still image in the view until motion is detected.
 - 7. Shared and private camera views offer 1x1 up to 10x10 layouts in addition to asymmetric views.
 - 8. Views optimized for both 4:3 and 16:9 screen ratios.
 - 9. Multiple computer monitor support with a main window and any number of either windowed or full screen views.
 - Hotspot function for working in details with a camera selected from a view containing multiple cameras.
 - 11. Carousel function allows a specified view to rotate between predefined cameras with individual timing and order with multiple appearances. Carousel function can be controlled allowing the operator to pause carousel function and to switch to previous or next camera.
 - 12. Overlay buttons provides intuitive control of cameras, cameraintegrated devices and other integrated systems- directly from the camera view
 - 13. Matrix function to view live video from multiple cameras through the Image Server in any view layout with customizable rotation path, remotely controlled by Smart
 - 14. Clients or Recording Servers sending Matrix remote commands

- 15. Send Matrix remote commands to display live video remotely on computers running the Matrix Monitor or the Smart Client with Matrix Plug-in.
- 16. Cameras' built-in audio sources available in live and in playback.
- 17. Separate pop-up window displaying sequences and time intervals in thumbnail pre-views, the Sequence Explorer gives unparalleled visual overview of recorded video combined with smooth navigation
- Presents recorded sequences for individual cameras, or all cameras in a view
- 19. Seamlessly available in both Live and Playback modes
- 20. Smooth navigation with sliding preview and "drag-andthrow" function for video thumbnails
- 21. Instant playback of video sequences
- 22. Application Options allows users to adapt the layout and personalize the application to their particular preferences
- K. Remote Client
 - View live video or playback recordings for 1-16 cameras simultaneously; from the same or different servers.
 - Advanced video navigation including fast/slow playback, jump to date/time, single step and video motion search.
 - Individual views can be user-defined in various layouts: view or playback camera images from multiple servers simultaneously in the same view.
 - Shared views can be managed centrally via the server with admin/user rights and user groups.
 - 5. Import static or active HTML maps for fast navigation to cameras and good premise overviews.
 - 6. Control output port relay operation, for example control of gates.
 - 7. Quick overview of sequences with detected motion and preview window.
 - 8. Quick overview of events/alerts.
 - 9. Control PTZ cameras remotely, also using preset positions.
 - 10. Remote PTZ Point-and-Click control
 - 11. Remote PTZ zoom to a marked rectangle.
 - 12. Take manual control over a PTZ camera that runs a patrolling scheme; after a timeout with no activity the camera reverts to its scheduled patrolling.
 - 13. IPIX 1x2 or 2x2 'Quad View' for viewing all 360° at once.

- 14. Optional video compression in streaming from server to client gives better use of bandwidth.
- 15. Create AVI files or save JPEG images.
- 16. Print incident reports with free-text user comments.
- 17. System logon using user name and password.
- 18. System logon using Microsoft Active Directory user accounts.
- L. PDA Client
 - View live or playback video from a single server or from multiple servers in half-screen or full-screen formats.
 - In live view you can control Pan/Tilt/Zoom cameras manually or use preset positions, and control the cameras' output relays to trigger external actions like opening doors or gates, turning on lights, etc.
 - To find recordings, you can jump to specific time/date or to next detected motion, or use motion detection sequence overviews.
 - When viewing recordings, you can playback at variable speed or single step image by image.
 - 5. The PDA client shall connect to the VMS server using any IP connection; typically wireless LAN, GPRS, etc.
 - 6. Video compression from the server to PDA optimizes bandwidth usage.
 - 7. System logon using user name and password.
- M. Matrix Monitor
 - Virtual Matrix showing live video directly from up to 4 cameras at a time triggered remotely by Matrix remote commands.
 - 2. Camera view shifts by FIFO (first-in-first-out)
 - Multiple events can control a single Matrix monitor and single events can control multiple monitors.
- N. Minimum System Requirements VMS Server
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU and 1 GB RAM (2.4 GHz dual core processor and 2 GB RAM or more recommended).
 - b. Minimum 1 GB disk space available, excluding space needed for recordings.
 - 2. OS:
 - a. Microsoft® Windows® XP Professional (32 bit or 64 bit*), Windows Server 2003 (32 bit or 64 bit*), Windows Server 2008 R1/R2 (32 bit or 64 bit*), Windows Vista™ Business (32 bit or 64 bit*),

Windows Vista Enterprise (32 bit or 64 bit*), Windows Vista Ultimate (32 bit or 64 bit*), Windows 7 Professional (32 bit or 64 bit*), Windows 7 Enterprise (32 bit or 64 bit*) and Windows 7 Ultimate (32 bit or 64 bit*).

3. Software:

a. Microsoft .NET 3.5 Framework SP1, or newer.

- b. DirectX 9.0 or newer required to run Playback Viewer application.
- O. Minimum System Requirements PDA Server
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU and 1 GB RAM (2.4 GHz dual core processor and 2 GB RAM or more recommended).
 - b. Minimum 1 GB disk space available.
 - 2. OS:
 - a. Microsoft Windows XP Professional (32 bit or 64 bit*), Windows Server 2003 (32 bit or 64 bit*).
 - 3. Software:
 - a. Microsoft .NET 2.0 (not compatible with newer versions). Internet Information Server (IIS) 5.1.
- P. Minimum System Requirements VMS Client
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU, 1 GB RAM (more powerful CPU and higher RAM recommended for Smart Clients running high number of cameras and multiple views and displays).
 - 2. Graphics Card:
 - a. AGP or PCI-Express, minimum 1024 x 768 (1280 x 1024 recommended),
 16 bit colors.
 - 3. OS:
 - a. Microsoft Windows XP Professional (32 bit or 64 bit*), Windows Server 2003 (32 bit or 64 bit*), Windows Server 2008 R1/R2 (32 bit or 64 bit*), Windows Vista Business (32 bit or 64 bit*), Windows Vista Enterprise (32 bit or 64
 - b. bit*), Windows Vista Ultimate (32 bit or 64 bit*), Windows 7
 Professional (32 bit or 64 bit*), Windows 7 Enterprise (32 bit or
 64 bit*) and Windows 7 Ultimate (32 bit or 64 bit*).
 - 4. Software:

- a. DirectX 9.0 or newer required to run Playback Viewer application.
- b. Microsoft .NET 3.5 Framework SP1, or newer.
- Q. Minimum System Requirements VMS Remote Client
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU, RAM 1 GB (2 GB or higher recommended on Microsoft Windows Vista).
 - 2. OS:
 - a. Microsoft Windows XP Professional (32 bit or 64 bit*), Windows Server 2003 (32 bit or 64 bit*), Windows Server 2008 R1/R2 (32 bit or 64 bit*), Windows Vista Business (32 bit or 64 bit*), Windows Vista Enterprise (32 bit or 64 bit*) and Windows Vista Ultimate (32 bit or 64 bit*), Windows 7 Professional (32 bit or 64 bit*), Windows 7 Enterprise (32 bit or 64 bit*) and Windows 7 Ultimate (32 bit or 64 bit*).
 - 3. Software:
 - a. DirectX 9.0 or newer required to run Playback Viewer Application Microsoft Internet Explorer 6.0, or newer, 32 bit version required
- R. Licensing Structure
 - 1. Base Server License
 - a. An VMS Base Server license is mandatory for installing the product.
 - 2. The Base Server license contains:
 - a. Unlimited numbers of Recording Server licenses
 - b. Unlimited numbers of Smart Clients, Remote Clients, PDA Clients and Matrix Monitor licenses
 - 3. Camera License
 - a. To connect to a camera, a Device License per camera channel is required
 - b. In total, for all copies of the product installed under a given Base Server license, the product may only be used with as many cameras as you have purchased camera licenses for • Video encoders and DVRs with multiple analog cameras require a license per channel to operate

- c. Camera Licenses can be purchased in any numbers. To extend the installation with additional Camera Licenses, the Base Server License number (SLC) is required when ordering.
- 4. Client License:
 - a. All client modules are not licensed and can be installed and used on any number of computers.
- S. IP NETWORK DECODER
 - The unit shall be used for video monitoring and surveillance over IP networks. Network decoder shall decode MPEG-4 digital video to analog video.
 - The decoder shall use MPEG-4 compression for efficient distribution of images over a network.
 - The decoder shall be available as a standalone unit that can be horizontally or vertically mounted.
 - 4. The decoder shall include, but not be limited to the following:
 - a. The decoder shall use "hybrid" technology in providing both analog and network connections with the purpose of allowing users to integrate existing equipment and digital IP products.
 - 1) The decoder shall provide one composite video input and output connection.
 - 2) The decoder shall provide one Ethernet connection.
 - b. The decoder shall have the following digital resolution:
 - 1) D1: 720x576 (NTSC); 720x480 (PAL)
 - 2) CIF: 352 x 288 (NTSC); 352 x 240 (PAL)
 - 3) QCIF: 160 x 144 (NTSC); 160 x 112 (PAL)
 - c. The decoder shall have a digital frame rate of up to 30 frames per second (NTSC) at 720x480 resolution or 25 fps (PAL) at 720x586 resolution.
 - d. The decoder shall use the following protocols:
 - 1) TCP/IP
 - 2) UDP/IP
 - 3) DHCP
 - 4) Multicast
 - 5) Data Throttle
 - 6) Heart beat
 - e. The decoder shall have the following connectors:

- Power connector: 3-pin male for connecting the external power supply
- I/O connector: 16-pin male for connecting alarm, audio, RS-232, RS-485 input and output
- Video I/O connector: SVHS style for input and output connection of two composite monitors
- 4) Ethernet port: RJ-45 for connecting to a network
- f. The decoder shall have the following indicators:
 - 1) Power LED
 - 2) Link indicates activity on the Ethernet port
 - 3) Tx activity
 - 4) Rx activity
- 5. The decoder shall have the following additional specifications:
 - a. Video
 - 1) Video signal output: 1 V p-p into 75 ohms
 - 2) Input termination: 75 ohm
 - 3) Video compression standard: MPEG-4
 - 4) Audio compression standard: MPEG-1 Layer 2
 - b. Audio
 - 1) Audio input: 315 mV, 40 kOhms, unbalanced
 - 2) Audio output: 315 mV, 600 ohms, unbalanced
 - c. Electrical
 - 1) External power supply: 100 to 240 VAC
 - 2) Output voltage: 13.5 V, 1.33 A
 - 3) Power consumption: 0.5 W maximum

2.4 VIDEO DISPLAY EQUIPMENT

A. Video Display Equipment

- 1. Will consist of color monitors and shall be EIA 375A compliant.
- Shall be able to display analog, digital, and other images in either NTSC or MPEG format associated with the operation of the Security Management System (SMS).
- 3. Shall:
 - a. Have front panel controls that provide for power on/off, horizontal and vertical hold, brightness, and contrast.
 - b. Accept multiple inputs, either directly or indirectly.
 - c. Have the capabilities to observe and program the VASS System.

- d. Be installed in a manner that they cannot be witnessed by the general public.
- B. Color Video Monitors Technical Characteristics:

Sync Format	PAL/NTSC
Display Tube	90° deflection angle
Horizontal Resolution	250 TVL minimum, 300 TVL typical
Video Input	1.0 Vp-p, 75 Ohm
Front Panel Controls	Volume, Contrast, Brightness, Color
Connectors	BNC

C. Liquid Crystal Display (LCD) Flat Panel Display Monitor

SPEC WRITER NOTE: Adjust values in LCD monitor specification per project requirements.

