

SOLICITATION NUMBER VA244-11-RP-0036

PROJECT NO. 642-11-150

SPECIFICATIONS

- FOR: RENOVATIONS TO UPGRADE THE HVAC IN STERILIZATION, PROCESSING AND DISTRIBUTION (SPD)
- AT: Department of Veterans Affairs Medical Center
 3900 Woodlane Avenue
 Philadelphia, PA 19104

Final Documents

August 17, 2012

Loretta Devore, Contracting Officer DVA Medical Center Philadelphia, PA 19104 Page intentionally left blank

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

DIVIS	ION 00 - SPECIAL SECTIONS	DATE
00 01 15 List	of Drawing Sheets	09-11
DIVIS	ION 01 - GENERAL REQUIREMENTS	
01 00 00 Genera	al Requirements	06-11
01 32 16.15 Proje	ct Schedules (Small Projects - Design/Bid/Bulld)	04-10
01 33 23 Shop	oray Standarda	11-08
01 42 19 Relef	ng Laboratory Services	05-08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rary Interior Signage	08-11
01 74 19 Const:	ruction Waste Management	09-10
01 81 11 Susta	inable Design Requirements	12-11
DIVIS	ION 02 - EXISTING CONDITIONS	
02 41 00 Demol	ition	06-10
DIVIS	ION 03 - CONCRETE	
03 30 00 Cast-	in-Place Concrete	03-11
03 37 13 Shote:	rete	07-11
DIVIS	ION 04 - MASONRY	
04 05 12 Maran	we Newton's a	00 11
04 05 15 Mason	ry Crouting	09-11
04 20 00 IInit	Masonry	09-11
	Addoni y	0,7 11
DIVIS	ION 05 - METALS	
05 12 00 Struc	tural Steel Framing	07-11
05 36 00 Compo	site Metal Decking	07-11
DIVIS	ION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00 Rough	Carpentry	09-11
06 20 00 Finis	h Carpentry	05-10
DIVIS	LON U7 - THERMAL AND MOISTURE PROTECTION	
UIZIIS Therma	al Ingulation	0.2 0.0
07 81 00 7001	al Insulation	03-09
07 81 00 Appli	al Insulation ed Fireproofing topping	03-09 11-11 10-11
07 81 00 Applie 07 84 00 Fires 07 92 00 Joint	al Insulation ed Fireproofing topping Sealants	03-09 11-11 10-11 12-11

	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	02-09
08 14 00	Interior Wood Doors	01-10
08 31 13	Access Doors and Frames	10-11
08 33 13	Coiling Counter Doors	10-11
08 56 19	Pass Windows	10-11
08 71 00	Door Hardware	09-11
08 71 13	Automatic Door Operators	12-09
08 80 00	Glazing	12-10
		-
	DIVISION 09 - FINISHES	
09 06 00	Schedule for Finishes	10-11
09 00 00	Non Structural Motal Framing	07 10
	Circum Board	07-10
09 29 00	Gypsum Board	09-10
09 50 15		10 10
09 51 00	Acoustical Cellings	10-11
09 65 13	Resilient Base and Accessories	10-11
UY 65 16	Resilient Sneet Flooring	0/-10
09 65 19	Resilient Tile Flooring	03-11
09 67 23.60	Resinous (Urethane and Epoxy Mortar) Flooring (RES-6)	05-11
09 68 00	Carpeting	10-11
09 91 00	Painting	04-09
	DIVISION 10 - SPECIALTIES	
10 11 13	Chalkboards and Markerboards	10-11
10 26 00	Wall and Door Protection	01-11
10 28 00	Toilet, Bath, and Laundry Accessories	11-11
10 44 13	Fire Extinguisher Cabinets	11-11
	DIVISION 11 - EQUIPMENT	
11 71 01	Medical Washing and Sterilizing Equipment	01-11
-		
	DIVISION 12 - FURNISHINGS	
12 32 00	Manufactured Wood Casework	11-11
12 52 66		
	DIVISION 13 - SPECIAL CONSTRUCTION	
12 05 41	Colomia Dostroint Dosviromenta for Non Ctrusturel	00 11
15 05 41	Components	00-11
	Componentes	
<u> </u>		
	DIVIDION 01 ETDE GUDDDEGGION	
	DIVISION ZI- FIRE SUPPRESSION	
21 05 11	Common Work Results for Fire Suppression	11-09
21 10 00	Water-Based Fire-Suppression Systems	09-11
21 13 13	Wet-Pipe Sprinkler Systems	05-08
	DIVISION 22 - PLUMBING	

22 05 11	Common Work Results for Plumbing	04-11
22 05 12	General Motor Requirements for Plumbing Equipment	12-09
22 05 19	Meters and Gages for Plumbing Piping	02-10
22 05 23	General-Duty Valves for Plumbing Piping	12-09
22 07 11	Plumbing Insulation	05-11
22 11 00	Facility Water Distribution	05-11
22 13 00	Facility Sanitary and Vent Piping	12-09
22 14 00	Facility Storm Drainage	12-09
22 40 00	Plumbing Fixtures	03-11
22 62 00	Vacuum Systems for Laboratory and Healthcare Facilities	11-04
22 63 00	Gas Systems for Laboratory and Healthcare Facilities	12-10
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING	
	(HVAC)	
23 05 11	Common Work Results for HVAC	11-10
23 05 12	General Motor Requirements for HVAC and Steam Generation	11-10
	Equipment	
23 05 41	Noise and Vibration Control for HVAC Piping and	11-10
	Equipment	_
23 05 93	Testing, Adjusting, and Balancing for HVAC	05-11
23 07 11	HVAC and Boiler Plant Insulation	05-11
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	03-10
23 22 13	Steam and Condensate Heating Piping	03-10
23 25 00	HVAC Water Treatment	02-10
23 31 00	HVAC Ducts and Casings	04-11
23 34 00	HVAC Fans	11-09
23 36 00	Air Terminal Units	03-10
23 37 00	Air Outlets and Inlets	11-09
23 40 00	HVAC Air Cleaning Devices	05-11
23 72 00	Air-to-Air Energy Recovery Equipment	05-11
23 73 00	Indoor Central-Station Air-Handling Units	04-11
23 74 13	Packaged, Outdoor, Central-Station Air Handling Units	04-11
23 82 16	Air Coils	04-11
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	09-10
26 05 21	Low-Voltage Electrical Power Conductors and Cables (600	09-10
20 05 21	Volts and Below)	0,5 10
26 05 26	Grounding and Bonding for Electrical Systems	09-10
26 05 33	Raceway and Boxes for Electrical Systems	09-10
26 09 23	Lighting Controls	09-10
26 22 00	Low-Voltage Transformers	06-05
26 24 16	Panelboards	09-10
26 27 26	Wiring Devices	04-09
26 29 11	Motor Starters	04-09
26 29 21	Disconnect Switches	09-10
26 51 00	Interior Lighting	04-09
20 JI 00	I THEOREM AND	0109
	DIVISION 27 - COMMINICATIONS	
	DIVISION 27 - COMMUNICATIONS	1
27 05 11	Pequirements for Communications Installations	11_00
	I REARTERIED FOR COMMUNITCACTOND THECATTACTOND	11 U9

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

27 05 26	Grounding and Bonding for Communications Systems	10-06
27 05 33	Raceways and Boxes for Communications Systems	12-05
27 11 00	Communications Equipment Room Fittings	10-06
27 15 00	Communications Horizontal Cabling	10-06
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 31 00	Fire Detection and Alarm	10-11
	DIVISION 31 - EARTHWORK	
31 20 00	Earth Moving	10-06

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.

GENERAL

Title

GI-001 Cover Sheet G-101 Site Plan

ARCHITECTURAL

AS-001	Symbol Legend and Abbreviations
AS-002	Barrier Free Standards
AS-004	Partition Types
AD-101	Demolition Plan & Notes
AS-010	Fire Protection & Egress Floor Plan
AS-021	Phase 1 Phasing Plan
AS-022	Phase 2 Phasing Plan
AS-023	Phase 3 Phasing Plan
AS-024	Phase 4 Phasing Plan
AS-101	Floor Plan
AS-111	Equipment Floor Plan
AS-112	Equipment Floor Plan & Equipment List
AS-201	Reflected Ceiling Plan
AS-210	Ceiling Details
AS-401	Wall Sections & Plan Details
AS-701	Door Schedule, Door Types & Details

STRUCTURAL

S-001	Schedules and General Notes
SF-101	New Floor Framing Plan
SF-401	Mechanical Room New Dunnage Plan
SF-501	Framing Details

Mechanical/HVAC

M-001	Notes, Symbols & Abbreviations						
MD-101-1	Demolition Ductwork Ground Floor Plan - Phase 1						
MD-101-2	Demolition Ductwork Ground Floor Plan - Phase 2						

MD-101-3	Demolition Ductwork Ground Floor Plan - Phase 3
MD-101-4	Demolition Ductwork Ground Floor Plan - Phase 4
MD-102-1	Demolition Ductwork Basement Plan - Phase 1
MD-102-2	Demolition Ductwork Basement Plan - Phase 2
MD-102-3	Demolition Ductwork Basement Plan - Phase 3
MD-102-4	Demolition Ductwork Basement Plan - Phase 4
MD-103	Demolition Ductwork Roof Plan
MD-104	Demolition Piping Ground Floor Plan
MD-105	Demolition Piping Basement Plan
MD-106	Demolition Piping Roof Plan
MD-301	Demolition Ductwork & Piping Mechanical Room
	Section
MD-401	Demolition Mechanical Room Enlarged Plan
MH-101-1	New Ductwork Ground Floor Plan - Phase 1
MH-101-2	New Ductwork Ground Floor Plan - Phase 2
MH-101-3	New Ductwork Ground Floor Plan - Phase 3
MH-101-4	New Ductwork Ground Floor Plan - Phase 4
MH-102-1	New Ductwork Basement Plan - Phase 1
MH-102-2	New Ductwork Basement Plan - Phase 2
MH-102-3	New Ductwork Basement Plan - Phase 3
MH-102-4	New Ductwork Basement Plan - Phase 4
MH-301	New Ductwork & Piping Mechanical Room Section
MH-401	New Mechanical Room Enlarged Plan
MH-103	New Ductwork Roof Plan
MP-101	New Piping Sub-Basement Floor Plan
MP-102	New Piping Ground Floor Plan
MP-103	New Piping Basement Plan
MP-104	New Piping Roof Plan
M-501	Details
M-502	Details
M-503	Details
M-601	Schedules
M-602	Schedules
M-801	Controls
M-802	Controls

PLUMBING

P-001	Notes, Symbols & Abbreviatio	n
PL-101	New Plumbing Sub-Basement Pl	an

PL-102	New	Plumbing	Potable	Water	Ground	Floor	Plan
PL-103	New	Plumbing	Sanitary	y Sewer	Ground	Floor	Plan

PL-601 Riser Diagrams

PL-602

Schedules

FIRE PROTECTION

FP-101 Fire Protection Sprinkler Plan

ELECTRICAL

E-001	Electrical Notes, Symbols & Abbreviations
E-002	Electrical Notes
ED-101	Electrical Demolition Plan - Ground Floor
ED-102	Electrical Demolition Plan - Roof
EL-101	Electrical Ground Floor - Lighting Plan
EP-101	Electrical Ground Floor - Power Plan
EP-102	Electrical Power Plan - Roof
EP-601	Electrical Single Line
EP-602	Electrical Panel Schedules
EP-602	Electrical Panel Schedules
EY-001	Auxiliary Systems Symbols & Abbreviations
EY-101	Auxiliary Systems Ground Floor Telecomm/Aux.
	Plan
EY-601	Auxiliary Systems Partial Riser Diagrams
FA-001	Fire Detection Symbols & Abbreviations
FD-101	Fire Detection Demolition Plan
FA-101	Fire Detection Ground Floor Plan
FA-601	Fire Detection Partial Riser Diagram

- - - E N D - - -

Page intentionally left blank

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 GENERAL INTENTION	1
1.2 STATEMENT OF BID ITEM(S)	2
1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	2
1.4 CONSTRUCTION SECURITY REQUIREMENTS	3
1.5 FIRE SAFETY	5
1.6 OPERATIONS AND STORAGE AREAS	8
1.7 ALTERATIONS	11
1.8 INFECTION PREVENTION MEASURES	13
1.9 DISPOSAL AND RETENTION	16
1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT,	
UTILITIES, AND IMPROVEMENTS	17
1.11 RESTORATION	17
1.12 AS-BUILT DRAWINGS	18
1.13 USE OF ROADWAYS	19
1.14 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	19
1.15 TEMPORARY USE OF EXISTING ELEVATORS	20
1.16 TEMPORARY TOILETS (NOT REQUIRED)	20
1.17 AVAILABILITY AND USE OF UTILITY SERVICES	20
1.18 TESTS	22
1.19 INSTRUCTIONS	22
1.20 GOVERNMENT-FURNISHED PROPERTY	23
1.21 RELOCATED EQUIPMENT	24

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for renovation and expansion into the existing crawl space as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. Offices of Miller Remick, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the Resident Engineer in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the Resident Engineer.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Prior to commencing work, general contractor shall provide proof that a OSHA certified "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.
- G. Tuberculosis (TB) Screening for Contractors
 - Screening of contractors for TB is the responsibility of Contractor, who must provide COTR with the following information for each worker prior to that employee working at the site:

- a) Written documentation of a negative tuberculosis test result (TB skin testing or blood work) done within one year before offender contact, and annually thereafter.
- b) If the TB test is positive, the report of a negative chest X-ray within six months before offender contact.
- c) If the chest X-ray is abnormal, a statement from a medical practitioner certifying that the person is free from infectious TB.
- 2. Cost of screening procedures and coordinating approval with COTR is the responsibility of the contractor.
- 3. Contractor to provide electronic database monthly to COTR showing employee names, trades, and dates of negative test result.

H. Training:

- All employees of general contractor or subcontractors shall have the OSHA certified Construction Safety course and /or other relevant competency training, as determined by VA CP with input from the ICRA team.
- 2. Submit training records of all such employees for approval before the start of work.

1.2 STATEMENT OF BID ITEM(S)

Bid Item #1 Base Bid - General Construction: Work includes general construction, alterations, grading, mechanical and electrical work, sterilization equipment, utility systems, necessary removal of existing structures and construction and all other items required per the drawings and specifications and solicitations.

Alternate Deduct#1 - Work includes all work in "Bid Item #1 Base Bid" as described above, less the approximately 932SF of addition floor space and all related work, excavation, MEP(mechanical, electrical, plumbing) as shown on drawings. See drawings for further information and specifics regarding this deleted scope of work.

1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. AFTER AWARD OF CONTRACT, no sets of specifications and drawings will be furnished. Sets of drawings may be made by the Contractor at the Contractor's expense from digital files furnished by the Issuing Office.

1.4 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
 - 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
 - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- C. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the Resident Engineer for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
 - The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.

- D. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
 - 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
 - 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
 - 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
 - All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- E. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.

2. Parking for the General Contractor and its employees is not permitted on the premises of the Department of Veterans Affairs Medical Center.

1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - 1. American Society for Testing and Materials (ASTM):

E84-2009.....Surface Burning Characteristics of Building Materials

2. National Fire Protection Association (NFPA):

10-2010.....Standard for Portable Fire Extinguishers
30-2008.....Flammable and Combustible Liquids Code
51B-2009....Standard for Fire Prevention During Welding,
Cutting and Other Hot Work
70-2011....National Electrical Code

241-2009.....Standard for Safeguarding Construction, Alteration, and Demolition Operations

3. Occupational Safety and Health Administration (OSHA):

29 CFR 1926.....Safety and Health Regulations for Construction

B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Resident Engineer and Facility Safety Officer for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Documentation shall be

provided to the Resident Engineer that individuals have undergone contractor's safety briefing.

- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- E. Temporary Construction Partitions:
 - Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
 - Install one-hour or two-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
 - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Resident Engineer and facility Safety Officer.
- H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Resident Engineer and facility Safety Officer.

- I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- J. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.
- K. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Resident Engineer and facility Safety Officer. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- L. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Resident Engineer and facility Safety Officer.
- M. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Resident Engineer . Obtain permits from facility Safety Officer. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- N. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Resident Engineer and facility Safety Officer.
- 0. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction.
- R. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- P. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.

- Q. If required, submit documentation to the Resident Engineer that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.
- U. Above Ceiling Permit: Contractor shall obtain permits daily from Facility Safety Officer for above ceiling work within all occupied areas of the facility.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.
- D. Working space and space available for storing materials shall be as shown on the drawings r as determined by the Resident Engineer.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by Resident Engineer where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- G. Phasing: To insure such executions, Contractor shall furnish the Resident Engineer with a schedule of approximate phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the Resident Engineer two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. This two week notice is waived for the start of Phase 1 only. Arrange such phasing dates to insure accomplishment of this work in successive phases mutually agreeable to Resident Engineer and Contractor, as shown on Phasing Plan, Sheet AD-101, or as instructed by Resident Engineer.
- H. Areas will be vacated by the Government in accordance with Phasing Plan drawings.
- I. Surrounding Areas will be occupied during performance of work but immediate areas of alterations will be vacated.
 - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans

Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.

- Immediate areas of alterations not mentioned in preceding Subparagraph 1 will be temporarily vacated while alterations are performed.
- J. When a building is turned over to Contractor, Contractor shall accept entire responsibility therefore.
 - Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- K. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Resident Engineer. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.

- 2. Contractor shall submit a request to interrupt any such services to Resident Engineer, in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Resident Engineer.
- 5. In case of a contract construction emergency, service will be interrupted on approval of Resident Engineer. Such approval will be confirmed in writing as soon as practical.
- L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- N. Coordinate the work for this contract with other construction operations as directed by Resident Engineer.

1.7 ALTERATIONS

A. Survey: Before any work is started, the Contractor shall make a thorough survey with the Resident Engineer of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:

- Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building.
- Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and Resident Engineer.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of Resident Engineer to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and Resident Engineer together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.

- Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
- 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 INFECTION PREVENTION MEASURES

- A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded.
- B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to Resident Engineer and Facility ICRA team for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- C. Medical Center Infection Control personnel shall monitor for airborne disease (e.g. aspergillosis) as appropriate during construction. A baseline of conditions may be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality. In addition:
 - 1. The RE and VAMC Infection Control personnel shall review pressure differential monitoring documentation to verify that pressure differentials in the construction zone and in the patient-care rooms are appropriate for their settings. The requirement for negative air pressure in the construction zone shall depend on the location and type of activity. Upon notification, the contractor shall implement

corrective measures to restore proper pressure differentials as needed.

- 2. In case of any problem, the medical center, along with assistance from the contractor, shall conduct an environmental assessment to find and eliminate the source.
- D. In general, following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Prior to start of demolition, disconnect, cap and seal airtight all supply and return air ducts and inlets/outlets which are open to the area under construction. Maintain duct systems which pass through the renovation area and must remain active to serve other areas.
 - Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by Resident Engineer. Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction.
 - 3. Do not perform dust producing tasks within occupied areas without the approval of the Resident Engineer. For construction in any areas that will remain jointly occupied by the medical Center and Contractor's workers, the Contractor shall:
 - a. Provide dust proof temporary drywall construction barriers to completely separate construction from the operational areas of the hospital in order to contain dirt debris and dust. Barriers shall be sealed and made presentable on hospital occupied side. Install a self-closing rated door in a metal frame, commensurate with the partition, to allow worker access. Maintain negative air at all times. A fire retardant polystyrene, 6-mil thick or greater plastic barrier meeting local fire codes may be used where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center.
 - b. HEPA filtration is required where the exhaust dust may reenter the breathing zone. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. Install HEPA (High Efficiency Particulate Accumulator) filter vacuum system rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. Insure continuous negative air pressures occurring within the work

area. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Exhaust hoses shall be heavy duty, flexible steel reinforced and exhausted so that dust is not reintroduced to the medical center.

- c. Adhesive Walk-off/Carpet Walk-off Mats, minimum 600mm x 900mm (24" x 36"), shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
- d. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as they are created. Transport these outside the construction area in containers with tightly fitting lids.
- e. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
- f. Using a HEPA vacuum, clean inside the barrier and vacuum ceiling tile prior to replacement. Any ceiling access panels opened for investigation beyond sealed areas shall be sealed immediately when unattended.
- g. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- h. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

- i. Do not perform any dust producing tasks within occupied areas without the approval of the Resident Engineer. For construction in any areas which will remain jointly occupied by the Medical Center and contractors workers, the contractor shall:
 - Provide plastic barriers to completely separate construction from the operational areas of the hospital in order to contain dirt debris and dust.
 - Install HEPA (High Efficiency Particulate Accumulator) filter vacuum system rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. Insure continuous negative air pressures occurring within the work area.
 - 3. Broom clean and wet mop at the end of each workday. Remove debris as they are created. Transport these outside the construction area in containers with tightly fitting lids.
 - 4. Create a barrier reaching from floor to ceiling before any ceiling is entered. Surround the affected area entirely and seal with duct tape at the ceiling, floor and sides.
- E. Final Cleanup:
 - Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All new air ducts shall be cleaned prior to final inspection.

1.9 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are identified by attached tags or noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by Resident Engineer.

- 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
- 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

1.11 RESTORATION

A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the Resident Engineer. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Resident Engineer

before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.

- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.12 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the Resident Engineer within 15 calendar days after each completed phase and after the acceptance of the project by the Resident Engineer.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

1.13 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.14 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - Permission to use each unit or system must be given by Resident Engineer. If the equipment is not installed and maintained in accordance with the following provisions, the Resident Engineer will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated.
 - Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
 - 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
 - 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.

- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.

1.15 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - Contractor makes all arrangements with the Resident Engineer for use of elevators. The Resident Engineer will ascertain that elevators are in proper condition. Contractor may use the designated elevator at regular recurring times as designated by the Resident Engineer, and for special nonrecurring time intervals when permission is granted. Personnel for operating elevators will not be provided by the Department of Veterans Affairs.
 - 2. Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.
 - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
 - c. Finish flooring.
 - 3. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes.

1.16 TEMPORARY TOILETS - NOT REQUIRED

1.17 AVAILABILITY AND USE OF UTILITY SERVICES

A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

- B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at Resident Engineer's discretion) of use of water from Medical Center's system.

1.18 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.19 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals (four copies each) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for

starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the Resident Engineer and shall be considered concluded only when the Resident Engineer is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Resident Engineer, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.20 GOVERNMENT-FURNISHED PROPERTY

- A. The Government shall deliver to the Contractor, the Government-furnished property shown on the drawings.
- B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Medical Center.

- D. Notify Contracting Officer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment.
 - Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages.
 - 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government.
- E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government.
- F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings.
- G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer.

1.21 RELOCATED EQUIPMENT / ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the Resident Engineer.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines
in finished areas and cap as specified herein before under paragraph "Abandoned Lines".

D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.

- - - E N D - - -

Page intentionally left blank

SECTION 01 32 16.15 PROJECT SCHEDULES

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall

have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date

constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.
- F. The Complete Project Schedule shall contain approximately _____work activities/events.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

Project No. 642-11-150 Final Documents: 8/17/2012

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.

- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
- e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
- 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
- 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.

D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.

- 5. Completion percentage for all completed and partially completed activities/events.
- Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor

should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.

- When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 - 4 (Changes) and VAAR 852.236 - 88 (Changes -Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computerproduced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts

and advise the Contractor in writing of the Contracting Officer's decision.

- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 - 4 (Changes) and VAAR 852.236 -88 (Changes - Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples (including laboratory samples to be tested), test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract - required items. Delays attributable to untimely and rejected submittals (including any laboratory samples to be tested) will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.
- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - A. Submit samples required by Section 09 06 00, SCHEDULE FOR FINISHES, in quadruplicate. Submit other samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail, , email, and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number

and ASTM or Federal Specification Number as applicable and location(s) on project.

- Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
- C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer.
 - Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested.
 - Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years.
 - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory.
 - Contractor shall send a copy of transmittal letter to both Resident Engineer and to Architect-Engineer simultaneously with submission of material to a commercial testing laboratory.
 - 5. Laboratory test reports shall be sent directly to Resident Engineer for appropriate action.
 - 6. Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report.
 - 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item.
- D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

- E. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.
- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - A space 120 mm by 125 mm (4-3/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples (except laboratory samples), shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to:

NK Architects 95 Washington Street Morristown, NJ

(973)539-5353 Attn: Bryan Pennington

- 1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.
- 1-12. Samples (except laboratory samples) for approval shall be sent to Architect-Engineer, in care of Resident Engineer, VA Medical Center,

NK Architects 95 Washington Street Morristown, NJ (973)539-5353 Attn: Bryan Pennington

- - - E N D - - -

Page intentionally left blank

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council http://www.aabchq.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AAN American Nursery and Landscape Association http://www.anla.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org
- AGA American Gas Association http://www.aga.org
- AGC Associated General Contractors of America http://www.agc.org

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

Project No. 642-11-150 Final Documents: 8/17/2012

- AGMA American Gear Manufacturers Association, Inc. http://www.agma.org
- AHAM Association of Home Appliance Manufacturers http://www.aham.org
- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute http://www.steel.org
- AITC American Institute of Timber Construction http://www.aitc-glulam.org
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANLA American Nursery & Landscape Association http://www.anla.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- APA The Engineered Wood Association http://www.apawood.org
- ARI Air-Conditioning and Refrigeration Institute http://www.ari.org
- ASAE American Society of Agricultural Engineers http://www.asae.org
- ASCE American Society of Civil Engineers http://www.asce.org
- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org
- ASME American Society of Mechanical Engineers http://www.asme.org
- ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org

01 42 19 - 3

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

Project No. 642-11-150 Final Documents: 8/17/2012

ASTM American Society for Testing and Materials http://www.astm.org

- AWI Architectural Woodwork Institute http://www.awinet.org
- AWS American Welding Society http://www.aws.org
- AWWA American Water Works Association http://www.awwa.org
- BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com
- BIA Brick Institute of America
- CAGI Compressed Air and Gas Institute http://www.cagi.org
- CGA Compressed Gas Association, Inc. http://www.cganet.com
- CI The Chlorine Institute, Inc. http://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute http://www.cispi.org
- CLFMI Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org
- CPMB Concrete Plant Manufacturers Bureau http://www.cpmb.org
- CRA California Redwood Association http://www.calredwood.org
- CRSI Concrete Reinforcing Steel Institute http://www.crsi.org

- CTI Cooling Technology Institute http://www.cti.org
- DHI Door and Hardware Institute http://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org
- EEI Edison Electric Institute http://www.eei.org
- EPA Environmental Protection Agency http://www.epa.gov
- ETL ETL Testing Laboratories, Inc. http://www.etl.com
- FAA Federal Aviation Administration http://www.faa.gov
- FCC Federal Communications Commission http://www.fcc.gov
- FPS The Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.cssinfo.com/info/gana.html/
- FM Factory Mutual Insurance http://www.fmglobal.com
- GA Gypsum Association http://www.gypsum.org
- GSA General Services Administration http://www.gsa.gov
- HI Hydraulic Institute http://www.pumps.org
- HPVA Hardwood Plywood & Veneer Association http://www.hpva.org

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

Project No. 642-11-150 Final Documents: 8/17/2012

- ICBO International Conference of Building Officials http://www.icbo.org
- ICEA Insulated Cable Engineers Association Inc. http://www.icea.net
- \ICAC Institute of Clean Air Companies http://www.icac.com
- IEEE Institute of Electrical and Electronics Engineers
 http://www.ieee.org\
- IMSA International Municipal Signal Association http://www.imsasafety.org
- IPCEA Insulated Power Cable Engineers Association
- NBMA Metal Buildings Manufacturers Association http://www.mbma.com
- MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc. http://www.mss-hq.com
- NAAMM National Association of Architectural Metal Manufacturers http://www.naamm.org
- NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org
- NBS National Bureau of Standards See - NIST
- NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org
- NEC National Electric Code See - NFPA National Fire Protection Association
- NEMA National Electrical Manufacturers Association http://www.nema.org
- NFPA National Fire Protection Association http://www.nfpa.org

Project No. 642-11-150 Final Documents: 8/17/2012

- NHLA National Hardwood Lumber Association http://www.natlhardwood.org
- NIH National Institute of Health http://www.nih.gov
- NIST National Institute of Standards and Technology http://www.nist.gov
- NLMA Northeastern Lumber Manufacturers Association, Inc. http://www.nelma.org
- NPA National Particleboard Association 18928 Premiere Court Gaithersburg, MD 20879 (301) 670-0604
- NSF National Sanitation Foundation http://www.nsf.org
- NWWDA Window and Door Manufacturers Association http://www.nwwda.org
- OSHA Occupational Safety and Health Administration Department of Labor http://www.osha.gov
- PCA Portland Cement Association http://www.portcement.org
- PCI Precast Prestressed Concrete Institute http://www.pci.org
- PPI The Plastic Pipe Institute http://www.plasticpipe.org
- PEI Porcelain Enamel Institute, Inc. http://www.porcelainenamel.com
- PTI Post-Tensioning Institute http://www.post-tensioning.org
- RFCI The Resilient Floor Covering Institute http://www.rfci.com

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

Project No. 642-11-150 Final Documents: 8/17/2012

- RIS Redwood Inspection Service See - CRA
- RMA Rubber Manufacturers Association, Inc. http://www.rma.org
- SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org
- SDI Steel Door Institute http://www.steeldoor.org
- IGMA Insulating Glass Manufacturers Alliance http://www.igmaonline.org
- SJI Steel Joist Institute http://www.steeljoist.org
- SMACNA Sheet Metal and Air-Conditioning Contractors
 National Association, Inc.
 http://www.smacna.org
- SSPC The Society for Protective Coatings http://www.sspc.org
- STI Steel Tank Institute http://www.steeltank.com
- SWI Steel Window Institute http://www.steelwindows.com
- TCA Tile Council of America, Inc. http://www.tileusa.com
- TEMA Tubular Exchange Manufacturers Association http://www.tema.org
- TPI Truss Plate Institute, Inc.
 583 D'Onofrio Drive; Suite 200
 Madison, WI 53719
 (608) 833-5900
- UBC The Uniform Building Code See ICBO

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin.

delphia, PA Project No. 642-11-150 Final Documents: 8/17/2012

- UL Underwriters' Laboratories Incorporated http://www.ul.com
- ULC Underwriters' Laboratories of Canada http://www.ulc.ca
- WCLIB West Coast Lumber Inspection Bureau 6980 SW Varns Road, P.O. Box 23145 Portland, OR 97223 (503) 639-0651
- WRCLA Western Red Cedar Lumber Association P.O. Box 120786 New Brighton, MN 55112 (612) 633-4334
- WWPA Western Wood Products Association
 http://www.wwpa.org

- - - E N D - - -

Page intentionally left blank

SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by the Contractor, reporting to Veterans Affairs.

1.2 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): T27-06.....Sieve Analysis of Fine and Coarse Aggregates T96-02 (R2006).....Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine T99-01 (R2004).....The Moisture-Density Relations of Soils Using a 2.5 Kg (5.5 lb.) Rammer and a 305 mm (12 in.) Drop T104-99 (R2003).....Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate T180-01 (R2004).....Moisture-Density Relations of Soils using a 4.54 kg (10 lb.) Rammer and a 457 mm (18 in.) Drop T191-02(R2006).....Density of Soil In-Place by the Sand-Cone Method C. American Concrete Institute (ACI): 506.4R-94 (R2004).....Guide for the Evaluation of Shotcrete D. American Society for Testing and Materials (ASTM): A325-06.....Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength A370-07.....Definitions for Mechanical Testing of Steel Products A416/A416M-06.....Steel Strand, Uncoated Seven-Wire for Prestressed Concrete A490-06..... Heat Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength C31/C31M-06.....Making and Curing Concrete Test Specimens in the Field

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 C33-03.....Concrete Aggregates C39/C39M-05.....Compressive Strength of Cylindrical Concrete Specimens C109/C109M-05.....Compressive Strength of Hydraulic Cement Mortars C138-07.....Unit Weight, Yield, and Air Content (Gravimetric) of Concrete C140-07.....Sampling and Testing Concrete Masonry Units and Related Units C143/C143M-05.....Slump of Hydraulic Cement Concrete C172-07.....Sampling Freshly Mixed Concrete C173-07.....Air Content of freshly Mixed Concrete by the Volumetric Method C330-05.....Lightweight Aggregates for Structural Concrete C567-05.....Density Structural Lightweight Concrete C780-07..... Pre-construction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry C1019-08.....Sampling and Testing Grout C1064/C1064M-05.....Freshly Mixed Portland Cement Concrete C1077-06.....Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation C1314-07..... Compressive Strength of Masonry Prisms D698-07.....Laboratory Compaction Characteristics of Soil Using Standard Effort D1143-07.....Piles Under Static Axial Compressive Load D1188-07.....Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens D1556-07.....Density and Unit Weight of Soil in Place by the Sand-Cone Method D1557-07.....Laboratory Compaction Characteristics of Soil Using Modified Effort D2166-06.....Unconfined Compressive Strength of Cohesive Soil D2167-94(R2001).....Density and Unit Weight of Soil in Place by the Rubber Balloon Method D2216-05.....Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass D2922-05.....Density of soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 D2974-07..... Moisture, Ash, and Organic Matter of Peat and Other Organic Soils D3666-(2002).....Minimum Requirements for Agencies Testing and Inspection Bituminous Paving Materials D3740-07..... Minimum Requirements for Agencies Engaged in the Testing and Inspecting Road and Paving Material E94-04.....Radiographic Testing E164-03.....of Weldments E329-07.....Agencies Engaged in Construction Inspection and/or Testing E543-06.....Agencies Performing Non-Destructive Testing E605-93(R2006).....Thickness and Density of Sprayed Fire-Resistive Material (SFRM) Applied to Structural Members E709-(2001).....Guide for Magnetic Particle Examination E1155-96(R2008).....Determining FF Floor Flatness and FL Floor Levelness Numbers

E. American Welding Society (AWS): D1.1-07.....Structural Welding Code-Steel

1.3 REQUIREMENTS:

- A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E 329, C 1077, D 3666, D3740, A 880, E 543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office."
- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by Resident Engineer. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of Resident Engineer to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to Resident Engineer, Contractor, unless other arrangements are agreed to in writing by the Resident Engineer. Submit reports of tests that fail to meet construction contract requirements on colored paper.

01 45 29 - 3

D. Verbal Reports: Give verbal notification to Resident Engineer immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONCRETE:

- A. Batch Plant Inspection and Materials Testing:
 - Perform continuous batch plant inspection until concrete quality is established to satisfaction of Resident Engineer with concurrence of Contracting Officer and perform periodic inspections thereafter as determined by Resident Engineer.
 - 2. Periodically inspect and test batch proportioning equipment for accuracy and report deficiencies to Resident Engineer.
 - Sample and test mix ingredients as necessary to insure compliance with specifications.
 - 4. Sample and test aggregates daily and as necessary for moisture content. Test the dry rodded weight of the coarse aggregate whenever a sieve analysis is made, and when it appears there has been a change in the aggregate.
 - 5. Certify, in duplicate, ingredients and proportions and amounts of ingredients in concrete conform to approved trial mixes. When concrete is batched or mixed off immediate building site, certify (by signing, initialing or stamping thereon) on delivery slips (duplicate) that ingredients in truck-load mixes conform to proportions of aggregate weight, cement factor, and water-cement ratio of approved trial mixes.
- B. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.
 - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
 - 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders

for any one day's pour for each concrete type and placement type. Label each cylinder with an identification number. Resident Engineer may require additional cylinders to be molded and cured under job conditions.

- 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the beginning of each day's pumping operations to determine change in slump.
- 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
- 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 9. Verify that specified mixing has been accomplished.
- 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:
 - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
 - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.

- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- 13. Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.
- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for flatness as follows:
 - a. Perform Floor Tolerance Measurements F_F in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.
 - b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.
 - c. Provide the Contractor and the Resident Engineer with the results of all profile tests, including a running tabulation of the overall F_F values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Other inspections:
 - a. Grouting under base plates.
 - b. Grouting anchor bolts and reinforcing steel in hardened concrete.
- C. Laboratory Tests of Field Samples:
 - Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by Resident Engineer. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.

- 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
- 3. Furnish certified compression test reports (duplicate) to Resident Engineer. In test report, indicate the following information:
 - a. Cylinder identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Type of concrete, slump, and percent air.
 - d. Compressive strength of concrete in MPa (psi).
 - e. Weight of lightweight structural concrete in kg/m^3 (pounds per cubic feet).
 - f. Weather conditions during placing.
 - g. Temperature of concrete in each test cylinder when test cylinder was molded.
 - h. Maximum and minimum ambient temperature during placing.
 - i. Ambient temperature when concrete sample in test cylinder was taken.
 - j. Date delivered to laboratory and date tested.

3.2 REINFORCEMENT:

- A. Perform sampling at fabricating plant. Take two samples from each 23 t (25 tons) or fraction thereof of each size of reinforcing steel No. 10 thru No. 57 (No. 3 thru No. 18).
- B. Make one tensile and one bend test in accordance with ASTM A370 from each pair of samples obtained.
- C. Written report shall include, in addition to test results, heat number, manufacturer, type and grade of steel, and bar size.
- D. Perform tension tests of mechanical and welded splices in accordance with ASTM A370.

3.3SHOTCRETE:

- A. Inspection and Material Testing:
 - Provide field inspection and testing service as required by Resident Engineer to certify that shotcrete has been applied in accordance with contract documents.
 - 2. Periodically inspect and test proportioning equipment for accuracy and report deficiencies to Resident Engineer.
 - Sample and test mix ingredients as necessary to insure compliance with specifications.
 - 4. Sample and test aggregates daily and as necessary for moisture content. Report instances of excessive moisture to Resident Engineer.

- 5. Certify, in duplicate, that ingredients and proportions and amounts of ingredients in shotcrete conform to approved trial mixes.
- 6. Provide field inspection of the proper size and placement of the reinforcement in the shotcrete.
- B. Shotcrete Sampling:
 - 1. Provide a technician at site of placement to perform shotcrete sampling.
 - 2. Take cores in accordance with ACI 506.
 - 3. Insure maintenance of water-cement ratio established by approved trial mix.
 - 4. Verify specified mixing has been accomplished.
- C. Laboratory Tests of Field Sample Panels:
 - Compression test core for strength in accordance with ACI 506. For each test series of three cores, test one core at 7 days and one core at 28 days. Use remaining core as a spare to be tested at either 7 or 28 days as required. Compile laboratory test reports as follows: Compressive strength test shall be result of one core, except when one core shows evidence of improper sampling or testing, in which case it shall be discarded and strength of spare core shall be used.
 - 2. Submit certified compression test reports (duplicate) to Resident Engineer. On test report, indicate following information:
 - a. Core identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Compressive strength of shotcrete in MPa (psi).
 - d. Weather conditions during placing.
 - e. Temperature of shotcrete in each test core when test core was taken.
 - f. Maximum and minimum ambient temperature during placing.
 - g. Ambient temperature when shotcrete sample was taken.
 - h. Date delivered to laboratory and date tested.
- D. Submit inspection reports certification and instances of noncompliance to Resident Engineer.

3.4 MASONRY:

- A. Mortar Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C780.
 - b. Obtain samples during or immediately after discharge from batch mixer.
 - c. Furnish molds with 50 mm (2 inch), 3 compartment gang cube.
 - d. Test one sample at 7 days and 2 samples at 28 days.
- 2. Two tests during first week of operation; one test per week after initial test until masonry completion.
- B. Grout Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C1019.
 - b. Test one sample at 7 days and 2 samples at 28 days.
 - c. Perform test for each 230 m^2 (2500 square feet) of masonry.
- C. Masonry Unit Tests:
 - 1. Laboratory Compressive Strength Test:
 - a. Comply with ASTM C140.
 - b. Test 3 samples for each 460 m^2 (5000 square feet) of wall area.
- D. Prism Tests: For each type of wall construction indicated, test masonry prisms per ASTM C1314 for each 460 m² (5000 square feet) of wall area. Prepare one set of prisms for testing at 7 days and one set for testing at 28 days.