- D. The [17] <insert size> -inch color LCD monitor shall have a flat screen and [17] <insert size> -inch diagonal viewing area and consists of an LCD panel, bezel, and stand.
- E. The monitor shall meet or exceed the following specifications:
 - The monitor shall incorporate a [17.1] <insert size> -inch active matrix TFT LCD panel.
 - a. The pixel pitch of the monitor's LCD panel shall be 0.264 mm horizontal and 0.264 mm vertical.
 - b. The monitor shall have a maximum resolution of <500> <insert resolution> television lines.
 - c. The contrast ratio shall be 500:1.
 - d. The typical brightness shall be 250 cd/m^2
 - e. The monitor shall display at least 16.7 million colors.
 - f. The light source for the LCD panel shall have a lifetime of
 [50,000] <insert hours> hours.
 - g. The scan frequency horizontal shall be 30 K to 80 KHz and the scan frequency vertical shall be 56 to 75 Hz.
 - h. The viewing angle for the monitor shall be 170 degrees horizontal and 170 degrees vertical.
 - 2. The monitor shall have automatic NTSC or PAL recognition.
 - 3. The monitor shall have a picture-in-picture function.
 - 4. The monitor shall use the following signal connectors:

Station Project No.: 646-18-101 28 23 00 - 33

04-30-2019

- a. Video 1.0 V peak-to-peak at 75 ohms
- b. BNC in/out
- c. Y/C (S-video) in/out
- d. Audio in/out
- e. VGA 15-pin D-Sub
- 5. The monitor shall have [one/two] <insert number> audio speaker(s).
 - a. The speaker shall be 0.5 W minimum.
- 6. The monitor shall have the following front control panel buttons:
 - a. Power on/off
 - b. LED indicator
 - c. Mode
 - d. Increase (volume)
 - e. Decrease (volume)
 - f. Up (contrast adjustment)
 - g. Down (brightness adjustment)
 - h. Menu
 - i. Auto
- 7. The monitor shall have the following options for adjustment in an onscreen display menu:
 - a. Color
 - b. Tint
 - 1) NTSC mode only
 - a) Brightness
 - b) Contrast
 - c) Sharpness
 - d) Volume
 - e) Language
 - f) Scan
 - g) Color Temp
 - h) H-Position
 - i) Recall
- F. The electrical specifications for the monitor shall be as follows:
 - 1. Input voltage shall be 12 VDC/3 A.
 - 2. Power consumption shall be 50 W maximum.
- G. The environmental specifications for the monitor shall be as follows:
 - Operating temperature shall be 32 to 104 degrees Fahrenheit or 0 to 40 degrees Celsius.

- 2. Operating humidity shall be 10 to 85 percent.
- H. The physical specifications for the monitor shall be as follows:
- I. The monitor shall conform to these compliance standards:
 - 1. FCC
 - 2. CE (EMC/LVD)3. UL

2.5 CONTROLLING EQUIPMENT

- A. Shall be utilized to call up, operate, and program all cameras associated VASS System components.
- B. Will have the ability to operate the cameras locally and remotely. A matrix switcher or a network server shall be utilized as the VASS System controller.
- C. The controller shall be able to fit into a standard 47.5 cm (19 inch) equipment rack.
- D. Control and programming keyboards shall be provided with its own type of switcher. All keyboards shall:
 - 1. Be located at each monitoring station.
 - 2. Be addressable for programming purposes.
 - 3. Provide interface between the operator and the VASS System.
 - 4. Provide full control and programming of the switcher.
 - 5. Have the minimum following controls:
 - a. programming
 - b. switching
 - c. lens function
 - d. P/T/Z
 - e. environmental housing
 - f. annotation

2.6 VIDEO CAMERAS

- A. The cameras shall be high-resolution color video cameras with wide dynamic range capturing capability.
- B. The camera shall meet or exceed the following specifications:
 - The image capturing device shall be a [1/3]/[1/4]-inch image sensor designed for capturing wide dynamic images.
 - a. The image capturing device shall have a separate analog-todigital converter for every pixel.
 - b. The image capturing device shall sample each pixel multiple times per second.

c. The dynamic range shall be 95 dB typical and 120 dB maximum.

- 3. The camera shall optimize each pixel independently.
- The camera shall have onscreen display menus for programming of the camera's settings.
- 5. The signal system shall be NTSC.
- C. The camera shall have composite video output.
- D. The camera shall come with a manual varifocal lens.
- E. The video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- H. Fixed Color Camera
 - 1. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. Comply with UL 639.
 - 3. Pickup Device: [1/3]/[1/4] CCD interline transfer.
 - 4. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.
 - 5. With AGC, manually selectable on or off.
 - Manually selectable modes for backlight compensation or normal lighting.
 - Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
 - 8. White Balance: Auto-tracing white balance, with manually selectable fixed balance option.
 - 9. Fixed Color Cameras Technical Characteristics:

Pickup device	1/3" interline transfer CCD
Total pixels	NTSC: 811(H) x 508(V)
Effective pixels	NTSC: 768(H) x 494(V)
Resolution	500 TV lines
Sync. System	Internal Sync
Scanning system	NTSC: 525 Lines/60 Fields
S/N ratio	More than 48 dB
Electronic shutter	Auto 1/60 (1/50) ~1/100,000 sec.
Min. illumination	0.2 lux F2.0
Video output	Composite 1.0 Vp-p/75 ohm
White balance	Auto

Automatic gain control	ON
Frequency horizontal	NTSC: 15.734 KHz
Frequency vertical	NTSC: 59.94Hz
Lens type	Board lens/[DC]/[AI] varifocal lens
Focal length	[3-12mm] <insert values=""></insert>
Power source	DC12V/500mA or AC24/500mA
Power consumption	< 3W (Max)

- 10. [Fixed color camera shall be enclosed in dome and have board mounted varifocal lens].
- 11. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter
 - d. <list>

2.7 AUTOMATIC COLOR DOME CAMERA - ANALOG

- A. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
- B. Comply with UL 639.
- C. Pickup Device: [1/3]/[1/4] CCD interline transfer.
- D. Horizontal Resolution: 480 lines.
- E. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.
- F. With AGC, manually selectable on or off.
- G. Sensitivity: Camera shall provide usable images in low-light conditions, delivering an image at a scene illumination of <Insert light level> lux at <Insert f-stop of lens>[, with the camera AGC off].
- H. Sensitivity: Camera shall deliver 1-V peak-to-peak video signal at the minimum specified light level. The illumination for the test shall be with lamps rated at approximately 2200-K color temperature, and with the camera AGC off.
- Manually selectable modes for backlight compensation or normal lighting.
- J. Pan and Tilt: Direct-drive motor, 360-degree rotation angle, and 180degree tilt angle. Pan-and-tilt speed shall be variable controlled by operator. Movement from preset positions shall be not less than 300 degrees per second.

- K. Preset positioning: 64 user-definable scenes. Controls shall include the following:
 - In "sequence mode," camera shall continuously sequence through preset positions, with dwell time and sequencing under operator control.
 - 2. Motion detection shall be available at each camera position.
- L. Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
- M. White Balance: Auto-tracing white balance, with manually settable fixed balance option.
- N. Motion Detector: Built-in digital.
- O. Dome shall support multiplexed control communications using coaxial cable recommended by manufacturer.
- P. Automatic Color Dome Camera Technical Characteristics:

·	
Effective Pixels	768 (H) x 494 (V)
Scanning Area	1/4-type CCD
Synchronization	Internal/Line-lock/Multiplexed Vertical Drive (VD2)
Video Output	1.0 v[p-p] NTSC composite/75 ohm
H. Resolution	570-line at B/W, or 480-line at color imaging
Signal-to-noise Ratio	50dB (AGC off, weight on)
Super Dynamic II	64 times (36dB) (selectable on/off)
Minimum Illumination	0.06 lx (0.006 fc) at B/W, 1 lx(0.1 fc)
Zoom Speed	Approx. 2.1s (TELE/WIDE) in sequence mode
Focus Speed	Approx. 2s (FAR/NEAR) in sequence mode
Iris	Automatic (Open/Close is possible)/manual
Maximum Aperture Ratio	1:1.6 (Wide) ~ 3.0 (Tele)
Focal Length	3.79 ~ 83.4 mm
Angular Field of View	H 2.6° ~ 51.7° V 2.0° ~ 39.9°
Electronic Shutter	1/60 (off), 1/100, 1/250, 1/500, 1/1,000, 1/2,000, 1/4,000, 1/10,000 s
Zoom Ratio	Optical 22x w/10x electronic zoom

	09-11
Iris Range	F1.6 ~ 64, Close
Panning Range	360° endless
Panning Speed	Manual: Approx. 0.1°/s ~ 120°/s 16 steps
Tilting Range	0 ~ 90° (Digital Flip off), 0 ~180° (Digital Flip on)
Tilting Speed	Manual: Approx. 0.1°/s ~ 120°/s. 16 steps
Pan/Tilt	Manual/Sequential position/Auto Pan
Controls	Pan/Tilt, Lens, 64 Preset Positions, Home Position
Video Connector	BNC
Controller I/F	Multiplex-coaxial

- Q. Camera accessories shall include:
 - 1. Surface mount adapter
 - 2. Wall mount adapter
 - 3. Flush mount adapter
 - 4. <list>
- R. Indoor/Outdoor Fixed Mini Dome System (IP)
 - The indoor/outdoor fixed mini dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.
 - 3. The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.

Imaging Device	1/3-inch imager
Picture Elements	NTSC/PAL 720 (H) x 540 (V) 720 (H) x 540 (V)
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace (progressive option on CW/DW models only
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Varifocal with auto iris

28 23 00 - 39

Format Size	1/3-inch
Focal Length	3.0 mm-9.5 mm
	9.0 mm-22.0 mm
	<list></list>
Operation	Iris Auto (DC-drive)
	Focus Manual
	Zoom Manual
Minimum Illumination	Color (day): 0.8 lux, SENS 8X: 0.2 lux, B-W (night): 0.08 lux, SENS 8X: 0.02 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
	Color (day): 0.15 lux, B-W (night): 0.015 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
	Color (day): 0.8 lux, SENS 8X: 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
Compression	MPEG-4, MJPEG in Web viewing mode
Video Streams	3, simultaneous
Video Resolutions	NTSC PAL
	4CIF 704 x 480 704 x 576
	2CIF 704 x 240 704 x 288
	CIF 352 x 240 352 x 288
	QCIF 176 x 120 176 x 144
Bit Rate	Configurable, 20 kbps to 2 Mpbs per stream
Web User Interface	
Environment	Low temperature, indoor/outdoor
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI-X
Cabling	CAT5 cable or better for 100BASE-TX
Input Voltage	24 VAC (18-36) or PoE input voltage
Power Consumption	<7.5 Watts,<13 Watts with heaters 24VAC: <0.5 Amps, <0.9 Amps with heaters
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for
	1

	video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 360°, tilt 80° (20° to 100° range), and rotation 360°
Light Attenuation	smoked bubble, f/1.5 light loss; clear bubble, zero light loss
CERTIFICATIONS	CE, Class B UL Listed Meets NEMA Type 4X and IP66 standards

- 3. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
 - d. Pole adapter for wall mount
 - e. <list accessories>
- S. Megapixel High Definition Integrated Digital Network Camera
 - 1. The network camera shall offer dual video streams with up to 3.1 megapixel resolution (2048 x 1536) in progressive scan format.
 - An alarm input and relay output shall be built in for integration with hard wired external sensors.
 - 3. The network camera shall be capable of firmware upgrades through a network using a software-based device utility.
 - 4. The network camera shall offer auto back focus (ABF) functionality through a push button on the camera. ABF parameters shall also be configurable through a standard Web browser interface.
 - The network camera shall offer a video output port providing an NTSC/PAL analog video output signal for adjusting field of view and focus at the camera.
 - 6. The network camera shall provide advanced low-light capabilities for color and day/night models with sensitivity down to 0.12 lux in color and 0.03 lux in black-white (B-W).
 - 7. The network camera shall have removable IR cut filter mechanism for increased sensitivity in low-light installations. The sensitivity of IR cut filter removal shall be configurable through a Web browser.
 - 8. The network camera shall support two simultaneous, configurable video streams. H.264 and MJPEG compression formats shall be

available for primary and secondary streams with selectable unicast and multicast protocols. The streams shall be configurable in a variety of frame rates and bit rates.

- 9. The network camera shall support industry standard Power over Ethernet (PoE)
- 10. IEEE 802.3af to supply power to the camera over the network. The network camera shall also offer a 24 VAC power input for optional use.
- 11. The network camera shall use a standard Web browser interface for remote administration and configuration of camera parameters.
- 12. The network camera shall have a window blanking feature to conceal user-defined privacy areas that cannot be viewed by an operator. The network camera shall support up to four blanked windows. A blanked area shall appear on the screen as a solid gray window.
- 13. The network camera shall support standard IT protocols.
- 14. The network camera shall support open architecture best practices with a published API available to third-party network video recording and management systems.
- 15. Megapixel High Definition Integrated Digital Network Camera Technical Specifications:

Imaging Device	1/3-inch, effective
Imager Type	CMOS, Progressive scan
Maximum Resolution	2048 x 1536
Signal-to-Noise Ratio	50 dB
Auto Iris Lens Type	DC drive
Electronic Shutter Range	1~1/100,000 sec
Wide Dynamic Range	60 dB
White Balance Range	2,000° to 10,000°K
Sensitivity	<pre>f/1.2; 2,850K; SNR >24dB Color (1x/33ms) 0.50 lux Color SENS (15x/500 ms) 0.12 lux Mono SENS (15x/500 ms) Mono (1x/33ms)0.25 lux 0.03 lux</pre>
Dome Attenuation	Clear Zero light loss Smoke f/1.0 light loss
Compression	H.264 in base profile and MJPEG
Video Streams	Up to 2 simultaneous streams, the second Stream variable based on the

28 23 00 - 42

	setup of the primary stream
Frame Rate	Up to 30, 25, 24, 15, 12.5, 12, 10, 8, 7.5, 6.5, 4, 3, 2, and 1 (depending upon coding, resolution, and stream configuration
Available Resolutions	<pre>3.1 MPx2048 x 1536; 4:3 aspect ratio; 2.0 ips max., 10.0 Mbps bit rate for MJPEG; 3.0 ips max., 2.6 Mbps bit rate H.264 2.1 MPx1920 x 1080; 16:9 aspect ratio: 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 5.0 ips max., 2.7 Mbps bit rate H.264 3.1.9 MPx1600 x 1200; 4:3 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 6.0 ips max., 2.6 Mbps bit rate H.264 1.3 MPx1280 x 1024; 5:4 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 8.0 ips max., 2.5 Mbps bit rate H.264 1.2 MPx1280 x 960; 4:3 aspect ratio; 15.0 ips max., 9.8 Mbps bit rate for MJPEG; 9.8 ips max., 8.5 Mbps bit rate H.264 6.0.9 MPx1280 x 720; 16:9 aspect ratio; 30.0 ips max.,10.0 Mbps bit rate for MJPEG; 12.5 ips max., 2.5 Mbps bit rate H.264 0.5 MPx800 x 600; 4:3 aspect ratio; 30.0 ips max., 5.8 Mbps bit rate for MJPEG; 25.0 ips max., 2.0 Mbps bit rate H.264 8.0.3 MPx640 x 480; 4:3 aspect ratio; 30.0 ips max., 3.7 Mbps bit rate for MJPEG; 30.0 ips max.,1.6 Mbps bit rate H.264 0.1 MPx320 x 240; 4:3 aspect ratio; 30.0 ips max., 0.9 Mbps bit rate for MJPEG; 30.0 ips max., 0.4 Mbps bit rate H.264 Additional640 x 512, 640 x 352, 480 x 368, 480 x 272, 320 x 256, 320 x</pre>
Supported Protocols	176 TCP/IP, UDP/IP (Unicast, Multicast IGMP), UPnP, DNS, DHCP, RTP, RTSP, NTP,IPv4, SNMP, QoS, HTTP, HTTPS, LDAP(client), SSH, SSL, STMP, FTP,
Coourity Acces	MDNS(Bonjour), and 802.1x (EAP)
Security Access	Password protected
Software Interface	Web browser view and setup, up to 16 cameras

09-11

Connectors	RJ-45 for 100Base-TX, Auto MDI/MDI-X
Cable	Cat5 cable or better for 100Base-TX
Input Voltage	24 VAC or PoE (IEEE802.3af class 3)
Power Consumption	6 W
Current Consumption	PoE <200 mA maximum 24 VAC <295 mA nominal; <390 mA maximum
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Lens Mount	CS mount, adjustable
Pan/Tilt Adjustment	Pan 368° Tilt 160° (10° to 170°) Rotate 355°

- 16. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
 - d. Pole adapter for wall mount
 - e. <list accessories>

17. Recommended Lenses

- a. Megapixel lens, varifocal, 2.2~6.0 mm, f/1.3~2.0
- b. Megapixel lens, varifocal, 2.8~8.0 mm, f/1.1~1.9
- c. Megapixel lens, varifocal, 2.8~12.0 mm, f/1.4~2.7
- d. Megapixel lens, varifocal, 15.0~50.0 mm, f/1.5~2.1
- e. <list megapixel lenses>
- T. Indoor/Outdoor Camera Dome System
 - The indoor/outdoor camera dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - The indoor/outdoor camera dome system shall operate in openv architecture connectivity for third-party software recording solutions.
 - 3. The indoor/outdoor VASS camera dome system shall be a discreet camera dome system consisting of a dome drive with a variable speed/high speed pan/tilt drive unit with continuous 360° rotation;

1/4-inch high resolution color, or color/black-white CCD camera; motorized zoom lens with optical and digital zoom; auto focus; and an enclosure consisting of a back box, lower dome, and a quickinstall mounting.

Imaging Device	1/4-inch CCD
Picture Elements	NTSC/PAL 768 x 494/752 x 582
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Lens f/1.4 (focal length, 3.4~119 mm; 35X optical zoom, 12X digital zoom)
Focus	Automatic with manual override
Pan Speed	Variable between 400 per second continuous pan to 0.1° per second
Vertical Tilt	Unobstructed tilt of $+2\Box$ to $-92\Box$
Manual Control Speed	Pan speed of 0.1 to 80 per second, and pan at 150 per second in turbo mode. Tilt operation shall range from 0.1 to 40 per second
Automatic Preset Speed	Pan speed of 400 \square and a tilt speed of 200 \square per second
Presets	256 positions with a 20-character label available for each position; programmable camera settings, including selectable auto focus modes, iris level, LowLight™ limit, and backlight compensation for each preset; command to copy camera settings from one preset to another; and preset programming through control keyboard or through dome system on-screen menu 128 positions with a 20-character label available for each position; programmable camera settings, including selectable auto focus modes, iris level, LowLight limit, and backlight compensation for each preset; command to copy camera settings from one preset to another; and preset programming through control keyboard or through

4. Indoor/Outdoor fixed dome system technical specifications:

	dome system on-screen menu
Preset Accuracy	± 0.10
Zones	8 zones with up to 20-character labeling for each, with the ability to blank the video in the zone
Limit Stops	Programmable for manual panning, auto/random scanning, and frame scanning
Alarm Inputs	7
Alarm Output Programming	Auxiliary outputs can be alternately programmed to operate on alarm
Alarm Action	Individually programmed for 3 priority levels, initiating a stored pattern or going to a preassigned preset position
Resume after Alarm	After completion of alarm, dome returns to previously programmed state or its previous position
Window Blanking	<pre>8, four-sided user-defined shapes, each side with different lengths; window blanking setting to turn off at user-defined zoom ratio; window blanking set to opaque gray or translucent smear; blank all video above user-defined tilt angle; blank all video below user-defined tilt angle</pre>
Patterns	8 user-defined programmable patterns including pan/tilt/zoom and preset functions, and pattern programming through control keyboard or through dome system on- screen menu
Scheduler	Internal scheduling system for programming presets, patterns, window blanks, alarms, and auxiliary functions based on internal clock settings
Auto Flip	Rotates dome 180° at bottom of tilt travel
Password Protection	Programmable settings with optional password protection
Compass Display	On-screen display of compass heading and user-definable compass setup
Camera Title Overlay	20 user-definable characters on the

0	9	_	1	1	
0	~		_	÷	

	screen camera title display	
Video Output Level	User-selectable for normal or high output levels to compensate for long video wire runs	
Motion Detection	User-definable motion detection settings for each preset scene, can activate auxiliary outputs, and contains three sensitivity levels per zone	
Electronic Image Stabilization	Electronic compensation for external vibration sources that cause image blurring; user selectable for 2 frequency ranges, 5 Hz (3-7 Hz) and 10 Hz (8-12 Hz)	
Wide Dynamic Range	128X	
Video Output	1 Vp-p, 75 ohms	
Minimum Illumination	<pre>NTSC/EIA 0.55 lux at 1/60 sec shutter speed (color), 0.063 lux at 1/4 sec shutter speed (color), 0.00018 lux at 1/2 sec shutter speed (B-W) PAL/CCIR 0.55 lux at 1/50 sec shutter speed (color), 0.063 lux at 1/3 sec shutter speed (color), 0.00018 lux at 1/1.5 sec shutter speed (B-W)</pre>	
Compression	MPEG-4, MJPEG	
Video Streams	3, simultaneous	
Video Resolutions	NTSC PAL 4CIF 704 x 480 704 x 576 2CIF 704 x 240 704 x 288 CIF 352 x 240 352 x 288 QCIF 176 x 120 176 x 144	
Bit Rate	Configurable, MPEG-4 30 ips, 2 Mbps for primary stream, MJPEG 15 ips, 3 Mbps, MJPEG	
Web User Interface		
Environment	Low temperature, indoor/outdoor	
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI-X	
Cabling	CAT5 cable or better for 100BASE-TX	
Input Voltage	18 to 32 VAC; 24 VAC nominal 22 to 27 VDC; 24 VDC nominal	
Power Consumption	24 VAC 23 VA nominal (without heater);73 VA nominal (with heater)	

	24 VDC 0.7 A nominal (without heater);3 A nominal (with heater)
Alarm Input	7
Alarm Output	1
CERTIFICATIONS	CE, Class B UL Listed
	Meets NEMA Type 4X and IP66 standards

- 5. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
 - d. Pole adapter for wall mount
 - e. <list accessories>
- U. Reinforced Fixed Dome Camera
 - The dome camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. The camera shall meet or exceed the following specifications:
 - a. The camera shall have the form factor as typical of a traditional VASS dome video camera.
 - b. The image capturing device shall be a 1/3-inch image sensor designed for capturing wide dynamic images.
 - 3. The camera shall optimize each pixel independently.
 - The camera shall have onscreen display menus for programming of the camera's settings.
 - 5. The signal system shall be NTSC or PAL selectable.
 - 6. The resolution that the camera provides shall be [470] <insert number> television lines horizontal and [460] <insert number> television lines vertical.
 - 7. The camera shall have [720] <insert number> horizontal and 540 vertical picture elements.
 - 8. The scanning system shall be 525/60 lines NTSC or 625/50 lines PAL.
 - 9. The synchronizing system shall be internal/AC line-lock.
 - 10. The sensitivity shall be 0.6 lux at f1.2, 30 IRE.
 - 11. The signal-to-noise ratio shall be 50 dB.
 - 12. The electronic shutter shall have automatic adjustment, and operate from 1/60 NTSC to 1/100,000 second, automatic.