3.5 STRUCTURAL STEEL:

- A. General: Provide shop and field inspection and testing services to certify structural steel work is done in accordance with contract documents. Welding shall conform to AWS D1.1 Structural Welding Code.
- B. Prefabrication Inspection:
 - 1. Review design and shop detail drawings for size, length, type and location of all welds to be made.
 - 2. Approve welding procedure qualifications either by pre-qualification or by witnessing qualifications tests.
 - 3. Approve welder qualifications by certification or retesting.
 - 4. Approve procedure for control of distortion and shrinkage stresses.
 - 5. Approve procedures for welding in accordance with applicable sections of AWS D1.1.
- C. Fabrication and Erection:
 - 1. Weld Inspection:
 - a. Inspect welding equipment for capacity, maintenance and working condition.
 - b. Verify specified electrodes and handling and storage of electrodes in accordance with AWS D1.1.
 - c. Inspect preparation and assembly of materials to be welded for conformance with AWS D1.1.
 - d. Inspect preheating and interpass temperatures for conformance with AWS D1.1.
 - e. Measure 25 percent of fillet welds.

- f. Welding Magnetic Particle Testing: Test in accordance with ASTM E709 for a minimum of:
 - 20 percent of all shear plate fillet welds at random, final pass only.
 - 20 percent of all continuity plate and bracing gusset plate fillet welds, at random, final pass only.
 - 3) 100 percent of tension member fillet welds (i.e., hanger connection plates and other similar connections) for root and final passes.
 - 20 percent of length of built-up column member partial penetration and fillet welds at random for root and final passes.
 - 5) 100 percent of length of built-up girder member partial penetration and fillet welds for root and final passes.
- g. Welding Ultrasonic Testing: Test in accordance with ASTM E164 and AWS D1.1 for 100 percent of all full penetration welds, braced and moment frame column splices, and a minimum of 20 percent of all other partial penetration column splices, at random.
- h. Welding Radiographic Testing: Test in accordance with ASTM E94, and AWS D1.1 for 5 percent of all full penetration welds at random.
- i. Verify that correction of rejected welds are made in accordance with AWS D1.1.
- j. Testing and inspection do not relieve the Contractor of the responsibility for providing materials and fabrication procedures in compliance with the specified requirements.
- 2. Bolt Inspection:
 - a. Inspect high-strength bolted connections in accordance AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts.
 - b. Slip-Critical Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in each connection in accordance with AISC Specifications for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.
 - c. Fully Pre-tensioned Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in 25 percent of connections in accordance with AISC Specification for Structural Joints Using ASTM A325 or A490 Bolts. Inspect all bolts in connection when one or more are rejected.

- d. Bolts installed by turn-of-nut tightening may be inspected with calibrated wrench when visual inspection was not performed during tightening.
- e. Snug Tight Connections: Inspect 10 percent of connections verifying that plies of connected elements have been brought into snug contact.
- f. Inspect field erected assemblies; verify locations of structural steel for plumbness, level, and alignment.
- D. Submit inspection reports, record of welders and their certification, and identification, and instances of noncompliance to Resident Engineer.

3.6 STEEL DECKING:

- A. Provide field inspection of welds of metal deck to the supporting steel, and testing services to insure steel decking has been installed in accordance with contract documents and manufacturer's requirements.
- B. Qualification of Field Welding: Qualify welding processes and welding operators in accordance with "Welder Qualification" procedures of AWS D1.1. Refer to the "Plug Weld Qualification Procedure" in Part 3 "Field Quality Control."
- C. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

3.7 SHEAR CONNECTOR STUDS:

- A. Provide field inspection and testing services required by AWS D.1 to insure shear connector studs have been installed in accordance with contract documents.
- B. Tests: Test 20 percent of headed studs for fastening strength in accordance with AWS D1.1.
- C. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

3.8 SPRAYED-ON FIREPROOFING:

- A. Provide field inspection and testing services to certify sprayed-on fireproofing has been applied in accordance with contract documents.
- B. Obtain a copy of approved submittals from Resident Engineer.
- C. Use approved installation in test areas as criteria for inspection of work.
- D. Test sprayed-on fireproofing for thickness and density in accordance with ASTM E605.
 - Thickness gauge specified in ASTM E605 may be modified for pole extension so that overhead sprayed material can be reached from floor.
- E. Location of test areas for field tests as follows:

- Thickness: Select one bay per floor, or one bay for each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests. Take thickness determinations from each of following locations: Metal deck, beam, and column.
- 2. Density: Take density determinations from each floor, or one test from each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests, from each of the following areas: Underside of metal deck, beam flanges, and beam web.
- F. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

3.18 TYPE OF TEST:

Approximate Number of Tests Required

A. Co	ncrete:
-------	---------

	Making and Curing Concrete Test Cylinders (ASTM C31)	24
	Compressive Strength, Test Cylinders (ASTM C39)	24
	Concrete Slump Test (ASTM C143)	24
	Concrete Air Content Test (ASTM C173)	24
	Unit Weight, Lightweight Concrete (ASTM C567)	24
	Aggregate, Normal Weight:	
	Gradation (ASTM C33)	24
	Deleterious Substances (ASTM C33)	24
	Soundness (ASTM C33)	24
	Abrasion (ASTM C33)	24
	Aggregate, Lightweight	
	Gradation (ASTM C330)	24
	Deleterious Substances (ASTM C330)	24
	Unit Weight (ASTM C330)	24
	Flatness and Levelness Readings (ASTM E1155) (number of days)	24
в.	Reinforcing Steel:	

Tensile Test (ASTM A370)	0
Bend Test (ASTM A370)	0
Mechanical Splice (ASTM A370)	0
Welded Splice Test (ASTM A370)	0

Philadelphia	a VA	A Medical	Center	r, Philadelphia	, PA	Project No.	642-11-150
Renovations	to	Upgrade	HVAC ir	n SPD		Final Documents:	8/17/2012

C. Shotcrete:

Taking and Curing Test Cores (ACI 506)	6
Compressive Strength, Test Cores (ACI 506)	6

D. Masonry:

	Making and Curing Test Cubes (ASTM C109)	24
	Compressive Strength, Test Cubes (ASTM C109)	24
	Sampling and Testing Mortar, Comp. Strength (ASTM C780)	24
	Sampling and Testing Grout, Comp. Strength (ASTM C1019)	24
	Masonry Unit, Compressive Strength (ASTM C140)	24
	Prism Tests (ASTM C1314)	24
Ε.	Structural Steel:	
	Ultrasonic Testing of Welds (ASTM E164)	б
	Magnetic Particle Testing of Welds (ASTM E709)	24

Radiographic	Testing of	Welds	(ASTM E94)

F. Sprayed-On Fireproofing:

Thickness	and Density	Tests	(ASTM	E605	5)		6
			END		_		

Page intentionally left blank

SECTION 01 58 16 TEMPORARY INTERIOR SIGNAGE

PART 1 GENERAL

DESCRIPTION

This section specifies temporary interior signs.

PART 2 PRODUCTS

2.1 TEMPORARY SIGNS

- A. Fabricate from 50 Kg (110 pound) mat finish white paper.
- B. Cut to 100 mm (4-inch) wide by 300 mm (12 inch) long size tag.
- C. Punch 3 mm (1/8-inch) diameter hole centered on 100 mm (4-inch) dimension of tag. Edge of Hole spaced approximately 13 mm (1/2-inch) from one end on tag.
- D. Reinforce hole on both sides with gummed cloth washer or other suitable material capable of preventing tie pulling through paper edge.
- E. Ties: Steel wire 0.3 mm (0.0120-inch) thick, attach to tag with twist tie, leaving 150 mm (6-inch) long free ends.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install temporary signs attached to room door frame or room door knob, lever, or pull for doors on corridor openings.
- B. Mark on signs with felt tip marker having approximately 3 mm (1/8-inch) wide stroke for clearly legible numbers or letters.
- C. Identify room with numbers as designated on floor plans.

3.2 LOCATION

- A. Install on doors that have room, corridor, and space numbers shown.
- B. Doors that do not require signs are as follows:
 - 1. Corridor barrier doors (cross-corridor) in corridor with same number.
 - 2. Folding doors or partitions.
 - 3. Toilet or bathroom doors within and between rooms.
 - 4. Communicating doors in partitions between rooms with corridor entrance doors.
 - 5. Closet doors within rooms.
- C. Replace missing, damaged, or illegible signs.

- - - E N D - - -

Page intentionally left blank

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to reuse and recycle new materials to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.

01 74 19 - 3

- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:

- a. List of each material and quantity to be salvaged, reused, recycled.
- b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):

LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

Page intentionally left blank

SECTION 01 81 11 SUSTAINABLE DESIGN REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

This Section describes general requirements and procedures to comply with the Guiding Principles for Leadership in High Performance and Sustainable Buildings Memorandum of Understanding incorporated in the Executive Orders 13423 and 13514; Energy Policy Act of 2005 (EPA 2005) and the Energy Independence and Security Act of 2007 (EISA 2007).

1.2 OBJECTIVES

- A. To obtain acceptable Indoor Air Quality (IAQ) for the completed project and minimize the environmental impacts of the construction and operation, the Contractor during the construction phase of this project shall implement the following procedures:
 - Select products that minimize consumption of non-renewable resources, consume reduced amounts of energy and minimize amounts of pollution to produce, and employ recycled and/or recyclable materials. It is the intent of this project to conform with EPA's Five Guiding Principles on environmentally preferable purchasing. The five principles are:
 - a. Include environmental considerations as part of the normal purchasing process.
 - b. Emphasize pollution prevention early in the purchasing process.
 - c. Examine multiple environmental attributes throughout a product's or service's life cycle.
 - d. Compare relevant environmental impacts when selecting products and services.
 - e. Collect and base purchasing decisions on accurate and meaningful information about environmental performance.
 - Control sources for potential IAQ pollutants by controlled selection of materials and processes used in project construction in order to attain superior IAQ.
 - 3. Products and processes that achieve the above objectives to the extent currently possible and practical have been selected and included in these Construction Documents. The Contractor is responsible to maintain and support these objectives in developing means and methods for performing the work of this Contract and in

proposing product substitutions and/or changes to specified processes.

 Use building practices that insure construction debris and particulates do mot contaminate or enter duct work prior to system startup and turn over.

1.3 RELATED DOCUMENTS

A. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT

1.4 DEFINITIONS

- A. Agrifiber Products: Composite panel products derived from agricultural fiber
- B. Biobased Product: As defined in the 2002 Farm Bill, a product determined by the Secretary to be a commercial or industrial product (other than food or feed) that is composed, in whole or in significant part, of biological products or renewable domestic agricultural materials (including plant, animal, and marine materials) or forestry materials
- C. Biobased Content: The weight of the biobased material divided by the total weight of the product and expressed as a percentage by weight
- D. Certificates of Chain-of-Custody: Certificates signed by manufacturers certifying that wood used to make products has been tracked through its extraction and fabrication to ensure that is was obtained from forests certified by a specified certification program
- E. Composite Wood: A product consisting of wood fiber or other plant particles bonded together by a resin or binder
- F. Construction and Demolition Waste: Includes solid wastes, such as building materials, packaging, rubbish, debris, and rubble resulting from construction, remodeling, repair and demolition operations. A construction waste management plan is to be provided by the Contractor as defined in Section 01 74 19.
- G. Third Party Certification: Certification of levels of environmental achievement by nationally recognized sustainability rating system.
- H. Light Pollution: Light that extends beyond its source such that the additional light is wasted in an unwanted area or in an area where it inhibits view of the night sky
- I. Recycled Content Materials: Products that contain pre-consumer or postconsumer materials as all or part of their feedstock

- J. Post-Consumer Recycled Content: The percentage by weight of constituent materials that have been recovered or otherwise diverted from the solid-waste stream after consumer use
- K. Pre-Consumer Recycled Content: Materials that have been recovered or otherwise diverted from the solid-waste stream during the manufacturing process. Pre-consumer content must be material that would not have otherwise entered the waste stream as per Section 5 of the FTC Act, Part 260 "Guidelines for the Use of Environmental Marketing Claims": www.ftc.gov/bcp/grnrule/guides980427
- L. Regional Materials: Materials that are extracted, harvested, recovered, and manufactured within a radius of 250 miles (400 km) from the Project site
- M. Salvaged or Reused Materials: Materials extracted from existing buildings in order to be reused in other buildings without being manufactured
- N. Sealant: Any material that fills and seals gaps between other materials
- O. Type 1 Finishes: Materials and finishes which have a potential for short-term levels of off gassing from chemicals inherent in their manufacturing process, or which are applied in a form requiring vehicles or carriers for spreading which release a high level of particulate matter in the process of installation and/or curing.
- P. Type 2 Finishes: "Fuzzy" materials and finishes which are woven, fibrous, or porous in nature and tend to adsorb chemicals off gas
- Q. Volatile Organic Compounds (VOCs): Any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions. Compounds that have negligible photochemical reactivity, listed in EPA 40 CFR 51.100(s), are also excluded from this regulatory definition.

1.5 SUBMITTALS

- A. Sustainable Design Submittals:
 - Alternative Transportation: Provide manufacturer's cut sheets for all bike racks installed on site, including the total number of bicycle storage slots provided. Also, provide manufacturer's cut sheets for any alternative-fuel refueling stations installed on site, including fueling capacity information for an 8-hour period.
 - 2. Water Conserving Fixtures: Submittals must include manufacturer's cut sheets for all water-consuming plumbing fixtures and fittings

(toilets, urinals, faucets, showerheads, etc.) highlighting maximum flow rates and/or flush rates. Include cut sheets for any automatic faucet-control devices.

- 3. Process Water Use: Provide manufacturer's cut sheets for all waterconsuming commercial equipment (clothes washers, dishwashers, ice machines, etc.), highlighting water consumption performance. Include manufacturer's cut sheets or product data for any cooling towers, highlighting water consumption estimates, water use reduction measures, and corrosion inhibitors.
- 4. Elimination of CFCs AND HCFCs: Provide manufacturer's cut sheets for all cooling equipment with manufacturer's product data, highlighting refrigerants; provide manufacturer's cut sheets for all firesuppression equipment, highlighting fire-suppression agents; provide manufacturer's cut-sheets for all polystyrene insulation (XPS) and closed-cell spray foam polyurethane insulation, highlighting the blowing agent(s).
- 5. Appliances and Equipment: Provide copies of manufacturer's product data for all Energy Star eligible equipment and appliances, including office equipment, computers and printers, electronics, and commercial food service equipment (excluding HVAC and lighting components), verifying compliance with EPA's Energy Star program.
- Measurement and Verification Systems: Provide cut sheets and manufacturer's product data for all controls systems, highlighting electrical metering and trending capability components.
- 7. Salvaged or Reused Materials: Provide documentation that lists each salvaged or reused material, the source or vendor of the material, the purchase price, and the replacement cost if greater than the purchase price.
- 8. Recycled Content: Submittals for all materials with recycled content (excluding MEP systems equipment and components) must include the following documentation: Manufacturer's product data, product literature, or a letter from the manufacturer verifying the percentage of post-consumer and pre-consumer recycled content (by weight) of each material or product
 - a. An electronic spreadsheet that tabulates the Project's total materials cost and combined recycled content value (defined as the sum of the post-consumer recycled content value plus one-half of the pre-consumer recycled content value) expressed as a

percentage of total materials cost. This spreadsheet shall be submitted every third month with the Contractor's Certificate and Application for Payment. It should indicate, on an ongoing basis, line items for each material, including cost, pre-consumer recycled content, post-consumer recycled content, and combined recycled content value.

- 9. Regional Materials: Submittals for all products or materials expected to contribute to the regional calculation (excluding MEP systems equipment and components) must include the following documentation:
 - a. Cost of each material or product, excluding cost of labor and equipment for installation
 - b. Location of product manufacture and distance from point of manufacture to the Project Site
 - c. Location of point of extraction, harvest, or recovery for each raw material in each product and distance from the point of extraction, harvest, or recovery to the Project Site
 - d. Manufacturer's product data, product literature, or a letter from the manufacturer verifying the location and distance from the Project Site to the point of manufacture for each regional material
 - e. Manufacturer's product data, product literature, or a letter from the manufacturer verifying the location and distance from the Project Site to the point of extraction, harvest, or recovery for each regional material or product, including, at a minimum, gravel and fill, planting materials, concrete, masonry, and GWB
 - f. An electronic spreadsheet that tabulates the Project's total materials cost and regional materials value, expressed as a percentage of total materials cost. This spreadsheet shall be submitted every third month with the Contractor's Certificate and Application for Payment. It should indicate on an ongoing basis, line items for each material, including cost, location of manufacture, distance from manufacturing plant to the Project Site, location of raw material extraction, and distance from extraction point to the Project Site.
- 10. Biobased Products:
 - a. Rapidly Renewable Products: Submittals must include written documentation from the manufacturer declaring that rapidly

renewable materials are made from plants harvested within a tenyear or shorter cycle and must indicate the percentage (by weight) of these rapidly renewable components contained in the candidate products, along with the costs of each of these materials, excluding labor and delivery costs.

- b. Certified Wood: Submittals for all wood-based materials must include a statement indicating the cost of each product containing FSC Certified wood, exclusive of labor and delivery costs, and third party verification of certification from one of the following:
 - Documentation from the supplier verifying that 100% of the wood-based content originates from SFI third-party certified forest lands, identifying the company or companies that performed the SFI third-party certification for both the forest land management and the certified product content.
- 11. Outdoor Air Delivery Monitoring: Provide manufacturer's cut sheets highlighting the installed carbon dioxide monitoring system components and sequence of controls shop drawing documentation, including CO2 differential set-points and alarm capabilities.
- 12. Interior Adhesives and Sealants: Submittals for all field-applied adhesives and sealants, which have a potential impact on indoor air, must include manufacturer's MSDSs or other Product Data highlighting VOC content.
 - a. Provide manufacturers' documentation verifying all adhesives used to apply laminates, whether shop-applied or field-applied, contain no urea-formaldehyde.
- 13. Interior Paints and Coatings: Submittals for all field-applied paints and coatings, which have a potential impact on indoor air, must include manufacturer's MSDSs or other Product Data highlighting VOC content
- 14. Air Filtration: Provide manufacturer's cut sheets and product data highlighting the following:
 - a. Minimum Efficiency Reporting Value (MERV) for filtration media in all air handling units (AHUS) per ASHRAE HVAC Design Manual for Hospitals and Clinics.
 - b. Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if

permanently installed AHUs are used during construction. See above for requirements

- 15. Mercury in Lighting: Provide manufacturer's cut sheets or product data for all fluorescent or HID lamps highlighting mercury content.
- 16. Lighting Controls: Provide manufacturer's cut sheets and shop drawing documentation highlighting all lighting controls systems components.
- 17. Thermal Comfort Controls: Provide manufacturer's cut sheets and shop drawing documentation highlighting all thermal comfort-control systems components.
- 18. Blended Cement: It is the intent of this specification to reduce CO2 emissions and other environmentally detrimental effects resulting from the production of portland cement by requiring that all concrete mixes, in aggregate, utilize blended cement mixes to displace portland cement as specified in Section 03 30 00, CONCRETE typically included in conventional construction. Provide the following submittals:
 - a. Copies of concrete design mixes for all installed concrete
 - b. Copies of typical regional baseline concrete design mixes for all compressive strengths used on the Project
 - c. Quantities in cubic yards of each installed concrete mix
- 19. Gypsum Wall Board: Provide manufacturer's cut sheets or product data verifying that all gypsum wallboard products are moisture and moldresistant.
- 20. Fiberglass Insulation: Provide manufacturer's cut sheets or product data verifying that fiberglass batt insulation contains no ureaformaldehyde.
- 21. Duct Acoustical Insulation: Provide manufacturer's cut sheets or product data verifying that mechanical sound insulation materials in air distribution ducts consists of an impervious, non-porous coatings that prevent dust from accumulating in the insulating materials.
- 22. Green Housekeeping: Provide documentation that all cleaning products and janitorial paper products meet the VOC limits and content requirements of this specification section.
- B. Project Materials Cost Data: Provide a spreadsheet in an electronic file indicating the total cost for the Project and the total cost of building materials used for the Project, as follows:

- Not more than 60 days after the Preconstruction Meeting, the General Contractor shall provide to the Owner and Architect a preliminary schedule of materials costs for all materials used for the Project organized by specification section. Exclude labor costs and all mechanical, electrical, and plumbing (MEP) systems materials and labor costs. Include the following:
 - a. Identify each reused or salvaged material, its cost, and its replacement value.
 - b. Identify each recycled-content material, its post-consumer and pre-consumer recycled content as a percentage the product's weight, its cost, its combined recycled content value (defined as the sum of the post-consumer recycled content value plus one-half of the pre-consumer recycled content value), and the total combined recycled content value for all materials as a percentage of total materials costs.
 - c. Identify each regional material, its cost, its manufacturing location, the distance of this location from the Project site, the source location for each raw material component of the material, the distance of these extraction locations from the Project site, and the total value of regional materials as a percentage of total materials costs.
 - d. Identify each biobased material, its source, its cost, and the total value of biobased materials as a percentage of total materials costs. Also provide the total value of rapidly renewable materials (materials made from plants that are harvested in less than a 10-year cycle) as a percentage of total materials costs.
 - e. Identify each wood-based material, its cost, the total wood-based materials cost, each FSC Certified wood material, its cost, and the total value of Certified wood as a percentage of total wood-based materials costs.
- 2. Provide final versions of the above spreadsheets to the Owner and Architect not more than 14 days after Substantial Completion.
- C. Construction Waste Management: See Section 01 74 19 "Construction Waste Management" for submittal requirements.
- D. Construction Indoor Air Quality (IAQ) Management: Submittals must include the following:

- Not more than 30 days after the Preconstruction Meeting, prepare and submit for the Architect and Owner's approval, an electronic copy of the draft Construction IAQ Management Plan in an electronic file including, but not limited to, descriptions of the following:
- Instruction procedures for meeting or exceeding the minimum requirements of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines for Occupied Buildings Under Construction, 1995, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling
 - a. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage
 - b. Schedule of submission to Architect of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials
 - c. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille
 - d. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit
- 3. Not more than 30 days following receipt of the approved draft CIAQMP, submit an electronic copy of the approved CIAQMP in an electronic file, along with the following:
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for all filtration media to be installed at return air grilles during construction if permanently installed AHUs are used during construction.
 - b. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media in all air handling units (AHUS).
- 4. Not more than 14 days after Substantial Completion provide the following:
 - a. Documentation verifying required replacement of air filtration media in all air handling units (AHUs) after the completion of construction and prior to occupancy and, if applicable, required installation of filtration during construction.

- b. Minimum of 18 Construction photographs: Six photographs taken on three different occasions during construction of the SMACNA approaches employed, along with a brief description of each approach, documenting implementation of the IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.
- c. A copy of the report from testing and inspecting agency documenting the results of IAQ testing, demonstrating conformance with IAQ testing procedures and requirements defined in Section 01 81 09 "Testing for Indoor Air Quality."
- E. Commissioning: See Section 01 91 00 "General Commissioning Requirements" for submittal requirements.
- F. Sustainable Design Progress Reports: Concurrent with each Application for Payment, submit reports for the following:
 - Construction Waste Management: Waste reduction progress reports and logs complying with the requirements of Section 01 74 19 "Construction Waste Management."
 - Construction IAQ Management: See details below under Section 3.2 Construction Indoor Air Quality Management for Construction IAQ management progress report requirements.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to the commencement of the Work, schedule and conduct meeting with Owner, Architect, and all Subcontractors to discuss the Construction Waste Management Plan, the required Construction Indoor Air Quality (IAQ) Management Plan, and all other Sustainable Design Requirements. The purpose of this meeting is to develop a mutual understanding of the Project's Sustainable Design Requirements and coordination of the Contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: The status of compliance with the Sustainable Design Requirements of these specifications will be an agenda item at all regular job meetings conducted during the course of work at the site.

PART 2 - PRODUCTS

2.1 PRODUCT ENVIRONMENTAL REQUIREMENTS

A. Water-Conserving Fixtures: Plumbing fixtures and fittings shall use in aggregate at least 40% less water than the water use baseline

calculated for the building after meeting the Energy Policy Act of 1992 fixture performance requirements. Flow and flush rates shall not exceed the following:

- Toilets: no more than 1.3 gallons per flush, otherwise be dual flush
 1.6/0.8 gallons per flush, and have documented bowl evacuation
 capability per MaP testing of at least 400 grams
- 2. Urinals: Water sense rated with no more than 0.125 gallons per flush or use where considered appropriate.
- 3. Lavatory Faucets: 0.5 gpm with automatic faucet controls
- 4. Kitchen Sink Lavatories: 2.2 gpm
- 5. Showerheads: no more than 1.5gpm
- B. Elimination of CFCs AND HCFCs:
 - Ozone Protection: Base building cooling equipment shall contain no refrigerants other than the following: HCFC-123, HFC-134a, HFC-245fa, HFC-407c, or HFC 410a.
 - 2. Fire suppression systems may not contain ozone-depleting substances.
 - 3. Extruded polystyrene insulation (XPS) and closed-cell spray foam polyurethane insulation shall not be manufactured with hydrochlorofluorocarbon (HCFC) blowing agents.
- C. Appliances and Equipment: All Energy Star eligible equipment and appliances, including office equipment, computers and printers, electronics, and commercial food service equipment (excluding HVAC and lighting components), shall be qualified by EPA's Energy Star program.
 D. HVAC Distribution Efficiency:
 - All duct systems shall be constructed of galvanized sheet metal, aluminum, or stainless steel as deemed appropriate based on the application requirements. No fiberglass duct board shall be permitted.
 - 2. All medium- and high-pressure ductwork systems shall be pressuretested in accordance with the current SMACNA standards.
 - 3. All ductwork shall be externally insulated. No interior duct liner shall be permitted.
 - 4. Where possible, all air terminal connections shall be hard-connected with sheet metal ductwork. If flexible ductwork is used, no flexible duct extension shall be more than six feet in length.
 - 5. All HVAC equipment shall be isolated from the ductwork system with flexible duct connectors to minimize the transmittance of vibration.

- 6. All supply and return air branch ducts shall include the appropriate style of volume damper. Air terminal devices such as grilles, registers, and diffusers shall be balanced at duct branch dampers, not at terminal face.
- E. Measurement and Verification: Install controls and monitoring devices as required by MEP divisions order to comply with International Performance Measurement & Verification Protocol (IPMVP), Volume III: Concepts and Options for Determining Energy Savings in New Construction, April 2003, Option D.
 - 1. The IPMVP provides guidance on situation-appropriate application of measurement and verification strategies.
- F. Salvaged or Reused materials: There shall be no substitutions for specified salvaged and reused materials and products.
 - Salvaged materials: Use of salvaged materials reduces impacts of disposal and manufacturing of replacements.
- G. Recycled Content of Materials:
 - Provide building materials with recycled content such that postconsumer recycled content value plus half the pre-consumer recycled content value constitutes a minimum of 30% of the cost of materials used for the Project, exclusive of all MEP equipment, labor, and delivery costs. The Contractor shall make all attempts to maximize the procurement of materials with recycled content.
 - a. e post-consumer recycled content value of a material shall be determined by dividing the weight of post-consumer recycled content by the total weight of the material and multiplying by the cost of the material.
 - b. Do not include mechanical and electrical components in the calculations.
 - c. Do not include labor and delivery costs in the calculations.
 - d. Recycled content of materials shall be defined according to the Federal Trade Commission's "Guide for the Use of Environmental Marketing Claims," 16 CFR 260.7 (e).
 - e. Utilize all on-site existing paving materials that are scheduled for demolition as granulated fill, and include the cost of this material had it been purchased in the calculations for recycled content value.
 - f. The materials in the following list must contain the minimum recycled content indicated:

Category	Minimum Recycled Content		
Cast-in-Place Concrete	6% pre-consumer		
CMU: Gray Block	20% pre-consumer		
Steel Reinforcing Bars	90% combined		
Structural Steel Shapes	90% combined		
Steel Joists	75% combined		
Steel Deck	75% combined		
Steel Fabrications	60% combined		
Steel Studs	30% combined		
Aluminum Fabrications	35% combined		
Rigid Insulation	20% pre-consumer		
Batt insulation	30% combined		

- - - E N D - - -

Page intentionally left blank

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Demolition and removal of roads, walks, curbs, and on-grade slabs outside buildings to be demolished: Section 31 20 11, EARTH MOVING .
- B. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- F. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in

hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.

- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 2. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center ; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.
- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.

- To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

Page intentionally left blank

SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies cast-in-place structural concrete and materials and mixes for other concrete.

1.2 RELATED WORK:

A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.

1.3 TESTING AGENCY FOR CONCRETE MIX DESIGN:

- A. Testing agency retained and reimbursed by the Contractor and approved by Resident Engineer.
- B. Testing agency maintaining active participation in Program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology.
- C. Testing agency shall furnish equipment and qualified technicians to establish proportions of ingredients for concrete mixes.

1.4 TOLERANCES:

- A. Formwork: ACI 117, except the elevation tolerance of formed surfaces before removal of shores is +0 mm (+0 inch) and -20 mm (-3/4 inch).
- B. Reinforcement Fabricating and Placing: ACI 117, except that fabrication tolerance for bar sizes Nos. 10, 13, and 16 (Nos. 3, 4, and 5) (Tolerance Symbol 1 in Fig. 2.1(a), ACI, 117) used as column ties or stirrups is +0 mm (+0 inch) and -13 mm (-1/2 inch) where gross bar length is less than 3600 mm (12 feet), or +0 mm (+0 inch) and -20 mm (-3/4 inch) where gross bar length is 3600 mm (12 feet) or more.
- C. Cross-Sectional Dimension: ACI 117, except tolerance for thickness of slabs 12 inches or less is +20 mm (+3/4 inch) and -6 mm (-1/4 inch). Tolerance of thickness of beams more than 300 mm (12 inch) but less than 900 mm (3 feet) is +20 mm (+3/4 inch) and -10 mm (-3/8 inch).
- D. Slab Finishes: ACI 117, Section 4.5.6, F-number method in accordance with ASTM E1155, except as follows:
 - 1. Test entire slab surface, including those areas within 600 mm (2 feet) of construction joints and vertical elements that project through slab surface.
 - 2. Maximum elevation change which may occur within 600 mm (2 feet) of any column or wall element is 6 mm (0.25 inches).

3. Allow sample measurement lines that are perpendicular to construction joints to extend past joint into previous placement no further than 1500 mm (5 feet).

1.5 REGULATORY REQUIREMENTS:

- A. ACI SP-66 ACI Detailing Manual.
- B. ACI 318 Building Code Requirements for Reinforced Concrete.
- C. ACI 301 Standard Specifications for Structural Concrete.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings: Reinforcing steel: Complete shop drawings
- C. Mill Test Reports:
 - 1. Reinforcing Steel.
 - 2. Cement.
- D. Manufacturer's Certificates:
 - 1. Abrasive aggregate.
 - 2. Lightweight aggregate for structural concrete.
 - 3. Air-entraining admixture.
 - 4. Chemical admixtures, including chloride ion content.
 - 5. Waterproof paper for curing concrete.
 - 6. Liquid membrane-forming compounds for curing concrete.
 - 7. Non-shrinking grout.
 - 8. Liquid hardener.
 - 9. Waterstops.
 - 10. Expansion joint filler.
 - 11. Adhesive binder.
- E. Testing Agency for Concrete Mix Design: Approval request including qualifications of principals and technicians and evidence of active participation in program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology.
- F. Test Report for Concrete Mix Designs: Trial mixes including water-cement ratio curves, concrete mix ingredients, and admixtures.

1.7 DELIVERY, STORAGE, AND HANDLING:

- A. Conform to ACI 304. Store aggregate separately for each kind or grade, to prevent segregation of sizes and avoid inclusion of dirt and other materials.
- B. Deliver cement in original sealed containers bearing name of brand and manufacturer, and marked with net weight of contents. Store in suitable
watertight building in which floor is raised at least 300 mm (1 foot) above ground. Store bulk cement in separate suitable bins.

C. Deliver other packaged materials for use in concrete in original sealed containers, plainly marked with manufacturer's name and brand, and protect from damage until used.

1.8 PRE-CONCRETE CONFERENCE:

- A. General: At least 15 days prior to submittal of design mixes, conduct a meeting to review proposed methods of concrete construction to achieve the required results.
- B. Agenda: Includes but is not limited to:
 - 1. Submittals.
 - 2. Coordination of work.
 - 3. Availability of material.
 - 4. Concrete mix design including admixtures.
 - 5. Methods of placing, finishing, and curing.
 - 6. Finish criteria required to obtain required flatness and levelness.
 - 7. Timing of floor finish measurements.
 - 8. Material inspection and testing.
- C. Attendees: Include but not limited to representatives of Contractor; subcontractors involved in supplying, conveying, placing, finishing, and curing concrete; lightweight aggregate manufacturer; admixture manufacturers; Resident Engineer; Consulting Engineer; Department of Veterans Affairs retained testing laboratories for concrete testing and finish (F-number) verification.
- D. Minutes of the meeting: Contractor shall take minutes and type and distribute the minutes to attendees within five days of the meeting.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI):

```
117-10......Tolerances for Concrete Construction and
Materials
211.1-91(R2009).....Selecting Proportions for Normal, Heavyweight,
and Mass Concrete
211.2-98(R2004).....Selecting Proportions for Structural Lightweight
Concrete
214R-02.....Evaluation of Strength Test Results of Concrete
301-10.....Structural Concrete
```

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

304R-00(R2009).....Guide for Measuring, Mixing, Transporting, and Placing Concrete 305R-10.....Hot Weather Concreting 306R-10.....Cold Weather Concreting 308R-01(R2008).....Standard Practice for Curing Concrete 309R-05.....of Concrete 318-08.....Building Code Requirements for Reinforced Concrete and Commentary 347-04.....Guide to Formwork for Concrete SP-66-04.....ACI Detailing Manual C. American National Standards Institute and American Hardboard Association (ANSI/AHA): A135.4-2004.....Basic Hardboard D. American Society for Testing and Materials (ASTM): A82/A82M-07.....Steel Wire, Plain, for Concrete Reinforcement A185/185M-07.....Steel Welded Wire Fabric, Plain, for Concrete Reinforcement A615/A615M-09.....Deformed and Plain Billet-Steel Bars for Concrete Reinforcement A653/A653M-09.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process A706/A706M-09.....Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement A767/A767M-09.....Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement A775/A775M-07.....Epoxy-Coated Reinforcing Steel Bars A820-06.....Steel Fibers for Fiber-Reinforced Concrete A996/A996M-09.....Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement C31/C31M-09.....Making and Curing Concrete Test Specimens in the field C33-08.....Concrete Aggregates C39/C39M-09.....Compressive Strength of Cylindrical Concrete Specimens C94/C94M-09.....Ready-Mixed Concrete C143/C143M-10.....Slump of Hydraulic Cement Concrete C150-09.....Portland Cement C171-07.....Sheet Materials for Curing Concrete C172-08......Sampling Freshly Mixed Concrete

C173-10.....Air Content of Freshly Mixed Concrete by the Volumetric Method C192/C192M-07.....Making and Curing Concrete Test Specimens in the Laboratory C231-09.....Air Content of Freshly Mixed Concrete by the Pressure Method C260-06.....Air-Entraining Admixtures for Concrete C309-07.....Liquid Membrane-Forming Compounds for Curing Concrete C330-09.....Lightweight Aggregates for Structural Concrete C494/C494M-10.....Chemical Admixtures for Concrete C618-08.....Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete C666/C666M-03.....Resistance of Concrete to Rapid Freezing and Thawing C881/C881M-02.....Epoxy-Resin-Base Bonding Systems for Concrete C1107/1107M-08.....Packaged Dry, Hydraulic-Cement Grout (Nonshrink) C1315-08.....Liquid Membrane-Forming Compounds Having Special Properties for Curing and Sealing Concrete D6-95(R2006)....Loss on Heating of Oil and Asphaltic Compounds D297-93(R2006).....Rubber Products-Chemical Analysis D1751-04(R2008).....Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types) D4397-09.....Polyethylene Sheeting for Construction, Industrial and Agricultural Applications E1155-96(R2008).....Determining F_F Floor Flatness and F_L Floor Levelness Numbers E. American Welding Society (AWS): D1.4/D1.4M-11.....Structural Welding Code - Reinforcing Steel F. Concrete Reinforcing Steel Institute (CRSI): Handbook 2008 G. National Cooperative Highway Research Program (NCHRP): Report On.................Concrete Sealers for the Protection of Bridge Structures H. U. S. Department of Commerce Product Standard (PS): PS 1..... Construction and Industrial Plywood PS 20..... American Softwood Lumber

- Project No. 642-11-150 Final Documents: 8/17/2012
- I. U. S. Army Corps of Engineers Handbook for Concrete and Cement: CRD C513.....Rubber Waterstops CRD C572.....Polyvinyl Chloride Waterstops

PART 2 - PRODUCTS:

2.1 FORMS:

- A. Wood: PS 20 free from loose knots and suitable to facilitate finishing concrete surface specified; tongue and grooved.
- B. Plywood: PS-1 Exterior Grade B-B (concrete-form) 16 mm (5/8 inch), or 20 mm (3/4 inch) thick for unlined contact form. B-B High Density Concrete Form Overlay optional.
- C. Metal for Concrete Rib-Type Construction: Steel (removal type) of suitable weight and form to provide required rigidity.
- D. Permanent Steel Form for Concrete Slabs: Corrugated, ASTM A653, Grade E, and Galvanized, ASTM A653, G90. Provide venting where insulating concrete fill is used.
- E. Corrugated Fiberboard Void Boxes: Double faced, completely impregnated with paraffin and laminated with moisture resistant adhesive, size as shown. Design forms to support not less than 48 KPa (1000 psf) and not lose more than 15 percent of their original strength after being completely submerged in water for 24 hours and then air dried.
- F. Form Lining:
 - 1. Hardboard: ANSI/AHA A135.4, Class 2 with one (S1S) smooth side)
 - 2. Plywood: Grade B-B Exterior (concrete-form) not less than 6 mm (1/4 inch) thick.
 - 3. Plastic, fiberglass, or elastomeric capable of reproducing the desired pattern or texture.
- G. Form Ties: Develop a minimum working strength of 13.35 kN (3000 pounds) when fully assembled. Ties shall be adjustable in length to permit tightening of forms and not have any lugs, cones, washers to act as spreader within form, nor leave a hole larger than 20 mm (3/4 inch) diameter, or a depression in exposed concrete surface, or leave metal closer than 40 mm (1 1/2 inches) to concrete surface. Wire ties not permitted. Cutting ties back from concrete face not permitted.

2.2 MATERIALS:

- A. Portland Cement: ASTM C150 Type I or II.
- B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalies, and loss on ignition (LOI) not to exceed 5 percent.
- C. Coarse Aggregate: ASTM C33.