- 13. The camera shall have an automatic white balance range of 2800 to 11000 K.
- 14. The camera shall have automatic gain control.
- 15. The camera shall include a shroud to conceal the camera's position inside the dome.
- 16. The camera shall have composite video output.
- 17. The housing shall have the following specifications:
 - a. Construction: Aluminum
 - b. The housing shall be heavy duty and tamper resistant.
 - c. Dome housing construction: 0.13-in polycarbonate.
 - d. Finish: Powder coat
- 18. The camera shall come with a manual varifocal [4 to 9]<insert range> mm lens.
- 19. The electrical specifications for the camera shall be as follows:
 - a. Input voltage shall be 24 VAC or 12 VDC.
 - b. Power consumption shall be 12 VDC, 455 mA; or 24 VAC, 160 mA.
 - c. Power source shall be universal 18 to 30 VAC or 10 to 30 VDC.
 - d. Video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- 20. The environmental specifications for the camera shall be as follows: Operating temperature shall be -10 to 45 degrees Celsius or 14 to 113 degrees Fahrenheit.
- 21. Accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter
- V. Indoor/Outdoor Fixed Mini Dome System
 - The indoor/outdoor fixed mini dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.
 - The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.

Imaging Device	1/3-inch imager
----------------	-----------------

	1	
Picture Elements	NTSC/PAL 720 (H) x 540 (V) 720 (H) x 540 (V)	
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)	
Scanning System	2:1 interlace (progressive option on CW/DW models only	
Synchronization	Internal	
Electronic Shutter Range	Auto (1/15-1/22,000)	
Lens Type	Varifocal with auto iris	
Format Size	1/3-inch	
Focal Length	3.0 mm-9.5 mm 9.0 mm-22.0 mm <list></list>	
Operation	Iris Auto (DC-drive) Focus Manual Zoom Manual	
Minimum Illumination	Color (day): 0.8 lux, SENS 8X: 0.2 lux, B-W (night): 0.08 lux, SENS 8X: 0.02 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) Color (day): 0.15 lux, B-W (night): 0.015 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) Color (day): 0.8 lux, SENS 8X: 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)	
Compression	MPEG-4, MJPEG in Web viewing mode	
Video Streams	3, simultaneous	
Video Resolutions	NTSC PAL 4CIF 704 x 480 704 x 576 2CIF 704 x 240 704 x 288 CIF 352 x 240 352 x 288 QCIF 176 x 120 176 x 144	
Bit Rate	Configurable, 20 kbps to 2 Mpbs per stream	
Web User Interface		
Environment	Low temperature, indoor/outdoor	
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI-	
	2 1	

09-	1	1	

Input Voltage	24 VAC (18-36) or PoE input voltage
Power Consumption	<7.5 Watts,<13 Watts with heaters 24VAC: <0.5 Amps, <0.9 Amps with heaters
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 360°, tilt 80° (20° to 100° range), and rotation 360°
Light Attenuation	smoked bubble, f/1.5 light loss; clear bubble, zero light loss
CERTIFICATIONS	CE, Class B UL Listed Meets NEMA Type 4X and IP66 standards

4. Accessories

- a. Pendant mount
- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount
- e. <list accessories>

W. Megapixel High Definition Integrated Digital Network Camera

- The network camera shall offer dual video streams with up to 3.1 megapixel resolution (2048 x 1536) in progressive scan format.
- 2. An alarm input and relay output shall be built in for integration with hard wired external sensors.
- 3. The network camera shall be capable of firmware upgrades through a network using a software-based device utility.
- 4. The network camera shall offer auto back focus (ABF) functionality through a push button on the camera. ABF parameters shall also be configurable through a standard Web browser interface.
- 5. The network camera shall offer a video output port providing an NTSC/PAL analog video output signal for adjusting field of view and focus at the camera.

- 6. The network camera shall provide advanced low-light capabilities for color and day/night models with sensitivity down to 0.12 lux in color and 0.03 lux in black-white (B-W).
- 7. The network camera shall have removable IR cut filter mechanism for increased sensitivity in low-light installations. The sensitivity of IR cut filter removal shall be configurable through a Web browser.
- 8. The network camera shall support two simultaneous, configurable video streams. H.264 and MJPEG compression formats shall be available for primary and secondary streams with selectable unicast and multicast protocols. The streams shall be configurable in a variety of frame rates and bit rates.
- 9. The network camera shall support industry standard Power over Ethernet (PoE)
- 10. IEEE 802.3af to supply power to the camera over the network. The network camera shall also offer a 24 VAC power input for optional use.
- 11. The network camera shall use a standard Web browser interface for remote administration and configuration of camera parameters.
- 12. The network camera shall have a window blanking feature to conceal user-defined privacy areas that cannot be viewed by an operator. The network camera shall support up to four blanked windows. A blanked area shall appear on the screen as a solid gray window.
- 13. The network camera shall support standard IT protocols.
- 14. The network camera shall support open architecture best practices with a published API available to third-party network video recording and management systems.
- X. Megapixel High Definition Integrated Digital Network Camera Technical Specifications:

Imaging Device	1/3-inch, effective
Imager Type	CMOS, Progressive scan
Maximum Resolution	2048 x 1536
Signal-to-Noise Ratio	50 dB
Auto Iris Lens Type	DC drive
Electronic Shutter Range	1~1/100,000 sec
Wide Dynamic Range	60 dB

28 23 00 - 52

White Balance Range	2,000° to 10,000°K
Sensitivity	<pre>f/1.2; 2,850K; SNR >24dB Color (1x/33ms) 0.50 lux Color SENS (15x/500 ms) 0.12 lux Mono SENS (15x/500 ms) Mono (1x/33ms)0.25 lux 0.03 lux</pre>
Dome Attenuation	Clear Zero light loss Smoke f/1.0 light loss
Compression	H.264 in base profile and MJPEG
Video Streams	Up to 2 simultaneous streams, the second Stream variable based on the setup of the primary stream
Frame Rate	Up to 30, 25, 24, 15, 12.5, 12, 10, 8, 7.5, 6.5, 4, 3, 2, and 1 (depending upon coding, resolution, and stream configuration
Available Resolutions	<pre>3.1 MPx2048 x 1536; 4:3 aspect ratio; 2.0 ips max., 10.0 Mbps bit rate for MJPEG; 3.0 ips max., 2.6 Mbps bit rate H.264 2.1 MPx1920 x 1080; 16:9 aspect ratio: 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 5.0 ips max., 2.7 Mbps bit rate H.264 3.1.9 MPx1600 x 1200; 4:3 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 6.0 ips max., 2.6 Mbps bit rate H.264 1.3 MPx1280 x 1024; 5:4 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 8.0 ips max., 2.5 Mbps bit rate H.264 1.2 MPx1280 x 960; 4:3 aspect ratio; 15.0 ips max., 9.8 Mbps bit rate for MJPEG; 9.8 ips max., 8.5 Mbps bit rate H.264 6.0.9 MPx1280 x 720; 16:9 aspect ratio; 30.0 ips max.,10.0 Mbps bit rate for MJPEG; 12.5 ips max., 2.5 Mbps bit rate H.264 0.5 MPx800 x 600; 4:3 aspect ratio; 30.0 ips max., 5.8 Mbps bit rate for MJPEG; 25.0 ips max., 2.0 Mbps bit rate H.264 8.0.3 MPx640 x 480; 4:3 aspect ratio; 30.0 ips max., 3.7 Mbps bit rate for MJPEG; 30.0 ips max.,1.6 Mbps bit rate H.264 0.1 MPx320 x 240; 4:3 aspect ratio; 30.0 ips max., 0.9 Mbps bit rate for MJPEG; 30.0 ips max., 0.4 Mbps</pre>

	bit rate H.264
	Additional640 x 512, 640 x 352, 480 x 368, 480 x 272, 320 x 256, 320 x 176
Supported Protocols	TCP/IP, UDP/IP (Unicast, Multicast IGMP), UPnP, DNS, DHCP, RTP, RTSP, NTP,IPv4, SNMP, QoS, HTTP, HTTPS, LDAP(client), SSH, SSL, STMP, FTP, MDNS(Bonjour), and 802.1x (EAP)
Security Access	Password protected
Software Interface	Web browser view and setup, up to 16 cameras
Connectors	RJ-45 for 100Base-TX, Auto MDI/MDI- X
Cable	Cat5 cable or better for 100Base-TX
Input Voltage	24 VAC or PoE (IEEE802.3af class 3)
Power Consumption	6 W
Current Consumption	PoE <200 mA maximum 24 VAC <295 mA nominal; <390 mA maximum
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Lens Mount	CS mount, adjustable
Pan/Tilt Adjustment	Pan 368° Tilt 160° (10° to 170°) Rotate 355°

- 1. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
 - d. Pole adapter for wall mount
 - e. <list accessories>

2. Recommended Lenses

- a. Megapixel lens, varifocal, 2.2~6.0 mm, f/1.3~2.0
- b. Megapixel lens, varifocal, 2.8~8.0 mm, f/1.1~1.9
- c. Megapixel lens, varifocal, 2.8~12.0 mm, f/1.4~2.7
- d. Megapixel lens, varifocal, 15.0~50.0 mm, f/1.5~2.1
- e. <list megapixel lenses>
- Y. NETWORK CAMERAS
 - 1. Shall be IEEE 802.3af compliant.

28 23 00 - 54

- 09-11
- a. Shall be utilized for interior and exterior purposes.
- b. A Category [CAT5]/[CAT6]<choose one> cable will be the primary source for carrying signals up to 100 m(300 ft.) from a switch hub or network server. If any camera is installed greater than 100 m (300 ft.) from the controlling device then the following will be required:
 - 1) A local or remote 12 VDC or 24 VAC power source will be required from a Class 2, UL compliant power supply.
 - 2) A signal converter will be required to convert from a [CAT5]/[CAT6]<choose one> cable over to a fiber optic or standard signal cable. The signal will need to be converted back to a [CAT5]/[CAT6]<choose one> cable at the controlling device using a signal converter card.
- c. Shall be routed to a controlling device via a network switch.
- d. Shall be of hybrid design with both an Internet Protocol (IP) output and a monitor video output which produces a picture equivalent to an analog camera, and allows simultaneous output of both.
- e. Shall be a programmable IP address that allows for installation of multiple units in the same Local Area Network (LAN) environment.
- d. Incorporate a minimum of Transmission Control Protocol (TCP)/IP, User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Internet Control Message Protocol (ICMP0, Address Resolution Protocol (ARP), Real-Time Transport Protocol (RTP), Dynamic Host Configuration Protocol (DHCP), Network Time Protocol (NTP), Simple Mail Transfer Protocol (SMTP), Internet Group Management Protocol (IGMP), and Differentiated Service Code Point (DSCP) protocols for various network applications.
- Z. Fixed Network Camera
 - The fixed network camera shall have following technical characteristics:

Video Standards	MPEG-4; M-JPEG
Video Data Rate	9.6 Kbps - 6 Mbps Constant & variable
Image Resolution	768x494 (NTSC)

Video Resolution	704 x 576/480 (4CIF: 25/30 IPS) 704 x 288/240 (2CIF: 25/30 IPS) 352 x 288/240 (CIF: 25/30 IPS) 176 x 144/120 (QCIF: 25/30 IPS)
Select Frame Rate	1-25/30 IPS (PAL/NTSC);Field/frame based coding
Network Protocols	RTP, Telnet, UDP, TCP, IP, HTTP, IGMP, ICMP
Software Update	Flash ROM, remote programmable
Configuration	Via web browser, built-in web server interfaces
//Video Out	1x Analog composite: NTSC or PAL; BNC connector 75 Ohm//
Sensitivity	1 0.65 lux (color) 0.26 lux (NightSense)
Minimum Illumination	0.30 lux (color)0.12 lux (NightSense)
Video Signal-to-Noise Ratio	50 dB
Video Signal Gain	21 dB, (max) Electronic Shutter Automatic, up to 1/150000 sec. (NTSC)
Alarm In	Automatic sensing (2500 - 9000 K)
Input Voltage	+5 V nominal, +40 VDC max VDC: 11-36 V (700 mA) VAC: 12-28 V (700 mA) PoE: IEEE 802.3af compliant

- 2. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter
 - d. <list>

AA. Wireless Cameras

- 1. Prior to installation of any wireless camera, ensure operating frequency is given full approval by the VA controlling authority. Wireless cameras shall be utilized as either part of a VASS network or a standard analog system.
- 2. Power for a wireless camera will be 110 VAC tied into a dedicated circuit breaker on a power panel that is dedicated to the security

system and is fed from a power source with back-up in the event primary power to the VASS System is lost. Power will be run to the camera and connected at both ends in accordance with Division 26 of the VA Master Specification FOR NCA Projects, and the VA Electrical Manual. In addition, wireless systems are line of sight dependant and all considerations for environmental layout must be taken into consideration prior to design, engineering, and installation of this type of camera system. Proximity to transmitting and receiving devices, cell phone towers, and any and all electrical devices can also cause interference with the camera signal and must be considered in advance.