- 1. Size 67 or Size 467 may be used for footings and walls over 300 mm (12 inches) thick.
- 2. Coarse aggregate for applied topping, encasement of steel columns, and metal pan stair fill shall be Size 7.
- 3. Maximum size of coarse aggregates not more than one-fifth of narrowest dimension between sides of forms, one-third of depth of slabs, nor three-fourth of minimum clear spacing between reinforcing bars.
- D. Lightweight Aggregates for Structural Concrete: ASTM C330, Table 1. Maximum size of aggregate not larger than one-fifth of narrowest dimension between forms, nor three-fourth of minimum clear distance between reinforcing bars. Contractor to furnish certified report to verify that aggregate is sound and durable, and has a durability factor of not less than 80 based on 300 cycles of freezing and thawing when tested in accordance with ASTM C666.
- E. Fine Aggregate: ASTM C33. Fine aggregate for applied concrete floor topping shall pass a 4.75 mm (No. 4) sieve, 10 percent maximum shall pass a 150 µm (No. 100) sieve.
- F. Mixing Water: Fresh, clean, and potable.
- G. Admixtures:
 - 1. Water Reducing Admixture: ASTM C494, Type A and not contain more chloride ions than are present in municipal drinking water.
 - Water Reducing, Retarding Admixture: ASTM C494, Type D and not contain more chloride ions than are present in municipal drinking water.
 - 3. High-Range Water-Reducing Admixture (Superplasticizer): ASTM C494, Type F or G, and not contain more chloride ions than are present in municipal drinking water.
 - 4. Non-Corrosive, Non-Chloride Accelerator: ASTM C494, Type C or E, and not contain more chloride ions than are present in municipal drinking water. Admixture manufacturer must have long-term non-corrosive test data from an independent testing laboratory of at least one year duration using an acceptable accelerated corrosion test method such as that using electrical potential measures.
 - 5. Air Entraining Admixture: ASTM C260.
 - 6. Calcium Nitrite corrosion inhibitor: ASTM C494 Type C.
 - 7. Prohibited Admixtures: Calcium chloride, thiocyanate or admixtures containing more than 0.05 percent chloride ions are not permitted.
 - 8. Certification: Written conformance to the requirements above and the chloride ion content of the admixture prior to mix design review.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- H. Vapor Barrier: ASTM D4397, 0.25 mm (10 mil).
- I. Reinforcing Steel: ASTM A615, or ASTM A996, deformed, grade as shown.
- J. Welded Wire Fabric: ASTM A185.
- K. Reinforcing Bars to be Welded: ASTM A706.
- L. Galvanized Reinforcing Bars: ASTM A767.
- M. Epoxy Coated Reinforcing Bars: ASTM A775.
- N. Cold Drawn Steel Wire: ASTM A82.
- 0. Supports, Spacers, and Chairs: Types which will hold reinforcement in position shown in accordance with requirements of ACI 318 except as specified.
- P. Expansion Joint Filler: ASTM D1751.
- Q. Sheet Materials for Curing Concrete: ASTM C171.
- R. Liquid Membrane-forming Compounds for Curing Concrete: ASTM C309, Type I, with fugitive dye. Compound shall be compatible with scheduled surface treatment, such as paint and resilient tile, and shall not discolor concrete surface.
- S. Abrasive Aggregate: Aluminum oxide grains or emery grits.
- T. Moisture Vapor Emissions & Alkalinity Control Sealer: 100% active colorless aqueous siliconate solution concrete surface treatment applied the day of the concrete pour in lieu of other curing methods for all concrete slabs receiving resilient flooring, such as, sheet vinyl, vinyl composition tile, rubber, wood flooring, carpet, epoxy coatings and overlays .
 - 1. ASTM C1315 Type 1 Class A, and ASTM C309 Type 1 Class A, penetrating product to have no less than 34% solid content, leaving no sheen, volatile organic compound (VOC) content rating as required to suite regulatory requirements. The product shall have at least a five (5) year documented history in controlling moisture vapor emission from damaging floor covering, compatible with all finish materials.
 - 2. MVE 15-Year Warranty:
 - a. When a floor covering is installed on a below grade, on grade, or above grade concrete slab treated with Moisture Vapor Emissions & Alkalinity Control Sealer according to manufacturer's instruction, sealer manufacturer shall warrant the floor covering system against failure due to moisture vapor migration or moisture-born contaminates for a period of fifteen (15) years from the date of original installation. The warranty shall cover all labor and materials needed to replace all floor covering that fails due to moisture vapor emission & moisture born contaminates.

- U. Penetrating Sealer: For use on parking garage ramps and decks. High penetration silane sealer providing minimum 95 percent screening per National Cooperative Highway Research Program (NCHRP) No. 244 standards for chloride ion penetration resistance. Requires moist (non-membrane) curing of slab.
- V. Non-Shrink Grout:
 - 1. ASTM C1107, pre-mixed, produce a compressive strength of at least 18 MPa at three days and 35 MPa (5000 psi) at 28 days. Furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent bearing under a 1200 mm x 1200 mm (4 foot by 4 foot) base plate.
 - 2. Where high fluidity or increased placing time is required, furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent under an 450 mm x 900 mm (18 inch by 36 inch) base plate.
- W. Adhesive Binder: ASTM C881.
 - 1. Polyvinyl Chloride Waterstop: CRD C572.
 - 2. Rubber Waterstops: CRD C513.
 - 3. Bentonite Water Stop: Flexible strip of bentonite 25 mm x 20 mm (1 inch by 3/4 inch), weighing 8.7 kg/m (5.85 lbs. per foot) composed of Butyl Rubber Hydrocarbon (ASTM D297), Bentonite (SS-S-210-A) and Volatile Matter (ASTM D6).
 - Porous Backfill: Crushed stone or gravel graded from 25 mm to 20 mm (1 inch to 3/4 inch).
 - 5. Synthetic Fibers: Monofilament or fibrillated polypropylene fibers for secondary reinforcing of concrete members. Use appropriate length and 0.9 kg/m³ (1.5 lb. per cubic yard). Product shall have a UL rating.
 - Steel Fibers: ASTM A820, Type I cold drawn, high tensile steel wire for use as primary reinforcing in slab-on-grade. Minimum dosage rate 18 kg/m³ (30 lb. per cubic yard).
 - 7. Epoxy Joint Filler: Two component, 100 percent solids compound, with a minimum shore D hardness of 50.
 - 8. Bonding Admixture: Non-rewettable, polymer modified, bonding compound.
 - 9. Architectural Concrete: For areas designated as architectural concrete on the Contract Documents, use colored cements and specially selected aggregates as necessary to produce a concrete of a color and finish which exactly matches the designated sample panel.

2.3 CONCRETE MIXES:

- A. Mix Designs: Proportioned in accordance with Section 5.3, "Proportioning on the Basis of Field Experience and/or Trial Mixtures" of ACI 318.
 - If trial mixes are used, make a set of at least 6 cylinders in accordance with ASTM C192 for test purposes from each trial mix; test three for compressive strength at 7 days and three at 28 days.
 - 2. Submit a report of results of each test series, include a detailed listing of the proportions of trial mix or mixes, including cement, fly ash, admixtures, weight of fine and coarse aggregate per m³ (cubic yard) measured dry rodded and damp loose, specific gravity, fineness modulus, percentage of moisture, air content, water-cement -fly ash ratio, and consistency of each cylinder in terms of slump. include dry unit weight of lightweight structural concrete.
 - 3. Prepare a curve showing relationship between water-cement -fly ash ratio at 7-day and 28-day compressive strengths. Plot each curve using at least three specimens.
 - 4. If the field experience method is used, submit complete standard deviation analysis.
- B. Fly Ash Testing: Submit certificate verifying conformance with specifications initially with mix design and for each truck load of fly ash delivered from source. Notify Resident Engineer immediately when change in source is anticipated. Prior to beginning trial mixes submit to the Resident Engineer the following representative samples of material to be used, properly identified source and project description and number, type of testing (complete chemical and physical), suitably packaged for shipment, and addressed as specified. Allow 60 calendar days for test results after submittal of sample.
 - 1. Fly ash 2.25 kg (five pounds).
 - 2. Portland cement 3.5 kg (8 pounds):
 - a. Address -Waterways Experiment Station (WES)
 - b. 3909 Halls Ferry Road
 - c. Vicksburg, MS 39180-6199
 - d. ATTN: Engineering Materials Group
- C. After approval of mixes no substitution in material or change in proportions of approval mixes may be made without additional tests and approval of Resident Engineer or as specified. Making and testing of preliminary test cylinders may be carried on pending approval of cement and fly ash, providing Contractor and manufacturer certify that ingredients used in making test cylinders are the same. Resident

Engineer may allow Contractor to proceed with depositing concrete for certain portions of work, pending final approval of cement and fly ash and approval of design mix.

D. Cement Factor: Maintain minimum cement factors in Table I regardless of compressive strength developed above minimums. Use Fly Ash as an admixture with 20% replacement by weight in all structural work. Increase this replacement to 40% for mass concrete, and reduce it to 10% for drilled piers and caissons.

Concrete	e Strength	Non-Air- Entrained	Air-Ent:	rained
Min. 28 Day Comp. Str.	Min. Cement kg/m ³ (lbs/c. vd)	Max. Water Cement Ratio	Min. Cement kg/m ³	Max. Water Cement Ratio
MPa (psi)	1001		(lbs/c.yd)	114010
35 (5000) ^{1,3}	375 (630)	0.45	385 (650)	0.40
30 $(4000)^{1,3}$	325 (550)	0.55	340 (570)	0.50
25 (3000) ^{1,3}	280 (470)	0.65	290 (490)	0.55
25 $(3000)^{1,2}$	300 (500)	*	310 (520)	*

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE

- If trial mixes are used, the proposed mix design shall achieve a compressive strength 8.3 MPa (1200 psi) in excess of f'c. For concrete strengths above 35 Mpa (5000 psi), the proposed mix design shall achieve a compressive strength 9.7 MPa (1400 psi) in excess of f'c.
- 2. Lightweight Structural Concrete. Pump mixes may require higher cement values.
- 3. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44.
- 4. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.
- E. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

Type of Construction	Normal Weight Concrete	Lightweight Structural Concrete
Reinforced Footings and Substructure	75mm (3 inches)	75 mm (3 inches)

TABLE II - MAXIMUM SLUMP, MM (INCHES)*

Walls		
Slabs, Beams, Reinforced Walls, and	100 mm (4 inches)	100 mm (4 inches)
Building Columns		

- F. Slump may be increased by the use of the approved high-range waterreducing admixture (superplasticizer). Tolerances as established by ASTM C94. Concrete containing the high-range-water-reducing admixture may have a maximum slump of 225 mm (9 inches). The concrete shall arrive at the job site at a slump of 50 mm to 75 mm (2 inches to 3 inches), and 75 mm to 100 mm (3 inches to 4 inches) for lightweight concrete. This should be verified, and then the high-range-water-reducing admixture added to increase the slump to the approved level.
- G. Air-Entrainment: Air-entrainment of normal weight concrete shall conform with Table III. Air-entrainment of lightweight structural concrete shall conform with Table IV. Determine air content by either ASTM C173 or ASTM C231.

TABLE III - TOTAL AIR CONTENT FOR VARIOUS SIZES OF COARSE AGGREGATES (NORMAL CONCRETE)

Nominal Maximum Size of Total Air Content	Coarse Aggregate, mm (Inches) Percentage by Volume	
10 mm (3/8 in).6 to 10	13 mm (1/2 in).5 to 9	
20 mm (3/4 in).4 to 8	25 mm (1 in).3-1/2 to $6-1/2$	
40 mm (1 1/2 in).3 to 6		

 TABLE IV

 AIR CONTENT OF LIGHTWEIGHT STRUCTURAL CONCRETE

Nominal Maximum size of	Coarse Aggregate, mm's (Inches)		
Total Air Content	Percentage by Volume		
Greater than 10 mm (3/8 in) 4 to 8	10 mm (3/8 in) or less 5 to 9		

- H. Lightweight structural concrete shall not weigh more than air-dry unit weight shown. Air-dry unit weight determined on 150 mm by 300 mm (6 inch by 12 inch) test cylinders after seven days standard moist curing followed by 21 days drying at 23 degrees C \pm 1.7 degrees C (73.4 \pm 3 degrees Fahrenheit), and 50 (plus or minus 7) percent relative humidity. Use wet unit weight of fresh concrete as basis of control in field.
- I. Concrete slabs placed at air temperatures below 10 degrees C (50 degrees Fahrenheit) use non-corrosive, non-chloride accelerator. Concrete required to be air entrained use approved air entraining admixture.

Pumped concrete, synthetic fiber concrete, architectural concrete, concrete required to be watertight, and concrete with a water/cement ratio below 0.50 use high-range water-reducing admixture (superplasticizer).

- J. Durability: Use air entrainment for exterior exposed concrete subjected to freezing and thawing and other concrete shown or specified. Air content as shown in Table III or Table IV.
- K. Enforcing Strength Requirements: Test as specified in Section 01 45 29, TESTING LABORATORY SERVICES, during the progress of the work. Seven-day tests may be used as indicators of 28-day strength. Average of any three 28-day consecutive strength tests of laboratory-cured specimens representing each type of concrete shall be equal to or greater than specified strength. No single test shall be more than 3.5 MPa (500 psi) below specified strength. Interpret field test results in accordance with ACI 214. Should strengths shown by test specimens fall below required values, Resident Engineer may require any one or any combination of the following corrective actions, at no additional cost to the Government:
 - Require changes in mix proportions by selecting one of the other appropriate trial mixes or changing proportions, including cement content, of approved trial mix.
 - 2. Require additional curing and protection.
 - 3. If five consecutive tests fall below 95 percent of minimum values given in Table I or if test results are so low as to raise a question as to the safety of the structure, Resident Engineer may direct Contractor to take cores from portions of the structure. Use results from cores tested by the Contractor retained testing agency to analyze structure.
 - 4. If strength of core drilled specimens falls below 85 percent of minimum value given in Table I, Resident Engineer may order load tests, made by Contractor retained testing agency, on portions of building so affected. Load tests in accordance with ACI 318 and criteria of acceptability of concrete under test as given therein.
 - 5. Concrete work, judged inadequate by structural analysis, by results of load test, or for any reason, shall be reinforced with additional construction or replaced, if directed by the Resident Engineer.

2.4 BATCHING AND MIXING:

A. General: Concrete shall be "Ready-Mixed" and comply with ACI 318 and ASTM C94, except as specified. Batch mixing at the site is permitted.

Mixing process and equipment must be approved by Resident Engineer. With each batch of concrete, furnish certified delivery tickets listing information in Paragraph 16.1 and 16.2 of ASTM C94. Maximum delivery temperature of concrete is 38°C (100 degrees Fahrenheit). Minimum delivery temperature as follows:

Atmospheric Temperature	Minimum Concrete Temperature
-1. degrees to 4.4 degrees C	15.6 degrees C (60 degrees F.)
(30 degrees to 40 degrees F)	
-17 degrees C to -1.1 degrees C (0 degrees to 30 degrees F.)	21 degrees C (70 degrees F.)

1. Services of aggregate manufacturer's representative shall be furnished during the design of trial mixes and as requested by the Resident Engineer for consultation during batching, mixing, and placing operations of lightweight structural concrete. Services will be required until field controls indicate that concrete of required quality is being furnished. Representative shall be thoroughly familiar with the structural lightweight aggregate, adjustment and control of mixes to produce concrete of required quality. Representative shall assist and advise Resident Engineer.

PART 3 - EXECUTION

3.1 FORMWORK:

- A. General: Design in accordance with ACI 347 is the responsibility of the Contractor. The Contractor shall retain a registered Professional Engineer to design the formwork, shores, and reshores.
 - Form boards and plywood forms may be reused for contact surfaces of exposed concrete only if thoroughly cleaned, patched, and repaired and Resident Engineer approves their reuse.
 - 2. Provide forms for concrete footings unless Resident Engineer determines forms are not necessary.
 - 3. Corrugated fiberboard forms: Place forms on a smooth firm bed, set tight, with no buckled cartons to prevent horizontal displacement, and in a dry condition when concrete is placed.
- B. Treating and Wetting: Treat or wet contact forms as follows:
 - Coat plywood and board forms with non-staining form sealer. In hot weather, cool forms by wetting with cool water just before concrete is placed.

- 2. Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
- 3. Use sealer on reused plywood forms as specified for new material.
- C. Size and Spacing of Studs: Size and space studs, wales and other framing members for wall forms so as not to exceed safe working stress of kind of lumber used nor to develop deflection greater than 1/270 of free span of member.
- D. Unlined Forms: Use plywood forms to obtain a smooth finish for concrete surfaces. Tightly butt edges of sheets to prevent leakage. Back up all vertical joints solidly and nail edges of adjacent sheets to same stud with 6d box nails spaced not over 150 mm (6 inches) apart.
- E. Lined Forms: May be used in lieu of unlined plywood forms. Back up form lining solidly with square edge board lumber securely nailed to studs with all edges in close contact to prevent bulging of lining. No joints in lining and backing may coincide. Nail abutted edges of sheets to same backing board. Nail lining at not over 200 mm (8 inches) on center along edges and with at least one nail to each square foot of surface area; nails to be 3d blued shingle or similar nails with thin flatheads.
- F. Architectural Liner: Attach liner as recommended by the manufacturer with tight joints to prevent leakage.
- G. Wall Form Ties: Locate wall form ties in symmetrically level horizontal rows at each line of wales and in plumb vertical tiers. Space ties to maintain true, plumb surfaces. Provide one row of ties within 150 mm (6 inches) above each construction joint. Space through-ties adjacent to horizontal and vertical construction joints not over 450 mm (18 inches) on center.
 - Tighten row of ties at bottom of form just before placing concrete and, if necessary, during placing of concrete to prevent seepage of concrete and to obtain a clean line. Ties to be entirely removed shall be loosened 24 hours after concrete is placed and shall be pulled from least important face when removed.
 - 2. Coat surfaces of all metal that is to be removed with paraffin, cup grease or a suitable compound to facilitate removal.
- H. Inserts, Sleeves, and Similar Items: Flashing reglets, steel strips, masonry ties, anchors, wood blocks, nailing strips, grounds, inserts, wire hangers, sleeves, drains, guard angles, forms for floor hinge boxes, inserts or bond blocks for elevator guide rails and supports, and other items specified as furnished under this and other sections of specifications and required to be in their final position at time

concrete is placed shall be properly located, accurately positioned, and built into construction, and maintained securely in place.

- 1. Locate inserts or hanger wires for furred and suspended ceilings only in bottom of concrete joists, or similar concrete member of overhead concrete joist construction.
- 2. Install sleeves, inserts and similar items for mechanical services in accordance with drawings prepared specially for mechanical services. Contractor is responsible for accuracy and completeness of drawings and shall coordinate requirements for mechanical services and equipment.
- 3. Do not install sleeves in beams, joists or columns except where shown or permitted by Resident Engineer. Install sleeves in beams, joists, or columns that are not shown, but are permitted by the Resident Engineer, and require no structural changes, at no additional cost to the Government.
- 4. Minimum clear distance of embedded items such as conduit and pipe is at least three times diameter of conduit or pipe, except at stub-ups and other similar locations.
- 5. Provide recesses and blockouts in floor slabs for door closers and other hardware as necessary in accordance with manufacturer's instructions.
- I. Construction Tolerances:
 - 1. Set and maintain concrete formwork to assure erection of completed work within tolerances specified and to accommodate installation of other rough and finish materials. Accomplish remedial work necessary for correcting excessive tolerances. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government.
 - 2. Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements.

3.2 PLACING REINFORCEMENT:

- A. General: Details of concrete reinforcement in accordance with ACI 318 unless otherwise shown.
- B. Placing: Place reinforcement conforming to CRSI DA4, unless otherwise shown.

- 1. Place reinforcing bars accurately and tie securely at intersections and splices with 1.6 mm (16 gauge) black annealed wire. Secure reinforcing bars against displacement during the placing of concrete by spacers, chairs, or other similar supports. Portions of supports, spacers, and chairs in contact with formwork shall be made of plastic in areas that will be exposed when building is occupied. Type, number, and spacing of supports conform to ACI 318. Where concrete slabs are placed on ground, use concrete blocks or other non-corrodible material of proper height, for support of reinforcement. Use of brick or stone supports will not be permitted.
- 2. Lap welded wire fabric at least 1 1/2 mesh panels plus end extension of wires not less than 300 mm (12 inches) in structural slabs. Lap welded wire fabric at least 1/2 mesh panels plus end extension of wires not less than 150 mm (6 inches) in slabs on grade.
- 3. Splice column steel at no points other than at footings and floor levels unless otherwise shown.
- C. Spacing: Minimum clear distances between parallel bars, except in columns and multiple layers of bars in beams shall be equal to nominal diameter of bars. Minimum clear spacing is 25 mm (1 inch) or 1-1/3 times maximum size of coarse aggregate.
- D. Splicing: Splices of reinforcement made only as required or shown or specified. Accomplish splicing as follows:
 - Lap splices: Do not use lap splices for bars larger than Number 36 (Number 11). Minimum lengths of lap as shown.
 - 2. Welded splices: Splicing by butt-welding of reinforcement permitted providing the weld develops in tension at least 125 percent of the yield strength (fy) for the bars. Welding conform to the requirements of AWS D1.4. Welded reinforcing steel conform to the chemical analysis requirements of AWS D1.4.
 - a. Submit test reports indicating the chemical analysis to establish weldability of reinforcing steel.
 - b. Submit a field quality control procedure to insure proper inspection, materials and welding procedure for welded splices.
 - c. Department of Veterans Affairs retained testing agency shall test a minimum of three splices, for compliance, locations selected by Resident Engineer.
 - 3. Mechanical Splices: Develop in tension and compression at least 125 percent of the yield strength (fy) of the bars. Stresses of transition splices between two reinforcing bar sizes based on area of smaller bar. Provide mechanical splices at locations indicated. Use

approved exothermic, tapered threaded coupling, or swaged and threaded sleeve. Exposed threads and swaging in the field not permitted.

- a. Initial qualification: In the presence of Resident Engineer, make three test mechanical splices of each bar size proposed to be spliced. Department of Veterans Affairs retained testing laboratory will perform load test.
- b. During installation: Furnish, at no additional cost to the Government, one companion (sister) splice for every 50 splices for load testing. Department of Veterans Affairs retained testing laboratory will perform the load test.
- E. Bending: Bend bars cold, unless otherwise approved. Do not field bend bars partially embedded in concrete, except when approved by Resident Engineer.
- F. Cleaning: Metal reinforcement, at time concrete is placed, shall be free from loose flaky rust, mud, oil, or similar coatings that will reduce bond.
- G. Future Bonding: Protect exposed reinforcement bars intended for bonding with future work by wrapping with felt and coating felt with a bituminous compound unless otherwise shown.

3.3 VAPOR BARRIER:

- A. Except where membrane waterproofing is required, interior concrete slab on grade shall be placed on a continuous vapor barrier.
 - 1. Place 100 mm (4 inches) of fine granular fill over the vapor barrier to act as a blotter for concrete slab.
 - 2. Vapor barrier joints lapped 150 mm (6 inches) and sealed with compatible waterproof pressure-sensitive tape.
 - 3. Patch punctures and tears.

3.4 MOISTURE VAPOR EMISSIONS & ALKALINITY CONTROL SEALER:

- A. Sealer is applied on the day of the concrete pour or as as soon as harsh weather permits, prior to any other chemical treatments for concrete slabs either on grade, below grade or above grade receiving resilient flooring, such as, sheet vinyl, vinyl composition tile, rubber, wood flooring, carpet, epoxy coatings and overlays.
- B. Manufacturer's representative will be on the site the day of concrete pour to install or train its application and document. He shall return on every application thereafter to verify that proper procedures are followed.

- Apply Sealer to concrete slabs as soon as final finishing operations are complete and the concrete has hardened sufficiently to sustain floor traffic without damage.
- 2. Spray apply Sealer at the rate of 20 m^2 (200 square feet) per gallon. Lightly broom product evenly over the substrate and product has completely penetrated the surface.
- 3. If within two (2) hours after initial application areas are subjected to heavy rainfall and puddling occurs, reapply Sealer product to these areas as soon as weather condition permits.

3.5 CONSTRUCTION JOINTS:

- A. Unless otherwise shown, location of construction joints to limit individual placement shall not exceed 24,000 mm (80 feet) in any horizontal direction, except slabs on grade which shall have construction joints shown. Allow 48 hours to elapse between pouring adjacent sections unless this requirement is waived by Resident Engineer.
- B. Locate construction joints in suspended floors near the quarter-point of spans for slabs, beams or girders, unless a beam intersects a girder at center, in which case joint in girder shall be offset a distance equal to twice width of beam. Provide keys and inclined dowels as shown. Provide longitudinal keys as shown.
- C. Place concrete for columns slowly and in one operation between joints. Install joints in concrete columns at underside of deepest beam or girder framing into column.
- D. Allow 2 hours to elapse after column is cast before concrete of supported beam, girder or slab is placed. Place girders, beams, grade beams, column capitals, brackets, and haunches at the same time as slab unless otherwise shown.

3.6 PLACING CONCRETE:

- A. Preparation:
 - 1. Remove hardened concrete, wood chips, shavings and other debris from forms.
 - 2. Remove hardened concrete and foreign materials from interior surfaces of mixing and conveying equipment.
 - 3. Have forms and reinforcement inspected and approved by Resident Engineer before depositing concrete.
 - 4. Provide runways for wheeling equipment to convey concrete to point of deposit. Keep equipment on runways which are not supported by or bear

on reinforcement. Provide similar runways for protection of vapor barrier on coarse fill.

- B. Bonding: Before depositing new concrete on or against concrete which has been set, thoroughly roughen and clean existing surfaces of laitance, foreign matter, and loose particles.
 - 1. Preparing surface for applied topping:
 - a. Remove laitance, mortar, oil, grease, paint, or other foreign material by sand blasting. Clean with vacuum type equipment to remove sand and other loose material.
 - b. Broom clean and keep base slab wet for at least four hours before topping is applied.
 - c. Use a thin coat of one part Portland cement, 1.5 parts fine sand, bonding admixture; and water at a 50: 50 ratio and mix to achieve the consistency of thick paint. Apply to a damp base slab by scrubbing with a stiff fiber brush. New concrete shall be placed while the bonding grout is still tacky.
- C. Conveying Concrete: Convey concrete from mixer to final place of deposit by a method which will prevent segregation. Method of conveying concrete subject to approval of Resident Engineer.
- D. Placing: For special requirements see Paragraphs, HOT WEATHER and COLD WEATHER.
 - Do not place concrete when weather conditions prevent proper placement and consolidation, or when concrete has attained its initial set, or has contained its water or cement content more than 1 1/2 hours.
 - Deposit concrete in forms as near as practicable in its final position. Prevent splashing of forms or reinforcement with concrete in advance of placing concrete.
 - 3. Do not drop concrete freely more than 3000 mm (10 feet) for concrete containing the high-range water-reducing admixture (superplasticizer) or 1500 mm (5 feet) for conventional concrete. Where greater drops are required, use a tremie or flexible spout (canvas elephant trunk), attached to a suitable hopper.
 - 4. Discharge contents of tremies or flexible spouts in horizontal layers not exceeding 500 mm (20 inches) in thickness, and space tremies such as to provide a minimum of lateral movement of concrete.
 - 5. Continuously place concrete until an entire unit between construction joints is placed. Rate and method of placing concrete shall be such that no concrete between construction joints will be deposited upon

or against partly set concrete, after it's initial set has taken place, or after 45 minutes of elapsed time during concrete placement.

- 6. On bottom of members with severe congestion of reinforcement, deposit 25 mm (1 inch) layer of flowing concrete containing the specified high-range water-reducing admixture (superplasticizer). Successive concrete lifts may be a continuation of this concrete or concrete with a conventional slump.
- 7. Concrete on metal deck:
 - a. Concrete on metal deck shall be minimum thickness shown. Allow for deflection of steel beams and metal deck under the weight of wet concrete in calculating concrete quantities for slab.
 - The Contractor shall become familiar with deflection characteristics of structural frame to include proper amount of additional concrete due to beam/deck deflection.
- E. Consolidation: Conform to ACI 309. Immediately after depositing, spade concrete next to forms, work around reinforcement and into angles of forms, tamp lightly by hand, and compact with mechanical vibrator applied directly into concrete at approximately 450 mm (18 inch) intervals. Mechanical vibrator shall be power driven, hand operated type with minimum frequency of 5000 cycles per minute having an intensity sufficient to cause flow or settlement of concrete into place. Vibrate concrete to produce thorough compaction, complete embedment of reinforcement and concrete of uniform and maximum density without segregation of mix. Do not transport concrete in forms by vibration.
 - 1. Use of form vibration shall be approved only when concrete sections are too thin or too inaccessible for use of internal vibration.
 - 2. Carry on vibration continuously with placing of concrete. Do not insert vibrator into concrete that has begun to set.

3.7 HOT WEATHER:

Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.8 COLD WEATHER:

Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

3.9 PROTECTION AND CURING:

- A. Conform to ACI 308: Initial curing shall immediately follow the finishing operation. Protect exposed surfaces of concrete from premature drying, wash by rain and running water, wind, mechanical injury, and excessively hot or cold temperatures. Keep concrete not covered with membrane or other curing material continuously wet for at least 7 days after placing, except wet curing period for high-early-strength concrete shall be not less than 3 days. Keep wood forms continuously wet to prevent moisture loss until forms are removed. Cure exposed concrete surfaces as described below. Other curing methods may be used if approved by Resident Engineer.
 - Liquid curing and sealing compounds: Apply by power-driven spray or roller in accordance with the manufacturer's instructions. Apply immediately after finishing. Maximum coverage 10m²/L (400 square feet per gallon) on steel troweled surfaces and 7.5m²/L (300 square feet per gallon) on floated or broomed surfaces for the curing/sealing compound.
 - Plastic sheets: Apply as soon as concrete has hardened sufficiently to prevent surface damage. Utilize widest practical width sheet and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with tape.
 - Paper: Utilize widest practical width paper and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with sand, wood planks, pressure-sensitive tape, mastic or glue.

3.10 REMOVAL OF FORMS:

- A. Remove in a manner to assure complete safety of structure after the following conditions have been met.
 - Where structure as a whole is supported on shores, forms for beams and girder sides, columns, and similar vertical structural members may be removed after 24 hours, provided concrete has hardened sufficiently to prevent surface damage and curing is continued without any lapse in time as specified for exposed surfaces.
 - 2. Take particular care in removing forms of architectural exposed concrete to insure surfaces are not marred or gouged, and that corners and arises are true, sharp and unbroken.

- B. Control Test: Use to determine if the concrete has attained sufficient strength and curing to permit removal of supporting forms. Cylinders required for control tests taken in accordance with ASTM C172, molded in accordance with ASTM C31, and tested in accordance with ASTM C39. Control cylinders cured and protected in the same manner as the structure they represent. Supporting forms or shoring not removed until strength of control test cylinders have attained at least 70 percent of minimum 28-day compressive strength specified. For post-tensioned systems supporting forms and shoring not removed until stressing is completed. Exercise care to assure that newly unsupported portions of structure are not subjected to heavy construction or material loading.
- C. Reshoring: Reshoring is required if superimposed load plus dead load of the floor exceeds the capacity of the floor at the time of loading. In addition, for flat slab/plate, reshoring is required immediately after stripping operations are complete and not later than the end of the same day. Reshoring accomplished in accordance with ACI 347 at no additional cost to the Government.

3.11 CONCRETE SURFACE PREPARATION:

- A. Metal Removal: Unnecessary metal items cut back flush with face of concrete members.
- B. Patching: Maintain curing and start patching as soon as forms are removed. Do not apply curing compounds to concrete surfaces requiring patching until patching is completed. Use cement mortar for patching of same composition as that used in concrete. Use white or gray Portland cement as necessary to obtain finish color matching surrounding concrete. Thoroughly clean areas to be patched. Cut out honeycombed or otherwise defective areas to solid concrete to a depth of not less than 25 mm (1 inch). Cut edge perpendicular to surface of concrete. Saturate with water area to be patched, and at least 150 mm (6 inches) surrounding before placing patching mortar. Give area to be patched a brush coat of cement grout followed immediately by patching mortar. Cement grout composed of one part Portland cement, 1.5 parts fine sand, bonding admixture, and water at a 50:50 ratio, mix to achieve consistency of thick paint. Mix patching mortar approximately 1 hour before placing and remix occasionally during this period without addition of water. Compact mortar into place and screed slightly higher than surrounding surface. After initial shrinkage has occurred, finish to match color and texture of adjoining surfaces. Cure patches as specified for other concrete. Fill form tie holes which extend entirely

through walls from unexposed face by means of a pressure gun or other suitable device to force mortar through wall. Wipe excess mortar off exposed face with a cloth.

C. Upon removal of forms, clean vertical concrete surface that is to receive bonded applied cementitious application with wire brushes or by sand blasting to remove unset material, laitance, and loose particles to expose aggregates to provide a clean, firm, granular surface for bond of applied finish.

3.12 CONCRETE FINISHES:

- A. Vertical and Overhead Surface Finishes:
 - Unfinished areas: Vertical and overhead concrete surfaces exposed in pipe basements, elevator and dumbwaiter shafts, pipe spaces, pipe trenches, above suspended ceilings, manholes, and other unfinished areas will not require additional finishing.
 - 2. Interior and exterior exposed areas to be painted: Remove fins, burrs and similar projections on surfaces flush, and smooth by mechanical means approved by Resident Engineer, and by rubbing lightly with a fine abrasive stone or hone. Use ample water during rubbing without working up a lather of mortar or changing texture of concrete.
 - 3. Interior and exterior exposed areas finished: Give a grout finish of uniform color and smooth finish treated as follows:
 - a. After concrete has hardened and laitance, fins and burrs removed, scrub concrete with wire brushes. Clean stained concrete surfaces by use of a hone stone.
 - b. Apply grout composed of one part of Portland cement, one part fine sand, smaller than a 600 μ m (No. 30) sieve. Work grout into surface of concrete with cork floats or fiber brushes until all pits, and honeycombs are filled.
 - c. After grout has hardened slightly, but while still plastic, scrape grout off with a sponge rubber float and, about 1 hour later, rub concrete vigorously with burlap to remove any excess grout remaining on surfaces.
 - d. In hot, dry weather use a fog spray to keep grout wet during setting period. Complete finish of area in same day. Make limits of finished areas at natural breaks in wall surface. Leave no grout on concrete surface overnight.
 - 4. Textured: Finish as specified. Maximum quantity of patched area 0.2 $\rm m^2$ (2 square feet) in each 93 $\rm m^2$ (1000 square feet) of textured surface.

- B. Slab Finishes:
 - 1. Monitoring and Adjustment: Provide continuous cycle of placement, measurement, evaluation and adjustment of procedures to produce slabs within specified tolerances. Monitor elevations of structural steel in key locations before and after concrete placement to establish typical deflection patterns for the structural steel. Determine elevations of cast-in-place slab soffits prior to removal of shores. Provide information to Resident Engineer and floor consultant for evaluation and recommendations for subsequent placements.
 - 2. Set perimeter forms to serve as screed using either optical or laser instruments. For slabs on grade, wet screeds may be used to establish initial grade during strike-off, unless Resident Engineer determines that the method is proving insufficient to meet required finish tolerances and directs use of rigid screed guides. Where wet screeds are allowed, they shall be placed using grade stakes set by optical or laser instruments. Use rigid screed guides, as opposed to wet screeds, to control strike-off elevation for all types of elevated (non slab-on-grade) slabs. Divide bays into halves or thirds by hard screeds. Adjust as necessary where monitoring of previous placements indicates unshored structural steel deflections to other than a level profile.
 - 3. Place slabs monolithically. Once slab placement commences, complete finishing operations within same day. Slope finished slab to floor drains where they occur, whether shown or not.
 - 4. Use straightedges specifically made for screeding, such as hollow magnesium straightedges or power strike-offs. Do not use pieces of dimensioned lumber. Strike off and screed slab to a true surface at required elevations. Use optical or laser instruments to check concrete finished surface grade after strike-off. Repeat strike-off as necessary. Complete screeding before any excess moisture or bleeding water is present on surface. Do not sprinkle dry cement on the surface.
 - 5. Immediately following screeding, and before any bleed water appears, use a 3000 mm (10 foot) wide highway straightedge in a cutting and filling operation to achieve surface flatness. Do not use bull floats or darbys, except that darbying may be allowed for narrow slabs and restricted spaces.
 - 6. Wait until water sheen disappears and surface stiffens before proceeding further. Do not perform subsequent operations until

concrete will sustain foot pressure with maximum of 6 mm (1/4 inch) indentation.

- 7. Scratch Finish: Finish base slab to receive a bonded applied cementitious application as indicated above, except that bull floats and darbys may be used. Thoroughly coarse wire broom within two hours after placing to roughen slab surface to insure a permanent bond between base slab and applied materials.
- 8. Float Finish: Slabs to receive unbonded toppings, steel trowel finish, fill, mortar setting beds, or a built-up roof, and ramps, stair treads, platforms (interior and exterior), and equipment pads shall be floated to a smooth, dense uniform, sandy textured finish. During floating, while surface is still soft, check surface for flatness using a 3000 mm (10 foot) highway straightedge. Correct high spots by cutting down and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections and re-float to a uniform texture.
- 9. Steel Trowel Finish: Concrete surfaces to receive resilient floor covering or carpet, monolithic floor slabs to be exposed to view in finished work, future floor roof slabs, applied toppings, and other interior surfaces for which no other finish is indicated. Steel trowel immediately following floating. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure to compact cement paste and form a dense, smooth surface. Finished surface shall be smooth, free of trowel marks, and uniform in texture and appearance.
- 10. Broom Finish: Finish exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after surfaces have been floated. Brush in a direction transverse to main traffic. Match texture approved by Resident Engineer from sample panel.
- 11. Remedial Measures for Rejected Slabs: Correct rejected slab areas by grinding, planing, surface repair with underlayment compound or repair topping, retopping, or removal and replacement of entire rejected slab areas, as directed by Resident Engineer, until a slab finish constructed within specified tolerances is accepted.

3.14 SURFACE TREATMENTS:

- A. Use on exposed concrete floors and concrete floors to receive carpeting except those specified to receive non-slip finish.
- B. Liquid Densifier/Sealer: Apply in accordance with manufacturer's directions just prior to completion of construction.

C. Non-Slip Finish: Except where safety nosing and tread coverings are shown, apply non-slip abrasive aggregate to treads and platforms of concrete steps and stairs, and to surfaces of exterior concrete ramps and platforms. Broadcast aggregate uniformly over concrete surface at rate of application of 8% per 1/10th m² (7.5 percent per square foot) of area. Trowel concrete surface to smooth dense finish. After curing, rub treated surface with abrasive brick and water to slightly expose abrasive aggregate.

3.15 APPLIED TOPPING:

- A. Separate concrete topping on floor base slab of thickness and strength shown. Topping mix shall have a maximum slump of 200 mm (8 inches) for concrete containing a high-range water-reducing admixture (superplasticizer) and 100 mm (4 inches) for conventional mix. Neatly bevel or slope at door openings and at slabs adjoining spaces not receiving an applied finish.
- B. Placing: Place continuously until entire section is complete, struck off with straightedge, leveled with a highway straightedge or highway bull float, floated and troweled by machine to a hard dense finish. Slope to floor drains as required. Do not start floating until free water has disappeared and no water sheen is visible. Allow drying of surface moisture naturally. Do not hasten by "dusting" with cement or sand.

- - - E N D - - -

Page intentionally left blank

SECTION 03 37 13 SHOTCRETE

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the requirements for materials, proportioning, and application of shotcrete using either dry-mix or wet-mix process.

1.2 DEFINITION

Mortar or concrete pneumatically projected at high velocity onto a surface; also known as air-blown mortar; also pneumatically applied mortar or concrete, sprayed mortar and gunned concrete.

1.3 RELATED WORK

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Formwork and reinforcement: Section 03 30 00, CAST-IN-PLACE CONCRETE.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Design Mix: Test Reports and Proportions.
- C. Shop Drawings: Reinforcing Steel.
- D. Two 300 mm x 300 mm x 25 mm (12 inch by 12 inch by 1 inch) sample panels showing required finish. Submit panels within 30 days after receipt of notice to proceed.
- E. Aggregate gradation.
- F. Certificates: Contractor's qualifications as specified.

1.5 QUALITY CONTROL

- A. Contractor Qualifications.
 - Work in this section shall be provided only by a Contractor specializing in and possessing the equipment, knowledge, and skilled operators for application of shotcrete.
 - 2. Furnish evidence to Resident Engineer that Contractor conforms to above requirements, has been specializing in this work for a period of at least five years, and will use only experienced shotcrete foremen, nozzlemen and delivery equipment operators on the work.
 - 3. Conform to ACI 506R, Paragraphs 4.2 and 4.3, for qualifications and duties of craftsmen.
- B. Tolerances:
 - 1. Cover of reinforcement: ACI 506.2, Paragraph 3.6.2.

 Alignment and thickness of shotcrete shall be controlled by installing ground wires. Alignment and thickness control shall conform to ACI 506R Section 5.6.

1.6 PRECONSTRUCTION TESTING

- A. Conform to the requirements of ACI 506R, Paragraph 6.4.
- B. Testing laboratory approved by the Resident Engineer and reimbursed by Contractor shall design dry or wet mix, as applicable, to produce compressive strengths indicated on drawings.
- C. Make 2 test panels for each mix design, 450 mm (18 inches) square and 75 mm (3 inch) minimum thickness. Take 5 cores or cubes from each 75 mm (3 inch) panel for compressive strength testing in accordance with ACI 506R, Paragraph 6.4.

Using the proposed mix design make at least two job-site sample panels approximately 2400 mm (8 feet) high and 1800 mm (6 feet) wide with thicknesses shown. The job-site panels shall contain reinforcing typical of the work to be installed and other details to simulate actual job conditions. Finish sample panels as required for work to be installed. Sample panels must be approved by the V.A. before any work can begin.

1.7 CONSTRUCTION TESTING

A. Make one test panel 450 mm (18 inches) square and 75 mm (3 inches) thick for each half-day's work or portion thereof. Provide test panels to a testing laboratory approved by Resident Engineer and reimbursed by the contractor. Five compressive strength specimens will be obtained from each panel and tested for compressive strength in accordance with ASTMC42. Two (2) samples are to be tested at 7 days and 28 days after application. The fifth sample should be retained for 56 days should additional testing be required. Strength test results are to be reported to the Resident Engineer 24 hours after completion of test.

1.8 DELIVERY, HANDLING, AND STORAGE

- A. Properly deliver and handle materials to prevent contamination, segregation, or damage to materials.
- B. Store cement in weathertight enclosures to protect against dampness and contamination.
- C. Prevent segregation and contamination of aggregates by proper arrangement and use of stockpiles.
- D. Store admixtures properly to prevent contamination, evaporation, freezing, or other damage.

1.9 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI): 304R-00(2009).....Guide for Measuring, Mixing, Transporting, and Placing Concrete 506R-05.....Guide to Shotcrete 506.2-95.....Specification for Shotcrete 506.4R(R2004).....Guide for the Evaluation of Shotcrete C. American Society for Testing and Materials (ASTM):
- A185/A185M-07.....Steel Welded Wire Reinforcement, Plain, for Concrete A615/A615M-09.....Deformed and Plain Carbon Steel Bars for Concrete Reinforcement C33/C33M-11....Concrete Aggregates
 - C94/C94M-10.....Ready-Mixed Concrete C150/C150M-09....Portland Cement C260/C260M-10....Air-Entraining Admixtures for Concrete
 - C494/C494-10.....Chemical Admixtures for Concrete

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Portland Cement: ASTM C150, Type I or II.
- B. Aggregate: ASTM C33, Gradation Table 2.1

TABLE 2.1 -- GRADATION LIMIT FOR COMBINED AGGREGATES

Sieve Size, U.S.				
standard square	Percent by Weight Passing Individual Sieves			
mesh				
	Gradation No. 1	Gradation No. 2	Gradation No. 3	
20 mm 3/4 inch			100	
13 mm 1/2 inch		100	80-95	
10 mm 3/8 inch	100	90-100	70-90	
No. 4	95-100	70-85	50-70	
No. 8	80-100	50-70	35-55	
No. 16	50-85	35-55	20-40	
No. 30	25-60	20-35	10-30	
No. 50	10-30	8-20	5-17	
No. 100	2-10	2-10	2-10	

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

- C. Chemical Admixtures: ASTM C494.
- D. Air-entraining Admixture: ASTM C260.
- E. Water: Fresh, Clean, and Potable
- F. Reinforcing Steel: ASTM A615, grade as shown.
- G. Welded Wire Fabric: ASTM A185.

PART 3 - EXECUTION

3.1 PROPORTIONING, DELIVERY AND MIXING

- A. Proportioning: Mix shall be designed by Contractor-retained testing laboratory; see "PRECONSTRUCTION TESTING" hereinbefore. Maintain watercement ratio between 0.35 to 0.50 by weight.
- B. Mixing Processes:
 - Mixing, General: Strength of mix is specified on the drawings. At Contractor's option, use either the dry or wet mix process. Discharge entire batch before recharging. Clean mixer at least once every 8-hour shift or portion thereof. Reject material mixed and standing for 45 minutes; remixing or tempering not permitted.
 - 2. Dry Mix Process: Conform to ACI 506R, Paragraph 1.6.1.
 - 3. Wet Mix Process: Conform to ACI 506R, Paragraph 1.6.2.

3.2 EQUIPMENT, DRY MIX PROCESS

- A. Batching and Mixing Equipment: Batch by weighing, use rotating mixer or adequate capacity for dry-mixing aggregate and cement for continuous supply of material to gun, all conforming to ACI 506R, Paragraph 3.5.
- B. Delivery equipment:
 - Gun and Nozzle: Premixing type conforming to the requirements of ACI 506R, Paragraphs 3.2 and 3.7 designed for material delivery and water injection.
 - 2. Air Compressor and Hoses: Standard type, of capacity to provide without interruption, pressures and volume of air necessary for longest hose delivery; conform to ACI 506R, Table 3.1. Make allowances for air consumed by separate blow pipe in blowing away rebound, cleaning reinforcing and incidental uses.
 - 3. Water Supply: Conform to ACI 506R, Paragraph 3.8.1 with adequate capacity to maintain water pressure approximately 65 N (15 pounds) higher than highest air pressure required, both air and water pressure uniformly steady, non-pulsating.

3.3 EQUIPMENT, WET MIX PROCESS

A. Batching and Mixing Equipment: ACI 506R, Paragraph 3.5. Batch by weighing; use rotating mixing equipment and mix in accordance with ACI 304R, and ASTM C94 for ready-mixed concrete.

- B. Delivery Equipment: Use pneumatic feed or positive displacement type of design and size capable of delivering premixed materials accurately, uniformly and continuously through the hose, all in accordance with ACI 506R, Paragraphs 3.3 and 3.7.
- C. Air Supply: ACI 506R, Paragraph 3.4.2.

3.4 ALIGNMENT CONTROL

- A. General: To establish thickness and surface planes or shotcrete build-up provide ground wires, taut, secure, true to line and plane, conforming to ACI 506R, Paragraph 5.6.
- B. Reinforcing Positioning: Check that reinforcing is positioned and sized all in accordance with ACI 506R, Paragraph 5.4.

3.5 EXHAUST SYSTEM

- A. Construct a sealed air barrier around immediate area of work as approved by Resident Engineer. Construct a sealed air barrier prior to any application within confines of the Medical Center.
- B. Continuously exhaust work area to outside creating a negative pressure within area. Do not locate air exhaust near any Medical Center air intakes.

3.6 SHOOTING

- A. General: ACI 506R, Paragraph 8.5.7. Shoot and fill corners first, with continuous uniform material flow from nozzle held approximately 600 mm to 1500 mm (2 to 5 feet) from the work, at angle normal to the surface.
 - to 1500 mm (2 to 5 lett, from the work, at angle normal to the surface.
 - 1. Shoot around reinforcing with nozzle close to encase reinforcement as illustrated in ACI 506R, Figure 8.4, left column.
 - 2. If flow is not uniform and slugs, sand spots or wet sloughs result, turn nozzle away until faulty work is cut out and repaired.
 - 3. Do no shotcrete work if temperature is below 4° C (40 $^{\circ}$ F) without providing continuous heat and adequate protection from freezing.
- B. Preparation of Surfaces to Receive Shotcrete: ACI 506R, Paragraph 5.2, as applicable to the work, as approved.
- C. Rebound: ACI 506R, Paragraph 8.5.10. Do not work rebound into construction nor salvage rebound for subsequent batching.
- D. Suspend application if:
 - 1. High wind prevents nozzlemen from proper application of material.
 - 2. Weather approaches freezing and shotcrete cannot be protected.
 - 3. Rain, other than a very light sprinkle, occurs which would wash cement out of freshly placed material.
- E. Time Between Coats:

- 1. In sloping, vertical or overhanging work, allow interval of time sufficient for initial, but not final, set to develop.
- 2. At development of initial set, lightly broom surface to remove any laitance to provide better bond with succeeding applications.
- F. Construction Joints:
 - 1. ACI 506R, Paragraph 5.7, tapering over a width of 300 mm (1 foot) to a 25 mm (1 inch) edge from board laid flat.
 - Before proceeding with additional shotcrete work, thoroughly clean joint and adjacent shotcrete, then wet and scour surfaces with air jet.
- G. Warm Weather Application: Prevent dryout resulting in cracking and separation by keeping surfaces continuously moist and/or covered with continuously moistened burlap for 7 days after shotcreting.
- H. Surface Finish: Bring final surfaces of shotcrete to an even plane, well formed corners either square or to radius shown, working up to ground wires using somewhat lower placing velocity than normal.
 - Remove ground wires to 20 mm (3/4 inch) back from surface and fill holes with shotcrete to adjacent surface elevations.
 - 2. Wood float surfaces to provide a smooth true finish.

3.7 CURING

ACI 506.2, Paragraph 3.7.

3.8 HOT WEATHER SHOTCRETING

ACI 506R, Paragraph 8.8.

3.9 COLD WEATHER SHOTCRETING

ACI 506R, Paragraph 8.9.

3.10 PROTECTION AND CLEAN-UP

- A. Protection: Protect adjacent walls, windows, doors, other building surfaces, grounds and/or shrubs and property of others from damage by shotcreting, rebound and dust.
 - Construct a sealed dust partition to confine rebound and dust to immediate work area. Dust partition shall be integral with exhaust system. A negative air pressure shall be maintained within partitioned area during shotcrete applications to prevent dust leakage beyond area.
 - 2. Immediately clean all shotcrete materials and remove all rebound from site.
- B. Clean-up: Continuously remove rebound material to ensure that base, intermediate, and finish surfaces are clean and ready for bonding layers.

3.11 DEFECTIVE WORK

General work will be evaluated be the Resident Engineer or designated agent in accordance with ACI 506.4. If the evaluation reveals unbonded work or cores fail to meet specified strengths, or finishes are unsatisfactory, repair such defective work, as approved, without additional cost to the Government.

- - - END - - -

Page intentionally left blank

SECTION 04 05 13 MASONRY MORTARING

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies mortar materials and mixes.

1.2 RELATED WORK:

- A. Mortar used in Section:
 - 1. Section 04 05 16, MASONRY GROUTING.
 - 2. Section 04 20 00, UNIT MASONRY.
- B. Mortar Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 TESTING LABORATORY-CONTRACTOR RETAINED

- A. Engage a commercial testing laboratory approved by Resident Engineer to perform tests specified below.
- B. Submit information regarding testing laboratory's facilities and qualifications of technical personnel to Resident Engineer.

1.4 TESTS

- A. Test mortar and materials specified.
- B. Certified test reports.
- C. Identify materials by type, brand name and manufacturer or by origin.
- D. Do not use materials until laboratory test reports are approved by Resident Engineer.
- E. After tests have been made and materials approved, do not change without additional test and approval of Resident Engineer.
- F. Testing:
 - Test materials proposed for use for compliance with specifications in accordance with test methods contained in referenced specifications and as follows:
 - 2. Mortar:
 - a. Test for compressive strength and water retention; ASTM C270.
 - b. Mortar compressive strengths 28 days as follows: Type M: Minimum 17230 kPa (2500 psi) at 28 days. Type S: Minimum 12400 kPa (1800 psi) at 28 days. Type N: Minimum 5170 kPa (750 psi) at 28 days.
 - 3. Cement:
 - a. Test for water soluble alkali (nonstaining) when nonstaining cement is specified.
 - b. Nonstaining cement shall contain not more than 0.03 percent water soluble alkali.

- 4. Sand: Test for deleterious substances, organic impurities, soundness and grading.
- G. During progress of work, testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES, takes and tests samples as specified in that section. Testing procedures and test methods in ASTM C780.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Certificates:
- Testing laboratory's facilities and qualifications of its technical personnel.
 - 2. Indicating that following items meet specifications:
 - a. Portland cement.
 - b. Masonry cement.
 - c. Mortar cement.
 - d. Hydrated lime.
 - e. Fine aggregate (sand).
 - g. Color admixture.
- C. Laboratory Test Reports:
 - 1. Mortar, each type.
 - 2. Admixtures.
- D. Manufacturer's Literature and Data:
 - 1. Cement, each kind.
 - 2. Hydrated lime.
 - 3. Admixtures.
 - 4. Liquid acrylic resin.

1.6 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver masonry materials in original sealed containers marked with name of manufacturer and identification of contents.
- B. Store masonry materials under waterproof covers on planking clear of ground, and protect damage from handling, dirt, stain, water and wind.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

C40-04..... Aggregates for Concrete

C91-05..... Masonry Cement
Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

C109-08.....Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50-MM Cube Specimens) C144-04.....Aggregate for Masonry Mortar C150-09....Portland Cement C207-06....Hydrated Lime for Masonry Purposes C270-10....Mortar for Unit Masonry C307-03(R2008).....Tensile Strength of Chemical - Resistant Mortar, Grouts, and Monolithic Surfacing C321-00(R2005)....Bond Strength of Chemical-Resistant Mortars C348-08.....Flexural Strength of Hydraulic Cement Mortars C595-10....Blended Hydraulic Cement C780-10....Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry C979-10.....Pigments for Integrally Colored Concrete C1329-05.....Mortar Cement

PART 2 - PRODUCTS

2.1 HYDRATED LIME

ASTM C207, Type S.

2.2 AGGREGATE FOR MASONRY MORTAR

- A. ASTM C144 and as follows:
 - 1. Light colored sand for mortar for laying face brick.
 - 2. White plastering sand meeting sieve analysis for mortar joints for pointing.
- B. Test sand for color value in accordance with ASTM C40. Sand producing color darker than specified standard is unacceptable.

2.3 BLENDED HYDRAULIC CEMENT

ASTM C595, Type IS, IP.

2.4 MASONRY CEMENT

- A. ASTM C91. Type N, S, or M.
- B. Use white masonry cement whenever white mortar is specified.

2.5 MORTAR CEMEMT

ASTM C1329, Type N, S or M.

2.6 PORTLAND CEMENT

A. ASTM C150, Type I.

B. Use white Portland cement wherever white mortar is specified.

2.7 LIQUID ACRYLIC RESIN

A formulation of acrylic polymers and modifiers in liquid form designed for use as an additive for mortar to improve physical properties.

2.8 WATER

Potable, free of substances that are detrimental to mortar, masonry, and metal.

2.9 MASONRY MORTAR

- A. Conform to ASTM C270.
- B. Admixtures:
 - Do not use mortar admixtures, and color admixtures unless approved by Resident Engineer.
 - 2. Submit laboratory test report showing effect of proposed admixture on strength, water retention, and water repellency of mortar.
 - 3. Do not use antifreeze compounds.
- C. Colored Mortar:
 - 1. Maintain uniform mortar color for exposed work throughout.
 - 2. Match mortar color in approved sample or mock-up.
 - Color of mortar for exposed work in alteration work to match color of existing mortar unless specified otherwise in section 09 06 00, SCHEDULE FOR FINISHES.
- D. Color Admixtures:
 - 1. Proportion as specified by manufacturer.
 - 2. For color, see Section 09 06 00, SCHEDULE FOR FINISHES.

2.10 COLOR ADMIXTURE

- A. Pigments: ASTM C979.
- B. Use mineral pigments only. Organic pigments are not acceptable.
- C. Pigments inert, stable to atmospheric conditions, nonfading, alkali resistant and water insoluble.

PART 3 - EXECUTION

3.1 MIXING

- A. Mix in a mechanically operated mortar mixer.
 - 1. Mix mortar for at least three minutes but not more than five minutes.
- B. Measure ingredients by volume. Measure by the use of a container of known capacity.
- C. Mix water with dry ingredients in sufficient amount to provide a workable mixture which will adhere to vertical surfaces of masonry units.

3.2 MORTAR USE LOCATION

A. Use Type S mortar for other masonry work, except as otherwise specified.

- - - E N D - - -

SECTION 04 05 16 MASONRY GROUTING

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies grout materials and mixes.

1.2 RELATED WORK:

- A. Grout used in Section:
 - 1. Section 04 20 00, UNIT MASONRY.
- B. Grout Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 TESTS:

- A. Test grout and materials specified.
- B. Certified test reports.
- C. Identify materials by type, brand name and manufacturer or by origin.
- D. Do not use materials until laboratory test reports are approved by Resident Engineer.
- E. After tests have been made and materials approved, do not change without additional test and approval of Resident Engineer.
- F. Testing:
 - Test materials proposed for use for compliance with specifications in accordance with test methods contained in referenced specifications and as follows:
 - 2. Grout:
 - a. Test for compressive strength; ASTM C1019.
 - b. Grout compressive strength of 13790 kPa (2000 psi) at 28 days.
 - 3. Cement:
 - a. Test for water soluble alkali (nonstaining) when nonstaining cement is specified.
 - b. Nonstaining cement shall contain not more than 0.03 percent water soluble alkali.
 - Sand: Test for deleterious substances, organic impurities, soundness and grading.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Certificates:
 - 1. Indicating that following items meet specifications:
 - a. Portland cement.
 - b. Masonry cement.

- c. Grout.
- d. Hydrated lime.
- e. Fine aggregate (sand).
- f. Coarse aggregate for grout.
- g. Color admixture.
- C. Laboratory Test Reports:
 - 1. Grout, each type.
 - 2. Admixtures.
- D. Manufacturer's Literature and Data:
 - 1. Cement, each kind.
 - 2. Hydrated lime.
 - 3. Admixtures.
 - 4. Liquid acrylic resin.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Deliver masonry materials in original sealed containers marked with name of manufacturer and identification of contents.
- B. Store masonry materials under waterproof covers on planking clear of ground, and protect damage from handling, dirt, stain, water and wind.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):
 - C40-04.....Organic Impurities in Fine Aggregates for Concrete
 - C91-05..... Masonry Cement
 - C150-09.....Portland Cement
 - C207-06..... Hydrated Lime for Masonry Purposes
 - C404-07.....Aggregate for Masonry Grout
 - C476-10.....Grout for Masonry
 - C595-10.....Blended Hydraulic Cement
 - C979-10.....Pigments for Integrally Colored Concrete
 - C1019-11..... Sampling and Testing Grout
- PART 2 PRODUCTS
- 2.1 HYDRATED LIME:

ASTM C207, Type S.

2.2 AGGREGATE FOR MASONRY GROUT:

ASTM C404, Size 8.

2.3 BLENDED HYDRAULIC CEMENT:

ASTM C595, Type IS, IP.

2.4 MASONRY CEMENT:

- A. ASTM C91. Type N, S, or M.
- B. Use white masonry cement whenever white mortar is specified.

2.5 PORTLAND CEMENT:

- A. ASTM C150, Type I.
- B. Use white Portland cement wherever white mortar is specified.

2.6 LIQUID ACRYLIC RESIN:

A formulation of acrylic polymers and modifiers in liquid form designed for use as an additive for mortar to improve physical properties.

2.7 WATER:

Potable, free of substances that are detrimental to grout, masonry, and metal.

2.8 GROUT:

- A. Conform to ASTM C476 except as specified.
- B. Grout type proportioned by volume as follows:
 - 1. Fine Grout:
 - a. Portland cement or blended hydraulic cement: one part.
 - b. Hydrated lime: 0 to 1/10 part.
 - c. Fine aggregate: 2-1/4 to three times sum of volumes of cement and lime used.
 - 2. Coarse Grout:
 - a. Portland cement or blended hydraulic cement: one part.
 - b. Hydrated lime: 0 to 1/10 part.
 - c. Fine aggregate: 2-1/4 to three times sum of volumes of cement and lime used.
 - d. Coarse aggregate: one to two times sum of volumes of cement and lime used.
 - 3. Sum of volumes of fine and coarse aggregates: Do not exceed four times sum of volumes of cement and lime used.

2.9 COLOR ADMIXTURE:

- A. Pigments: ASTM C979.
- B. Use mineral pigments only. Organic pigments are not acceptable.
- C. Pigments inert, stable to atmospheric conditions, nonfading, alkali resistant and water insoluble.

PART 3 - EXECUTION

3.1 MIXING:

- A. Mix in a mechanically operated grout mixer.
 - 1. Mix grout for at least five minutes.
- B. Measure ingredients by volume. Measure by the use of a container of known capacity.
- C. Mix water with grout dry ingredients in sufficient amount to bring grout mixture to a pouring consistency.

3.2 GROUT USE LOCATIONS:

- A. Use fine grout for filling wall cavities and cells of concrete masonry units where the smallest dimension is 50 mm (2 inches) or less.
- B. Use either fine grout or coarse grout for filling wall cavities and cells of concrete masonry units where the smallest dimension is greater than 50 mm (2 inches).
- C. Do not use grout for filling bond beam or lintel units.

- - - E N D - - -

SECTION 04 20 00 UNIT MASONRY

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for construction of masonry unit walls.

1.2 RELATED WORK

- A. Mortars and grouts: Section 04 05 13, MASONRY MORTARING, Section 04 05 16, MASONRY GROUTING.
- B. Cavity insulation: Section 07 21 13, THERMAL INSULATION.
- C. Sealants and sealant installation: Section 07 92 00, JOINT SEALANTS.
- D. Color and texture of masonry units: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Samples:
 - Face brick, sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints.
 - 2. Concrete masonry units, when exposed in finish work.
 - Anchors, and ties, one each and joint reinforcing 1200 mm (48 inches) long.
 - 4. Structural clay tile units.
 - 5. Glazed structural clay facing tile, clipped panels (triplicate) of four wall units with base units, showing color range, each color and texture.
- C. Shop Drawings:
 - 1. Special masonry shapes.
 - Drawings, showing reinforcement, applicable dimensions and methods of hanging soffit or lintel masonry and reinforcing masonry for embedment of anchors for hung fixtures.
 - Ceramic glazed structural facing tile or concrete masonry units for typical window and door openings, and, for special conditions as affected by structural conditions.
 - 4. Shop Drawings: Submit shop drawings for fabrication, bending, and placement of reinforcing bars. Comply with ACI 315. Show bar schedules, diagrams of bent bars, stirrup spacing, lateral ties and

other arrangements and assemblies as required for fabrication and placement of reinforcement for unit masonry work.

D. Certificates:

- Certificates signed by manufacturer, including name and address of contractor, project location, and the quantity, and date or dates of shipment of delivery to which certificate applies.
- Indicating that the following items meet specification requirements:
 a. Face brick.
 - b. Solid and load-bearing concrete masonry units, including fireresistant rated units.
 - c. Ceramic glazed facing brick.
 - d. Glazed structural clay facing tile.
 - e. Structural clay tile units.
- Testing laboratories facilities and qualifications of its principals and key personnel to perform tests specified.
- E. Laboratory Test Reports:
 - 1. Brick for pre-built masonry panels.
 - 2. Ceramic glazed facing brick.
- F. Manufacturer's Literature and Data:
 - 1. Anchors, ties, and reinforcement.
 - 2. Shear keys.
 - 3. Reinforcing bars.

1.4 WARRANTY

Warrant exterior masonry walls against moisture leaks and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be five years.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A951-06......Steel Wire for Masonry Joint Reinforcement. A615/A615M-09.....Deformed and Plain Billet-Steel Bars for Concrete Reinforcement.

A675/A675M-03(R2009)....Standard Specification for Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical PropertiesC34-03 Structural Clay Load-Bearing Wall Tile

C55-09.....Concrete Building Brick

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

C56-10.....Structural Clay Non-Load-Bearing Tile C62-0.....Building Brick (Solid Masonry Units Made From Clay or Shale) C67-09.....Sampling and Testing Brick and Structural Clay Tile C90-11.....Load-Bearing Concrete Masonry Units C126-10.....Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units C216-10..... Facing Brick (Solid Masonry Units Made From Clay or Shale) C476-10..... Standard Specification for Grout for Masonry C612-10......Mineral Fiber Block and Board Thermal Insulation C744-10..... Prefaced Concrete and Calcium Silicate Masonry Units. D1056-07.....Flexible Cellular Materials - Sponge or Expanded Rubber D2000-08.....Rubber Products in Automotive Applications D2240-05(R2010).....Rubber Property - Durometer Hardness D3574-08.....Flexible Cellular Materials-Slab, Bonded, and Molded Urethane Foams F1667-11......Fasteners: Nails, Spikes and Staples C. Masonry Industry Council: Hot and Cold Weather Masonry Construction Manual-98 (R2000). D. American Welding Society (AWS): D1.4-11 Structural Welding Code - Reinforcing Steel. E. Federal Specifications (FS): FF-S-107C-00.....Screws, Tapping and Drive F. Brick Industry Association - Technical Notes on Brick Construction (BIA): 11-2001.....Guide Specifications for Brick Masonry, Part I 11A-1988......Guide Specifications for Brick Masonry, Part II 11B-1988.....Guide Specifications for Brick Masonry, Part III Execution 11C-1998.....Guide Specification for Brick Masonry Engineered Brick Masonry, Part IV 11D-1988.....Guide Specifications for Brick Masonry Engineered Brick Masonry, Part IV continued G. Masonry Standards Joint Committee; Specifications for Masonry Structures TMS 602-08/ACI 530.1-08/ASCE 6-08 (2008 MSJC Book Version TMS-0402-08).

PART 2 - PRODUCTS

2.1 CONCRETE MASONRY UNITS

- A. Hollow and Solid Load-Bearing Concrete Masonry Units: ASTM C90.
 - 1. Unit Weight: medium weight.
 - 2. Fire rated units for fire rated partitions.
 - 3. Sizes: Modular.
 - For molded faces used as a finished surface, use concrete masonry units with uniform fine to medium surface texture unless specified otherwise.
 - Use bullnose concrete masonry units at corners exposed in finished work with 25 mm (one inch) minimum radius rounded vertical exterior corners (bullnose units).

2.2 SHEAR KEYS

- A. ASTM D2000, solid extruded cross-shaped section of rubber, neoprene, or polyvinyl chloride, with a durometer hardness of approximately 80 when tested in accordance with ASTM D2240, and a minimum shear strength of 3.5 MPa (500 psi).
- B. Shear key dimensions: Approximately 70 mm by 8 mm for long flange and 38 mm by 16 mm for short flange (2-3/4 inches by 5/16 inch for long flange, and 1-1/2 inches by 5/8 inch for short flange).

2.3 REINFORCEMENT:

- A. Steel Reinforcing Bars: ASTM A615, deformed bars, 420 MPa (Grade 60) for bars No. 10 to No. 57 (No. 3 to No. 18), except as otherwise indicated.
- B. Where 6 mm diameter (No. 2) bars are shown, provide plain, round, carbon steel bars, ASTM A675, 550 MPa (Grade 80).
- C. Shop-fabricate reinforcement bars which are shown to be bent or hooked.
- D. Joint Reinforcement:
 - 1. Form from wire complying with ASTM A951.
 - 2. Galvanized after fabrication.
 - 3. Width of joint reinforcement 40 mm (1 5/8-inches) less than nominal width of masonry wall or partition.
 - 4. Cross wires welded to longitudinal wires.
 - 5. Joint reinforcing at least 3000 mm (10 feet) in length.
 - 6. Joint reinforcing in rolls is not acceptable.
 - 7. Joint reinforcing that is crimped to form drip is not acceptable.
 - Maximum spacing of cross wires 400 mm (16 inches) to longitudinal wires.
 - 9. Ladder Design:
 - a. Longitudinal wires deformed 4 mm (0.16 inch) diameter.

- b. Cross wires 4 mm diameter.
- 10. Trussed Design:
 - a. Longitudinal and cross wires not less than 4 mm (0.16 inch nominal) diameter.
 - b. Longitudinal wires deformed.

2.6 ANCHORS, TIES, AND REINFORCEMENT

- A. Steel Reinforcing Bars: ASTM A615M, deformed bars, grade as shown.
- B. Joint Reinforcement:
 - 1. Form from wire complying with ASTM A951.
 - 2. Galvanized after fabrication.
 - 3. Width of joint reinforcement 40 mm (0.16 inches) less than nominal width of masonry wall or partition.
 - 4. Cross wires welded to longitudinal wires.
 - 5. Joint reinforcement at least 3000 mm (10 feet) in length.
 - 6. Joint reinforcement in rolls is not acceptable.
 - 7. Joint reinforcement that is crimped to form drip is not acceptable.
 - Maximum spacing of cross wires 400 mm (16 inch) to longitudinal wires.
 - 9. Ladder Design:
 - a. Longitudinal wires deformed 4 mm (0.16 inch) diameter wire.
 - b. Cross wires 4 mm (0.16 inch) diameter.
 - 10. Trussed Design:
 - Longitudinal and cross wires not less than 4 mm (0.16 inch nominal) diameter.
 - b. Longitudinal wires deformed.

11. Multiple Wythes and Cavity wall ties:

- a. Longitudinal wires 4 mm (0.16 inch), two in each wythe with ladder truss wires 4 mm (0.16 inch) overlay, welded to each longitudinal wire.
- b. Longitudinal wires 4 mm (0.16 inch) with U shape 4 mm (0.16 inch) rectangular ties extending into other wythe not less than 75 mm (3 inches) spaced 400 mm o.c. (16 inches). Adjustable type with U shape tie designed to receive 4 mm (0.16 inch) pintle projecting into other wythe 75 mm (3 inches min.).
- C. Adjustable Veneer Anchor for Frame Walls:
 - 1. Two piece, adjustable anchor and tie.
 - 2. Anchor and tie may be either type; use only one type throughout.
 - 3. Loop Type:

- a. Anchor: Screw-on galvanized steel anchor strap 2.75 mm (0.11 inch) by 19 mm (3/4 inch) wide by 225 mm (9 inches) long, with 9 mm (0.35 inch) offset and 100 mm (4 inch) adjustment. Provide 5 mm (0.20 inch) hole at each end for fasteners.
- b. Ties: Triangular tie, fabricated of 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Ties long enough to engage the anchor and be embedded not less than 50 mm (2 inches) into the bed joint of the masonry veneer.
- 4. Angle Type:
 - a. Anchor: Minimum 2 mm (16 gage) thick galvanized steel angle shaped anchor strap. Provide hole in vertical leg for fastener. Provide hole near end of outstanding leg to suit upstanding portion of tie.
 - b. Tie: Fabricate from 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Form "L" shape to be embedded not less than 50 mm (2 inches) into the bed joint of the masonry veneer and provide upstanding leg to fit through hole in anchor and be long enough to allow 50 mm (2 inches) of vertical adjustment.
- D. Dovetail Anchors:
 - 1. Corrugated steel dovetail anchors formed of 1.5 mm (0.0598 inch) thick by 25 mm (1 inch) wide galvanized steel, 90 mm (3-1/2 inches) long where used to anchor 100 mm (4 inch) nominal thick masonry units, 140 mm (5-1/2 inches) long for masonry units more than 100 mm (4 inches) thick.
 - 2. Triangular wire dovetail anchor 100 mm (4 inch) wide formed of 4 mm (9 gage) steel wire with galvanized steel dovetail insert. Anchor length to extend at least 75 mm (3 inches) into masonry, 25 mm (1 inch) into 40 mm (1-1/2 inch) thick units.
 - Form dovetail anchor slots from 0.6 mm (0.0239 inch) thick galvanized steel (with felt or fiber filler).
- E. Individual ties:
 - Rectangular ties: Form from 5 mm (3/16 inch) diameter galvanized steel rod to a rectangular shape not less than 50 mm (2 inches) wide by sufficient length for ends of ties to extend within 25 mm (1 inch) of each face of wall. Ties that are crimped to form drip are not permitted.
 - 2. Adjustable Cavity Wall Ties:
 - a. Adjustable wall ties may be used at Contractor's option.
 - b. Two piece type permitting up to 40 mm (1-1/2 inch) adjustment.
 - c. Form ties from 5 mm (3/16 inch) diameter galvanized steel wire.

- d. Form one piece to a rectangular shape 105 mm (4-1/8 inches) wide by length required to extend into the bed joint 50 mm (2 inches).
- e. Form the other piece to a 75 mm (3 inch) long by 75 mm (3 inch) wide shape, having a 75 mm (3 inch) long bent section for engaging the 105 mm (4-1/8 inch) wide piece to form adjustable connection.
- F. Wall Ties, (Mesh or Wire):
 - Mesh wall ties formed of ASTM A82, W0.5, 2 mm, (16 gage) galvanized steel wire 13 mm by 13 mm (1/2 inch by 1/2 inch) mesh, 75 mm (3 inches) wide by 200 mm (8 inches) long.
 - Rectangular wire wall ties formed of W1.4, 3 mm, (9 gage) galvanized steel wire 50 mm (2 inches) wide by 200 mm (8 inches) long.
- G. Corrugated Wall Tie:
 - Form from 1.5 mm (0.0598 inch) thick corrugated, galvanized steel 30 mm (1-1/4 inches) wide by lengths so as to extend at least 100 mm (4 inches) into joints of new masonry plus 38 mm (1-1/2 inch) turn-up.
 - 2. Provide 5 mm (3/16 inch) hole in turn-up for fastener attachment.
- H. Adjustable Steel Column Anchor:
 - Two piece anchor consisting of a 6 mm (1/4 inch) diameter steel rod to be welded to steel with offset ends, rod to permit 100 mm (4 inch) vertical adjustment of wire anchor.
 - Triangular shaped wire anchor 100 mm (4 inches) wide formed from 5 (3/16 inch) diameter galvanized wire, to extend at least 75 mm (3 inches) into joints of masonry.
- I. Adjustable Steel Beam Anchor:
 - Z or C type steel strap, 30 mm (1 1/4 inches) wide, 3 mm (1/8 inch) thick.
 - 2. Flange hook not less than 38 mm (1 1/2 inches) long.
 - Length to embed in masonry not less than 50 mm (2 inches) in 100 mm (4 inch) nominal thick masonry and 100 mm (4 inches) in thicker masonry.
 - 4. Bend masonry end not less than 40 mm (1 1/2 inches).
- J. Ridge Wall Anchors:
 - Form from galvanized steel not less than 25 mm (1 inch) wide by 5 mm (3/16 inch) thick by 600 mm (24 inches) long, plus 50 mm (2 inch) bends.
 - 2. Other lengths as shown.

2.7 PREFORMED COMPRESSIBLE JOINT FILLER

- A. Thickness and depth to fill the joint as specified.
- B. Closed Cell Neoprene: ASTM D1056, Type 2, Class A, Grade 1, B2F1.

C. Non-Combustible Type: ASTM C612, Class 5, 1800 degrees F.

2.8 ACCESSORIES

- A. Weep Hole Wicks: Glass fiber ropes, 10 mm (3/8 inch) minimum diameter, 300 mm (12 inches) long.
- B. Box Board:
 - 1. Mineral Fiber Board: ASTM C612, Class 1.
 - 2. 25 mm (1 inch) thickness.
 - 3. Other spacing material having similar characteristics may be used subject to the Resident Engineer's approval.
- C. Masonry Cleaner:
 - 1. Detergent type cleaner selected for each type masonry used.
 - 2. Acid cleaners are not acceptable.
 - 3. Use soapless type specially prepared for cleaning brick or concrete masonry as appropriate.
- D. Fasteners:
 - Concrete Nails: ASTM F1667, Type I, Style 11, 19 mm (3/4 inch) minimum length.
 - Masonry Nails: ASTM F1667, Type I, Style 17, 19 mm (3/4 inch) minimum length.
 - 3. Screws: FS-FF-S-107, Type A, AB, SF thread forming or cutting.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Protection:
 - 1. Cover tops of walls with nonstaining waterproof covering, when work is not in progress. Secure to prevent wind blow off.
 - On new work protect base of wall from mud, dirt, mortar droppings, and other materials that will stain face, until final landscaping or other site work is completed.
- B. Cold Weather Protection:
 - Masonry may be laid in freezing weather when methods of protection are utilized.
 - Comply with MSJC and "Hot and Cold Weather Masonry Construction Manual".

3.2 CONSTRUCTION TOLERANCES

- A. Lay masonry units plumb, level and true to line within the tolerances as per MSJC requirements and as follows:
- B. Maximum variation from plumb:
 - 1. In 3000 mm (10 feet) 6 mm (1/4 inch).
 - 2. In 6000 mm (20 feet) 10 mm (3/8 inch).

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- 3. In 12 000 mm (40 feet) or more 13 mm (1/2 inch).
- C. Maximum variation from level:
 - 1. In any bay or up to 6000 mm (20 feet) 6 mm (1/4 inch).
 - 2. In 12 000 mm (40 feet) or more 13 mm (1/2 inch).
- D. Maximum variation from linear building lines:
 - 1. In any bay or up to 6000 mm (20 feet) 13 mm (1/2 inch).
 - 2. In 12 000 mm (40 feet) or more 19 mm (3/4 inch).
- E. Maximum variation in cross-sectional dimensions of columns and thickness of walls from dimensions shown:
 - 1. Minus 6 mm (1/4 inch).
 - 2. Plus 13 mm (1/2 inch).
- F. Maximum variation in prepared opening dimensions:
 - 1. Accurate to minus 0 mm (0 inch).
 - 2. Plus 6 mm (1/4 inch).

3.3 INSTALLATION GENERAL

- A. Keep finish work free from mortar smears or spatters, and leave neat and clean.
- B. Anchor masonry as specified in Paragraph, ANCHORAGE.
- C. Wall Openings:
 - 1. Fill hollow metal frames built into masonry walls and partitions solid with mortar as laying of masonry progresses.
 - 2. If items are not available when walls are built, prepare openings for subsequent installation.
- D. Tooling Joints:
 - 1. Do not tool until mortar has stiffened enough to retain thumb print when thumb is pressed against mortar.
 - 2. Tool while mortar is soft enough to be compressed into joints and not raked out.
 - 3. Finish joints in exterior face masonry work with a jointing tool, and provide smooth, water-tight concave joint unless specified otherwise.
 - 4. Tool Exposed interior joints in finish work concave unless specified otherwise.
- E. Partition Height:
 - 1. Extend partitions at least 100 mm (four inches) above suspended ceiling or to overhead construction where no ceiling occurs.
 - 2. Extend following partitions to overhead construction.
 - a. Where noted smoke partitions, FHP (full height partition), and FP (fire partition) and smoke partitions (SP) on drawings.
 - b. Both walls at expansion joints.

- c. Corridor walls.
- d. Walls at stairway and stair halls, elevators, dumbwaiters, trash and laundry chute shafts, and other vertical shafts.
- e. Walls at refrigerator space.
- g. Reinforced masonry partitions
- 3. Extend finish masonry partitions at least four-inches above suspended ceiling and continue with concrete masonry units or structural clay tile to overhead construction:
- F. Lintels:
 - Lintels are not required for openings less than 1000 mm (3 feet 4 inches) wide that have hollow metal frames.
 - 2. Openings 1025 mm (3 feet 5 inches) wide to 1600 m (5 feet 4 inches) wide with no structural steel lintel or frames, require a lintel formed of concrete masonry lintel or bond beam units filled with grout per ASTM C476 and reinforced with 1- #15m (1-#5) rod top and bottom for each 100 mm (4 inches) of nominal thickness unless shown otherwise.
 - 3. Precast lintels of 25 Mpa (3000 psi) concrete, of same thickness as partition, and with one Number 5 deformed bar top and bottom for each 100 mm (4 inches) of nominal thickness, may be used in lieu of reinforced CMU masonry lintels.
 - Use steel lintels, for openings over 1600 m (5 feet 4 inches) wide, brick masonry, and elevator openings unless shown otherwise.
 - 5. Doors having overhead concealed door closers require a steel lintel, and a pocket for closer box.
 - 6. Length for minimum bearing of 100 mm (4 inches) at ends.
 - 7. Build masonry openings or arches over wood or metal centering and supports when steel lintels are not used.
- G. Wall, Furring, and Partition Units:
 - Lay out field units to provide for running bond of walls and partitions, with vertical joints in second course centering on first course units unless specified otherwise.
 - 2. Align head joints of alternate vertical courses.
 - 3. At sides of openings, balance head joints in each course on vertical center lines of openings.
 - 4. Use no piece shorter than 100 mm (4 inches) long.
 - On interior partitions provide a 6 mm (1/4 inch) open joint for caulking between existing construction, exterior walls, concrete work, and abutting masonry partitions.