- 3. Shall be located within a minimum of one quarter of a mile from the receiving unit. Repeaters shall be used as required to ensure the strongest possible signal between transmitters and receivers.
- 4. Shall be Federal Communication Commission (FCC) approved and compliant.
- 5. If using wireless cameras, the following equipment shall be utilized to ensure operation of the system:
 - a. Receiver
 - b. Receiver antenna as required
 - c. Repeater as required
 - d. Mounting Hardware
- 6. Receivers shall only handle up to four (4) cameras per unit.
- 7. Technical Characteristics
 - a. Wireless Cameras:

Imaging Device	1/3-inch interline transfer CCD
Picture Elements	NTSC 510 (H) x 492 (V)
Sensing Area	6 mm diagonal
Scanning System	NTSC 525 lines, 21 interlace
Synchronization System	AC line lock/internal
Horizontal Resolution	330 TV lines
Iris Control	Selectable on/off
Electronic Shutter Range NTSC	1/60-1/100,000 second
Frequency range	2.41-2.47GHz
Modulation	FM
Video signal/noise ratio	48dB

Audio signal/noise ratio	45db
Minimum Illumination	0.6 lux
Signal to Noise Ratio	>50 dB
Automatic Gain Control	On/off switchable
Backlight Compensation	On/off switchable
Auto White Balance	On/off switchable
Video Output	1 Vp-p, 75 ohms
Lens Mount	C/CS mount (adjustable)

b. Receivers

Frequency range	2.4-2.49GHz
Video output	1Vp-p
Signal/noise ratio	38dB

BB. LENSES

- Camera Field of View shall be set by the Contractor to produce full view of door or window opening and anyone entering or leaving through it. Follow the project construction drawings for design intent.
- 2. Camera Lenses shall be of the type supplied with the camera from the manufacture. All cameras which are not supplied with lenses from the factory are specified in this specification. The lens shall be equipped with an auto-iris mechanism unless otherwise specified. Lenses having auto-iris, DC iris, or motor zoom functions shall be supplied with connectors, wiring, receiver/drivers, and controls as needed to operate the lens functions. Lenses shall have sufficient circle of illumination to cover the image sensor evenly. Lenses shall not be used on a camera with an image format larger than the lens is designed to cover. Lenses shall be provided with pre-set capability.
- 3. Lenses shall have optical-quality coated optics, designed specifically for video surveillance applications, and matched to specified camera. Provide color-corrected lenses with color cameras, megapixel lenses for megapixel cameras, and lenses with day/night for color/b&w cameras.
- 4. Auto-Iris Lens: Electrically controlled iris with circuit set to maintain a constant video level in varying lighting conditions.

- 5. Zoom Lenses: Motorized, remote-controlled units, rated as "quiet operating." Features include the following:
 - a. Electrical Leads: Filtered to minimize video signal interference.
 - b. Motor Speed: Variable.
 - c. Lens shall be available with preset positioning capability to recall the position of specific scenes.
- 6. Lenses: Shall be utilized in a manner that provides maximum coverage of the area being monitored by the camera. The lenses shall:
 - a. Be 1/3'' to fit CCD fixed camera.
 - b. Be all glass with coated optics.
 - c. Have mounts that are compatible with the camera selected.
 - d. Be packaged and supplied with the camera.
 - e. Have a maximum f-stop of f/1.3 for fixed lenses, and a maximum fstop of f/1.6 for variable focus lenses.
 - f. Be equipped with an auto-iris mechanism.
 - g. Have sufficient circle of illumination to cover the image sensor evenly.
 - h. Not be used on a camera with an image format larger than the lens is designed to cover.
 - i. Be provided with pre-set capability.
- 7. Two types of lenses shall be utilized for both interior and exterior fixed cameras:
 - a. Manual Variable Focus
 - b. Auto Iris Fixed
- 8. Manual Variable Focus:
 - a. Shall be utilized in large areas that are being monitored by the camera. Examples of this are perimeter fence lines, vehicle entry points, parking areas, etc.
 - b. Shall allow for setting virtually any angle of field, which maximizes surveillance effects.
 - c. Technical Characteristics:

Image format	1/3 inch
Focal length	5-50mm
Iris range	F1.4 to close
Focus range	1m (3.3 ft)
Back focus distance	10.05 mm (0.4 in)

Angle view Wide (1/3 in)	53.4 x 40.1
Angle view Tele (1/3 in)	5.3 x 4.1
Iris control	manual
Focus ctrl	manual
Zoom ctrl	manual

- CC. CAMERA HOUSINGS AND MOUNTS
 - This section pertains to all interior and exterior housings, domes, and applicable wall, ceiling, corner, pole, and rooftop mounts associated with the housing. Housings and mounts shall be specified in accordance to the type of cameras used.
 - All cameras and lenses shall be enclosed in a tamper resistant housing. Any additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
 - 3. The camera and lens contained inside the housing shall be installed on a camera mount. All additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
 - 4. Shall be manufactured in a manner that are capable of supporting a maximum of three (3) cameras with housings, and meet environmental requirements for the geographical area the camera support equipment is being installed on or within.
 - 5. Environmentally Sealed
 - a. Shall be designed in manner that it provides a condensation free environment for correct camera operation.
 - b. Shall be operated in a 100 percent condensing humidity atmosphere.
 - c. Shall be constructed in a manner that:
 - Has a fill valve to allow for the introduction of nitrogen into the housing to eliminate existing atmospheric air and pressurize the housing to create moisture free conditions.
 - 2) Has an overpressure valve to prevent damage to the housing in the event of over pressurization.
 - 3) Is equipped with a humidity indicator that is visible to the eye to ensure correct atmospheric conditions at all times.

- 4) The leak rate of the housing is not to be greater than 13.8kPa or 2 pounds per square inch at sea level within a 90 day period.
- 5) It shall contain camera mounts or supports as needed to allow for correct positioning of the camera and lens.
- 6) The housing and sunshield are to be white in color.
- All electrical and signal cables required for correct operations shall be supplied in a hardened carrier system from the controller to the camera.
- 7. The mounting bracket shall be adjustable to allow for the housing weight of the camera and the housing unit it is placed in.
- Accessibility to the camera and mounts shall be taken into consideration for maintenance and service purposes.

DD. Indoor Mounts

- 1. Ceiling Mounts:
 - a. This enclosure and mount shall be installed in a finished or suspended ceiling.
 - b. The enclosure and mount shall be fastened to the finished ceiling, and shall not depend on the ceiling tile grid for complete support.
 - c. Suspended ceiling mounts shall be low profile, and shall be suitable for replacement of 610mm x 610mm (2 foot by 2 foot) ceiling tiles.
- 2. Wall Mounts:
 - a. The enclosure shall be installed in manner that it matches the existing décor and placed at a height that it will be unobtrusive, unable to cause personal harm, and prevents tampering and vandalism.
 - b. The mount shall contain a manual pan/tilt head that will provide 360 degrees of horizontal and vertical positioning from a horizontal position, and has a locking bar or screw to maintain its fixed position once it has been adjusted.

EE. Interior Domes

 The interior dome shall be a pendant mount, pole mount, ceiling mount, surface mount, or corner mounted equipment.

- The lower portion of the dome that provides camera viewing shall be made of black opaque acrylic and shall have a light attenuation factor of no more that 1 f-stop.
- 3. The housing shall be equipped with integral pan/tilt capabilities complete with wiring, wiring harness, connectors, receiver/driver, pan/tilt control system, pre-position cards, or any other hardware and equipment as needed to fully provide a fully functional pan/tilt dome.
- 4. The pan/tilt mechanism shall be:
 - a. Constructed of heavy duty bearings and hardened steel gears.
 - b. Permanently lubricated to ensure smooth and consistent movement of all parts throughout the life of the product.
 - c. Equipped with motors that are thermally or impedance protected against overload damage.
 - d. Pan movements shall be 360 degrees and tilt movement shall no be less than +/- 90 degrees.
 - e. Pan speed shall be a minimum of 10 degrees per second.
- FF. Exterior Domes
 - 1. The exterior dome shall meet all requirements outlined in the interior dome paragraph above.
 - 2. The housing shall be constructed to be dust and water tight, and fully operational in 100 percent condensing humidity.

GG. Exterior Wall Mounts

- 1. Shall have an adjustable head for mounting the camera.
- 2. Shall be constructed of aluminum, stainless steel, or steel with a corrosion-resistant finish.
- 3. The head shall be adjustable for not less than plus and minus 90 degrees of pan, and not less than plus and minus 45 degrees of tilt. If the bracket is to be used in conjunction with a pan/tilt, the bracket shall be supplied without the adjustable mounting head, and shall have a bolt-hole pattern to match the pan/tilt base.
- 4. Shall be installed at a height that allows for maximum coverage of the area being monitored.

HH. Explosion Proof Housing

 This housing shall meet or exceed all requirements of NEMA four (4) standards for hazardous locations.

2. It shall be supplied with the mounting brackets for the specified camera and lens.

2.8 POWER SUPPLIES

- A. Power supplies shall be a low-voltage power supplies matched for voltage and current requirements of cameras and accessories, type as recommended by camera[, infrared illuminator,] and lens manufacturer.
- B. Technical specifications:
 - 1. Input: 115VAC, 50/60Hz, 2.7 amps
 - 2. Outputs:
 - a. Number of outputs, [16] <insert number of outputs>
 - b. [Fuse/PTC] <insert type> protected, power limited
 - c. Output voltage & power:
 - 1) 24VAC @ 12.5 amps (300VA) or 28VAC @ 10 amp (280VA) supply current
 - 3. Illuminated power disconnect circuit breaker with manual reset
 - 4. Surge suppression
 - 5. Camera synchronization
 - 6. [Wall/Rack] <insert mount type> mount.
 - 7. Enclosure: NEMA 250, Type [1] [3] [4X] < Insert enclosure type>.

2.9 INFRARED ILLUMINATORS

- A. Lighting fixtures that emit light only in the infrared spectrum, suitable for use with cameras indicated, for nighttime surveillance, without emitting visible light.
 - 1. Field-Selectable Beam Patterns: Narrow, medium, and wide.
 - 2. Rated Lamp Life: More than 8000 hours
 - 3. Power Supply: [12-VAC/DC] [120-VAC].
- B. Area Coverage: Illumination to 50 m (150 feet) in a narrow beam pattern.
- C. Exterior housings shall be suitable for same environmental conditions as associated camera.