- 6. Use not less than 100 mm (4 inches) nominal thick masonry for free standing furring unless shown otherwise.
- 7. Do not abut existing plastered surfaces except suspended ceilings with new masonry partitions.
- H. Use not less than 100 mm (4 inches) nominal thick masonry for fireproofing steel columns unless shown otherwise.
- Before connecting new masonry with previously laid, remove loosened masonry or mortar, and clean and wet work in place as specified under wetting.
- J. When new masonry partitions start on existing floors, machine cut existing floor finish material down to concrete surface.
- K. Structural Steel Encased in Masonry:
 - Where structural steel is encased in masonry and the voids between the steel and masonry are filled with mortar, provide a minimum 25 mm (1 inch) mortar free expansion space between the masonry and the steel by applying a box board material to the steel before the masonry is laid.
 - 2. Do not place spacing material where steel is bearing on masonry or masonry is bearing on steel.
- L. Chases:
 - 1. Do not install chases in masonry walls and partitions exposed to view in finished work, including painted or coated finishes on masonry.
 - Masonry 100 mm (4 inch) nominal thick may have electrical conduits 25 mm (1 inch) or less in diameter when covered with soaps, or other finishes.
 - 3. Full recess chases after installation of conduit, with mortar and finish flush.
 - 4. When pipes or conduits, or both occur in hollow masonry unit partitions retain at least one web of the hollow masonry units.
- M. Wetting and Wetting Test:
 - 1. Test and wet brick or clay tile in accordance with BIA 11B.
 - 2. Do not wet concrete masonry units or glazed structural facing tile before laying.
- N. Temporary Formwork: Provide formwork and shores as required for temporary support of reinforced masonry elements.
- O. Construct formwork to conform to shape, line and dimensions shown. Make sufficiently tight to prevent leakage of mortar, grout, or concrete (if any). Brace, tie and support as required to maintain position and shape during construction and curing of reinforced masonry.

3.4 ANCHORAGE

- A. Veneer to Frame Walls:
 - 1. Use adjustable veneer anchors.
 - 2. Fasten anchor to stud through sheathing with self drilling and tapping screw, one at each end of loop type anchor.
 - 3. Space anchors not more than 400 mm (16 inches) on center vertically at each stud.
- B. Veneer to Concrete Walls:
 - Install dovetail slots in concrete vertically at 600 mm (2 feet) on centers.
 - Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals.
 - 3. Anchor new masonry facing to existing concrete with corrugated wall ties spaced at 400 mm, (16 inch) maximum vertical intervals, and at 600 mm (2 feet) maximum horizontal intervals. Fasten ties to concrete with power actuated fasteners or concrete nails.
- C. Masonry Facing to Backup and Cavity Wall Ties:
 - 1. Use individual ties for new work.
 - 2. Stagger ties in alternate courses, and space at 400 mm (16 inches) maximum vertically, and 600 mm (2 feet) horizontally.
 - At openings, provide additional ties spaced not more than 900 mm (3 feet) apart vertically around perimeter of opening, and within 300 mm (12 inches) from edge of opening.
 - 4. Anchor new masonry facing to existing masonry with corrugated wall ties spaced at 400 mm (16 inch) maximum vertical intervals and at every second masonry unit horizontally. Fasten ties to masonry with masonry nails.
 - 5. Option: Use joint reinforcing for multiple wythes and cavity wall ties spaced not more than 400 mm (16 inches) vertically.
 - 6. Tie interior and exterior wythes of reinforced masonry walls together with individual ties. Provide ties at intervals not to exceed 600 mm (24 inches) on center horizontally, and 400 mm (16 inches) on center vertically. Lay ties in the same line vertically in order to facilitate vibrating of the grout pours.
- D. Anchorage of Abutting Masonry:
 - Anchor interior 100 mm (4 inch) thick masonry partitions to exterior masonry walls with wall ties. Space ties at 600 mm (2 foot) maximum vertical intervals. Extend ties 100 mm (4 inches) minimum into masonry.

- Anchor interior masonry bearing walls or interior masonry partitions over 100 mm (4 inches) thick to masonry walls with rigid wall anchors spaced at 400 mm (16 inch) maximum vertical intervals.
- 3. Anchor abutting masonry walls and partitions to concrete with dovetail anchors. Install dovetail slots vertically in concrete at centerline of abutting wall or partition. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals. Secure anchors to existing wall with two 9 mm (3/8 inch) by 75 mm (3 inch) expansion bolts or two power-driven fasteners.
- 4. Anchor abutting interior masonry partitions to existing concrete and existing masonry construction, with corrugated wall ties. Extend ties at least 100 mm (4 inches) into joints of new masonry. Fastened to existing concrete and masonry construction, with powder actuated drive pins, nail or other means that provides rigid anchorage. Install anchors at 400 mm (16 inch) maximum vertical intervals.
- E. Masonry Furring:
 - Anchor masonry furring less than 100 mm (4 inches) nominal thick to masonry walls or to concrete with corrugated wall ties or dovetail anchors.
 - 2. Space not over 600 mm (2 feet) on centers in both directions.
- F. Anchorage to Steel Beams or Columns:
 - 1. Use adjustable beam anchors on each flange.
 - 2. At columns weld the 6 mm (1/4 inch) steel rod to steel columns at 300 mm (12 inch) intervals, and place wire ties in masonry courses at 400 mm (16 inches) maximum vertically.

3.5 REINFORCEMENT

- A. Joint Reinforcement:
 - Use as joint reinforcement in CMU wythe of combination brick and CMU, cavity walls, and single wythe concrete masonry unit walls or partitions.
 - 2. Reinforcing may be used in lieu of individual ties for anchoring brick facing to CMU backup in exterior masonry walls.
 - Brick veneer over frame backing walls does not require joint reinforcement.
 - Locate joint reinforcement in mortar joints at 400 mm (16 inch) maximum vertical intervals.
 - Additional joint reinforcement is required in mortar joints at both
 200 mm (8 inches) and 400 (16 inches) above and below windows, doors,

louvers and similar openings in masonry, except where other type anchors are required for anchorage of masonry to concrete structure.

- 6. Joint reinforcement is required in every other course of stack bond CMU masonry.
- 7. Wherever brick masonry is backed up with stacked bond masonry, joint reinforcement is required in every other course of CMU backup, and in corresponding joint of facing brick.
- B. Steel Reinforcing Bars:
 - Install in cells of hollow masonry units where required for vertical reinforcement and in bond beam units for lintels and bond beam horizontal reinforcement. Install in wall cavities of reinforced masonry walls where shown.
 - 2. Use grade 60 bars if not specified otherwise.
 - 3. Bond Beams:
 - a. Form Bond beams of load-bearing concrete masonry units filled with ASTM C476 grout and reinforced with 2-#15m (#5) reinforcing steel unless shown otherwise. Do not cut reinforcement.
 - b. Brake bond beams only at expansion joints and at control joints, if shown.
 - 4. Grout openings:
 - a. Leave cleanout holes in double wythe walls during construction by omitting units at the base of one side of the wall.
 - b. Locate 75 mm x 75 mm (3 in. x 3 in.) min. clean-out holes at location of vertical reinforcement.
 - c. Keep grout space clean of mortar accumulation and sand debris. Clean the grout space every day using a high pressure jet stream of water, or compressed air, or industrial vacuum, or by laying wood strips on the metal ties as the wall is built. If wood strips are used, lift strips with wires as the wall progresses and before placing each succeeding course of wall ties.

3.6 BRICK EXPANSION AND CMU CONTROL JOINTS.

- A. Provide brick expansion (BEJ) and CMU control (CJ) joints where shown on drawings.
- B. Keep joint free of mortar and other debris.
- C. Where joints occur in masonry walls.
 - 1. Install preformed compressible joint filler in brick wythe.
 - 2. Install cross shaped shear keys in concrete masonry unit wythe with preformed compressible joint filler on each side of shear key unless otherwise specified.

- 3. Install filler, backer rod, and sealant on exposed faces.
- D. Use standard notched concrete masonry units (sash blocks) made in full and half-length units where shear keys are used to create a continuous vertical joint.
- E. Interrupt steel joint reinforcement at expansion and control joints unless otherwise shown.
- F. Fill opening in exposed face of expansion and control joints with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.10 CONCRETE MASONRY UNITS

- A. Kind and Users:
 - Provide special concrete masonry shapes as required, including lintel and bond beam units, sash units, and corner units. Use solid concrete masonry units, where full units cannot be used, or where needed for anchorage of accessories.
 - Provide solid load-bearing concrete masonry units or grout the cell of hollow units at jambs of openings in walls, where structural members impose loads directly on concrete masonry, and where shown.
 - 3. Provide rounded corner (bullnose) shapes at opening jambs in exposed work and at exterior corners.
 - 4. Do not use brick jambs in exposed finish work.
 - 5. Use concrete building brick only as filler in backup material where not exposed.
 - 6. Masonry assemblies shall meet the required fire resistance in fire rated partitions of type and construction that will provide fire rating as shown.
 - 7. Where lead lined concrete masonry unit partitions terminate below the underside of overhead floor or roof deck, fill the remaining open space between the top of the partition and the underside of the overhead floor or roof deck, with standard concrete masonry units of same thickness as the lead lined units.
- B. Laying:
 - Lay concrete masonry units with 10 mm (3/8 inch) joints, with a bond overlap of not less than 1/4 of the unit length, except where stack bond is required.
 - 2. Do not wet concrete masonry units before laying.
 - 3. Bond external corners of partitions by overlapping alternate courses.
 - 4. Lay first course in a full mortar bed.
 - 5. Set anchorage items as work progress.

- 6. Where ends of anchors, bolts, and other embedded items, project into voids of units, completely fill such voids with mortar or grout.
- Provide a 6 mm (1/4 inch) open joint for caulking between existing construction, exterior walls, concrete work, and abutting masonry partitions.
- 8. Lay concrete masonry units with full face shell mortar beds and fill head joint beds for depth equivalent to face shell thickness.
- 9. Lay concrete masonry units so that cores of units, that are to be filled with grout, are vertically continuous with joints of cross webs of such cores completely filled with mortar. Unobstructed core openings not less than 50 mm (2 inches) by 75 mm (3 inches).
- 10. Do not wedge the masonry against the steel reinforcing. Minimum 13 mm (1/2 inch) clear distance between reinforcing and masonry units.
- 11. Install deformed reinforcing bars of sizes shown.
- 12. Steel reinforcement, at time of placement, free of loose flaky rust, mud, oil, or other coatings that will destroy or reduce bond.
- 13. Steel reinforcement in place before grouting.
- 14. Minimum clear distance between parallel bars: One bar diameter.
- 15. Hold vertical steel reinforcement in place by centering clips, caging devices, tie wire, or other approved methods, vertically at spacings noted.
- 16. Support vertical bars near each end and at intermediate intervals not exceeding 192 bar diameters.
- 17. Reinforcement shall be fully encased by grout or concrete.
- 18. Splice reinforcement or attach reinforcement to dowels by placing in contact and secured or by placing the reinforcement within 1/5 of the required bar splice length.
- 19. Stagger splices in adjacent horizontal reinforcing bars. Lap reinforcing bars at splices a minimum of 40 bar diameters.
- 20. Grout cells of concrete masonry units, containing the reinforcing bars, solid as specified under grouting.
- 21. Cavity and joint horizontal reinforcement may be placed as the masonry work progresses.
- 22. Rake joints 6 to 10 mm (1/4 to 3/8 inch) deep for pointing with colored mortar when colored mortar is not full depth.

3.11 POINTING

A. Fill joints with pointing mortar using rubber float trowel to rub mortar solidly into raked joints.

- B. Wipe off excess mortar from joints of glazed masonry units with dry cloth.
- C. Finish exposed joints in finish work with a jointing tool to provide a smooth concave joint unless specified otherwise.
- D. At joints with existing work match existing joint.

3.12 GROUTING

- A. Preparation:
 - 1. Clean grout space of mortar droppings before placing grout.
 - 2. Close cleanouts.
 - 3. Install vertical solid masonry dams across grout space for full height of wall at intervals of not more than 9000 mm (30 feet). Do not bond dam units into wythes as masonry headers.
 - 4. Verify reinforcing bars are in cells of units or between wythes as shown.
- B. Placing:
 - 1. Place grout by hand bucket, concrete hopper, or grout pump.
 - 2. Consolidate each lift of grout after free water has disappeared but before plasticity is lost.
 - 3. Do not slush with mortar or use mortar with grout.
 - 4. Interruptions:
 - a. When grouting must be stopped for more than an hour, top off grout 40 mm (1-1/2 inch) below top of last masonry course.
 - b. Grout from dam to dam on high lift method.
 - c. A longitudinal run of masonry may be stopped off only by raking back one-half a masonry unit length in each course and stopping grout 100 mm (4 inches) back of rake on low lift method.
- C. Puddling Method:
 - Double wythe masonry constructed grouted in lifts not to exceed 300 mm (12 inches) or less than 50 mm (2 inches) wide.
 - 2. Consolidate by puddling with a grout stick during and immediately after placing.
 - Grout the cores of concrete masonry units containing the reinforcing bars solid as the masonry work progresses.
- D. Low Lift Method:
 - Construct masonry to a height of 1.5 m (5 ft) maximum before grouting.
 - Grout in one continuous operation and consolidate grout by mechanical vibration and reconsolidate after initial water loss and settlement has occurred.

- E. High Lift Method:
 - Do not pour grout until masonry wall has properly cured a minimum of 4 hours.
 - 2. Place grout in lifts not exceeding 1.5 m (5 ft).
 - 3. Exception:

Where the following conditions are met, place grout in lifts not exceeding 3.86 m (12.67 ft).

- a. The masonry has cured for at least 4 hours.
- b. The grout slump is maintained between 254 and 279 mm (10 and 11 in).
- c. No intermediate reinforced bond beams are placed between the top and the bottom of the pour height.
- 4. When vibrating succeeding lifts, extend vibrator 300 to 450 mm (12 to 18 inches) into the preceding lift to close any shrinkage cracks or separation from the masonry units.

3.13 PLACING REINFORCEMENT

- A. General: Clean reinforcement of loose rust, mill scale, earth, ice or other materials which will reduce bond to mortar or grout. Do not use reinforcement bars with kinks or bends not shown on the Contract Drawings or final shop drawings, or bars with reduced cross-section due to excessive rusting or other causes.
- B. Position reinforcement accurately at the spacing indicated. Support and secure vertical bars against displacement. Horizontal reinforcement may be placed as the masonry work progresses. Where vertical bars are shown in close proximity, provide a clear distance between bars of not less than the nominal bar diameter or 25 mm (1 inch), whichever is greater.
- C. Embed metal ties in mortar joints as work progresses, with a minimum mortar cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations.
- D. Embed prefabricated horizontal joint reinforcement as the work progresses, with a minimum cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations. Lap joint reinforcement not less than 150 mm (6 inches) at ends. Use prefabricated "L" and "T" sections to provide continuity at corners and intersections. Cut and bend joint reinforcement as recommended by manufacturer for continuity at returns, offsets, column fireproofing, pipe enclosures and other special conditions.
- E. Anchoring: Anchor reinforced masonry work to supporting structure as indicated.

F. Anchor reinforced masonry walls to non-reinforced masonry where they intersect.

3.16 INSTALLATION OF REINFORCED CONCRETE UNIT MASONRY

- A. Do not wet concrete masonry units (CMU).
- B. Lay CMU units with full-face shell mortar beds. Fill vertical head joints (end joints between units) solidly with mortar from face of unit to a distance behind face equal to not less than the thickness of longitudinal face shells. Solidly bed cross-webs of starting courses in mortar. Maintain head and bed joint widths shown, or if not shown, provide 10 mm (3/8 inch) joints.
- C. Where solid CMU units are shown, lay with full mortar head and bed joints.
- D. Walls:
 - Pattern Bond: Lay CMU wall units in 1/2-running bond with vertical joints in each course centered on units in courses above and below, unless otherwise indicated. Bond and interlock each course at corners and intersections. Use special-shaped units where shown, and as required for corners, jambs, sash, control joints, lintels, bond beams and other special conditions.
 - 2. Maintain vertical continuity of core or cell cavities, which are to be reinforced and grouted, to provide minimum clear dimension indicated and to provide minimum clearance and grout coverage for vertical reinforcement bars. Keep cavities free of mortar. Solidly bed webs in mortar where adjacent to reinforced cores or cells.
 - 3. Where horizontal reinforced beams (bond beams) are shown, use special units or modify regular units to allow for placement of continuous horizontal reinforcement bars. Place small mesh expanded metal lath or wire screening in mortar joints under bond beam courses over cores or cells of non-reinforced vertical cells, or provide units with solid bottoms.
- E. Grouting:
 - Use "Fine Grout" per ASTM C476 for filling spaces less than 100 mm (4 inches) in one or both horizontal directions.
 - Use "Coarse Grout" per ASTM C476 for filling 100 mm (4 inch) spaces or larger in both horizontal directions.
 - Grouting Technique: At the Contractor's option, use either low-lift or high-lift grouting techniques subject to requirements which follow.

- F. Low-Lift Grouting:
 - 1. Provide minimum clear dimension of 50 mm (2 inches) and clear area of 5160 mm^2 (8 square inches) in vertical cores to be grouted.
 - Place vertical reinforcement prior to grouting of CMU. Extend above elevation of maximum pour height as required for splicing. Support in position at vertical intervals not exceeding 192 bar diameters nor 3 m (10 feet).
 - 3. Lay CMU to maximum pour height. Do not exceed 1.5 m (5 foot) height, or if bond beam occurs below 1.5 m (5 foot) height, stop pour 38 mm (1-1/2 in) below top of bond beam.
 - 4. Pour grout using chute container with spout or pump hose. Rod or vibrate grout during placing. Place grout continuously; do not interrupt pouring of grout for more than one hour. Terminate grout pours 38 mm (1-1/2 inches) below top course of pour.
 - 5. Bond Beams: Stop grout in vertical cells 38 mm (1-1/2 inches) below bond beam course. Place horizontal reinforcement in bond beams; lap at corners and intersections as shown. Place grout in bond beam course before filling vertical cores above bond beam.
- G. High-Lift Grouting:
 - Do not use high-lift grouting technique for grouting of CMU unless minimum cavity dimension and area is 75 mm (3 inches) and 6450 mm² (10 square inches), respectively.
 - 2. Provide cleanout holes in first course at all vertical cells which are to be filled with grout.
 - Use units with one face shell removed and provide temporary supports for units above, or use header units with concrete brick supports, or cut openings in one face shell.
 - 4. Construct masonry to full height of maximum grout pour specified, prior to placing grout.
 - 5. Limit grout lifts to a maximum height of 1.5 m (5 feet) and grout pour to a maximum height of 7.3 m (24 feet), for single wythe hollow concrete masonry walls, unless otherwise indicated.
 - 6. Place vertical reinforcement before grouting. Place before or after laying masonry units, as required by job conditions. Tie vertical reinforcement to dowels at base of masonry where shown and thread CMU over or around reinforcement. Support vertical reinforcement at intervals not exceeding 192 bar diameters nor 3 m (10 feet).
 - 7. Where individual bars are placed after laying masonry, place wire loops extending into cells as masonry is laid and loosed before

mortar sets. After insertion of reinforcement bar, pull loops and bar to proper position and tie free ends.

- Where reinforcement is prefabricated into cage units before placing, fabricate units with vertical reinforcement bars and lateral ties of the size and spacing indicated.
- 9. Place horizontal beam reinforcement as the masonry units are laid.
- 10. Embed lateral tie reinforcement in mortar joints where indicated. Place as masonry units are laid, at vertical spacing shown.
- 11. Where lateral ties are shown in contact with vertical reinforcement bars, embed additional lateral tie reinforcement in mortar joints. Place as shown, or if not shown, provide as required to prevent grout blowout or rupture of CMU face shells, but provide not less than 4.1 mm diameter (8 gage) wire ties spaced 400 mm (16 inches) o.c. for members with 500 mm (20 inches) or less side dimensions, and 200 mm (8 inches) o.c. for members with side dimensions exceeding 500 mm (20 inches).
- 12. Preparation of Grout Spaces: Prior to grouting, inspect and clean grout spaces. Remove dust, dirt, mortar droppings, loose pieces of masonry and other foreign materials from grout spaces. Clean reinforcement and adjust to proper position. Clean top surface of structural members supporting masonry to ensure bond. After final cleaning and inspection, close cleanout holes and brace closures to resist grout pressures.
- 13. Do not place grout until entire height of masonry to be grouted has attained sufficient strength to resist displacement of masonry units and breaking of mortar bond. Install shores and bracing, if required, before starting grouting operations.
- 14. Place grout by pumping into grout spaces unless alternate methods are acceptable to the Resident Engineer.
- 15. Limit grout pours to sections which can be completed in one working day with not more than one hour interruption of pouring operation. Place grout in lifts which do not exceed 1.5 m (5 feet). Allow not less than 30 minutes, nor more than one hour between lifts of a given pour. Mechanically consolidate each grout lift during pouring operation.
- 16. Place grout in lintels or beams over openings in one continuous pour.
- 17. Where bond beam occurs more than one course below top of pour, fill bond beam course to within 25 mm (1 inch) of vertically reinforced cavities, during construction of masonry.

18. When more than one pour is required to complete a given section of masonry, extend reinforcement beyond masonry as required for splicing. Pour grout to within 38 mm (1-1/2 inches) of top course of first pour. After grouted masonry is cured, lay masonry units and place reinforcement for second pour section before grouting. Repeat sequence if more pours are required.

3.17 CLEANING AND REPAIR

- A. General:
 - 1. Clean exposed masonry surfaces on completion.
 - 2. Protect adjoining construction materials and landscaping during cleaning operations.
 - 3. Cut out defective exposed new joints to depth of approximately 19 mm (3/4 inch) and repoint.
 - 4. Remove mortar droppings and other foreign substances from wall surfaces.
- B. Brickwork:
 - 1. First wet surfaces with clean water, then wash down with a solution of soapless detergent. Do not use muriatic acid.
 - 2. Brush with stiff fiber brushes while washing, and immediately thereafter hose down with clean water.
 - Free clean surfaces of traces of detergent, foreign streaks, or stains of any nature.
- C. Concrete Masonry Units:
 - Immediately following setting, brush exposed surfaces free of mortar or other foreign matter.
 - 2. Allow mud to dry before brushing.
- D3.18 WATER PENETRATION TESTING
- A. Seven days before plastering or painting, in the presence of Resident Engineer, test solid exterior masonry walls for water penetration.
- B. Direct water on masonry for a period of one hour at a time when wind velocity is less than five miles per hour.
- C. Should moisture appear on inside of walls tested, make additional tests at other areas as directed by Resident Engineer.
- D. Correct the areas showing moisture on inside of walls, and repeat test at repaired areas, to insure that moisture penetration has been stopped.

- - - E N D - - -

0SECTION 05 12 00 STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies structural steel shown and classified by Section 2, Code of Standard Practice for Steel Buildings and Bridges.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Painting: Section 09 91 00, PAINTING.
- C. Steel Decking: Section 05 31 00, STEEL DECKING.
- D. Composite Steel Deck: Section 05 36 00, COMPOSITE METAL DECKING.
- E. Fireproofing: Section 07 81 00, APPLIED FIREPROOFING.

1.3 QUALITY ASSURANCE:

- A. Fabricator and erector shall maintain a program of quality assurance in conformance with Section 8, Code of Standard Practice for Steel Buildings and Bridges. Work shall be fabricated in an AISC certified Category Conventional Steel Structures fabrication plant.
- B. Before authorizing the commencement of steel erection, the controlling contractor shall ensure that the steel erector is provided with the written notification required by 29 CFR 1926.752. Provide copy of this notification to the Resident Engineer.

1.4 TOLERANCES:

Fabrication tolerances for structural steel shall be held within limits established by ASTM A6, by Section 7, Code of Standard Practice for Buildings and Bridges, and by Standard Mill Practice - General Information (AISC ASD Manual, Ninth Edition, Page 1-145), except as follows:

- A. Elevation tolerance for column splice points at time member is erected is 10 mm (3/8 inch).
- B. Elevation tolerance for top surface of steel beams and girders at connections to columns at time floor is erected is 13 mm (1/2 inch).
- C. Elevation tolerance for closure plates at the building perimeter and at slab openings prior to concrete placement is 6 mm (1/4 inch).

1.5 DESIGN:

A. Connections: Design and detail all connections for each member size, steel grade and connection type to resist the loads and reactions indicated on the drawings or specified herein. Use details consistent with the details shown on the Drawings, supplementing where necessary. The details shown on the Drawings are conceptual and do not indicate the required weld sizes or number of bolts unless specifically noted. Use rational engineering design and standard practice in detailing, accounting for all loads and eccentricities in both the connection and the members. Promptly notify the Resident Engineer of any location where the connection design criteria is not clearly indicated. The design of all connections is subject to the review and acceptance of the Resident Engineer. Submit structural calculations prepared and sealed by a qualified engineer registered in the state where the project is located. Submit calculations for review before preparation of detail drawings.

1.6 REGULATORY REQUIREMENTS:

- A. AISC: Specification for Structural Steel Buildings LRFD Specification for Structural Steel Buildings.
- B. AISC: Code of Standard Practice for Steel Buildings and Bridges.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop and Erection Drawings: Complete
- C. Certificates:
 - 1. Structural steel.
 - 2. Steel for all connections.
 - 3. Welding materials.
 - 4. Shop coat primer paint.
- D. Test Reports:
 - 1. Welders' qualifying tests.
- E. Design Calculations and Drawings:
 - 1. Connection calculations, if required.
- F. Record Surveys.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Institute of Steel Construction (AISC):
 - Specification for Structural Steel Buildings Allowable Stress
 Design and Plastic Design (Second Edition, 2005)
 - Load and Resistance Factor Design Specification for Structural Steel Buildings (Second Edition, 1995)
 - 3. Code of Standard Practice for Steel Buildings and Bridges (2010).

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

C. American National Standards Institute (ANSI): B18.22.1-65(R2008)....Plain Washers B18.22M-81(R2000).....Metric Plain Washers D. American Society for Testing and Materials (ASTM): A6/A6M-09......Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling A36/A36M-08.....Standard Specification for Carbon Structural Steel A53/A53M-10.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A242/A242M-04(R2009)....Standard Specification for High-Strength Low-Alloy Structural Steel A283/A283M-03(R2007)....Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates A307-10.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength A325-10.....Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength A490-10..... Standard Specification for Heat-Treated Steel Structural Bolts 150 ksi Minimum Tensile Strength A500/A500M-10.....Standard Specification for Cold Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes A501-07.....Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing A572/A572M-07.....Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel A992/A992M-06.....Standard Specification for Structural Steel Shapes E. American Welding Society (AWS): D1.1/D1.1M-10.....Structural Welding Code-Steel F. Research Council on Structural Connections (RCSC) of The Engineering Foundation:

Specification for Structural Joints Using ASTM A325 or A490 Bolts

G. Military Specifications (Mil. Spec.):

MIL-P-21035..... Paint, High Zinc Dust Content, Galvanizing,

Repair

- H. Occupational Safety and Health Administration (OSHA):
 - 29 CFR Part 1926-2001...Safety Standards for Steel Erection

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Structural Steel: ASTM A992.
- B. Structural Tubing: ASTM A500, Grade B.
- C. Structural Tubing: ASTM A501.
- D. Steel Pipe: ASTM A53, Grade B.
- E. Bolts, Nuts and Washers:
 - 1. High-strength bolts, including nuts and washers: ASTM A325.
 - 2. Bolts and nuts, other than high-strength: ASTM A307, Grade A.
 - 3. Plain washers, other than those in contact with high-strength bolt heads and nuts: ANSI Standard B18.22.1.
- F. Zinc Coating: ASTM A123.
- G. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035.

PART 3 - EXECUTION

3.1 CONNECTIONS (SHOP AND FIELD):

- A. Welding: Welding in accordance with AWS D1.1. Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.1 to perform type of work required.
- B. High-Strength Bolts: High-strength bolts tightened to a bolt tension not less than proof load given in Specification for Structural Joints Using ASTM A325 or A490 Bolts. Tightening done with properly calibrated wrenches, by turn-of-nut method or by use of direct tension indicators (bolts or washers). Tighten bolts in connections identified as slipcritical using Direct Tension Indicators or the turn-of-the-nut method. Twist-off torque bolts are not an acceptable alternate fastener for slip critical connections.

3.2 FABRICATION:

Fabrication in accordance with Chapter M, Specification for Steel Buildings - Load and Resistance Factor Design.

3.3 SHOP PAINTING:

- A. General: Shop paint steel with primer in accordance with Section 6, Code of Standard Practice for Steel Buildings and Bridges.
- B. Shop paint for steel surfaces is specified in Section 09 91 00, PAINTING.
- C. Do not apply paint to following:

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- 1. Surfaces within 50 mm (2 inches) of joints to be welded in field.
- 2. Surfaces which will be encased in concrete.
- 3. Surfaces which will receive sprayed on fireproofing.
- 4. Top flange of members which will have shear connector studs applied.
- D. Structural steel in the interstitial space that does not receive sprayed on fireproofing shall be painted with primer in accordance with general requirement of shop painting.

3.4 ERECTION:

- A. General: Erection in accordance with Section 7, Code of Standard Practice for Steel Buildings and Bridges.
- B. Temporary Supports: Temporary support of structural steel frames during erection in accordance with Section 7, Code of Standard Practice for Steel Buildings and Bridges.

3.5 FIELD PAINTING:

- A. After erection, touch-up steel surfaces specified to be shop painted. After welding is completed, clean and prime areas not painted due to field welding.
- B. Finish painting of steel surfaces is specified in Section 09 91 00, PAINTING.

3.6 SURVEY:

Upon completion of finish bolting or welding on any part of the work, and prior to start of work by other trades that may be supported, attached, or applied to the structural steel work, submit a certified report of survey to Resident Engineer for approval. Reports shall be prepared by Registered Land Surveyor or Registered Civil Engineer as specified in Section 01 00 00, GENERAL REQUIREMENTS. Report shall specify that location of structural steel is acceptable for plumbness, level and alignment within specified tolerances specified in the AISC Manual.

- - - E N D - - -

Page intentionally left blank

SECTION 05 36 00 COMPOSITE METAL DECKING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies material and services required for installation of composite steel decking including shear connector studs and miscellaneous closures required to prepare deck for concrete placement as shown and specified.

1.2 RELATED WORK:

Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.

1.3 DESIGN REQUIREMENTS:

- A. Design steel decking in accordance with American Iron And Steel Institute publication "Specifications for the Design of Cold Formed Steel Structural Members", except as otherwise shown or specified.
- B. Design all elements with the latest published version of applicable codes.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Shop and erection drawings showing decking unit layout, connections to supporting members, and information necessary to complete the installation as shown and specified, including supplementary framing, cant strips, cut openings, special jointing or other accessories. Show welding, side lap, closure, deck reinforcing and closure reinforcing details. Show openings required for work of other trades, including openings not shown on structural drawings. Indicate where temporary shoring is required to satisfy design criteria.
- C. Manufacturer's Literature and Data: Showing steel decking section properties and specifying structural characteristics as specified herein.
- D. Manufacturer's written recommendations for:
 - 1. Shape of decking section to be used.
 - 2. Cleaning of steel decking prior to concrete placement.
- E. Test Report Establishing structural characteristics of composite concrete and steel decking system.
- F. Test Report Stud base qualification.
- G. Welding power setting recommendation by shear stud manufacturer.

- H. Shear Stud Layouts: Submit drawings showing the number, pattern, spacing and configuration of the shear studs for each beam and girder.
- I. Certification: For each type and gauge of metal deck supporting concrete slab or fill, furnish certification of the specified fire ratings. Certify that the units supplied are U.L. listed as a "Steel Floor and Form Unit".

1.5 QUALITY ASSURANCE:

Underwriters' Label: Provide metal floor deck units listed in Underwriters' Laboratories "Fire Resistance Directory", with each deck unit bearing the UL label and marking for specific system detailed.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Refer to the latest edition of all referenced Standards and codes.
- B. American Iron and Steel Institute (AISI): Specification and Commentary for the Design of Cold-Formed Steel Structural Members (Latest Edition).
- C. American Society of Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel

A108-07.....Standard Specification for Steel Bars, Carbon, Cold Finished, Standard Quality

A653/A653M-10.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvanized) by the Hot-Dip Process

- D. American Institute of Steel Construction (AISC):
 - Specification for Structural Steel Buildings Allowable Stress
 Design and Plastic Design (Latest Edition)
 - Load and Resistance Factor Design Specification for Structural Steel Buildings (Latest Edition)
- E. American Welding Society (AWS):

D1.1/D1.1M-10.....Structural Welding Code - Steel

- D1.3/D1.3M-08.....Structural Welding Code Sheet Steel
- E. Military Specifications (Mil. Spec.): MIL-P-21035B.....Paint, High Zinc Dust Content, Galvanizing Repair
PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Steel Decking and all Flashings: ASTM A653, Structural Quality suitable for shear stud weld-through techniques.
- B. Galvanizing: ASTM A653, G60.
- C. Shear connector studs: ASTM A108, Grades 1015-1020, yield 350 Mpa (50,000 psi) minimum, tensile strength - 400 Mpa (60,000 psi) minimum, reduction of area 50 percent minimum. Studs of uniform diameter; heads shall be concentric and normal to shaft; stud, after welding free from any substance or defect which would interfere with its function as a shear connector. Studs shall not be painted or galvanized. Size of studs shall be as shown on drawings. Studs manufactured by a company normally engaged in the manufacturer of shear studs and can furnish equipment suitable for weld-through installation of shear studs.
- D. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035B.
- E. Miscellaneous Steel Shapes: ASTM A36.
- F. Welding Electrode: E60XX minimum.
- G. Sheet Metal Accessories: ASTM A653, galvanized, unless noted otherwise. Provide accessories of every kind required to complete the installation of metal decking in the system shown. Finish sheet metal items to match deck including, but not limited to, the following items:
 - Metal Cover Plates: For end-abutting deck units, to close gaps at changes in deck direction, columns, walls and openings. Same quality as deck units but not less than 1.3 mm (18 gauge) sheet steel.
 - 2. Continuous sheet metal edging: at openings and concrete slab edges. Same quality as deck units but not less than 1.3 mm (18 gauge) steel. Side and end closures supporting concrete and their attachment to supporting steel shall be designed by the manufacturer to safely support the wet weight of concrete and construction loads. The deflection of cantilever closures shall be limited to 3 mm (1/8 inch) maximum.
 - 3. Metal Closure Strips: For openings between decking and other construction, of not less than 1.3 mm (18 gauge) sheet steel of the same quality as the deck units. Form to the configuration required to provide tight-fitting closures at open ends of flutes and sides of decking.
 - 4. Seat angles for deck: Where a beam does not frame into a column.

2.2 REQUIREMENTS:

- A. Steel decking depth, gage, and section properties to be as shown. Provide edges of deck with vertical interlocking male and female lip providing for a positive mechanical connection.
- B. Fabricate deck units with integral embossments to provide mechanical bond with concrete slab. In combination with concrete slab, capable of supporting total design loads on spans shown.
- C. Steel decking capable of safely supporting total, normal construction service loads without damage to decking unit.
- D. Steel decking units shall include an integral system which provides a simple point of attachment for light duty hanger devices for flexibility for attaching hangers for support of acoustical, lathing, plumbing, heating, air conditioning and electrical items. System shall provide for minimum spacing pattern of 300 mm (12 inches) on centers longitudinally and 600 mm or 900 mm (24 or 36 inches) on centers transversely. Suspension system shall be capable of safely supporting a maximum allowable load of 45 kg (100 pounds) concentrated at any one hanger attachment point. System may consist of fold-down type hanger tabs or a lip hanger.

PART 3 - EXECUTION

3.1 ERECTION:

- A. Do not start installation of metal decking until corresponding steel framework has been plumbed, aligned and completed and until temporary shoring, where required, has been installed. Remove any oil, dirt, paint, ice, water and rust from steel surfaces to which metal decking will be welded.
- B. Coordinate and cooperate with structural steel erector in locating decking bundles to prevent overloading of structural members.
- C. Do not use floor deck units for storage or working platforms until permanently secured. Do not overload deck units once placed. Replace any deck units that become damaged after erection and prior to casting concrete at no cost to the Government.
- D. Erect steel deck in accordance with manufacturer's printed instructions.
- E. Ship steel deck units to project in standard widths and cut to proper length.
- F. Provide steel decking in sufficient lengths to extend over 3 or more spans, except where structural steel layout does not permit.
- G. Place steel decking units on supporting steel framework and adjust to final position before being permanently fastening. Bring each unit to

Project No. 642-11-150 Final Documents: 8/17/2012

proper bearing on supporting beams. Place deck units in straight alignment for entire length of run of flutes and with close registration of flutes of one unit with those of abutting unit. Maximum space between ends of abutting units is 13 mm (1/2 inch). If space exceeds 13 mm (1/2 inch), install closure plates at no additional cost to Government.

- H. Ceiling hanger loops, if used, must be flattened or removed to obtain bearing of units on structural steel.
- I. Fastening Deck Units:
 - 1. Fasten floor deck units to steel supporting members by not less than 16 mm (5/8 inch) diameter puddle welds or elongated welds of equal strength, spaced not more than 305 mm (12 inches) o.c. with a minimum of two welds per unit at each support. Where two units abut, fasten each unit individually to the supporting steel framework.
 - 2. Tack weld or use self-tapping No. 8 or larger machine screws at 915 mm (3 feet) o.c. for fastening end closures. Only use welds to attach longitudinal end closures.
 - 3. Weld side laps of adjacent floor deck units that span more than 1524 mm (5 feet). Fasten at midspan or 915 mm (3 feet) o.c., whichever is smaller.
- J. Welding to conform to AWS D1.3 and done by competent experienced welding mechanics.
- K. Areas scarred during erection and welds shall be thoroughly cleaned and touched-up with zinc rich galvanizing repair paint. Paint touch-up is not required for welds or scars that are to be in direct contact with concrete.
- L. Provide metal concrete stops at edges of deck as required.
- M. Cutting and Fitting:
 - 1. Cut all metal deck units to proper length in the shop prior to shipping.
 - 2. Field cutting by the metal deck erector is restricted to bevel cuts, notching to fit around columns and similar items, and cutting openings that are located and dimensioned on the structural drawings.
 - 3. Other penetrations shown on the approved metal deck shop drawings but not shown on the structural drawings are to be located, cut and reinforced by the trade requiring the opening.
 - 4. Make all cuts neat and trim using a metal saw, drill or punchout device; cutting with torches is expressly prohibited.
 - 5. Do not make any cuts in the metal deck that are not shown on the approved metal deck drawings. If an additional opening not shown on the approved shop drawings is required, submit a sketch, to scale,

locating the required new opening and any other openings and supports in the immediate area. Do not cut the opening until the sketch has been reviewed and accepted by the Resident Engineer. Provide any additional reinforcing or framing required for the opening at no cost to the Government. Failure to comply with these requirements is cause for rejection of the work and removal and replacement of the affected metal deck.