2.10 NETWORK SERVER

A. Allow for the transmission of live video, data, and audio over either an existing Ethernet network or a dedicated security system network, requiring an IP address or Internet Explorer 5.5 or higher, or shall work as an analog-to-Ethernet "bridge" controlling matrices, multiplexers, and pan/tilt/zoom cameras. The network shall operate in a

box-to-box configuration allowing for encoded video to be decoded and displayed on an analog monitor.

- B. If a VASS System network is going to be utilized as the primary means of monitoring, operating, and recording cameras then the following equipment shall be required as part of the system:
 - 1. System Server
 - 2. Computer Workstation
 - 3. Recording Device
 - 4. Encoder/Decoder
 - 5. Monitor
 - 6. Hub/Switch
 - 7. Router
 - 8. Encryptor
- C. Shall provide overall control, programming, monitoring, and recording of all cameras and associated devices within the VASS System.
- D. All equipment on the network shall be IP addressable.
- E. The VASS System network shall meet or exceed the following design and performance specifications:
 - 1. Two MPEG-4 video streams for a total of 40 images per second will be provided.
 - PC Software that manages the installation and maintenance of all hardware transmitters and receivers on the network shall be provided.
 - 3. Video Source that supports any NTSC video source to the computer network shall be addressed.
 - Receivers that could be used to display the video on a standard analog NTSC or PAL monitor will be addressed.
- F. The system shall support the following network protocols:
 - Internet connections: RTP, Real Time Control Protocol (RTCP), UDP, IP, TCP, ICMP, HTTP, Simple Network Management Protocol (SNMP), IGMP, DHCP, and ARP.
 - 2. Video Display: MPEG-4, M-JPEG in server push mode only.
 - 3. Have the ability to adjust bandwidth, image quality and image rate.
 - 4. Support image sizes of either 704 x 576 pixels or 352 x 288 pixels.
 - 5. Have an audio coding format of G.711 or G.728.
 - 6. Provide a video frame rate of at least 30 images per second.
 - 7. Support LAN Interface Ethernet 10/100BaseT and be auto sensing.

- 8. Have a LAN Data Rate of 9.6 Kbps to 5.0 Mbps.
- 9. Utilize data interface RS-232/RS-422/RS-485.
- G. All connections within the system shall be via CAT-5 cable and RJ-45 jacks. If analog equipment is used as part of the system, then either an encoder or a decoder will be utilized to convert the analog signal to a digital one.
- H. The VASS network system shall conform to all VA agency wide security standards for administrator and operator use.
- I. Server Technical Characteristics:

Hardware	Personal Computer
CPU	Pentium IV, 3.0 GHz or better
Hard Disk Interface	IDE or better
RAM	256 MB
OS	Windows XP Home/XP Professional
Graphic Card	NVIDIA GeForce 6600 NVIDIA Quadro FX 1400 ATI
	RADEON X600/X800 or better
Ethernet Card	RADEON X600/X800 or better 100 Mb
Ethernet Card Software	

J. Network Switch Technical Characteristics

Protocol and standard	IEEE802.3 IEEE802.3u IEEE802.3ab
Ports	24 10/100/1000M auto-negotiation RJ- 45 ports with auto MDI/MDI-X
Network media	Cat 5 UTP for 1,000Mbps Cat 3 UTP for 10Mbps
Transmission method	store-and-forward
LED	indicator power, act/link, speed

K. Router Technical Characteristics

Network Standards	IEEE 802.3, 802.3u 10Base-T Ethernet (WAN) 100Base-T Ethernet (LAN) IEEE 802.3x Flow Control IEEE802.1p Priority Queue ANS/IEEE 802.3 NWay auto-negotiation
Protocol	CSMA/CD, TCP, IP, UDP, PPPoE, AND DHCP (client and server)
VPN Supported	PPTP, IPSec pass-through

28 23 00 - 65

Management	Browser
Ports	4 x 10/100Base-T Auto sensing RJ45 ports, and an auto uplink RJ45port(s) 1 x 10Base-T RJ45 port, WAN
LEDs	Power, WAN Activity, LAN Link (10/100), LAN Activity

L. Encryptor Technical Characteristics:

Cryptography	Standard - Triple DES 168-bit (ANSI
	9.52) Rijndael - AES (128, 192, 256)
Performance	Throughput (end-to-end) @ 100 Mbps line speed: >188 Mbps full duplex (large frames) >200 kfps full duplex (small frames) Latency (end-to-end) @ 100 Mbps
Key Management	Automatic KEK/DEK Exchange Using Signed Diffie-Hellman Unit Authentication Using X.509 Certificates
Physical Interfaces	10BaseT or 10/100BaseT Ethernet (Host and Network Ports) 10BaseT Ethernet Management Port Back and Front-Panel Serial Control Port
Device Management	THALES Element Manager, Front Panel Viewer, and Certificate Manager 10Base T (RJ-45) or 9-pin Serial Control Port SNMP Network Monitoring
Security Features	Tamper Proof Cryptographic Envelope Tamper Evident Chassis Hardware Random Number Generator
Management	Channel Encrypted Using Same Algorithm as Data Traffic
Security Certifications	FIPS 140-2 Level 3 CAPS Baseline and Enhanced Grades Common Criteria EAL4 and EAL5 (under evaluation)
Regulatory	EN60950, FCC, UL, CE, EN 50082-1, and EN 55022

2.11 RECORDING DEVICES

- A. All cameras on the VASS System shall be recorded in real time using a Digital Video Recorder (DVR), Network Video Recorder (NVR), or attached storage. The type of recording device utilized should be determined by the size and type of VASS System designed and installed, and to what extent the system is to be utilized.
- B. All recording devices shall be 47.5 cm (19 inch) rack-mountable.

- C. All DVR's and NVR's that are viewable over an Intranet or Internet will be routed through an encryptor.
- D. Encryptors shall:
 - 1. Comply with FIPS PUB 140-2.
 - 2. Support TCP/IP.
 - 3. Directly interfaces to low-cost commercial routers.
 - 4. Provide packet-based crypto synchronization.
 - 5. Encrypt source and destination IP addresses.
 - Support web browser based management requiring no additional software.
 - 7. Have a high data sustained throughput 1.544 Mbps (T1) full duplex data rate.
 - 8. Provide for both bridging and routing network architecture support.
 - 9. Support Electronic Key Management System (EKMS) compatible.
 - 10. Have remote management ability.
 - 11. Automatically reconfigure when secure network or wide area network changes.
- E. Digital Video Recorder (DVR)
 - 1. Shall record video to a hard drive-based digital storage medium in either NTSC or MPEG format.
 - 2. Shall meet the following minimum requirements:
 - a. Record at minimum rate of 30 images per second (IPS).
 - b. Have a minimum of eight (8) to 16 looping inputs.
 - c. Have a minimum of eight (8) to 16 alarm inputs and two (2) relay outputs.
 - d. Shall provide instantaneous playback of all recorded images.
 - e. Be IP addressable, if part of a VASS network.
 - f. Have built-in digital motion detection with masking and sensitivity adjustments.
 - g. Provide easy playback and forward/reverse search capabilities.
 - h. Complete audit trail database, with minimum of a six-month history that tracks all events related to the alarm; specifically who, what, where and when.
 - i. DVR management capability providing automatic video routing to a back-up spare recorder in case of failure.
 - j. Accessible locally and remotely via the Internet, Intranet, or a personal digital assistant (PDA).

- k. Records all alarm events in real time, ensuring 60 seconds before and after the event are included in the recording.
- Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.
- m. Allow for independently adjustable frame rate settings.
- n. Be compatible with the matrix switcher utilized to operate the cameras. The DVR could be utilized as a matrix switcher only if it meets all of the requirements listed in the matrix switcher section.
- 3. Technical Characteristics:

SPEC WRITER NOTE: Edit values in [] to fit project regirements.

fit project reqirements.		
Compression	MPEG-4	
Internal Storage Capacities.	[160] GB, [320] GB, [500] GB, [1] TB, and 2 TB. Available USB hard drive up to 250 GB. Optional internal DVD available	
Digital Recording	Up to [16] video and [8] audio channels, or [8] video and [4] audio channels.	
Full real-time video recording	Up to 400 IPS@352 x 288: PAL Up to 200 IPS@352 x 288: PAL	
Multiple simultaneous functions	Live viewing, Recording, playback, network transmission, back-up	
Search functions	Date/time search, event search, bookmark search, smart (pixel) Search	
PTZ Control	Third party PTZ control	
User ID security	3 levels	
Connectivity to external devices:	Eight [8] or sixteen [16] video input and looping output channels. VGA and dual monitor BNC outputs.	
	Four [4] or eight [8] audio inputs and one [1] audio output.	
	Ethernet 10/100BaseT network connection.	
	Eight [8] to sixteen [16] alarm inputs and four [4] or eight [8] relay outputs.	
	Biphase connection to control Bosch PTZ cameras.	
	Third party PTZ control via RS-422/RS- 485 connection.	
	Front and back USB connectors to	

	connect to a PC mouse, or archive video
	to a USB memory stick or similar device.
PC requirements	Windows 2000 or above; DirectX 8.1 or above.
	Intel Pentium III or above, AMD Athlon with 800 MHz or faster CPU.
	512 MB or more RAM.
	50 MB hard drive.
	AGP VGA with 64 MB video RAM or above.
	10/100-BaseT network interface.
Electrical	Power Input: 100 to 240 VAC; 50/60 Hz Power consumption: [120W] Max. [1.2] A
Video	Video standard: PAL or NTSC selectable. Resolution: 704 x 576 PAL, 704 x 480 NTSC
	Compression: MPEG-4
	Inputs: 8 or 16 composite video 0.5-2
	Vpp, 75 Ohm automatic termination.
	Outputs 8 or 16 composite video 1 Vpp, 75 Ohm.
Audio	Inputs: 4 or 8 line in, 30 kOhm
	Output: 1 line, 100 kOhm
Monitors	VGA: analog RGB 800x600
	MON A: CVBS 1 Vpp0.1 V, 75 Ohm, BNC
	Monitor A multi-screen (VGA or CVBS)
	MON B: CVBS 1 Vpp0.1 V, 75 Ohm, BNC
	Monitor B spot/alarm
Frame Rate and Resolution	[16]-channels PAL: Up to 400 IPS@352x288, up to 200 IPS@704x288, up to 100 IPS@704x576.
Alarm inputs	[8] [16] configurable NO/NC, max. input 5 VDC.
Alarm outputs	[4] or [8] relay outputs, configurable NO/NC, max. rated 1A, 125 VAC.
Connections	Ethernet: RJ45 modular jack 8 pins shielded, 10/100 Base-T.
	Biphase: Screw terminal connector (5 outputs).
	Maximum 5 controllable cameras per Biphase output.
	PTZ control interfaces: RS485/RS422.
	Serial interface: RS232 output signal, DB9 male connector

	Keyboard: RJ11 modular jack 6 pins
Network:	Transmission speed: up to 120 IPS@352x240
	Bandwidth control: Automatic
	Remote users: Maximum 5 simultaneous connected Control Center users.