- Reinforcement at Openings: Provide additional metal reinforcement and closure pieces as required for strength, continuity of decking and support of other work shown.
- N. Installation of shear connector studs through previously installed metal deck to conform to AWS D1.1, Section 7, except all studs will be installed with automatically timed welding equipment and as specified below:
 - Do not place reinforcing steel temperature mesh or other materials and equipment which will interfere with stud installation on steel deck until shear connector studs are installed.
 - Steel deck sheets shall be free of oil, rust, dirt, and paint. Release water in deck's valley so that it does not become entrapped between deck and beam. Surface to which stud is to be welded shall be clean and dry.
 - 3. Rest metal deck tightly upon top flange of structural member with bottom of deck rib in full contact with top of beam flange.
 - 4. Weld studs only through a single thickness of deck. Place decking so that a butt joint is obtained. Place studs directly over beam web, where one row of studs are required.
 - 5. Ferrules specially developed for the weld-through technique must be used. Ferrules shall be appropriate for size of studs used and be removed after welding.
 - Submit report of successful test program for stud base qualification as required by AWS D1.1, Appendix K.

3.2 CLEANING:

Clean deck in accordance with manufacturer's recommendation before concrete placement.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies wood blocking, framing, sheathing, furring, nailers, sub-flooring, rough hardware, and light wood construction.

1.2 RELATED WORK:

- A. Milled woodwork: Section 06 20 00, FINISH CARPENTRY.
- B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.

1.3 SUMBITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings showing framing connection details, fasteners, connections and dimensions.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 150 mm (6 inches) above grade and cover with well ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA): National Design Specification for Wood Construction NDS-05.....Conventional Wood Frame Construction
- C. American Institute of Timber Construction (AITC): A190.1-07.....Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME): B18.2.1-96(R2005).....Square and Hex Bolts and Screws B18.2.2-87.....Square and Hex Nuts B18.6.1-97.....Wood Screws B18.6.4-98(R2005).....Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

phia, PA Project No. 642-11-150 Final Documents: 8/17/2012

E. American Plywood Association (APA): E30-07.....Engineered Wood Construction Guide F. American Society for Testing And Materials (ASTM): A47-99(R2009)......Ferritic Malleable Iron Castings A48-03(R2008).....Gray Iron Castings A653/A653M-10.....Steel Sheet Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot Dip Process C954-10.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Studs from 0.033 inch (2.24 mm) to 0.112-inch (2.84 mm) in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Metal Studs D143-09.....Small Clear Specimens of Timber, Method of Testing D1760-01.....Pressure Treatment of Timber Products D2559-10.....Adhesives for Structural Laminated Wood Products for Use Under Exterior (Wet Use) Exposure Conditions D3498-11.....Adhesives for Field-Gluing Plywood to Lumber Framing for Floor Systems F844-07.....Washers, Steel, Plan (Flat) Unhardened for General Use F1667-08.....Nails, Spikes, and Staples G. Federal Specifications (Fed. Spec.): MM-L-736C.....Lumber; Hardwood H. Commercial Item Description (CID): A-A-55615..... And Lag Bolt Self Threading Anchors) I. Military Specification (Mil. Spec.): MIL-L-19140E.....Lumber and Plywood, Fire-Retardant Treated J. Truss Plate Institute (TPI): TPI-85..... Metal Plate Connected Wood Trusses K. U.S. Department of Commerce Product Standard (PS) PS 1-95.....Construction and Industrial Plywood PS 20-05.....American Softwood Lumber Standard

PART 2 - PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - Identifying marks in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - Furring, blocking, nailers and similar items 100 mm (4 inches) and narrower Standard Grade; and, members 150 mm (6 inches) and wider, Number 2 Grade.
- C. Sizes:
 - 1. Conforming to Prod. Std., PS20.
 - Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.
- D. Moisture Content:
 - 1. At time of delivery and maintained at the site.
 - 2. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - 3. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- E. Fire Retardant Treatment:
 - Mil Spec. MIL-L-19140 with piece of treated material bearing identification of testing agency and showing performance rating.
 - 2. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.
- F. Preservative Treatment:
 - 1. Do not treat Heart Redwood and Western Red Cedar.
 - 2. Treat wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 600 mm (24 inches) from ground; nailers, edge strips, blocking,

crickets, curbs, cant, vent strips and other members used in connection with roofing and flashing materials.

- 3. Treat other members specified as preservative treated (PT).
- Preservative treat by the pressure method complying with ASTM D1760, except any process involving the use of Chromated Copper arsenate (CCA) for pressure treating wood is not permitted.

2.2 PLYWOOD

- A. Comply with Prod. Std., PS 1.
- B. Bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of plywood which identifies compliance by veneer grade, group number, span rating where applicable, and glue type.

2.3 STRUCTURAL-USE PANELS

- A. Comply with APA.
- B. Bearing the mark of a recognized association or independent agency that maintains continuing control over quality of panel which identifies compliance by end use, Span Rating, and exposure durability classification.
- C. Wall and Roof Sheathing:
 - APA Rated sheathing panels, durability classification of Exposure 1 or Exterior Span Rating of 16/0 or greater for supports 400 mm (16 inches) on center and 24/0 or greater for supports 600 mm (24 inches) on center.
- D. Underlayment:
 - 1. APA rated Exposure 1.
 - 2. Minimum 6 mm (1/4 inch) thick or greater over subfloor.

2.4 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ANSI B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - Extend at least 200 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D, A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Use 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers
 - 1. ASTM F844.

- 2. Use zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ANSI B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.
- E. Nails:
 - Size and type best suited for purpose unless noted otherwise. Use aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
 - 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.
 - f. Use special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.
- F. Framing and Timber Connectors:
 - Fabricate of ASTM A446, Grade A; steel sheet not less than 1.3 mm (0.052 inch) thick unless specified otherwise. Apply standard plating to steel timber connectors after punching, forming and assembly of parts.
 - 2. Framing Angles: Angle designed with bendable legs to provide three way anchors.
 - 3. Straps:
 - a. Designed to provide wind and seismic ties with sizes as shown or specified.
 - b. Strap ties not less than 32 mm (1-1/4 inches) wide.
 - c. Punched for fastener.
 - 4. Metal Bridging:
 - a. Optional to wood bridging.
 - b. V shape deformed strap with not less than 2 nail holes at ends, designed to nail to top and side of framing member and bottom and side of opposite member.
 - c. Not less than 19 mm by 125 mm (3/4 by 5 inches) bendable nailing flange on ends.
 - d. Fabricated of 1 mm (0.04 inch) minimum thick sheet.

- 5. Joist Hangers:
 - a. Fabricated of 1.6 mm (0.063 inch) minimum thick sheet, U design unless shown otherwise.
 - b. Heavy duty hangers fabricated of minimum 2.7 mm (0.108 inch) thick sheet, U design with bent top flange to lap over beam.
- 6. Timber Connectors: Fabricated of steel to shapes shown.
- 7. Joist Ties: Mild steel flats, 5 by 32 mm (3/16 by 1-1/4 inch size with ends bent about 30 degrees from horizontal, and extending at least 400 mm (16 inches) onto framing. Punch each end for three spikes.
- 8. Wall Anchors for Joists and Rafters:
 - a. Mild steel strap, 5 by 32 mm (3/16 by 1-1/4 inch) with wall ends bent 50 mm (2 inches), or provide 9 by 130 mm (3/8 by 5 inch) pin through strap end built into masonry.
 - b. Strap long enough to extend onto three joists or rafters, and punched for spiking at each bearing.
 - c. Strap not less than 100 mm (4 inches) embedded end.
- 9. Joint Plates:
 - a. Steel plate punched for nails.
 - b. Steel plates formed with teeth or prongs for mechanically clamping plates to wood.
 - c. Size for axial eccentricity, and fastener loads.
- G. Adhesives:
 - 1. For field-gluing plywood to lumber framing floor or roof systems: ASTM D3498.
 - 2. For structural laminated Wood: ASTM D2559.

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

A. Conform to applicable requirements of the following:

- 1. AFPA National Design Specification for Wood Construction for timber connectors.
- 2. AITC Timber Construction Manual for heavy timber construction.
- 3. AFPA WCD-number 1, Manual for House Framing for nailing and framing unless specified otherwise.
- 4. APA for installation of plywood or structural use panels.
- 5. ASTM F 499 for wood underlayment.
- 6. TPI for metal plate connected wood trusses.
- B. Fasteners:
 - 1. Nails.

- a. Nail in accordance with the Recommended Nailing Schedule as specified in AFPA Manual for House Framing where detailed nailing requirements are not specified in nailing schedule. Select nail size and nail spacing sufficient to develop adequate strength for the connection without splitting the members.
- b. Use special nails with framing connectors.
- c. For sheathing and subflooring, select length of nails sufficient to extend 25 mm (1 inch) into supports.
- d. Use eight penny or larger nails for nailing through 25 mm (1 inch) thick lumber and for toe nailing 50 mm (2 inch) thick lumber.
- e. Use 16 penny or larger nails for nailing through 50 mm (2 inch) thick lumber.
- f. Select the size and number of nails in accordance with the Nailing Schedule except for special nails with framing anchors.
- g. Nailing Schedule; Using Common Nails:
 - Joist bearing on sill or girder, toe nail three-8d or framing anchor
 - 2) Bridging to joist, toe nail each end two-8d
 - 3) Ledger strip to beam or girder three-16d under each joint.
 - 4) Subflooring or Sheathing:
 - a) 150 mm (6 inch) wide or less to each joist face nail two-8d.
 - b) Subflooring, more than 150 mm (6 inches) wide, to each stud or joint, face nail three-8d.
 - c) Plywood or structural use panel to each stud or joist face nail 8d, at supported edges 150 mm (6 inches) on center and at intermediate supports 250 mm (10 inches) on center. When gluing plywood to joint framing increase nail spacing to 300 mm (12 inches) at supported edges and 500 mm (20 inches) o.c. at intermediate supports.
 - 5) Sole plate to joist or blocking, through sub floor face nail 20d nails, 400 mm (16 inches) on center.
 - 6) Top plate to stud, end nail two-16d.
 - 7) Stud to sole plate, toe nail or framing anchor. Four-8d
 - 8) Doubled studs, face nail 16d at 600 mm (24 inches) on center.
 - 9) Built-up corner studs 16d at 600 mm (24 inches) (24 inches) on center.
 - 10) Doubled top plates, face nails 16d at 400 mm (16 inches) on center.
 - 11) Top plates, laps, and intersections, face nail two-16d.

- 12) Continuous header, two pieces 16d at 400 mm (16 inches) on center along each edge.
- 13) Ceiling joists to plate, toenail three-8d or framing anchor.
- 14) Continuous header to stud, four 16d.
- 15) Ceiling joists, laps over partitions, face nail three-16d or framing anchor.
- 16) Ceiling joists, to parallel rafters, face nail three-16d.
- 17) Rafter to plate, toe nail three-8d. or framing anchor. Brace 25 mm (1 inch) thick board to each stud and plate, face nail three-8d.
- 18) Built-up girders and beams 20d at 800 mm (32 inches) on center along each edge.
- 2. Bolts:
 - a. Fit bolt heads and nuts bearing on wood with washers.
 - b. Countersink bolt heads flush with the surface of nailers.
 - c. Embed in concrete and solid masonry or use expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
 - d. Use toggle bolts to hollow masonry or sheet metal.
 - e. Use bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 600 mm (24 inch) intervals between end bolts. Use clips to beam flanges.
- 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C 954 for steel over 0.84 mm (0.033 inch) thick.
- 4. Power actuated drive pins may be used where practical to anchor to solid masonry, concrete, or steel.
- Do not anchor to wood plugs or nailing blocks in masonry or concrete. Use metal plugs, inserts or similar fastening.
- 6. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- 7. Installation of Timber Connectors:
 - a. Conform to applicable requirements of the NFPA National Design Specification for Wood Construction.
 - b. Fit wood to connectors and drill holes for fasteners so wood is not split.

- C. Set sills or plates level in full bed of mortar on masonry or concrete walls.
 - Space anchor bolts 1200 mm (4 feet) on centers between ends and within 150 mm (6 inches) of end. Stagger bolts from side to side on plates over 175 mm (7 inches) in width.
 - Use shims of slate, tile or similar approved material to level wood members resting on concrete or masonry. Do not use wood shims or wedges.
 - 3. Closely fit, and set to required lines.
- D. Cut notch, or bore in accordance with NFPA Manual for House-Framing for passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- E. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Use longest lengths practicable.
 - 3. Use fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 600 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 125 mm (5 inches) in width.

F. Underlayment:

- Where finish flooring of different thickness is used in adjoining areas, use underlayment of thickness required to bring finish flooring surfaces into same plane.
- Apply to dry, level, securely nailed, clean, wood subfloor without any projections.
- 3. Fasten to subfloor as specified in ASTM F499.
- 4. Plywood and particle underlayment may be glue-nailed to subfloor.
- 5. Butt underlayment panels to a light contact with a 1 mm (1/32 inch) space between plywood or hardboard underlayment panels and walls, and approximately 9 mm (3/8 inch) between particleboard underlayment panels and walls.
- Stagger underlayment panel end joints with respect to each other and offset joints with respect to joints in the subfloor at least 50 mm (2 inches).
- 7. After installation, avoid traffic on underlayment and damage to its finish surface.
- G. Sheathing:

- 1. Use plywood or structural-use panels for sheathing.
- 2. Lay panels with joints staggered, with edge and ends 3 mm (1/8 inch) apart and nailed over bearings as specified.
- 3. Set nails not less than 9 mm (3/8 inch) from edges.
- 4. Install 50 mm by 100 mm (2 inch by 4 inch) blocking spiked between joists, rafters and studs to support edge or end joints of panels.

- - - E N D - - -

SECTION 06 20 00 FINISH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies exterior and interior millwork.
- B. Items specified.
 - Seats and benches
 - Communication Center Counter
 - Counter Shelf
 - Counter or Work Tops
 - Mounting Strips, Shelves, and Rods

1.2 RELATED WORK

- A. Framing, furring and blocking: Section 06 10 00, ROUGH CARPENTRY.
- B. Wood doors: Section 08 14 00, WOOD DOORS.
- C. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Stock Casework: Section 12 32 00, MANUFACTURED WOOD CASEWORK.
- E. Electrical light fixtures and duplex outlets: Division 26, ELECTRICAL.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Millwork items Half full size scale for sections and details 1:50 (1/4-inch) for elevations and plans.
 - 2. Show construction and installation.
- C. Samples:

Plastic laminate finished plywood or particleboard, 150 mm by 300 mm (six by twelve inches).

- D. Certificates:
 - 1. Indicating preservative treatment and/or fire retardant treatment of materials meet the requirements specified.
 - 2. Indicating moisture content of materials meet the requirements specified.
- E. List of acceptable sealers for fire retardant and preservative treated materials.
- F. Manufacturer's literature and data:
 - 1. Finish hardware
 - 2. Sinks with fittings
 - 3. Electrical components

1.4 DELIVERY, STORAGE AND HANDLING

- A. Protect lumber and millwork from dampness, maintaining moisture content specified both during and after delivery at site.
- B. Store finishing lumber and millwork in weathertight well ventilated structures or in space in existing buildings designated by Resident Engineer. Store at a minimum temperature of 21°C (70°F) for not less than 10 days before installation.
- C. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): A36/A36M-08.....Structural Steel A53-07.....Pipe, Steel, Black and Hot-Dipped Zinc Coated, Welded and Seamless A167-99 (R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B26/B26M-09.....Aluminum-Alloy Sand Castings B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes E84-09.....Surface Burning Characteristics of Building Materials C. American Hardboard Association (AHA): A135.4-04.....Basic Hardboard D. Builders Hardware Manufacturers Association (BHMA): A156.9-03.....Cabinet Hardware A156.11-04.....Cabinet Locks A156.16-02.....Auxiliary Hardware E. Hardwood Plywood and Veneer Association (HPVA): HP1-09.....Hardwood and Decorative Plywood F. National Particleboard Association (NPA): A208.1-99.....Wood Particleboard G. American Wood-Preservers' Association (AWPA): AWPA C1-03.....All Timber Products - Preservative Treatment by Pressure Processes H. Architectural Woodwork Institute (AWI): AWI-99.....Architectural Woodwork Quality Standards and Quality Certification Program

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- I. National Electrical Manufacturers Association (NEMA): LD 3-05.....High-Pressure Decorative Laminates
- J. U.S. Department of Commerce, Product Standard (PS): PS20-05.....American Softwood Lumber Standard
- K. Military Specification (Mil. Spec): MIL-L-19140E.....Lumber and Plywood, Fire-Retardant Treated
- L. Federal Specifications (Fed. Spec.):
 A-A-1922A.....Shield Expansion
 A-A-1936.....Contact Adhesive
 FF-N-836D.....Nut, Square, Hexagon Cap, Slotted, Castle
 FF-S-111D(1)....Screw, Wood
 MM-L-736(C)....Lumber, Hardwood

PART 2 - PRODUCTS

2.1 LUMBER

- A. Grading and Marking:
 - 1. Lumber shall bear the grade mark, stamp, or other identifying marks indicating grades of material.
 - 2. Such identifying marks on a material shall be in accordance with the rule or standard under which the material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 3. The inspection agency for lumber shall be approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Sizes:
 - Lumber Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which product is produced.
 - 2. Millwork, standing and running trim, and rails: Actual size as shown or specified.
- C. Hardwood: MM-L-736, species as specified for each item.
- D. Softwood: PS-20, exposed to view appearance grades:
 - 1. Use C select or D select, vertical grain for transparent finish including stain transparent finish.
 - 2. Use Prime for painted or opaque finish.

2.2 PLYWOOD

- A. Softwood Plywood:
 - 1. Prod. Std.
 - 2. Grading and Marking:

- a. Each sheet of plywood shall bear the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood.
- b. The mark shall identify the plywood by species group or identification index, and shall show glue type, grade, and compliance with PS1.
- Plywood, 13 mm (1/2 inch) and thicker; not less than five ply construction, except 32 mm (1-1/4 inch) thick plywood not less than seven ply.
- 4. Plastic Laminate Plywood Cores:
 - a. Exterior Type, and species group.
 - b. Veneer Grade: A-C.
- 5. Shelving Plywood:
 - a. Interior Type, any species group.
 - b. Veneer Grade: A-B or B-C.
- 6. Other: As specified for item.
- B. Hardwood Plywood:
 - 1. HPVA: HP.1
 - 2. Species of face veneer shall be as shown or as specified in connection with each particular item.
 - 3. Inside of Building:
 - a. Use Type II (interior) A grade veneer for transparent finish.
 - b. Use Type II (interior) Sound Grade veneer for paint finish.
 - 4. On Outside of Building:
 - a. Use Type I, (exterior) A Grade veneer for natural or stained and varnish finish.
 - b. Use Type I, (exterior) Sound Grade veneer for paint finish.
 - 5. Use plain sliced red oak rotary cut white birch unless specified otherwise.

2.3 PARTICLEBOARD

- A. NPA A208.1
- B. Plastic Laminate Particleboard Cores:
 - 1. Use Type 1, Grade 1-M-3, or Type 2, Grade 2-M-2, unless otherwise specified.
 - 2. Use Type 2, Grade 2-M-2, exterior bond, for tops with sinks.
- C. General Use: Type 1, Grade 1-M-3 or Type 2, Grade 2-M-2.

2.4 PLASTIC LAMINATE

A. NEMA LD-3.

- B. Exposed decorative surfaces including countertops, both sides of cabinet doors, and for items having plastic laminate finish. General Purpose, Type HGL.
- C. Cabinet Interiors including Shelving: Both of following options to comply with NEMA, CLS as a minimum.
 - 1. Plastic laminate clad plywood or particle board.
 - 2. Resin impregnated decorative paper thermally fused to particle board.
- D. Backing sheet on bottom of plastic laminate covered wood tops: Backer, Type HGP.
- E. Post Forming Fabrication, Decorative Surfaces: Post forming, Type HGP.

2.5 BUILDING BOARD (HARDBOARD)

- A. ANSI/AHA A135.4, 6 mm (1/4 inch) thick unless specified otherwise.
- B. Perforated hardboard (Pegboard): Type 1, Tempered perforated 6 mm (1/4 inch) diameter holes, on 25 mm (1 inch) centers each way, smooth surface one side.
- C. Wall paneling at gas chain rack: Type 1, tempered, Fire Retardant treated, smooth surface on side.

2.6 ADHESIVE

- A. For Plastic Laminate: Fed. Spec. A-A-1936.
- B. For Interior Millwork: Unextended urea resin, unextended melamine resin, phenol resin, or resorcinol resin.
- C. For Exterior Millwork: Unextended melamine resin, phenol resin, or resorcinol resin.

2.7 STAINLESS STEEL

ASTM A167, Type 302 or 304.

2.8 ALUMINUM CAST

ASTM B26

2.9 ALUMINUM EXTRUDED

ASTM B221

2.10 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electric-galvanizing process. Galvanized where specified.
 - 2. Use galvanized coating on ferrous metal for exterior work unless nonferrous metals or stainless is used.
 - 3. Fasteners:
 - a. Bolts with Nuts: FF-N-836.

- b. Expansion Bolts: A-A-1922A.
- c. Screws: Fed. Spec. FF-S-111.
- B. Finish Hardware
 - 1. Cabinet Hardware: ANSI A156.9.
 - a. Door/Drawer Pulls: B02011. Door in seismic zones: B03182.
 - b. Drawer Slides: B05051 for drawers over 150 mm (6 inches) deep,
 B05052 for drawers 75 mm to 150 mm 3 to 6 inches) deep, and B05053 for drawers less than 75 mm (3 inches) deep.
 - c. Sliding Door Tracks: B07063.
 - d. Adjustable Shelf Standards: B4061 with shelf rest B04083.
 - e. Concealed Hinges: B1601, minimum 110 degree opening.
 - f. Butt Hinges: B01361, for flush doors, B01381 for inset lipped doors, and B01521 for overlay doors.
 - g. Cabinet Door Catch: B0371 or B03172.
 - h. Vertical Slotted Shelf Standard: B04103 with shelf brackets B04113, sized for shelf depth.
 - 2. Cabinet Locks: ANSI A156.11.
 - a. Drawers and Hinged Door: E07262.
 - b. Sliding Door: E07162.
 - 3. Auxiliary Hardware: ANSI A156.16.
 - a. Shelf Bracket: B04041, japanned or enameled finish.
 - b. Combination Garment rod and Shelf Support: B04051 japanned or enamel finish.
 - c. Closet Bar: L03131 chrome finish of required length.
 - d. Handrail Brackets: L03081 or L03101.
 - 1) Cast Aluminum, satin polished finish.
 - 2) Cast Malleable Iron, japanned or enamel finish.
 - 4. Steel Channel Frame and Leg supports for Counter top. Fabricated under Section 05 50 00, METAL FABRICATIONS.
 - 5. Pipe Bench Supports:
 - a. Pipe: ASTM A53.
 - 6. Fabricated Wall Bench Supports:
 - a. Steel Angles: ASTM A36 steel with chrome finish, or ASTM A167, stainless steel with countersunk wood screws, holes at 64 mm (2-1/2 inches) on center on horizontal member.
 - b. Use 38 mm by 38 mm by 5 mm (1-1/2 by 1-1/2 by 3/16 inch) angle thick drilled for screw and bolt holes unless shown otherwise.
 Drill 6 mm (1/4 inch) holes for anchors on vertical member, not more than 200 mm (8 inches) on center between ends or corners.

- c. Stainless steel bars brackets: ASTM A167, fabricated to shapes shown, Number 4 finish. Use 50 mm by 5 mm (2 inch by 3/16 inch) bars unless shown otherwise. Drill for anchors and screws. Drill countersunk wood screw holes at 64 mm (2-1/2 inches) on center on horizontal members and not less than two 13 mm (1/4 inch) hole for anchors on vertical member.
- 7. Thru-Wall Counter Brackets:
 - a. Steel angles drilled for fasteners on 100 mm (4 inches) centers.
 - b. Baked enamel prime coat finish.
- 8. Folding Shelf Bracket:
 - a. Steel Shelf bracket, approximately 400 mm by 400 mm (16 by 16 inches), folding type with baked gray enamel finish or chrome plated finish.
 - b. Bracket legs shall be approximately 28 mm (1-1/8 inches) wide.
 - c. Distance from center line of hinge pin to back of vertical leg shall be 44 mm (1-3/4 inches) or provide for wood spacer if hinge line is at joint of vertical and horizontal leg.
 - d. Distance from face to face of bracket when closed shall be 50 mm (2 inches).
 - e. Brackets shall automatically lock when counter is raised parallel to floor and shall unlock manually.
 - f. Each bracket shall support not less than 68 Kg (150 pounds) evenly distributed.
- 9. Edge Strips Moldings:
 - a. Driven type "T" shape with serrated retaining stem; vinyl plastic to match plastic laminate color, stainless steel, or 3 mm (1/8 inch) thick extruded aluminum.
 - b. Stainless steel or extruded aluminum channels.
 - c. Stainless steel, number 4 finish; aluminum, mechanical applied medium satin finish, clear anodized 0.1 mm (0.4 mils) thick.
- 10. Rubber or Vinyl molding
 - a. Rubber or vinyl standard stock and in longest lengths practicable.
 - b. Design for closures at joints with walls and adhesive anchorage.
 - c. Adhesive as recommended by molding manufacturer.
- 11. Primers: Manufacturer's standard primer for steel providing baked enamel finish.

2.11 MOISTURE CONTENT

A. Moisture content of lumber and millwork at time of delivery to site.

- Interior finish lumber, trim, and millwork 32 mm (1-1/4 inches) or less in nominal thickness: 12 percent on 85 percent of the pieces and 15 percent on the remainder.
- Exterior treated or untreated finish lumber and trim 100 mm (4 inches) or less in nominal thickness: 15 percent.
- 3. Moisture content of other materials shall be in accordance with the standards under which the products are produced.

2.12 FIRE RETARDANT TREATMENT

- A. Where wood members and plywood are specified to be fire retardant treated, the treatment shall be in accordance with Mil. Spec. MIL-L19140.
- B. Treatment and performance inspection shall be by an independent and qualified testing agency that establishes performance ratings.
- C. Each piece of treated material shall bear identification of the testing agency and shall indicate performance in accordance with such rating of flame spread and smoke developed.
- D. Treat wood for maximum flame spread of 25 and smoke developed of 25.
- E. Fire Resistant Softwood Plywood:
 - 1. Use Grade A, Exterior, plywood for treatment.
 - 2. Meet the following requirements when tested in accordance with ASTM E84.
 - a. Flame spread: 0 to 25.
 - b. Smoke developed: 100 maximum
- F. Fire Resistant Hardwood Plywood:
 - 1. Core: Fire retardant treated softwood plywood.
 - 2. Hardwood face and back veneers untreated,
 - 3. Factory seal panel edges, to prevent loss of fire retardant salts.

2.13 PRESERVATIVE TREATMENT

Wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including wood members used for rough framing of millwork items except heart-wood Redwood and Western Red Cedar shall be preservative treated in accordance with AWPA Standards.

B. Use Grade A, exterior plywood for treatment.

2.14 ACOUSTICAL PANEL

- A. Performance criteria:
 - 1. NRC 19 mm (3/4 inch) adhesive mounting direct to substrate.
 - 2. Composite flame spread: ASTM E84, 25 or less.
 - 3. Smoke developed: ASTM E84, 140 or less.
- B. Glass fiber panel covered with fabric.

- 1. Glass fiber panel one inch thick minimum, self supporting of density required for minimum NRC.
- 2. Fabric covering treated to resist stains and soil, bonded directly to the glass fiber panel face, flat bonded directly to the glass fiber panel face, flat wrinkle-free surface.
- C. Adhesive: As recommended by panel manufacturers.

2.15 FABRICATION

- A. General:
 - 1. Except as otherwise specified, use AWI Custom Grade for architectural woodwork and interior millwork.
 - 2. Finish woodwork shall be free from pitch pockets.
 - 3. Except where special profiles are shown, trim shall be standard stock molding and members of the same species.
 - Plywood shall be not less than 13 mm (1/2 inch), unless otherwise shown or specified.
 - 5. Edges of members in contact with concrete or masonry shall have a square corner caulking rebate.
 - 6. Fabricate members less than 4 m (14 feet) in length from one piece of lumber, back channeled and molded a shown.
 - Interior trim and items of millwork to be painted may be fabricated from jointed, built-up, or laminated members, unless otherwise shown on drawings or specified.
 - 8. Plastic Laminate Work:
 - a. Factory glued to either a plywood or a particle board core, thickness as shown or specified.
 - b. Cover exposed edges with plastic laminate, except where aluminum, stainless steel, or plastic molded edge strips are shown or specified. Use plastic molded edge strips on 19 mm (3/4-inch) molded thick or thinner core material.
 - c. Provide plastic backing sheet on underside of countertops, vanity tops, thru-wall counter and sills including back splashes and end splashes of countertops.
 - d. Use backing sheet on concealed large panel surface when decorative face does not occur.
- B. Seats and Benches:
 - Fabricate from 50 mm (2 inch) stock strips of plain-sawed White Oak, or Maple. Use preservative treated softwood for exterior seats.

- Solid seats securely glued together of spliced, doweled, or double tongued and grooved wood pieces. Where open joints are indicated, work each wood piece from solid stock.
- 3. Round top edges and corners where exposed.
- C. Mounting Strips, Shelves and Rods:
 - Cut mounting strips from 25 mm by 100 mm (1 by 4 inches) softwood stock, with exposed edge slightly rounded.
 - 2. Cut wood shelf from softwood 1 inch stock, of width shown, exposed edge slightly rounded. Option: Use 19 mm (3/4 inch) thick plywood with 19 mm (3/4 inch) softwood edge nosing on exposed edge, slightly rounded.
 - Plastic laminate covered, 19 mm (3/4 inch) thick plywood or particle board core with edges and ends having plastic molded edge strips. Size, finish and number as shown.
 - Rod or Closet Bar: L03131. Combination Garment and Shelf Support, intermediate support for closet bar: B04051 for rods over 1800 mm (6 feet) long.
- E. Communications Center Counter:
 - 1. Fabricate to AWI premium grade construction in conformance with AWI Section 400, CASEWORK.
 - Use softwood for structural framing member's standard sizes, space not over 400 mm (16 inches) on center.
 - 3. Use red oak for exposed hardwood trim and edging.
 - 4. Use drawer guides on drawers with pulls.
 - 5. Use pulls and concealed hinges on doors.
 - 6. Use adjustable shelf standards with shelf rests.
 - 7. Use decorative plastic laminate on exposed surfaces including interior of cupboard cabinet.
 - 8. Overlay frame of apron with drawer and door face.
 - 9. Provide cut outs for electrical devices and outlets.
- H. Thru-Wall Counter or Pass Thru Counter.
 - 1. Fabricate counter as shown. Return hardwood edge to metal frame at ends. Fabricate to join other counters where shown.
 - 2. Cut to fit metal frame profile.
- 3. Fabricate to receive sliding pass window track when shown; specified in Section 08 56 19, PASS WINDOWS.
- 4. Use angle and fabricated shelf bracket supports.
- I. Receiving shelf in Agent Cashier:
 - 1. Fabricate shelf as shown over 19 mm (3/4 inch) thick core.
 - 2. Use B04041 shelf bracket.

- L. Counter or Work Tops:
 - 1. Fabrication with plastic laminate over 32 mm (1-1/4 inch) thick core unless shown otherwise.
 - a. Use decorative laminate for exposed edges of tops 38 mm (1-1/2 inches) wide and on back splash and end splash. Use plastic or metal edges for top edges less than 38 mm (1-1/2 inches) wide.
 - b. Assemble back splash and end splash to counter top.
 - c. Use one piece counters for straight runs.
 - d. Miter corners for field joints with overlapping blocking on underside of joint.
 - 2. Fabricate wood counter for work benches as shown.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain work areas and storage areas to a minimum temperature of 21° C (70°F) for not less than 10 days before and during installation of interior millwork.
- B. Do not install finish lumber or millwork in any room or space where wet process systems such as concrete, masonry, or plaster work is not complete and dry.

3.2 INSTALLATION

- A. General:
 - Millwork receiving transparent finish shall be primed and backpainted on concealed surfaces. Set no millwork until primed and backpainted.
 - 2. Secure trim with fine finishing nails, screws, or glue as required.
 - 3. Set nails for putty stopping. Use washers under bolt heads where no other bearing plate occurs.
 - 4. Seal cut edges of preservative and fire retardant treated wood materials with a certified acceptable sealer.
 - 5. Coordinate with plumbing and electrical work for installation of fixtures and service connections in millwork items.
 - 6. Plumb and level items unless shown otherwise.
 - Nail finish at each blocking, lookout, or other nailer and intermediate points; toggle or expansion bolt in place where nails are not suitable.
 - Exterior Work: Joints shall be close fitted, metered, tongue and grooved, rebated, or lapped to exclude water and made up in thick white lead paste in oil.
- B. Seats and Benches:

- 1. Use stainless steel countersunk screws to secure wood seats to brackets, angle, or pipe supports.
- Use stainless steel or chrome plated steel bolts for anchorage to walls. Use 6 mm (1/4 inch) toggle bolts in steel stud walls and hollow masonry. Use 6 mm (1/4 inch) expansion bolts in solid masonry or concrete.
- Wall Benches: Support within 150 mm (6 inches) near ends and not over 900 mm (3 feet) on centers with stainless steel bar brackets under bench secured to seat and wall.
- 4. Corner Seats: Support on continuous angles secured to seat and walls.
- 5. Freestanding Benches: Support within 200 mm (8 inches) of ends and not over 900 mm (3 feet) on centers with pipe bench supports.
- C. Communication Center Counters and Interview Booths:
 - 1. Secure framing to floor with expansion bolts.
 - Secure counter top to support with wood cleats or metal angles screwed on 150 mm (6 inch) centers.
 - 3. Conceal fasteners on corridor side. Exposed fasteners permitted under counter top and in knee spaces on staff side.
- F. Shelves:
 - Install mounting strip at back wall and end wall for shelves in closets where shown secured with toggle bolts at each end and not over 600 mm (24 inch) centers between ends.
 - a. Nail Shelf to mounting strip at ends and to back wall strip at not over 900 mm (36 inches) on center.
 - b. Install metal bracket, ANSI A156.16, B04041, not over 1200 mm (4 feet) centers when shelves exceed 1800 mm (6 feet) in length.
 - c. Install metal bracket, ANSI A156.16, B04051, not over 1200 mm (4 feet) on centers where shelf length exceeds 1800 mm (6 feet) in length with metal rods, clothes hanger bars ANSI A156.16, L03131, of required length, full length of shelf.
 - Install vertical slotted shelf standards, ANSI A156.9, B04103 to studs with toggle bolts through each fastener opening. Double slotted shelf standards may be used where adjacent shelves terminate.
 - a. Install brackets ANSI A156.9, B04113, providing supports for shelf not over 900 mm (36 inches) on center and within 13 mm (1/2 inch) of shelf end unless shown otherwise.
 - b. Install shelves on brackets so front edge is restrained by bracket.
- I. Install with butt joints in straight runs and miter at corners.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. This section specifies thermal and acoustical insulation for buildings.
- B. Acoustical insulation is identified by thickness and words "Acoustical Insulation".

1.2 RELATED WORK

- A. Insulation for insulated wall panels: Section 07 40 00, ROOFING AND SIDING PANELS.
- B. Insulation in connection with roofing and waterproofing: Section 07 22 00, ROOF AND DECK INSULATION.
- C. Insulation for prefabricated metal buildings: Section 13 34 19, METAL BUILDING SYSTEMS.
- D. Safing insulation: Section 07 84 00, FIRESTOPPING.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES .
- B. Manufacturer's Literature and Data:
 - 1. Insulation, each type used
 - 2. Adhesive, each type used.
 - 3. Tape
- C. Certificates: Stating the type, thickness and "R" value (thermal resistance) of the insulation to be installed.

1.4 STORAGE AND HANDLING:

- A. Store insulation materials in weathertight enclosure.
- B. Protect insulation from damage from handling, weather and construction operations before, during, and after installation.

1.5 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

C270-08..... Mortar for Unit Masonry

- C516-08.....Vermiculite Loose Fill Thermal Insulation
- C549-06.....Perlite Loose Fill Insulation

C552-07.....Cellular Glass Thermal Insulation.

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 C553-08......Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C578-08..... Rigid, Cellular Polystyrene Thermal Insulation C591-08......Unfaced Preformed Rigid Cellular Polyisocynurate Thermal Insulation C612-04.....Mineral Fiber Block and Board Thermal Insulation C665-06......Mineral Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing C728-05.....Perlite Thermal Insulation Board C954-07.....Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Base to Steel Studs From 0.033 (0.84 mm) inch to 0.112 inch (2.84 mm) in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs D312-00(R2006).....Asphalt Used in Roofing E84-08.....Surface Burning Characteristics of Building Materials

F1667-05.....Driven Fasteners: Nails, Spikes and Staples.

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL:

- A. Where thermal resistance ("R" value) is specified or shown for insulation, the thickness shown on the drawings is nominal. Use only insulation with actual thickness that is not less than that required to provide the thermal resistance specified.
- B. Where "R" value is not specified for insulation, use the thickness shown on the drawings.
- C. Where more than one type of insulation is specified, the type of insulation for each use is optional, except use only one type of insulation in any particular area.
- D. Insulation Products shall comply with following minimum content standards for recovered materials:

Material Type	Percent by Weight
Perlite composite board	23 percent post consumer recovered paper
Polyisocyanurate/polyurethane	
Rigid foam	9 percent recovered material
Foam-in-place	5 percent recovered material
Glass fiber reinforced	6 percent recovered material
Phenolic rigid foam	5 percent recovered material
Rock wool material	75 percent recovered material

The minimum-content standards are based on the weight (not the volume) of the material in the insulating core only.

2.2 MASONRY CAVITY WALL INSULATION:

- A. Mineral Fiber Board: ASTM C612, Type II, faced with a vapor retarder having a perm rating of not more than 0.5.
- B. Polyurethane or Polyisocyanurate Board: ASTM C591, Type I, faced with a vapor retarder having a perm rating of not more than 0.5.
- C. Polystyrene Board: ASTM C578, Type X.
- D. Perlite Board: ASTM C728.
- E. Cellular Glass Block: ASTM C552, Type I or IV.

2.3 PERIMETER INSULATION IN CONTACT WITH SOIL:

- A. Polystyrene Board: ASTM C578, Type IV, V, VI, VII, or IX where covered by soil or concrete.
- B. Cellular Glass Block: ASTM C552, Type I or IV.

2.4 EXTERIOR FRAMING OR FURRING INSULATION:

- A. Batt or Blanket: Optional.
- B. Mineral Fiber: ASTM C665, Type II, Class C, Category I where framing is faced with gypsum board.
- C. Mineral Fiber: ASTM C665, Type III, Class A where framing is not faced with gypsum board.

2.5 ACOUSTICAL INSULATION:

- A. Mineral Fiber boards: ASTM C553, Type II, flexible, or Type III, semirigid (4.5 pound nominal density).
- B. Mineral Fiber Batt or Blankets: ASTM C665. Maximum flame spread of 25 and smoke development of 450 when tested in accordance with ASTM E84.
- C. Thickness as shown; of widths and lengths to fit tight against framing.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Final Documents:8/17/2012

2.6 SOUND DEADENING BOARD:

- A. Mineral Fiber Board: ASTM C612, Type IB, 13 mm (1/2 inch thick).
- B. Perlite Board: ASTM C728, 13 mm (1/2 inch thick).

2.7 RIGID INSULATION:

- A. On the inside face of exterior walls, spandrel beams, floors, bottom of slabs, and where shown.
- B. Mineral Fiber Board: ASTM C612, Type IB or 2.
- C. Perlite Board: ASTM C728.
- D. Cellular Glass Block: ASTM C552, Type I.

2.8 MASONRY FILL INSULATION:

- A. Vermiculite Insulation: ASTM C516, Type II.
- B. Perlite Insulation: ASTM C549, Type IV.