Processor	Intel Pentium III 750 MHz
Memory	256 MB RAM
Operating System	Windows 98, NT, ME, 2000, and XP
Video Card	4 MB of RAM capable of 24-bit true color display
Free Hard Disk Space	160 MB for software installation
Network Card	10Base-T network for LAN operation
Archiving	80 GB, 160 GB, 320 GB and 640 GB Hard Drive; CD-RW
Video Input	1.0 Vpp (signal 714mV, sync 286mV) 75 ohms (BNC unbalanced)
Video Output Level	1.0 Vpp +/-10%,75 ohms(BNC unbalanced)
Impedance	75 ohms/Hi- impedance x 16 switchable
Network Interface	Ethernet (RJ-45, 10/100M)
Network Protocol	TCP/IP, DHCP, HTTP, UDP
Network Capabilities	Live/Playback/P/T/Z control
Recording Rate	30 ips for 720 x 240 (NTSC)
Password Protection	Menu Setup, Remote Access
Recording Capacity	160 (1 or 2 fixed HDD) 1 CD-RW
Power Interrupt	Auto recovered to recording mode

- F. Network Video Recorder (NVR)
 - Shall record video to a hard drive-based digital storage medium in MPEG, MPEG4 or H.264 format.
 - 2. Shall meet the following minimum requirements:
 - a. Record at minimum rate of 30 IPS.
 - b. Have a minimum of eight (8) to 16 looping inputs.
 - c. Have a minimum of eight (8) to 16 alarm inputs and two (2) relay outputs.
 - d. Shall provide instantaneous playback of all recorded images.

- e. Be IP addressable, if part of a VASS network.
- f. Have built-in digital motion detection with masking and sensitivity adjustments.
- g. Easy playback and forward/reverse search capabilities.
- h. Complete audit trail database, with minimum of a six-month history that tracks all events related to the alarm; specifically who, what, where and when.
- i. NVR management capability providing automatic video routing to a back-up spare recorder in case of failure.
- j. Accessible locally and remotely via the internet, intranet, or a personal digital assistant (PDA).
- k. Records all alarm events in real time, ensuring 60 seconds before and after the event are included in the recording.
- Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.
- m. Allow for independently adjustable frame rate settings.
- n. Be compatible with the matrix switcher utilized to operate the cameras.

3.	Technical	Characteristics:

Hardware/CPU	Pentium III Xeon or IV, 1.8 GHz
HDD Interface	IDE or better; optional: SCSI II, SCSI Ultra, or Fiber Channel
RAM	1024 MB
Operating System	Windows 2000/XP Professional/Server 2003 Standard
Graphic	Card VGA
Ethernet Card	100/1000 MB
Memory	20 MB
Software Setup	Centralized setup from each authorized PC; access via integrated web server
Storage Media	All storage media possible (e.g., HD, RAID), depending on operating system
Storage Mode	Linear mode, ring mode (capacity-based)
Recording Configuration	Camera name assignment, bandwidth limit, frame rate, video quality
Recording Content	Video and/or audio data
Search Parameters	Time, date, event
Playback	Playback via any IP network (LAN/WAN)

	09-11
	simultaneous recording, playback, and backup
Network Interface	Ethernet (RJ-45, 10/100M)
Network Protocol	TCP/IP, DHCP, HTTP, UDP
Network Capabilities	Live/Playback/P/T/Z control
Recording Rate	30 ips for 720 x 240 (NTSC)
Password Protection	Menu Setup, Remote Access
Recording Capacity	160 (1 or 2 fixed HDD) 1 CD-RW
Power Interrupt	Auto recovered to recording mode

2.12 WIRES AND CABLES

- A. Shall meet or exceed the manufactures recommendation for power and signal.
- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- C. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that will allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.
- F. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.
- I. For all equipment that is carrying digital data between the Physical Access Control System and Database Management or at a remote monitoring station, shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable

shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance. The inputs and outputs shall be tested in both normal and common mode using the following wave forms:
 - 1. A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 watts and peak current of 60 amperes.
 - 2. An 8 microsecond rise time by 20 microsecond pulse width wave form with a peak voltage of 1000 volts and peak current of 500 amperes.
- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.
- L. Coaxial Cables
 - All video signal cables for the VASS System, with exception to the PoE cameras, shall be a coaxial cable and have a characteristic impedance of 75 ohms plus or minus 3 ohms.
 - 2. For runs up to 750 feet use of an RG-59/U is required. The RG-59/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 23 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 3. For runs between 750 feet and 1250 feet, RG-6/U is required. RG-6/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 18 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 4. For runs of 1250 to 2750 feet, RG-11/U is required. RG-11/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 14 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 5. All runs greater than 2750 feet will be substituted with a fiber optic cable. If using fiber optics as a signal carrier then the following equipment will be utilized:

- a. Multimode fiber optic cable a minimum size of 62 microns
- b. Video transmitter, installed at the camera that utilizes 12 $\ensuremath{\texttt{VDC}}$ or 24 VAC for power.
- c. Video receiver, installed at the switcher.
- 6. RG-59/U Technical Characteristics

AWG	22	
Stranding	7x29	
Conductor Diameter	.031 in.	
Conductor Material	BCC	
Insulation Material	Gas-injected FHDPE	
Insulation Diameter	.145 in.	
Outer Shield Type	Braid/Braid	
Outer Jacket Material	PVC	
Overall Nominal Diameter	.242 in.	
UL Temperature Rating	75°C	
Nom. Characteristic Impedance	75 Ohms	
Nom. Inductance	0.094 µH/ft	
Nom. Capacitance	Conductor to Shield 17.0 pF/ft	
Nom. Velocity of Propagation	80 %	
Nom. Delay	1.3 ns/ft	
Nom. Conductor DC Resistance @ 20°C	12.2 Ohms/1000 ft	
Nom. Outer Shield DC Resistance @ 20°C	2.4 Ohms/1000 ft	
Max. Operating Voltage	UL 300 V RMS	

7. RG-6/U Technical Characteristics:

AWG	18	
Stranding	7x27	
Conductor Diameter	.040 in.	
Conductor Material	BC	
Insulation Material	Gas-injected FHDPE	
Insulation Diameter	.180 in.	
Outer Shield Material	Trade Name Duofoil	
Outer Shield Type	Tape/Braid	

	09-	
Outer Shield %Coverage	100 %	
Outer Jacket Material	PVC	
Overall Nominal Diameter	.274 in.	
Nom. Characteristic Impedance	75 Ohms	
Nom. Inductance	0.106 µH/ft	
Nom. Capacitance	Conductor to Shield 16.2 pF/ft	
Nom. Velocity of Propagation	82 %	
Nom. Delay	1.24 ns/ft	
Nom. Conductor DC Resistance	6.4 Ohms/1000 ft	
Nominal Outer Shield DC Resistance @ 20°C	2.8 Ohms/1000 ft	
Max. Operating Voltage	UL 300 V RMS	
2 11/II Machanical Characteristics.		

8. RG-11/U Technical Characteristics:

AWG	15	
Stranding	19x27	
Conductor Diameter	.064 in.	
Conductor Material	BC	
Insulation Material	Gas-injected FHDPE	
Insulation Diameter	.312 in.	
Inner Shield Type	Braid	
Inner Shield Material	BC - Bare Copper	
Inner Shield %Coverage	95 %	
Inner Jacket Material	PE - Polyethylene	
Inner Jacket Diameter	.391 in.	
Outer Shield Type	Braid	
Outer Shield Material	BC - Bare Copper	
Outer Shield %Coverage	95 %	
Outer Jacket Material	Trade Name Belflex	
Outer Jacket Material	PVC Blend	
Overall Nominal Diameter	.520 in.	
Operating Temperature Range	-35°C To +75°C	
Non-UL Temperature Rating	75°C	
Nom. Characteristic Impedance	75 Ohms	
Nom. Inductance	0.097 µH/ft	

09-	1	1
-----	---	---

Nom. Capacitance	Conductor to Shield 17.3 pF/ft	
Nom. Velocity of Propagation	78 %	
Nom. Delay	1.30 ns/ft	
Nom. Conductor DC Resistance	3.1 Ohms/1000 ft	
Nom. Inner Shield DC Resistance	1.8 Ohms/1000 ft	
Nom. Outer Shield DC Resistance	1.4 Ohms/1000 ft	
Max. Operating Voltage Non-UL	300 V RMS	

- 9. Signal Cables:
 - a. Signal wiring for PoE cameras depends on the distance the camera is being installed from either a hub or the server.
 - b. If the camera is up to 300 ft from a hub or the server, then use a shielded UTP category 5 (CAT-V) cable a with standard RJ-45 connector at each end. The cable with comply with the Power over Ethernet, IEEE802.3af, Standard.
 - c. If the camera is over 300 ft from a hub or server then utilize a multimode fiber optic cable with a minimum size of 62 microns.
 - d. Provide a separate cable for power.
 - Number of Pairs 4 8 Total Number of Conductors AWG 24 Stranding Solid Conductor Material BC - Bare Copper Insulation Material PO - Polyolefin Overall Nominal Diameter .230 in. 11801 Category 5 IEC Specification 568-B.2 Category 5e TIA/EIA Specification Max. Capacitance Unbalance (pF/100 m) 150 pF/100 m Nom. Velocity of Propagation 70 % (ns/100 m) 538 @ 100MHz Max. Delay (ns/100m) 45 ns/100 m Max. Delay Skew Max. Conductor DC Resistance 9.38 Ohms/100 Max. DCR Unbalance@ 20°C 3 % UL 300 V RMS Max. Operating Voltage
 - e. CAT-5 Technical Characteristics:

10. Fiber Optic Cables Technical Characteristics:

Fiber Type 62.5 Micron Number of Fibers Λ Core Diameter 6 2.5 +/- 2.5 microns Core Non-Circularity 5% Maximum 125 +/- 2 microns Clad Diameter Clad Non-Circularity 1% Maximum Core-clad Offset 1.5 Microns Maximum Primary Coating Material Acrylate 245 +/- 10 microns Primary Coating Diameter Secondary Coating Material Engineering Thermoplastic Secondary Coating Diameter 900 +/- 50 microns Strength Member Material Aramid Yarn Outer Jacket Material PVC Outer Jacket Color Orange Overall Diameter .200 in. Numerical Aperture .275 Maximum Gigabit Ethernet 300 meters Maximum Gigabit Ethernet 550 meters

11. Power Cables

- a. Will be sized accordingly and shall comply with the NEC. High voltage power cables will be a minimum of three conductors, 14
 AWG, stranded, and coated with a non-conductive polyvinylchloride (PVC) jacket. Low voltage cables will be a minimum of 18 AWG, stranded and non-conductive polyvinylchloride (PVC) jacket.
- b. Will be utilized for all components of the VASS System that require either a 110 VAC 60 Hz or 220 VAC 50 Hz input. Each feed will be connected to a dedicated circuit breaker at a power panel that is primarily for the security system.
- c. All equipment connected to AC power shall be protected from surges. Equipment protection shall withstand surge test waveforms described in IEEE C62.41. Fuses shall not be used as a means of surge protection.

- d. Shall be rated for either 110 or 220 VAC, 50 or 60 Hz, and shall comply with VA Master Spec 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- e. Low Voltage Power Cables
 - Shall be a minimum of 18 AWG, Stranded and have a polyvinylchloride outer jacket.
 - Cable size shall determined using a basic voltage over distance calculation and shall comply with the NEC's requirements for low voltage cables.

PART 3 - EXECUTION

3.1. GENERAL

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
 - The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- C. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.

- D. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- E. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- F. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

- A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The VASS System will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a complete network.

- E. For integration purposes, the VASS System shall be integrated where appropriate with the following associated security subsystems:
 - 1. PACS:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings, as well as all emergency exits utilizing a fixed color camera.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed go into an alarm state when an emergency exit is opened, and notify the Physical Access Control System and Database Management of an alarm event.
 - 2. IDS:
 - a. Provide a recorded alarm event via a color camera that is connected to the IDS system by either direct hardwire or a security system computer network.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the PACS.
 - d. For additional VASS System requirements as they relate to the IDS, refer to Section 28 16 00 "INTRUSION DETECTION".
 - 3. Security Access Detection:
 - Provide full coverage of all vehicle and lobby entrance screening areas utilizing a fixed color camera.
 - b. Record cameras on a 24 hours basis.
 - c. The VASS System should have facial recognition software to assist in identifying individuals for current and future purposes.
 - 4. EPPS:
 - a. Provide a recorded alarm event via a color camera that is connected to the EPPS system by either direct hardwire or a security system computer network.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.

- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. A complete VASS System shall be comprised of, but not limited to, the following components:
 - 1. Cameras
 - 2. Lenses
 - 3. Video Display Equipment
 - 4. Camera Housings and Mounts
 - 5. Controlling Equipment
 - 6. Recording Devices
 - 7. Wiring and Cables
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment
 - The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
 - 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving

Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.

- The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.
- N. Cameras:
 - 1. Install the cameras with the focal length lens as indicated for each zone.

- 2. Connect power and signal lines to the camera.
- 3. Aim camera to give field of view as needed to cover the alarm zone.
- 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
- 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
- Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
- 7. PTZ cameras shall have all preset positions and privacy areas defined and programmed.
- O. Monitors:
 - Install the monitors as shown and specified in design and construction documents.
 - 2. Connect all signal inputs and outputs as shown and specified.
 - 3. Terminate video input signals as required.
 - 4. Connect the monitor to AC power.
- P. Switcher:
 - 1. Install the switcher as shown in the design and construction documents, and according to the OEM.
 - Connect all subassemblies as specified by the manufacturer and as shown.
 - Connect video signal inputs and outputs as shown and specified; terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as shown and specified; connect control signal inputs and outputs for ancillary equipment or secondary control/monitoring sites as specified by the manufacturer and as shown.
 - 5. Connect the switcher CPU and switcher subassemblies to AC power.
 - 6. Load all software as specified and required for an operational VASS System configured for the site and building requirements, including data bases, operational parameters, and system, command, and application programs.
 - Provide the original and 2 backup copies for all accepted software upon successful completion of the endurance test.
 - 8. Program the video annotation for each camera.
- Q. Video Encoder/Decoder

- Install the Video Encoder/Decoder per design and construction documents, and as specified by the OEM.
- 2. Connect analog camera inputs to video encoder.
- 3. Connect network camera to video decoder.
- 4. Connect video encoder to VASS network.
- 5. Connect video decoder to video matrix, DVR, monitor etc.
- 6. Connect unit to AC power (UPS).
- Configure the video encoder/decoder per manufacturer's recommendation and project requirements.
- R. Video Server:
 - Install the video server per design and construction documents, and as specified by the OEM.
 - 2. Connect video server to AC power (UPS).
 - 3. Connect to VASS network.
 - 4. Install operating system and Video Management Software.
 - 5. Provide Video Management Software programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Camera names
 - b. Screen views
 - c. Camera recording schedules (continuous and event) driven recording. Events include alarms from other systems (sensors), manual input, and video motion detection.
 - d. Video detection zones for each camera requiring video motion detection
 - e. Alarm interface
 - f. Alarm outputs
 - g. GUI maps, views, icons and actions
 - h. PTZ controls (presets, time schedules for privacy zones etc.)
 - i. Reports
- S. Video Workstation:
 - Install the video workstation per design and construction documents, and as specified by the OEM.
 - 2. Connect video workstation to AC power (UPS).
 - 3. Connect to VASS network.
 - 4. Install operating system and application software.
 - 5. Provide application software programming per VA guidance and the requirements provided by the Owner. Programming shall include:

- a. Screen views
- b. Graphical User Interface (GUI) maps, views, icons and actions
- c. Alarm outputs
- d. Reports
- T. Network Switch:
 - Install the network switch per design and construction documents, and as specified by the OEM.
 - 2. Connect network switch to AC power (UPS).
 - 3. Connect network cameras to network switch.
 - 4. Configure the network switch per manufacturer's recommendation and project requirements.
- U. Network Recording Equipment
 - 1. Install the NVR or video storage unit as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect recording device to AC power (UPS).
 - 3. Connect recording device to network switch as shown and specified.
 - 4. Configure network connections
 - 5. Provide recording unit programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Camera names
 - b. Screen views
 - c. Camera recording schedules (continuous and event) driven recording. Events include alarms from other systems (sensors), manual input, and video motion detection.
 - d. Video detection zones for each camera requiring video motion detection
 - e. Alarm interface
 - f. Alarm outputs
 - g. GUI maps, views, icons and actions
 - h. PTZ controls (presets, time schedules for privacy zones etc.)
 - i. Reports
- V. Video Recording Equipment:
 - 1. Install the video recording equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video signal inputs and outputs as shown and specified.
 - 3. Connect alarm signal inputs and outputs as shown and specified.
 - 4. Connect video recording equipment to AC power.

- 5. Program the video recording equipment;
 - a. Recording schedules
 - b. Camera caption
- W. Video Signal Equipment:
 - Install the video signal equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video or signal inputs and outputs as shown and specified.
 - 3. Terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as required.
 - 5. Connect control signal inputs and outputs as required
 - 6. Connect electrically powered equipment to AC power.
- X. Camera Housings, Mounts, and Poles:
 - Install the camera housings and mounts as specified by the manufacturer and as shown, provide mounting hardware sized appropriately to secure each camera, housing and mount with maximum wind and ice loading encountered at the site.
 - 2. Provide a foundation for each camera pole as specified and shown.
 - Provide a ground rod for each camera pole and connect the camera pole to the ground rod as specified in Division 26 of the VA Master Specification and the VA Electrical Manual 730.
 - Provide electrical and signal transmission cabling to the mount location via a hardened carrier system from the Physical Access Control System and Database Management to the device.
 - 5. Connect signal lines and AC power to the housing interfaces.
 - 6. Connect pole wiring harness to camera.

3.3 SYSTEM START-UP

- A. The Contractor shall not apply power to the VASS System until the following items have been completed:
 - 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.
 - A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - System wiring has been tested and verified as correctly connected as indicated.
 - All system grounding and transient protection systems have been verified as installed and connected as indicated.

- 5. Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

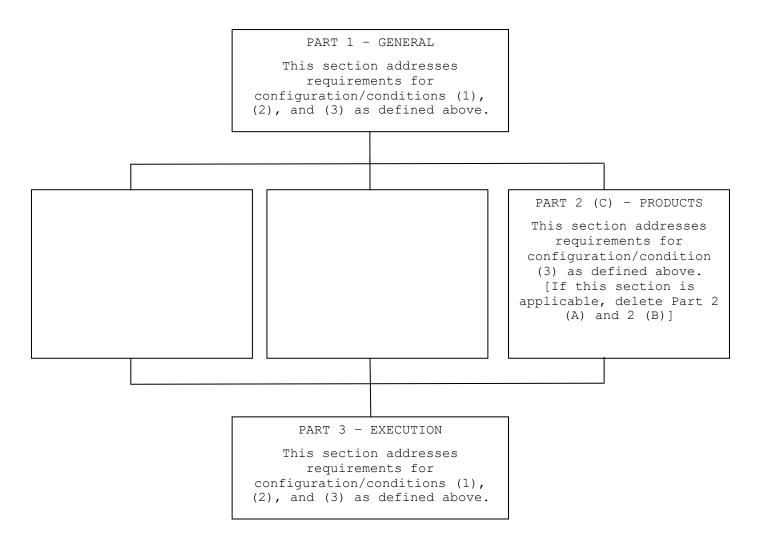
3.4 SUPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -"COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING


A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".

04-30-2019

- B. Provide services of manufacturer's technical representative for [four] <insert hours> hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS".

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the //Resident Engineer// //COTR//or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building(s) shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
 - Building(s) shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in the security office and fire department.

E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. A non-addressable fire alarm system as an extension of an existing nonaddressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.

- Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
- 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
- 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
- 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- D. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.
 - E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
 - F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
 - G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
 - H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
 - I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 18 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
 - 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable

controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.

- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2018 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - g. Include information indicating who will provide emergency service and perform post contract maintenance.
 - h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.

- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name

and title of the manufacturer's representative who makes the certification.

- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES ARE NOT INCLUDED

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.

B. National Fire Protection Association (NFPA): NFPA 13Standard for the Installation of Sprinkler Systems, 2010 edition NFPA 14Standard for the Installation of Standpipes and Hose Systems, 2010 edition NFPA 20Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition NFPA 70.....National Electrical Code (NEC), 2010 edition NFPA 72.....National Fire Alarm Code, 2010 edition NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI):

S3.41..... Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008

F. International Code Council, International Building Code (IBC), 2009 edition

PART 2- PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

- A. Existing equipment may be reused only where indicated on the drawings.
- B. Except as indicated in paragraph A above, All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33, CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new and reused conduit shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - All existing wiring shall be removed and new wiring installed in a conduit or raceway.
 - 2. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - 3. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically accepted by the fire alarm equipment manufacturer in writing.

- 4. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- 5. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All new and reused boxes shall be sized and installed in accordance with NFPA 70.
 - 3. New and existing covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT (EXISTING)

- A. General:
 - Each building shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.
 - Each power source shall be supervised from the other source for loss of power.
 - 3. All circuits shall be monitored for integrity.
 - Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
 - 5. Transmit digital alarm information to the main fire alarm control unit.

- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
 - 2. Display screen shall have a minimum 15-inch (380mm) diagonal nonglare screen capable of displaying 24 lines of 80 characters each.
 - Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
 - 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.
- D. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
 - 3. Power supply for smoke detectors shall be taken from the fire alarm control unit.
 - Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
 - 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.

- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
 - 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
 - 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.

- 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
- 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.
- I. Remote Transmissions:
 - Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
 - Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 ALARM NOTIFICATION APPLIANCES

- B. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.

4. Strobes may be combined with the audible notification appliances specified herein.

- C. Fire Alarm Horns:
 - 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.
 - 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
 - 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.5 ALARM INITIATING DEVICES

- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

- D. Water Flow and Pressure Switches (Existing)
- E. Extinguishing System Connections☺ (Existing)

2.6 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION."
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches: (Existing)

2.7 SMOKE BARRIER DOOR CONTROL (EXISTING)

2.08 INSTRUCTION CHART:

Provide a typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
 - F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
 - G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
 - H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below

ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.

- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system in Buildings. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Buildings.
 - 3. Release only the magnetic door holders in the smoke zone on the floor from which alarm was initiated after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.
- C. Smoke detectors in the primary elevator lobbies of Buildings indicate the buildings where there is Phase I elevator recall shall, in

addition to the above functions, return all elevators in the bank to the secondary floor.

- D. Smoke detectors in the remaining elevator lobbies, elevator machine room, or top of hoistway shall, in addition to the above functions, return all elevators in the bank to the primary floor.
- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that floor in that smoke zone. Operation of a smoke detector at a shutter used for automatic closing shall also release only the shutters on that floor in that smoke zone.
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- H. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.

- Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 2. Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble

shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.

C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 SMOKE ZONE DESCRIPTIONS:

4.2 DIGITIZED VOICE MESSAGES:

A. Digitized voice messages shall be provided for each smoke zone of Buildings. The messages shall be arranged with a 3 second alert tone, a "Code Red" "Nurse Blaze" "Doctor Firestone" message and a description of the fire alarm area (building number, floor, level and smoke zone). A sample of such a message is as follows: Alert Tone Code Red Building One, Second Floor, East Wing Code Red Building One, Second Floor, East Wing Code Red Building One, Second Floor, East Wing

4.3 LOCATION OF VOICE MESSAGES:

Upon receipt of an alarm signal from the building fire alarm system, the voice communication system shall automatically transmit a 3 second tone alert and a pre-recorded fire alarm message throughout // the floor in alarm, the floor above and the floor below // the building //.

- - END - -