2.9 FASTENERS:

- A. Staples or Nails: ASTM F1667, zinc-coated, size and type best suited for purpose.
- B. Screws: ASTM C954 or C1002, size and length best suited for purpose with washer not less than 50 mm (two inches) in diameter.
- C. Impaling Pins: Steel pins with head not less than 50 mm (two inches) in diameter with adhesive for anchorage to substrate. Provide impaling pins of length to extend beyond insulation and retain cap washer when washer is placed on the pin.

2.10 ADHESIVE:

- A. As recommended by the manufacturer of the insulation.
- B. Asphalt: ASTM D312, Type III or IV.
- C. Mortar: ASTM C270, Type 0.

2.11 TAPE:

- A. Pressure sensitive adhesive on one face.
- B. Perm rating of not more than 0.50.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

- A. Install insulation with the vapor barrier facing the heated side, unless specified otherwise.
- B. Install rigid insulating units with joints close and flush, in regular courses and with cross joints broken.
- C. Install batt or blanket insulation with tight joints and filling framing void completely. Seal cuts, tears, and unlapped joints with tape.

D. Fit insulation tight against adjoining construction and penetrations, unless specified otherwise.

3.2 MASONRY CAVITY WALLS:

- A. Mount insulation on exterior faces of inner wythes of masonry cavity walls and brick faced concrete walls. Fill joints with same material used for bonding.
- B. Bond polystyrene board to surfaces with adhesive or Portland cement mortar mixed and applied in accordance with recommendations of insulation manufacturer.
- C. Bond mineral fiberboard, polyurethane or polyisocyanurate board, and perlite board to surfaces with adhesive as recommended by insulation manufacturer.
- D. Bond cellular glass insulation to surfaces with hot asphalt or adhesive cement.

3.3 PERIMETER INSULATION:

- A. Vertical insulation:
 - 1. Fill joints of insulation with same material used for bonding.
 - 2. Bond polystyrene board to surfaces with adhesive or Portland cement mortar mixed and applied in accordance with recommendations of insulation manufacturer.
 - 3. Bond cellular glass insulation to surfaces with hot asphalt or adhesive cement.
- B. Horizontal insulation under concrete floor slab:
 - Lay insulation boards and blocks horizontally on level, compacted and drained fill.
 - 2. Extend insulation from foundation walls towards center of building not less than 600 mm (24 inches) or as shown.

3.4 EXTERIOR FRAMING OR FURRING BLANKET INSULATION:

- A. Pack insulation around door frames and windows and in building expansion joints, door soffits and other voids. Pack behind outlets around pipes, ducts, and services encased in walls. Open voids are not permitted. Hold insulation in place with pressure sensitive tape.
- B. Lap vapor retarder flanges together over face of framing for continuous surface. Seal all penetrations through the insulation.
- C. Fasten blanket insulation between metal studs or framing and exterior wall furring by continuous pressure sensitive tape along flanged edges.

- D. Fasten blanket insulation between wood studs or framing with nails or staples through flanged edges on face of stud. Space fastenings not more than 150 mm (six inches) apart.
- E. Roof Rafter Insulation or Floor Joist Insulation: Place mineral fiber blankets between framing to provide not less than a 50 mm (two inch) air space between insulation and roof sheathing or subfloor.
- F. Ceiling Insulation and Soffit Insulation:
 - 1. Fasten blanket insulation between wood framing or joist with nails or staples through flanged edges of insulation.
 - 2. At metal framing or ceilings suspension systems, install blanket insulation above suspended ceilings or metal framing at right angles to the main runners or framing. Tape insulation tightly together so no gaps occur and metal framing members are covered by insulation.
 - 3. In areas where suspended ceilings adjoin areas without suspended ceilings, install either blanket, batt, or mineral fiberboard extending from the suspended ceiling to underside of deck or slab above. Secure in place to prevent collapse or separation of hung blanket, batt, or board insulation and maintain in vertical position. Secure blanket or batt with continuous cleats to structure above.

3.5 RIGID INSULATION ON SURFACE OF EXTERIOR WALLS, FLOORS, AND UNDERSIDE OF FLOORS:

- A. On the interior face of solid masonry and concrete walls, beams, beam soffits, underside of floors, and to the face of studs for interior wall finish where shown.
- B. Bond to solid vertical surfaces with adhesive as recommended by insulation manufacturer. Fill joints with adhesive cement.
- C. Use impaling pins for attachment to underside of horizontal surfaces. Space fastenings as required to hold insulation in place and prevent sagging.
- D. Fasten board insulation to face of studs with screws, nails or staples. Space fastenings not more than 300 mm (12 inches) apart. Stagger fasteners at joints of boards. Install at each corner.
- E. Floor insulation:
 - Bond insulation to concrete floors in attic by coating surfaces with hot steep asphalt applied at rate of not less than 11.5 Kg per m² (25 lbs/100 sq. ft.), and firmly bed insulation therein.

- 2. When applied in more than one layer, bed succeeding layers in hot steep asphalt applied at the rate of not less than 11.5 Kg per m² per m^2 lbs/100 sq. ft.).
- 3. Contractors option: Insulation may be installed with nonflammable adhesive in accordance with the manufacturer's printed instructions when a separate vapor retarder is used.

3.6 MASONRY FILL INSULATION:

- A. Pour fill insulation in voids of masonry units from tops of walls, or from sill where windows or other openings occur.
- B. Pour in lifts of not more than 6 m (20 feet).

3.7 ACOUSTICAL INSULATION:

- A. Fasten blanket insulation between metal studs and wall furring with continuous pressure sensitive tape along edges or adhesive.
- B. Pack insulation around door frames and windows and in cracks, expansion joints, control joints, door soffits and other voids. Pack behind outlets, around pipes, ducts, and services encased in wall or partition. Hold insulation in place with pressure sensitive tape or adhesive.
- C. Do not compress insulation below required thickness except where embedded items prevent required thickness.
- D. Where acoustical insulation is installed above suspended ceilings install blanket at right angles to the main runners or framing. Extend insulation over wall insulation systems not extending to structure above.
- E. Where semirigid insulation is used which is not full thickness of cavity, adhere to one side of cavity maintaining continuity of insulation and covering penetrations or embedments in insulation.
- F. Where sound deadening board is shown, secure with adhesive to masonry or concrete walls and with screws to metal or wood framing. Secure sufficiently in place until subsequent cover is installed. Seal all cracks with caulking.

- - - E N D - - -

Page intentionally left blank

SECTION 07 81 00 APPLIED FIREPROOFING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies cementitious coverings to provide fire resistance to interior structural steel members shown.

1.2 RELATED WORK

a. Firestopping: Section 07 84 00, FIRESTOPPING

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - Manufacturer's complete and detailed application instructions and specifications.
 - 2. Manufacturer's repair and patching instructions.
- C. Certificates:
 - Certificate from testing laboratory attesting fireproofing material and application method meet the specified fire ratings.
 - a. List thickness and density of material required to meet fire ratings.
 - b. Accompanied by complete test report and test record.
 - Manufacturer's certificate indicating sprayed-on fireproofing material supplied under the Contract is same within manufacturing tolerance as fireproofing material tested.

D. Miscellaneous:

- Manufacturer's written approval of surfaces to receive sprayed-on fireproofing.
- 2. Manufacturer's written approval of completed installation.
- 3. Manufacturer's written approval of the applicators of fireproofing material.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver to job-site in sealed containers marked and labeled to show manufacturer's name and brand and certification of compliance with the specified requirements.
- B. Remove damaged containers from the site.
- C. Store the materials off the ground, under cover, away from damp surfaces.

- D. Keep dry until ready for use.
- E. Remove materials that have been exposed to water before installation from the site.

1.5 QUALITY CONTROL

- A. Test for fire endurance in accordance with ASTM E119, for fire rating specified, in a nationally recognized laboratory.
- B. Manufacturer's inspection and approval of surfaces to receive fireproofing as specified under paragraph Examination.
- C. Manufacturer's approval of fireproofing applications.
- D. Manufacturer's approval of completed installation.
- E. Manufacturer's representative shall observe and advise at the commencement of application, and shall visit the site as required thereafter for the purpose of ascertaining proper application.
- F. Pre-Application Test Area.
 - 1. Apply a test area consisting of a typical overhead fireproofing installation, including not less than 4.5 m (15 feet) of beam and deck.
 - a. Apply to one column.
 - b. Apply for the hourly ratings used.
 - 2. Install in location selected by the Resident Engineer, for approval by the representative of the fireproofing material manufacturer and by the Government.
 - 3. Perform Bond test on painted steel in accordance with ASTM E736.
 - 4. Do not proceed in other areas until installation of test area has been completed and approved.
 - 5. Keep approved installation area open for observation as criteria for sprayed-on fireproofing.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): C841-03(R2008).....Installation of Interior Lathing and Furring C847-10.....Metal Lath E84-10.....Surface Burning Characteristics of Building Materials E119-10.....Fire Tests of Building Construction and Materials
Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 E605-93(R2006).....Thickness and Density of Sprayed Fire-Resistive Materials Applied to Structural Members E736-00(R2006).....Cohesion/Adhesion of Sprayed Fire-Resistive Materials Applied to Structural Members E759-92(R2005)..... The Effect of Deflection on Sprayed Fire-Resistive Material Applied to Structural Members E760-92(R2005).....Impact on Bonding of Sprayed Fire-Resistive Material Applied to Structural Members E761-92(R2005).....Compressive Strength of Fire-Resistive Material Applied to Structural Members E859-93(R2006).....Air Erosion of Sprayed Fire-Resistive Materials Applied to Structural Members E937-93(R2005).....Corrosion of Steel by Sprayed Fire-Resistive Material Applied to Structural Members E1042-02(R2008).....Acoustically, Absorptive Materials Applied by Trowel or Spray. G21-09.....Determining Resistance of Synthetic Polymeric Materials to Fungi C. Underwriters Laboratories, Inc. (UL): Fire Resistance Directory...Latest Edition including Supplements D. Warnock Hersey (WH): Certification Listings..Latest Edition E. Factory Mutual System (FM): Approval Guide.....Latest Edition including Supplements PART 2 - PRODUCTS

2.1 SPRAYED-ON FIREPROOFING

- A. ASTM E1042, Class (a), Category A.
 - 1. Type I, factory mixed cementitious materials with approved aggregate.
- B. Materials containing asbestos are not permitted.
- C. Fireproofing characteristics when applied in the thickness and density required to achieve the fire-rating specified.

	Characteristic	Test	Results
1.	Deflection	ASTM E759	No cracking, spalling, or delamination when backing to which it is applied has a

			deflection up to 1/120 in 3m (10 ft.)
2.	Corrosion-Resistance	ASTM E937	No promotion of corrosion of steel.
3.	Bond Impact	ASTM E760	No cracking, spalling, or delamination.
4.	Cohesion/Adhesion (Bond Strength)	ASTM E736	Minimum cohesive/adhesive strength of 9.57 kPa (200 lbf/ft ²) for protected areas. 19.15 kPa (400 lbf/ft ²) for exposed areas.
5.	Air Erosion	ASTM E859	Maximum gain weight of the collecting filter 0.27gm/m^2 (0.025 gm/ft ²).
6.	Compressive Strength	ASTM E761	Minimum compressive strength 48 kPa (1000psf).
7.	Surface Burning Characteristics with adhesive and sealer to be used	ASTM E84	Flame spread 25 or less smoke developed 50 or less
8.	Fungi Resistance	ASTM G21	Resistance to mold growth when inoculated with aspergillus niger (28 days for general application)

2.2 ADHESIVE

- A. Bonding adhesive for Type II (fibrous) materials as recommended and supplied by the fireproofing material manufacturer.
- B. Adhesive may be an integral part of the material or applied separately to surface receiving fireproofing material.

2.3 SEALER

- A. Sealer for Type II (fibrous) material as recommended and supplied by the fireproofing material manufacturer.
- B. Surface burning characteristics as specified for fireproofing material.
- C. Fungus resistant.
- D. Sealer may be an integral part of the material or applied separately to the exposed surface. When applied separately use contrasting color pigmented sealer, white preferred.

2.4 WATER

- A. Clean, fresh, and free from organic and mineral impurities.
- B. pH of 6.9 to 7.1.

2.5 MECHANICAL BOND MATERIAL

A. Expanded Metal Lath: ASTM C847, minimum weight of 0.92 $\rm kg/m^2$ (1.7 pounds per square yard).

B. Fasteners: ASTM C841.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify surfaces to receive fireproofing are clean and free of dust, soot, oil, grease, water soluble materials or any foreign substance which would prevent adhesion of the fireproofing material.
- B. Verify hangers, inserts and clips are installed before the application of fireproofing material.
- C. Verify ductwork, piping, and other obstructing material and equipment is not installed that will interfere with fireproofing installation.
- D. Verify concrete work on steel decking and concrete encased steel is completed.
- E. Verify temperature and enclosure conditions are required by fireproofing material manufacturer.

3.2 APPLICATION

- A. Do not start application until written approval has been obtained from manufacturer of fireproofing materials that surfaces have been inspected by the manufacturer or his representative, and are suitable to receive sprayed-on fireproofing.
- B. Coordinate application of fireproofing material with other trades.
- C. Application of Metal Lath:
 - 1. Apply to beam and columns having painted surfaces which fail ASTM E736 Bond Test requirements in pre-application test area.
 - 2. Apply to beam flanges 300 mm (12-inches) or more in width.
 - 3. Apply to column flanges 400 mm (16-inches) or more in width.
 - 4. Apply to beam or column web 400 mm (16-inches) or more in depth.
 - 5. Tack weld or mechanically fasten on maximum of 300 mm (12-inch) center.
 - 6. Lap and tie lath member in accordance with ASTM C841.
- D. Mix and apply in accordance with manufacturer's instructions.
 - 1. Mechanically control material and water ratios.
 - 2. Apply adhesive and sealer, when not an integral part of the materials, in accordance with the manufacturer's instructions.
 - 3. Apply to density and thickness indicated in UL Fire Resistance Directory, FM Approval Guide, or WH Certification Listings unless specified otherwise. Test in accordance with ASTM E119.

- 4. Minimum applied dry density per cubic meter (cubic foot) for the underside of the walk on deck (interstitial) hung purl in or beam and steel deck, columns in interstitial spaces and mechanical equipment rooms shall be as follows: a. Type I - 240 kg/m³ (15 lb/ft³).
- E. Application shall be completed in one area, inspected and approved by Resident Engineer before removal of application equipment and proceeding with further work.

3.3 FIELD TESTS

- A. Tests of applied material will be performed by VA retained Testing Laboratory. See Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Resident Engineer will select area to be tested in specific bays on each floor using a geometric grid pattern.
- C. Test for thickness and density in accordance with ASTM E605. Areas showing thickness less than that required as a result of fire endurance test will be rejected.
- D. Areas showing less than required fireproofing characteristics will be rejected on the following field tests.
 - 1. Test for cohesion/adhesion: ASTM E736.
 - 2. Test for bond impact strength: ASTM E760.

3.3 PATCHING AND REPAIRING

- A. Inspect after mechanical, electrical and other trades have completed work in contact with fireproofing material, but before sprayed material is covered by subsequent construction.
- B. Perform corrective measures in accordance with fireproofing material Manufacturer's recommendations.
 - 1. Respray areas requiring additional fireproofing material to provide the required thickness, and replace dislodged or removed material.
 - 2. Spray material for patching by machine directly on point to be patched, or into a container and then hand apply.
 - 3. Hand mixing of material is not permitted.

C. Repair:

- 1. Respray all test and rejected areas.
- 2. Patch fireproofing material which is removed or disturbed after approval.
- D. Perform final inspection of sprayed areas after patching and repair.

3.5 SCHEDULE

- A. Apply fireproofing material in interior structural steel members and on underside of interior steel floor and roof decks, except on following surfaces:
 - 1. Structural steel and underside of steel decks in elevator or dumbwaiter machine rooms.
 - 2. Steel members in elevator hoist ways.
 - 3. Areas used as air handling plenums.
 - 4. Steel to be encased in concrete or designated to receive other type of fireproofing.
- B. Type I:
 - 1. One hour fire rating.
 - 2. Two hour fire rating.
 - 3. Three hour fire rating.

- - - E N D - - -

Page intentionally left blank

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION

- A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

- A. Expansion and seismic joint firestopping: Section 07 95 13, EXPANSION JOINT COVER ASSEMBLIES.
- B. Spray applied fireproofing: Section 07 81 00, APPLIED FIREPROOFING
- C. Sealants and application: Section 07 92 00, JOINT SEALANTS.
- D. Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS, Section 23 37 00, AIR OUTLETS AND INLETS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- C. List of FM, UL, or WH classification number of systems installed.
- D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 WARRANTY

Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.6 QUALITY ASSURANCE

FM, UL, or WH or other approved laboratory tested products will be acceptable.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): E84-10.....Surface Burning Characteristics of Building Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

C. Factory Mutual Engineering and Research Corporation (FM):

Annual Issue Approval Guide Building Materials

D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

1479-10.....Fire Tests of Through-Penetration Firestops

E. Warnock Hersey (WH): Annual Issue Certification Listings

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier.
- D. Firestop sealants used for firestopping or smoke sealing shall have following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Have no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.

- 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
 - 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant.
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- H. Materials to be asbestos free.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Use silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Use mineral fiber filler and bond breaker behind sealant.
- C. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials. B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

- A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Resident Engineer.
- C. Clean up spills of liquid type materials.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK:

- A. Masonry control and expansion joint: Section 04 20 00, UNIT MASONRY.
- B. Firestopping penetrations: Section 07 84 00, FIRESTOPPING.
- C. Glazing: Section 08 80 00, GLAZING.
- D. Sound rated gypsum partitions/sound sealants: Section 09 29 00, GYPSUM BOARD.
- E. Mechanical Work: Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 QUALITY CONTROL:

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in jointsealant installations with a record of successful in-service performance.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.
- E. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color where required to match adjacent material.
- D. Manufacturer's Literature and Data:
 - 1. Caulking compound
 - 2. Primers
 - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other.

1.5 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 °C (40 °F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - 1. Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - 1. Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.6 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F).

1.7 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Back-up Rod: A type of sealant backing.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Final Documents:8/17/2012

- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.8 WARRANTY:

- A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years.
- B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): C509-06.....Elastomeric Cellular Preformed Gasket and Sealing Material. C612-10.....Mineral Fiber Block and Board Thermal Insulation. C717-10.....Standard Terminology of Building Seals and Sealants. C834-10.....Latex Sealants. C919-08.....Use of Sealants in Acoustical Applications. C920-10.....Elastomeric Joint Sealants. C1021-08.....Laboratories Engaged in Testing of Building Sealants. C1193-09.....Standard Guide for Use of Joint Sealants. C1330-02 (R2007).....Cylindrical Sealant Backing for Use with Cold Liquid Applied Sealants. D1056-07.....Specification for Flexible Cellular Materials-Sponge or Expanded Rubber. E84-09.....Surface Burning Characteristics of Building Materials. C. Sealant, Waterproofing and Restoration Institute (SWRI). The Professionals' Guide

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. S-1:
 - 1. ASTM C920, polyurethane or polysulfide.
 - 2. Type M.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 20-40

B. S-2:

- 1. ASTM C920, polyurethane or polysulfide.
- 2. Type M.
- 3. Class 25.
- 4. Grade P.
- 5. Shore A hardness of 25-40.

C. S-3:

- 1. ASTM C920, polyurethane or polysulfide.
- 2. Type S.
- 3. Class 25, joint movement range of plus or minus 50 percent.
- 4. Grade NS.
- 5. Shore A hardness of 15-25.
- 6. Minimum elongation of 700 percent.

D. S-4:

- 1. ASTM C920 polyurethane or polysulfide.
- 2. Type S.
- 3. Class 25.
- 4. Grade NS.
- 5. Shore A hardness of 25-40.

E. S-5:

- 1. ASTM C920, polyurethane or polysulfide.
- 2. Type S.
- 3. Class 25.
- 4. Grade P.
- 5. Shore hardness of 15-45.
- F. S-6:
 - 1. ASTM C920, silicone, neutral cure.
 - 2. Type S.
 - 3. Class: Joint movement range of plus 100 percent to minus 50 percent.
 - 4. Grade NS.

- 5. Shore A hardness of 15-20.
- 6. Minimum elongation of 1200 percent.
- G. S-7:
 - 1. ASTM C920, silicone, neutral cure.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-30.
 - 6. Structural glazing application.
- H. S-8:
 - 1. ASTM C920, silicone, acetoxy cure.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-30.
 - 6. Structural glazing application.

I. S-9:

- 1. ASTM C920 silicone.
- 2. Type S.
- 3. Class 25.
- 4. Grade NS.
- 5. Shore A hardness of 25-30.
- 6. Non-yellowing, mildew resistant.
- J. S-10:
 - 1. ASTMC C920, coal tar extended fuel resistance polyurethane.
 - 2. Type M/S.
 - 3. Class 25.
 - 4. Grade P/NS.
 - 5. Shore A hardness of 15-20.
- K. S-11:
 - 1. ASTM C920 polyurethane.
 - 2. Type M/S.
 - 3. Class 25.
 - 4. Grade P/NS.
 - 5. Shore A hardness of 35 to 50.
- L. S-12:
 - 1. ASTM C920, polyurethane.
 - 2. Type M/S.

- 3. Class 25, joint movement range of plus or minus 50 percent.
- 4. Grade P/NS.
- 5. Shore A hardness of 25 to 50.

2.2 CAULKING COMPOUND:

- A. C-1: ASTM C834, acrylic latex.
- B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber.

2.3 COLOR:

- A. Sealants used with exposed masonry shall match color of mortar joints.
- B. Sealants used with unpainted concrete shall match color of adjacent concrete.
- C. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise.
- D. Caulking shall be light gray or white, unless specified otherwise.

2.4 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiber board: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POUROUS SURFACES:

Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI.
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - 1. Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.

- d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - 2. Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).

- Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
- 3. Do not use sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.
- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool joints to concave surface unless shown or specified otherwise.
- Finish paving or floor joints flush unless joint is otherwise detailed.
- 9. Apply compounds with nozzle size to fit joint width.
- Test sealants for compatibility with each other and substrate. Use only compatible sealant.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.
- C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

A. Field-Adhesion Testing: Field-test joint-sealant adhesion to joint substrates as recommended by sealant manufacturer:

- Extent of Testing: Test completed elastomeric sealant joints as follows:
 - a. Perform 10 tests for first 300 m (1000 feet) of joint length for each type of elastomeric sealant and joint substrate.
 - b. Perform one test for each 300 m (1000 feet) of joint length thereafter or one test per each floor per elevation.
- B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.
- C. Inspect tested joints and report on following:
 - Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate.
 - 2. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 - 3. Whether sealants filled joint cavities and are free from voids.
 - 4. Whether sealant dimensions and configurations comply with specified requirements.
- D. Record test results in a field adhesion test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions. E. Repair sealants pulled from test area by applying new sealants following same procedures used to originally seal joints. Ensure that original sealant surfaces are clean and new sealant contacts original sealant.
- F. Evaluation of Field-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements, will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.
- C. Leave adjacent surfaces in a clean and unstained condition.

3.8 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Metal to Masonry or Stone: Type S-1
 - 3. Masonry to Masonry or Stone: Type S-1
 - 4. Stone to Stone: Type S-1
 - 6. Threshold Setting Bed: Type S-1, S-3, S-4
 - 7. Masonry Expansion and Control Joints: Type S-6
- C. Sanitary Joints:
 - 1. Walls to Plumbing Fixtures: Type S-9
 - 2. Counter Tops to Walls: Type S-9
 - 3. Pipe Penetrations: Type S-9
- F. Interior Caulking:
 - Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1 and C-2.
 - Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1 and C-2.
 - 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1 and C-2.
 - Perimeter of Lead Faced Control Windows and Plaster or Gypsum Wallboard Walls: Types C-1 and C-2.
 - 5. Exposed Isolation Joints at Top of Full Height Walls: Types C-1 and C-2.
 - 6. Exposed Acoustical Joint at Sound Rated Partitions Type C-2.
 - 7. Concealed Acoustic Sealant Types S-4, C-1 and C-2.

- - - E N D - - -

Page intentionally left blank

SECTION 07 95 13 EXPANSION JOINT COVER ASSEMBLIES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Section specifies floor, wall and ceiling seismic and building expansion joint assemblies.
- B. Types of assemblies:

Metal Plate Cover

Elastomeric Joint Covers

Preformed Elastomeric Sealant Joint

1.2 RELATED WORK

C. Color of Elastomer Inserts, Filler Strips, Exterior Wall Seals and Metal Finishes: Section 09 06 00, SCHEDULE FOR FINISHES

1.3 QUALITY ASSURANCE

- A. Project Conditions:
 - 1. Check actual locations of walls and other construction, to which work must fit, by accurate field measurements before fabrication.
 - 2. Show recorded measurements on final shop drawings.
- B. Fire tests performed by Factory Mutual, Underwriters Laboratories, Inc., Warnock Hersey or other approved independent testing laboratory.

1.4 DELIVERY STORAGE AND HANDLING

- A. Take care in handling of materials so as not to injure finished surface and components.
- B. Store materials under cover in a dry and clean location off the ground.
- C. Remove materials which are damaged or otherwise not suitable for installation from job site and replace with acceptable materials.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - Submit copies of manufacturer's current literature and data for each item specified.
 - 2. Clearly indicate movement capability of cover.
- C. Certificates: Material test reports from approved independent testing laboratory indicating and interpreting test results relative to compliance of fire-rated expansion joint assemblies with requirements specified.

- D. Shop Drawings:
 - 1. Showing full extent of expansion joint cover assemblies; include large-scale details indicating profiles of each type of expansion joint cover assembly, splice joints between sections, joiners with other type assemblies, special end conditions, anchorages, fasteners, and relationship to adjoining work and finishes.
 - 2. Include description of materials and finishes and installation instructions.
- E. Samples:
 - 1. Samples of each type and color of metal finish on metal of same thickness and alloy used in work.
- Samples of each type and color of flexible seal used in work. 2

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed form part of this specification to extent referenced. Publications are referred to in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A36/A36M-08.....Structural Steel A167-99 (R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A283/A283M-07.....Low and Intermediate Tensile Strength Carbon Steel Plates A786/A786M-05(R2009)....Rolled Steel Floor Plates B36/B36M-08.....Brass, Plate, Sheet, Strip, and Rolled Bar B121-01(R2006).....Leaded Brass Plate, Sheet, Strip and Rolled Bar B209M-07.....Aluminum and Aluminum-Alloy Sheet and Plate (Metric) B221M-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes (Metric) B455-10.....Copper-Zinc Lead Alloy (Leaded Brass) Extruded Shapes C864-05..... Seal Gaskets, Setting Blocks, and Spacers C920-11.....Elastomeric Joint Sealants D1187-97 (R2002).....Asphalt Base Emulsions for Use as Protective Coatings for Metal D2287-96 (R2010).....Non-rigid Vinyl Chloride Polymer and Copolymer Molding and Extrusion Compounds

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

E119-10.....Fire Tests of Building Construction and Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

- C. Federal Specifications (Fed. Spec): TT-P-645B.....Primer, Paint, Zinc-Molybdate, Alkyd Type
- D. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual.
- E. National Fire Protection Association (NFPA): 251-06..... of Building

Construction and Materials

F. Underwriters Laboratories Inc. (UL): 263-11.....Fire Tests of Building Construction and Materials

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Stainless Steel: ASTM A167, Type 302 or 304.
- B. Structural Steel Shapes: ASTM A36.
- C. Steel Plate: ASTM A283, Grade C.
- D. Rolled Steel Floor Plate: ASTM A786.
- E. Aluminum:
 - 1. Extruded: ASTM B221, alloy 6063-T5.
 - 2. Plate and Sheet: ASTM B209, alloy 6061-T6.
- F. Bronze:
 - 1. Extruded: ASTM B455.
 - 2. Plate: ASTM B121.
- G. Brass: ASTM B36.
- H. Elastomeric Sealant:
 - 1. ASTM C920, polyurethane.
 - 2. Type.
 - 3. Class 25.
 - 4. Grade P or NS.
 - 5. Shore A hardness 25, unless specified otherwise.
- I. Thermoplastic Rubber:
 - 1. ASTM C864.
 - 2. Dense Neoprene or other material standard with expansion joint manufacturers having the same physical properties.

- J. Vinyl Invertor Sealant Waterstops: Manufacturers' standard shapes and grade.
- K. Fire Barrier:
 - 1. Designed for indicated or required dynamic structural movement without material degradation or fatigue.
 - Tested in maximum joint width condition as a component of an expansion joint cover assembly in accordance with UL 263 NFPA 251, or ASTM E119 and E814, including hose steam test at full-rated period.
- L. Zinc-Molybdate Primer: Fed. Spec. TT-P-645.
- M. Accessories:
 - Manufacturer's standard anchors, fasteners, set screws, spaces, flexible secondary water stops or seals and filler materials, drain tubes, adhesive and other accessories as indicated or required for complete installations.
 - 2. Compatible with materials in contact.
 - 3. Water stops.
- 2.2 FABRICATION
 - A. General:
 - Use ceiling and wall expansion joint cover assemblies of same design as floor to wall and floor to floor expansion joint cover assemblies. Unless shown otherwise.
 - Provide expansion joint cover assemblies of design, basic profile, materials and operation indicated required to accommodate joint size variations in adjacent surfaces, and as required for anticipated structural movement.
 - Deliver to job site ready for use and fabricated in as large sections and assemblies as practical. Assemblies identical to submitted and reviewed shop drawings, samples and certificates.
 - Furnish units in longest practicable lengths to minimize number of end joints. Provide mitered corners where joint changes directions or abuts other materials.
 - 5. Include closure materials and transition pieces, tee-joints, corners, curbs, cross-connections and other assemblies.
 - 6. Fire Performance Characteristics:
 - a. Provide expansion joint cover assemblies identical to those of assemblies whose fire resistance has been determined per ASTM

E119 and E814, NFPA 251, or UL 263 including hose stream test at full-rated period.

- b. Fire rating: Not less than rating of adjacent floor or wall construction.
- 7. Fire Barrier Systems:
 - a. Material to carry label of approved independent testing laboratory, and be subject to follow-up system for quality assurance.
 - b. Include thermal insulation where necessary, in accordance with above tests, with factory cut miters and transitions.
 - c. For joint widths up to and including 150 mm (six inches), supply barrier in lengths up to 15000 mm (50 feet) to eliminate field splicing.
 - d. For joint widths of seven inches and wider, supply barrier 3000 mm (10-foot) modules with overlapping ends for field splicing.
 - e. For joints within enclosed spaces such as chase walls, include 1 mm (0.032-inch) thick galvanized steel cover where conventional expansion joint cover is not used.
- 8. Seal Strip factory formed and bonded to metal frames and anchor members.
- 9. Compression Seals: Prefabricate from thermoplastic rubber or dense neoprene to sizes and approximate profiles shown.
- B. Floor-to-Floor Metal Plate Joints:
 - 1. Frames on each side of joint designed to support cover plate of design shown.
 - a. Continuous frame designed to finish flush with adjacent floor of profile indicated with seating surface and raised floor rim to accommodate flooring.
 - b. Provide concealed bolt and steel anchors for embedment in concrete.
 - c. Designed for filler materials between raised rim of frame and edge of cover plate where shown.
 - d. Frame and cover plates of some metal where exposed.
 - 1) Design cover plates to support 180 Kg (400 lbs) per 0.3 square meters (1-square foot).
 - 2) Cover plates free of rattle due to traffic.

- 3) No gaps or budges occur on filler material during design movement of joint.
- 4) Provide manufacturer's continuous standard flexible vinyl water stop under floor joint cover assemblies.
- C. Floor-to-Wall Metal Plate Joints:
 - 1. Provide one frame on floor side of joint only. Provide wall side frame where required by manufacturer's design.
 - 2. Angle Cover Plates: Provide angle cover plates for joints to wall with countersunk flat-head exposed fasteners for securing to wall unless shown otherwise.
 - 3. Space fasteners as recommended by manufacturer.
 - 4. Match cover of adjacent floor to floor cover.
- D. Interior Wall Joint Cover Assemblies:
 - 1. Surface Mounted Metal Cover Plates:
 - a. Concealed frame for fastening to wall on one sides of joint.
 - b. Extend cover to lap each side of joint and to permit free movement on one side.
 - c. Provide concealed attachment of cover t frame cover in close contact with adjacent finish wall surfaces.
 - d. Use angle cover plates at intersection of walls.
 - e. Use smooth surface cover plates matching floor plates.
 - f. Use expansion fire inserts in fire rated walls, rated same as hour rating of wall.
- E. Ceiling and Soffit Assemblies:
 - 1. Variable movement vinyl insert in metal frame on both sides of joint.
 - 2. Designed for flush mounting with no exposed fasteners.
 - 3. Vinyl insert locked into metal frame.
 - 4. Vinyl and metal finish as specified in section 09 06 00, SCHEDULE FOR FINISHES.
 - 5. Vinyl insert semi rigid either flush face or accordion shape as showed to span joint width without sagging.
- G. Preformed Sealant Joint: Factory installed elastomeric sealant between extruded aluminum angle frame both sides.
 - 1. Elastomeric Sealant: Two part polyurethane sealant with movement capability of +/- 25% of joint width per ASTM-C-920, Type M, Grade P, Class 25, Shore A hardness of 25+/-5.

2. Frame: Extruded Aluminum: Clear anodized.

2.3 METAL FINISHES

- A. General:
 - 1. Apply finishes in factory after products are fabricated.
 - 2. Protect finishes on exposed surfaces with protective covering before shipment.
- B. Aluminum Finishes:
 - 1. Finish letters and numbers for anodized aluminum are in accordance with the NAAMM AMP 501, Aluminum Association's Designation System).
 - a. Clear anodized finish: AA-C22A41 Chemically etched medium matte, clear anodic coating, Class I Architectural, 0.7 - mil thick.
 - 2. Fluorocarbon Finish: NAAMM AMP 503 AAMA 605.2, high performance organic coating.
 - 3. Factory-Primed Concealed Surface: NAAMM AMP 505 Protect concealed aluminum surfaces that will be in contact with plaster, concrete or masonry surfaces when installed by applying a shop coat of zincmolybdate primer to contact surfaces. Provide minimum dry film thickness of 2.0 mils.
- C. Bronze Finish: NAAMM-AMP 502-M32, mechanical finish, directional textured, natural medium satin.
- D. Stainless Steel: NAAMM AMP 503, finish No. 2B.
- E. Carbon Steel: NAAMM AMP 504, Galvanized 690.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Manufacturer's representative shall make a thorough examination of surfaces receiving work of this section.
- B. Before starting installation, notify prime contractor of defects which would affect satisfactory completion of work.

3.2 PREPARATION

- A. Verify measurements and dimensions at job site and cooperate in coordination and scheduling of work with work of related trades.
- B. Give particular attention to installation of items embedded in concrete and masonry so as not to delay job progress.
- C. Provide templates to related trade for location of support and anchorage items.

3.3 INSTALLATION

A. Install in accordance with manufacturers installation instructions unless specified otherwise.

- B. Provide anchorage devices and fasteners for securing expansion joint assemblies to in-place construction including threaded fasteners with drilled-in fasteners for masonry and concrete where anchoring members are not embedded in concrete. Provide metal fasteners of type and size to suit type of construction indicated and provide for secure attachment of expansion joint cover assemblies.
- C. Perform cutting, drilling and fitting required for installation of expansion joint cover assemblies.
- D. Install joint cover assemblies in true alignment and proper relationship to expansion joint opening and adjoining finished surfaces measured from established lines and levels.
- E. Allow for thermal expansion and contraction of metal to avoid buckling.
- F. Set floor covers at elevations flush with adjacent finished floor materials unless shown otherwise.
- G. Material and method of grouting floor frames set in prepared recesses in accordance with manufacturer's instructions.
- H. Locate wall, ceiling and soffit covers in continuous contact with adjacent surfaces. Securely attach in place with required accessories.
- I. Locate anchors at interval recommended by manufacturer, but not less than 75 mm (3-inches) from each ends, and, not more than 600 mm (24inches) on centers.
- J. Maintain continuity of expansion joint cover assemblies with end joints held to a minimum and metal members aligned mechanically using splice joints.
- K. Cut and fit ends to produce joints that will accommodate thermal expansion and contraction of metal to avoid buckling of frames or plates.
- L. Flush Metal Cover Plates:
 - 1. Secure flexible filler between frames so that it will compress and expand.
 - 2. Adhere flexible filler materials to frames with adhesive or pressure-sensitive tape as recommended by manufacturer.
- M. Waterstops:
 - Install in conjunction with floor joints and where shown, run continuously to prevent water damage to finish spaces.
 - 2. Provide seal with frame to prevent water leakage.
 - 3. Provide outlet tubes from waterstops to drain to prevent damage to finish spaces.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- N. Fire Barriers:
 - 1. Install in compliance with tested assembly.
 - 2. Install in floors and in fire rated walls.
 - 3. Use fire barrier sealant or caulk supplied with system.
- 0. Sealants:

Install to prevent water and air infiltration.

- P. Vertical Exterior Extruded Thermoplastic Rubber.
 - 1. Install side frames mounted on sealant or butyl caulk tape with appropriate anchors 600 mm (24 inches) on center complete with independent continuous PVC back seal.
 - 2. Install primary seals retained in extruded aluminum side frames.
- Q. Installation of Extruded Thermoplastic Rubber or Seals:
 - 1. For straight sections, provide preformed seals in continuous lengths.
 - 2. Vulcanize or heat-seal field splice joints to provide watertight joints using manufacturer's recommended procedures.
- R. Installation of Preformed Elastomeric Sealant Joint:
 - 1. Locate joint directly over joints in wall or floor substrates.
 - 2. Full length shall be fastened to substrate using a construction adhesive.
 - 3. Install flush or slightly below finish material.

3.4 PROTECTION

- A. Take proper precautions to protect the expansion joint covers from damage after they are in place.
- B. Cover floor joints with plywood where wheel traffic occurs.

- - - E N D - - -

Page intentionally left blank

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies steel doors, steel frames and related components.
- B. Terms relating to steel doors and frames as defined in ANSI A123.1 and as specified.

1.2 RELATED WORK

- A. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- B. Glazing and ballistic rated glazing: Section 08 80 00, GLAZING.
- C. Card readers and biometric devices: Section 28 13 16, ACCESS CONTROL SYSTEM.

1.3 TESTING

An independent testing laboratory shall perform testing.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers Literature and Data:
 - Fire rated doors and frames, showing conformance with NFPA 80 and Underwriters Laboratory, Inc., or Intertek Testing Services or Factory Mutual fire rating requirements .
 - 2. Sound rated doors, including test report from Testing Laboratory.

1.5 SHIPMENT

- A. Prior to shipment label each door and frame to show location, size, door swing and other pertinent information.
- B. Fasten temporary steel spreaders across the bottom of each door frame.

1.6 STORAGE AND HANDLING

- A. Store doors and frames at the site under cover.
- B. Protect from rust and damage during storage and erection until completion.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.): L-S-125B.....Screening, Insect, Nonmetallic

Phila Renova	delphia VA Medical Center, Philadelphia, PAProject No. 642-11-150ations to Upgrade HVAC in SPDFinal Documents: 8/17/2012				
C.	Door and Hardware Institute (DHI):				
	A115 Seriesfor Steel Door and Frame Preparation for Hardware,				
	Series All5.1 through All5.17 (Dates Vary)				
D.	Steel Door Institute (SDI):				
	113-01 Door and Frame				
	Assemblies				
	128-1997Acoustical Performance for Steel Door and Frame				
	Assemblies				
	A250.8-03Standard Steel Doors and Frames				
Ε.	American Society for Testing and Materials (ASTM):				
	A167-99(R2004)Stainless and Heat-Resisting Chromium-Nickel				
	Steel Plate, Sheet, and Strip				
	A568/568-M-07Steel, Sheet, Carbon, and High-Strength, Low-				
	alloy, Hot-Rolled and Cold-Rolled				
	A1008-08Steel, sheet, Cold-Rolled, Carbon, Structural,				
	High Strength Low Alloy and High Strength Low				
	Alloy with Improved Formability				
	B209/209M-07Aluminum and Aluminum-Alloy Sheet and Plate				
	B221/221M-08Aluminum and Aluminum-Alloy Extruded Bars,				
	Rods, Wire, Profiles and Tubes				
	D1621-04Compressive Properties of Rigid Cellular				
	Plastics				
	D3656-07Clnsect Screening and Louver Cloth Woven from				
	Vinyl Coated Glass Yarns				
	E90-04 of Airborne Sound				
	Transmission Loss of Building Partitions				
F.	The National Association Architectural Metal Manufactures (NAAMM):				
	Metal Finishes Manual (1988 Edition)				
G.	National Fire Protection Association (NFPA):				
	80-09Fire Doors and Fire Windows				
н.	. Underwriters Laboratories, Inc. (UL):				
	Fire Resistance Directory				
I.	Intertek Testing Services (ITS):				
	Certifications ListingsLatest Edition				
J.	Factory Mutual System (FM):				
	Approval Guide				
ART	2 - PRODUCTS				

.

2.1 MATERIALS

- A. Sheet Steel: ASTM A1008, cold-rolled for panels (face sheets) of doors.
- B. Anchors, Fastenings and Accessories: Fastenings anchors, clips connecting members and sleeves from zinc coated steel.
- ·
- .
- .

C. Prime Paint: Paint that meets or exceeds the requirements of A250.8.

2.2 FABRICATION GENERAL

- A. GENERAL:
 - Follow SDI A250.8 for fabrication of standard steel doors, except as specified otherwise. Doors to receive hardware specified in Section 08 71 00, DOOR HARDWARE. Tolerances as per SDI A250.8. Thickness, 44 mm (1-3/4 inches), unless otherwise shown.
 - 2. Close top edge of exterior doors flush and seal to prevent water intrusion.
 - 3. When vertical steel stiffeners are used for core construction, fill spaces between stiffeners with mineral fiber insulation.
- B. Standard Duty Doors: SDI A250.8, Level 1, Model 2 of size and design shown. Use for interior locations only. Do not use for stairwell doors, security doors and detention doors.
- C. Heavy Duty Doors: SDI A250.8, Level 2, Model 2 of size and design shown. Core construction types a, d, or f, for interior doors, and, types b, c, e, or f, for exterior doors.
- D. Smoke Doors:
 - 1. Close top and vertical edges flush.
 - 2. Provide seamless vertical edges.
 - 3. Apply Steel astragal to the meeting style at the active leaf of pair of doors or double egress doors.
 - 4. Provide clearance at head, jamb and sill as specified in NFPA 80.
- E. Fire Rated Doors (Labeled):
 - Conform to NFPA 80 when tested by Underwriters Laboratories, Inc., Inchcape Testing Services, or Factory Mutual for the class of door or door opening shown.

- 2. Fire rated labels of metal, with raised or incised markings of approving laboratory shall be permanently attached to doors.
- 3. Close top and vertical edges of doors flush. Vertical edges shall be seamless. Apply steel astragal to the meeting stile of the active leaf of pairs of fire rated doors, except where vertical rod exit devices are specified for both leaves swinging in the same direction.
- 4. Construct fire rated doors in stairwell enclosures for maximum transmitted temperature rise of 230 °C (450 °F) above ambient temperature at end of 30 minutes of fire exposure when tested in accordance with ASTM E152.

2.3 METAL FRAMES

- A. General:
 - 1. SDI A250.8, 1.3 mm (0.053 inch) thick sheet steel, types and styles as shown or scheduled.
 - 2. Frames for labeled fire rated doors and windows.
 - a. Comply with NFPA 80. Test by Underwriters Laboratories, Inc., Inchcape Testing Services, or Factory Mutual.
 - b. Fire rated labels of approving laboratory permanently attached to frames as evidence of conformance with these requirements. Provide labels of metal or engraved stamp, with raised or incised markings.
 - 3. Frames for doors specified to have automatic door operators; Security doors (Type 36); service window: minimum 1.7 mm (0.067 inch) thick.
 - 4. Knocked-down frames are not acceptable.
- B. Reinforcement and Covers:
 - 1. SDI A250.8 for, minimum thickness of steel reinforcement welded to back of frames.
 - 2. Provide mortar guards securely fastened to back of hardware reinforcements except on lead-lined frames.
- 3. Where concealed door closers are installed within the head of the door frames, prepare frames for closers and provide 1 mm (0.042 inch) thick steel removable stop sections for access to concealed face plates and control valves, except when cover plates are furnished with closer.
- C. Terminated Stops: SDI A250.8.
- D. Glazed Openings and Panel Opening:
 - a. Integral stop on exterior, corridor, or secure side of door.
 - b. Design rabbet width and depth to receive glazing material or panel shown or specified.
- E. Frame Anchors:
 - 1. Floor anchors:
 - a. Where floor fills occur, provide extension type floor anchors to compensate for depth of fill.
 - b. At bottom of jamb use 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive two 6 mm (1/4 inch) floor bolts. Use 50 mm x 50 mm (2 inch by 2 inch) 9 mm by (3/8 inch) clip angle for lead lined frames, drilled for 9 mm (3/8 inch) floor bolts.
 - c. Where mullions occur, provide 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two 6 mm (1/4 inch) floor bolts and frame anchor screws.
 - d. Where sill sections occur, provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for 6 mm (1/4 inch) floor bolts and frame anchor screws. Space floor bolts at 50 mm (24 inches) on center.
 - 2. Jamb anchors:
 - a. Locate anchors on jambs near top and bottom of each frame, and at intermediate points not over 600 mm (24 inches) apart, except for fire rated frames space anchors as required by labeling authority.
 - b. Form jamb anchors of not less than 1 mm (0.042 inch) thick steel unless otherwise specified.
 - c. Anchors set in masonry: Use adjustable anchors designed for friction fit against the frame and for extension into the masonry not less than 250 mm (10 inches). Use one of following type: 1) Wire loop type of 5 mm (3/16 inch) diameter wire.
 - 2) T-shape or strap and stirrup type of corrugated or perforated sheet steel.
 - d. Anchors for stud partitions: Either weld to frame or use lock-in snap-in type. Provide tabs for securing anchor to the sides of the studs.

- e. Anchors for frames set in prepared openings:
 - 1) Steel pipe spacers with 6 mm (1/4 inch) inside diameter welded to plate reinforcing at jamb stops or hat shaped formed strap spacers, 50 mm (2 inches) wide, welded to jamb near stop.
 - 2) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass thru frame and spacers.
 - 3) Two piece frames: Subframe or rough buck drilled for 6 mm (1/4)inch) bolts.
- f. Anchors for observation windows and other continuous frames set in stud partitions.
 - 1) In addition to jamb anchors, weld clip anchors to sills and heads of continuous frames over 1200 mm (4 feet) long.
 - 2) Anchors spaced 600 mm (24 inches) on centers maximum.
- q. Modify frame anchors to fit special frame and wall construction and provide special anchors where shown or required.

2.4 TRANSOM PANELS

- A. Fabricate panels as specified for flush doors.
- B. Fabricate bottom edge with rabbet stop to fit top of door where no transom bar occurs.

2.5 LOUVERS

- A. General:
 - 1. Sight proof type with stationary blades the full thickness of the door.
 - 2. Design lightproof louvers to exclude passage of light but permit free ventilation.
 - 3. Provide insect screen and wire guards at exterior doors, except where doors are located below completely enclosed areaways, the wire guard is not required.
- B. Fabrication:
 - 1. Steel louvers 0.8 mm (0.032 inch) thick for interior doors, and 1.3 mm (0.053 inch) inch thick for exterior doors.
 - 2. Fabricate louvers as complete units. Install in prepared cutouts in doors.
 - 3. Weld stationary blades to frames. Weld louvers into door openings.
- C. Screen frames:
 - 1. Frame of either extruded aluminum or tubular aluminum.
 - 2. Fabricate frame to hold wire fabric in a channel with a retaining bar anchor and to mount on surface of door with screws.

- 3. Do not lap frame over louver opening.
- 4. Miter corners of frame members and join by concealed mechanical fastenings extending about 57 mm (2-1/4 inches) into ends of each member.
- 5. Drill frame and doors for screw attachment. Space screws 50 mm (2 inches) from end of each leg of frame and not over 300 mm (12 inches) on center between end screws.
- 6. Finish: Clear anodized finish, 0.4 mils thick.
- 7. Insect Screens: Fasten insect screens to interior side of doors with retaining bar against door and not exposed to view.
- 8. Wire Guards:
 - a. Wire fabric shall be wire guard screen as specified.
 - b. Fasten wire guard to exterior side of door with retaining bar against door and not exposed to view.

2.6 SHOP PAINTING

SDI A250.8.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Plumb, align and brace frames securely until permanent anchors are set.
 - 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - 2. Use wood spreaders at bottom of frame if the shipping spreader is removed.
 - 3. Protect frame from accidental abuse.
 - 4. Where construction will permit concealment, leave the shipping spreaders in place after installation, otherwise remove the spreaders after the frames are set and anchored.
 - 5. Remove wood spreaders and braces only after the walls are built and jamb anchors are secured.
- B. Floor Anchors:
 - 1. Anchor the bottom of door frames to floor with two 6 mm (1/4 inch)diameter expansion bolts. Use 9 mm (3/8 inch) bolts on lead lined frames.
 - 2. Power actuated drive pins may be used to secure frame anchors to concrete floors.
- C. Jamb Anchors:

- 1. Anchors in masonry walls: Embed anchors in mortar. Fill space between frame and masonry wall with grout or mortar as walls are built.
- 2. Coat frame back with a bituminous coating prior to lining of grout filling in masonry walls.
- 3. Secure anchors to sides of studs with two fasteners through anchor tabs. Use steel drill screws to steel studs.
- 4. Frames set in prepared openings of masonry or concrete: Expansion bolt to wall with 6 mm (1/4 inch) expansion bolts through spacers. Where subframes or rough bucks are used, 6 mm (1/4 inch) expansion bolts on 600 mm (24 inch) centers or power activated drive pins 600 mm (24 inches) on centers. Secure two piece frames to subframe or rough buck with machine screws on both faces.
- D. Install anchors for labeled fire rated doors to provide rating as required.
- E. Frames for Sound Rated Doors: Coordinate to line frames for sound rated doors with insulation.
- F. Overhead Bracing (Lead Lined Frames): Where jamb extensions extend to structure above, anchor clip angles with not less than two, 9 mm (3/8 inch) expansion bolts or power actuated drive pins to concrete slab. Weld to steel overhead members.

3.2 INSTALLATION OF DOORS AND APPLICATION OF HARDWARE

Install doors and hardware as specified in Sections Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, Section 08 14 00, WOOD DOORS, Section 08 71 00, DOOR HARDWARE.

- - - E N D - - -

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies interior flush doors with prefinish, prefit option.
- B. Section includes fire rated doors, and smoke doors.

1.2 RELATED WORK

- A. Metal door frames: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.
- C. Overhead doors including loading docks: Section 08 33 13, COILING COUNTER DOORS.
- E. Door hardware including hardware location (height): Section 08 71 00, DOOR HARDWARE.
- F. Installation of doors and hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, Section 08 14 00, WOOD DOORS, or Section 08 71 00, DOOR HARDWARE.
- G. Glazing and ballistic rated glazing: Section 08 80 00, GLAZING.
- H. Finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- I. Metal louvers: Section 08 90 00, LOUVERS AND VENTS.
- K. Card readers and biometric devices: Section 28 13 16, ACCESS CONTROL SYSTEM

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
- Veneer sample 200 mm (8 inch) by 275 mm (11 inch) by 6 mm (1/4 inch) showing specified wood species sanded to receive a transparent finish. Factory finish veneer sample where the prefinished option is accepted.
- C. Shop Drawings:
 - 1. Show every door in project and schedule location in building.
 - Indicate type, grade, finish and size; include detail of glazing, louvers, sound gasketing and pertinent details.
 - 3. Provide information concerning specific requirements not included in the manufacturer's literature and data submittal.
- D. Manufacturer's Literature and Data:
 - 1. Labeled fire rated doors showing conformance with NFPA 80.

- E. Laboratory Test Reports:
 - 1. Screw holding capacity test report in accordance with WDMA T.M.10.
 - 2. Split resistance test report in accordance with WDMA T.M.5.
 - 3. Cycle/Slam test report in accordance with WDMA T.M.7.
 - 4. Hinge-Loading test report in accordance with WDMA T.M.8.

1.4 WARRANTY

- A. Doors are subject to terms of Article titled "Warranty of Construction", FAR clause 52.246-21, except that warranty shall be as follows:
 - 1. For interior doors, manufacturer's warranty for lifetime of original installation.

1.5 DELIVERY AND STORAGE

- A. Factory seal doors and accessories in minimum of 6 mill polyethylene bags or cardboard packages which shall remain unbroken during delivery and storage.
- B. Store in accordance with WDMA I.S.1-A, J-1 Job Site Information.
- C. Label package for door opening where used.

1.6 APPLICABLE PUBLICATIONS

Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

B. Window and Door Manufacturers Association (WDMA):

```
I.S.1-A-04.....Architectural Wood Flush Doors
```

- I.S.4-07A.....Water-Repellent Preservative Non-Pressure Treatment for Millwork
- I.S.6A-01.....Architectural Wood Stile and Rail Doors
- T.M.5-90.....Split Resistance Test Method
- T.M.6-08.....Adhesive (Glue Bond) Durability Test Method
- T.M.7-08.....Cycle-Slam Test Method
- T.M.8-08.....Hinge Loading Test Method
- T.M.10-08.....Screwholding Test Method
- C. National Fire Protection Association (NFPA):

80-07......Protection of Buildings from Exterior Fire

- 252-08.....Fire Tests of Door Assemblies
- D. ASTM International (ASTM): E90-04.....Laboratory Measurements of Airborne Sound

Transmission Loss

PART 2 - PRODUCTS

2.1 FLUSH DOORS

- A. General:
 - 1. Meet requirements of WDMA I.S.1-A, Extra Heavy Duty.
 - 2. Adhesive: Type II
 - 3. Thickness: 45 mm (1-3/4 inches) unless otherwise shown or specified.
- B. Face Veneer:
 - 1. In accordance with WDMA I.S.1-A.
 - 2. One species throughout the project unless scheduled or otherwise shown.
 - 3. For transparent finishes: Premium Grade. Species and cut to match existing.
 - a. A grade face veneer standard optional.
 - b. AA grade face veneer
 - c. Match face veneers for doors for uniform effect of color and grain at joints.
 - d. Door edges shall be same species as door face veneer except maple may be used for stile face veneer on birch doors.
 - On doors required to have transparent finish on one side and e. paint finish on other side; use veneers as required for transparent finish on both sides.
 - In existing buildings, where doors are required to have f. transparent finish, use wood species and grade of face veneers to match adjacent existing doors.
 - 4. Factory sand doors for finishing.

C. Fire rated wood doors:

- 1. Fire Performance Rating:
 - a. "B" label, 1-1/2 hours.
 - b. "C" label, 3/4 hour.
- 2. Labels:
 - a. Doors shall conform to the requirements of ASTM E2074, or NFPA 252, and, carry an identifying label from a qualified testing and inspection agency for class of door or opening shown designating fire performance rating.
 - b. Metal labels with raised or incised markings.

- 3. Performance Criteria for Stiles of doors utilizing standard mortise leaf hinges:
 - a. Hinge Loading: WDMA T.M.8. Average of 10 test samples for Extra Heavy Duty doors.
 - b. Direct screw withdrawal: WDMA T.M.10 for Extra Heavy Duty doors. Average of 10 test samples using a steel, fully threaded #12 wood screw.
 - c. Cycle Slam: 1,000,000 cycles with no loose hinge screws or other visible signs of failure when tested in accordance with WDMA T.M.7.
- 4. Additional Hardware Reinforcement:
 - a. Provide fire rated doors with hardware reinforcement blocking.
 - b. Size of lock blocks as required to secure hardware specified.
 - c. Top, bottom and intermediate rail blocks shall measure not less than 125 mm (five inches) minimum by full core width.
 - d. Reinforcement blocking in compliance with manufacturer's labeling requirements.
 - e. Mineral material similar to core is not acceptable.
- 5. Other Core Components: Manufacturer's standard as allowed by the labeling requirements.
- 6. Provide steel frame approved for use in labeled doors for vision panels.
- 7. Provide steel astragal on pair of doors.
- D. Smoke Barrier Doors:
 - For glazed openings use steel frames approved for use in labeled doors.
 - 2. Provide a steel astragal on one leaf of pairs of doors, including double egress doors.

2.2 PREFINISH, PREFIT OPTION

- A. Flush doors may be factory machined to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
- B. Factory fitting to conform to specification for shop and field fitting, including factory application of sealer to edge and routings.
- C. Flush doors to receive transparent finish (in addition to being prefit) shall be factory finished as follows:
 - WDMA I.S.1-A Section F-3 specification for System TR-4, Conversion Varnish or System TR-5, Catalyzed Vinyl.

Use stain when required to produce the finish specified in Section
 09 06 00 SHEDULE FOR FINISHES.

2.3 IDENTIFICATION MARK:

- A. On top edge of door.
- B. Either a stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, code date of manufacture and quality.
- C. Accompanied by either of the following additional requirements:
 - 1. An identification mark or a separate certification including name of inspection organization.
 - 2. Identification of standards for door, including glue type.
 - 3. Identification of veneer and quality certification.
 - 4. Identification of preservative treatment for stile and rail doors.

2.4 SEALING:

Give top and bottom edge of doors two coats of catalyzed polyurethane

or water resistant sealer before sealing in shipping containers.

PART 3 - EXECUTION

3.1 DOOR PREPARATION

- A. Field, shop or factory preparation: Do not violate the qualified testing and inspection agency label requirements for fire rated doors.
- B. Clearances between Doors and Frames and Floors:
 - Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.
 - Maximum clearance at bottom of sound rated doors, light-proofed doors, doors to operating rooms, and doors designated to be fitted with mechanical seal: 10 mm (3/8 inch).
- C. Provide cutouts for special details required and specified.
- D. Rout doors for hardware using templates and location heights specified in Section, 08 71 00 DOOR HARDWARE.
- E. Fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (two inches) of door thickness undercut where shown.
- F. Immediately after fitting and cutting of doors for hardware, seal cut edges of doors with two coats of water resistant sealer.
- G. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- H. Apply a steel astragal on the opposite side of active door on pairs of fire rated doors.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Descriptions to Upgrade HVAC in SPDFinal Documents: 8/17/2012

I. Apply a steel astragal to meeting style of active leaf of pair of doors or double egress smoke doors.

3.2 INSTALLATION OF DOORS APPLICATION OF HARDWARE

Install doors and hardware as specified in this Section.

3.3 DOOR PROTECTION

- A. As door installation is completed, place polyethylene bag or cardboard shipping container over door and tape in place.
- B. Provide protective covering over knobs and handles in addition to covering door.
- C. Maintain covering in good condition until removal is approved by Resident Engineer.

- - - E N D - - -

SECTION 08 31 13 ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 DESCRIPTION:

Section specifies access doors or panels.

1.2 RELATED WORK:

- A. Lock Cylinders: Section 08 71 00, DOOR HARDWARE.
- B. Access doors in acoustical ceilings: Section 09 51 00, ACOUSTICAL CEILINGS.
- C. Locations of access doors for duct work cleanouts: Section 23 31 00, HVAC DUCTS AND CASINGS, Section 23 37 00, AIR OUTLETS AND INLETS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Access doors, each type, showing construction, location and installation details.
- C. Manufacturer's Literature and Data: Access doors, each type.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A167-99(R-2009).....Stainless and Heat-Resisting Chromium-Nickel

Steel Plate, Sheet and Strip

A1008-10.....Steel Sheet, Cold-Rolled, Carbon, Structural,

High Strength Low-Alloy

- C. American Welding Society (AWS): D1.3-08.....Structural Welding Code Sheet Steel
- D. National Fire Protection Association (NFPA): 80-10.....Fire Doors and Windows
- E. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual
- F. Underwriters Laboratories, Inc. (UL):
 Fire Resistance Directory

PART 2 - PRODUCTS

2.1 FABRICATION, GENERAL

- A. Fabricate components to be straight, square, flat and in same plane where required.
 - 1. Slightly round exposed edges and without burrs, snags and sharp edges.
 - 2. Exposed welds continuous and ground smooth.
 - 3. Weld in accordance with AWS D1.3.
- B. Number of locks and non-continuous hinges as required to maintain alignment of panel with frame. For fire rated doors, use hinges and locks as required by fire test.
- C. Provide anchors or make provisions in frame for anchoring to adjacent construction. Provide size, number and location of anchors on four sides to secure access door in opening. Provide anchors as required by fire test.

2.2 ACCESS DOORS, FIRE RATED:

- A. Shall meet requirements for "B" label 1-1/2 hours with maximum temperature rise of 120 degree C (250 degrees F).
- B. Comply with NFPA 80 and have Underwriters Laboratories Inc., or other nationally recognized laboratory label for Class B opening.
- C. Door Panel: Form of 0.9 mm (0.0359 inch) thick sheet, insulated sandwich type construction.
- D. Frame: Form of 1.5 mm (0.0598 inch) thick steel sheet of depth and configuration to suit material and type of construction where installed. Provide frame flange at perimeter where installed in concrete masonry or gypsum board openings.
 - 1. Weld exposed joints in flange and grind smooth.
 - 2. Provide frame flange at perimeter where installed in concrete masonry or gypsum board.
- E. Automatic Closing Device: Provide automatic closing device for door.
- F. Hinge: Continuous steel hinge with stainless steel pin.
- G. Lock:
 - 1. Self-latching, with provision for fitting flush a standard screw-in type lock cylinder. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 2. Provide latch release device operable from inside of door. Mortise case in door.

2.3 ACCESS DOORS, FLUSH PANEL:

- A. Door Panel:
 - 1. Form of 1.9 mm (0.0747 inch) thick steel or 1.5 mm (0.0598 inch) thick stainless steel sheet, as indicated below.
 - 2. Reinforce to maintain flat surface.
- B. Frame:
 - 1. Form of 1.5 mm (0.0598 inch) thick sheet of depth and configuration to suit material and type of construction where installed.
 - 2. Provide surface mounted units having frame flange at perimeter where installed in concrete, masonry, or gypsum board construction.
 - 3. Weld exposed joints in flange and grind smooth.
- C. Hinge:
 - 1. Concealed spring hinge to allow panel to open 175 degrees.
 - 2. Provide removable hinge pin to allow removal of panel from frame.
- D. Lock:
 - 1. Flush, screwdriver operated cam lock.

2.4 ACCESS DOOR, RECESSED PANEL:

- A. Door Panel:
 - 1. Form of 1.2 mm (0.0478 inch) thick steel sheet to form a 25 mm (one inch) deep recessed pan to accommodate the installation of acoustical units acoustical plaster or other materials where shown in walls and ceiling.
 - 2. Reinforce as required to prevent sagging.
- B. Frame:
 - 1. Form of 1.5 mm (0.0598 inch) thick steel sheet of depth and configuration to suit installation in suspension system of ceiling or wall framing.
 - 2. Extend sides of frame to protect edge of acoustical units when panel is in open position.
 - 3. Provide shims, bushings, clips and other devices necessary for installation.
- C. Hinge: Continuous steel hinge with stainless steel pin or concealed hinge.
- D. Lock:
 - 1. Flush screwdriver operated cam lock.
 - 2. Provide sleeve of plastic or stainless steel grommet to protect hole made in acoustical unit for screwdriver access to lock.

2.5 FINISH:

- A. Provide in accordance with NAAMM AMP 500 series on exposed surfaces.
- B. Steel Surfaces: Baked-on prime coat over a protective phosphate coating.
- C. Stainless Steel: No. 4 for exposed surfaces.

2.6 SIZE:

Minimum 600 mm (24 inches) square door unless otherwise shown.

PART 3 - EXECUTION

3.1 LOCATION:

- A. Provide access panels or doors wherever any valves, traps, dampers, cleanouts, and other control items of mechanical, electrical and conveyor work are concealed in wall or partition, or are above ceiling of gypsum board or plaster.
- B. Use fire rated doors in fire rated partitions and ceilings.
- C. Use flush panels in partitions and gypsum board or plaster ceilings, except lay-in acoustical panel ceilings or upward access acoustical tile ceilings.
- D. Use Stainless Steel doors in wet area or ceramic tile surfaces, Sheet steel in all others.

3.2 INSTALLATION, GENERAL:

- A. Install access doors in openings to have sides vertical in wall installations, and parallel to ceiling suspension grid or side walls when installed in ceiling.
- B. Set frames so that edge of frames without flanges will finish flush with surrounding finish surfaces.
- C. Set frames with flanges to overlap opening and so that face will be uniformly spaced from the finish surface.
- D. Set recessed panel access doors recessed so that face of surrounding materials will finish on the same plane, when finish in door is installed.

3.3 ANCHORAGE:

- A. Secure frames to adjacent construction using anchors attached to frames or by use of bolts or screws through the frame members.
- B. Type, size and number of anchoring device suitable for the material surrounding the opening, maintain alignment, and resist displacement during normal use of access door.

C. Anchors for fire rated access doors shall meet requirements of applicable fire test.

3.4 ADJUSTMENT:

- A. Adjust hardware so that door panel will open freely.
- B. Adjust door when closed so door panel is centered in the frame.

- - - E N D - - -

Page intentionally left blank

SECTION 08 33 13 COILING COUNTER DOORS

PART 1 -GENERAL

1.1 DESCRIPTION

- A. Section specifies overhead roll up coiling shutters over counter in walls, including frame and counter.
- B. Manual push up operation,

1.2 RELATED WORK

- A. Lock cylinder and keying: Section 08 71 00, DOOR HARDWARE.
- B. Color of shutter; Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Field Painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Shutter, each type. Installation procedures and instructions.
- C. Shop Drawings:

Shutter, each type, showing details of construction and installation.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

A47-99(R2009)	Malleable Iron Castings
A48-03(R2008)	Gray Iron Castings
A53-10	Pipe, Steel, Black and Hot-Dipped, Zinc-Coated
	Welded and Seamless
A167-99(R2009)	Stainless and Heat-Resisting Chromium-Nickel
	Steel Plate, Sheet and Strip
A653-10	Steel Sheet Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy Coated (Galvannealed) by the Hot Dip
	Process
B209-07	Aluminum and Aluminum-Alloy Sheet and Plate
B221-08	Aluminum and Aluminum-Alloy Extruded Bars,
	Rods, Wire, Shapes, and Tubes

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 F468-10...... Nonferrous Bolts, Hex Cap Screws, and Studs for General Use F593-02(R2008).....Stainless Steel Bolts, Hex Cap Screws, and Studs C. American Welding Society (AWS): D1.1-10.....Structural Welding Code Steel D1.2-08.....Structural Welding Code Aluminum D1.3-08.....Structural Welding Code Sheet Steel D. National Association of Architectural Metal Manufacturers (NAAMM) AMP 500 Series-2006....Metal Finishes Manual E. American Architectural Manufacturers Association (AAMA): Organic Coatings on Architectural Extrusions and Panels F. Federal Specifications (Fed. Spec): TT-P-645B.....Primer, Paint, Zinc-Molybdates, Alkyd Type G. National Fire Protection Association (NFPA): 80-10.....Fire Doors and Fire Windows PART 2 - PRODUCTS 2.1 MATERIALS A. Aluminum:

- 1. Extruded: ASTM B221, alloy 6063-T5.
- 2. Sheet: ASTM B209.
- B. Stainless Steel: ASTM A167, Type 302 or 304.
- C. Galvanized Repair Compound: Mil. Spec MIL-P-21035.
- D. Primer: Fed. Spec. TT-P-645.
- E. Galvanized Steel: ASTM A653.
- F. Steel Pipe: ASTM A53.
- G. Casting: ASTM A47 or A48.

2.2 FABRICATION

- A. Weld in accordance with AWS applicable code.
- B. Fire Rated Shutter:
 - Integral counter, shutter, and frame type unit for installation with hood and fascia, sloping top, related accessories and components, and automation closing by fusible link.

- Comply with NFPA 80. The counter shall have Underwriters Laboratories Inc., or other nationally recognized laboratory label for Class B and C opening as shown.
- 3. Construct for surface mounted installation.
- 4. Construct of stainless steel on exposed to view components except counter.
- 5. Counter: Minimum 2 mm (0.0747-inch) thick stainless steel with flush closed soffits and ends.
- 6. Curtain:
 - a. Flat type slats, approximately 32 mm (1 1/4-inches) wide.
 - b. Bottom bar equipped with recessed flush handles, recessed slide bolt on one end, key operated cylinder lock on other end and a continuous flexible seal to make contact with counter. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
- 7. Hood and Fascia: Steel Sheet, formed with beads or flanges to prevent deflection. Sloping top exposed ends, hood, and flush closures fastened as recommended by manufacturer.
- 8. Frame: Frame jamb sections to include guide slots for curtain with receiver for bolts and locks and continuous closure angles.
- 9. Counterbalance Assembly:
 - a. Spring barrel or shaft of steel pipe of sufficient strength to ensure deflection not exceeding 1 mm (0.03-inch) per 300 mm (1 foot) of span.
 - b. Barrel or shaft house oil-tempered, helically wound steel spring, and rotate on grease-sealed ball or roller-bearing units.
 - c. Spring adjustable from outside.
 - d. Brackets not less than 3 mm (0.125-inch) thick steel designed to form end closure support for head.
- 10. Operation:
 - a. Manual Push-up type for curtains less than 2130 mm (7-feet) wide.
 - Equip shutter with an automatic closing device actuated by fusible link to release at 130 degrees F. located exposed below the ceiling on both sides of opening in accordance with NFPA No. 80.
- 11. Sloping Top:
 - a. Minimum 0.6 mm (0.0239-inch) thick steel fastened to hood with sheet metal screws.

- b. Exposed ends flush closures fastened as recommended by manufacturer.
- C. Non-Fire Rated Shutter:
 - 1. Integral counter, shutter, and frame type unit for installation with hood and fascia, sloping top, and related accessories and components required for a complete working installation.
 - 2. Construct for surface mounted installation.
 - 3. Exposed to view components of same metal except as specified.
 - 4. Counter: 2 mm (0.0747-inch) thick stainless steel with flush closed soffits and ends.
 - 5. Frame: Minimum 1.5 mm (0.0598-inch) thick steel jamb sections formed to include guide slots for curtain with receiver for bolts and locks and continuous closure angles.
 - 6. Counterbalance Assembly:
 - a. Spring barrel or shaft of steel pipe of sufficient strength to ensure deflection not exceeding 1 mm (0.03 inch) per 300 mm (1foot) of span.
 - b. Barrel or shaft house oil-tempered, helically wound steel spring, and rotate on grease-sealed ball or roller bearings.
 - c. Springs adjustable from outside.
 - Brackets: 3 mm (1/8-inch) thick steel plate designed to form end closure support for hood.
 - Operation: Manual Push-up type for curtains less than 2130 mm (7feet) wide. 9. Curtain:
 - a. Flat type slats approximately 32 mm (1-1/4-inches) wide.
 - b. Bottom bar, equipped with recessed flush handles, recessed slide bolts for locking on one end, key operated cylinder lock on other end, and a continuous flexible seal to make tight contact with counter. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 10. Hoods: Formed with beads or flanges to prevent deflection.Sloping tops exposed ends and flush closures. Fastened to hood with sheet metal screws as recommended by manufacturer.
 - 11. Stainless Steel Shutter:
 - a. Curtain: 0.8 mm (0.0299-inch) thick stainless steel, with stainless steel bottom angles or bar.
 - b. Sloping top Hood and Fascia: Stainless steel.
 - c. Frames: Stainless steel.

d. Counter: Stainless steel.

2.3 FINISH

A. Stainless Steel: Mechanical finish No. 4 in accordance with NAAMM AMP 500 and AMP 503.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install in accordance with approved shop drawings and manufacturer's instructions.
- B. Locate anchors and inserts for guides, brackets, supports, hardware, and other accessories and components accurately.
- C. Securely attach guides to adjoining construction with not less than 10 mm (3/8-inch) diameter bolts, spaced near each end and not over 600 mm (24 inches) apart.
 - 1. Use fasteners conforming to ASTM F468 and F593.
 - 2. Use stainless steel bolts with aluminum or stainless steal.
 - 3. Use toggle bolts to frame walls or hollow masonry.
 - 4. Use expansion bolts in solid masonry or concrete.

3.2 REPAIR

Repair damaged zinc-coated surfaces by applying galvanized repair compound in accordance with the manufacturer's directions.

3.3 PROTECTION

- A. Isolate aluminum in contact with or fastened to dissimilar metal other than stainless steel, white bronze or other metals compatible with aluminum by painting the dissimilar or aluminum with a coat of TT-P-645 primer, or by placing an approved caulking compound, or a nonabsorptive tape, or gasket between the aluminum and dissimilar metal.
- B. Paint aluminum in contact with masonry or concrete with a coat of TT-P-645.

3.4 ADJUSTING AND CLEANING

- A. Lubricate properly, adjust and demonstrate, to operate freely and as specified.
- B. Clean upon completion.

- - - E N D - - -

Page intentionally left blank

SECTION 08 56 19 PASS WINDOWS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies sliding glass counter mounted pass windows.

1.2 RELATED WORK

- A. Color of factory finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Pass window opening: Section 08 33 13, COILING COUNTER DOORS.
- C. Glass and Glazing: Section 08 80 00, GLAZING.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extend referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B221/221M-08.....Aluminum and Aluminum- Alloy Extruded Bars, Rods, Wire, Shapes and Tubes (Metric) C509-06.....Elastomeric Cellular Preformed Gasket and

Sealing Material

C. American Society of Mechanical Engineers (ASME): B18.6.4-98(R2005).....Thread Forming and Thread Cutting Tapping

Screws and Metallic Drive Screws

D. Master Painters Institute (MPI):

MPI #18.....Organic Zinc Rich Coating

E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series......Metal Finishes Manual AMP 500.....Introduction to Metal Finishing

AMP 501.....Finishes for Aluminum

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Aluminum Extrusions:
 - 1. ASTM B 221 M.
 - 2. Alloy and temper recommended by window manufacturer for strength, corrosion resistance, and application of required finish, but not less than 150 MPa (22,000 psi) ultimate tensile strength, and yield of 110 MPa (16,000 psi).
- B. Glazing Gaskets: ASTM C 509.

2.1 SLIDING GLASS PASS WINDOWS, COUNTER MOUNTED

- A. Fabricate sliding glass sash and frames of extruded aluminum with corners mitered.
- B. Fabricate sash to receive 6 mm (1/4 inch) thick glass.
- C. Fabricate sliding sash of "H" channel molding at bottom edges including concealed nylon rollers at bottom set on track and guides at top set into track.
- D. Provide sash with pin tumbler lock and two keys.
- E. Provide sash with finger slot on vertical edge.
- F. Fabricate frame with channel sash slot, bottom roller track, and top guides.
- G. Sash may be factory or field glazed using glazing gaskets.
- H. Use concealed screws in assembly.
- I. Finish:
 - 1. Comply with NAAMM AMP 500 Series.
 - 2. Clear anodic coating, Class II Architectural 0.4 mills thick, AA-C22A41.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install in pass window opening level and plumb.
- B. Secure with screws to opening; ASME B18.6.4.
 - 1. Screw within 100 mm (4 inches) of ends.
 - 2. Space screws not over 600 mm (24 inches) between end screws.
- C. Coat aluminum in contact with steel with one coat of MPI No. 18.
- D. Clean unit of dust and markings.

3.2 OPERATION

- A. Adjust to roll smoothly and stay in position where stopped.
- B. Demonstrate to Resident Engineer operation and locking.
- C. Turn keys with key tags over to Resident Engineers.

- - E N D - - -

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 14 00, WOOD DOORS, Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, Section 08 33 13, COILING COUNTER DOORS, Section 08 71 13, AUTOMATIC DOOR OPERATORS, C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Painting: Section 09 91 00, PAINTING.
- E. Card Readers: Section 28 13 16, ACCESS CONTROL SYSTEMS.
- F. Electrical: Division 26, ELECTRICAL.
- G. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

- 4. Exit devices.
- 5. Floor closers.

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu
 - of one year for all items except as noted below:
 - 1. Locks, latchsets, and panic hardware: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

- C. Samples and Manufacturers' Literature:
 - Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.
 - Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.

D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to Resident Engineer for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in Resident Engineer's office until all other similar items have been installed in project, at which time the Resident Engineer will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Project Engineer and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.

B. Keying: All cylinders shall be keyed into existing Great Grand Master Key System. Provide removable core cylinders that are removable only with a special key or tool without disassembly of knob or lockset . Cylinders shall be pin type to match existing. Keying information shall be furnished at a later date by the Resident Engineer.

1.10 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.

B. American Society for Testing and Materials (ASTM): F883-04.....Padlocks

- E2180-07.....Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or Hydrophobic Materials
- C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-06.....Butts and Hinges

A156.2-03	.Bored a	and	Pre-	assembled	Lock	s an	d Lat	ches
A156.3-08	.Exit De	evic	es,	Coordinat	ors,	and	Auto	Flush
	Bolts							

JUIUS

A156.4-08Door Controls (Closers)				
A156.5-01 Auxiliary Locks and Associated Products				
A156.6-05Architectural Door Trim				
A156.8-05 And Holders				
A156.12-05Interconnected Locks and Latches				
A156.13-05 Mortise Locks and Latches Series 1000				
A156.14-07Sliding and Folding Door Hardware				
A156.15-06 Release Devices-Closer Holder, Electromagnetic				
and Electromechanical				
A156.16-08Auxiliary Hardware				
A156.17-04Self-Closing Hinges and Pivots				
A156.18-06Materials and Finishes				
A156.20-06Strap and Tee Hinges, and Hasps				

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

101-09.....Life Safety Code

- E. Underwriters Laboratories, Inc. (UL): Building Materials Directory (2008)
- PART 2 PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - Exterior Doors: Type A2112/A5112 for doors 900 mm (3 feet) wide or less and Type A2111/A5111 for doors over 900 mm (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins. Hinges for exterior fire-rated doors shall be of stainless steel material.
 - 2. Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc. shall be of stainless steel material.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

- 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.
- 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm x 114 mm (4-1/2 inches x 4-1/2 inches) hinges.
- 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
- 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
- 7. Provide heavy-weight hinges where specified.
 - At doors weighing 330 kg (150 lbs.) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

- A. ANSI/BHMA A156.26, Grade 1-600.
 - 1. Listed under Category N in BHMA's "Certified Product Directory."
- B. General: Minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete
- C. Continuous, Barrel-Type Hinges: Hinge with knuckles formed around a Teflon-coated 6.35mm (0.25-inch) minimum diameter pin that extends entire length of hinge.
 - 1. Base Metal for Exterior Hinges: Stainless steel.
 - 2. Base Metal for Interior Hinges: Stainless steel.
 - 3. Base Metal for Hinges for Fire-Rated Assemblies: Stainless steel.
 - 4. Provide with non-removable pin (hospital tip option) at lockable outswing doors.
 - 5. Where required to clear adjacent casing, trim, and wall conditions and allow full door swing, provide wide throw hinges of minimum width required.
 - 6. Provide with manufacturer's cut-outs for separate mortised power transfers and/or mortised automatic door bottoms where they occur.
 - 7. Where thru-wire power transfers are integral to the hinge, provide hinge with easily removable portion to allow easy access to wiring connections.
 - 8. Where models are specified that provide an integral wrap-around edge guard for the hinge edge of the door, provide manufacturer's

adjustable threaded stud and machine screw mechanism to allow the door to be adjusted within the wrap-around edge guard.

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer.

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
 - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
 - 7. Closers shall have full size metal cover; plastic covers will not be accepted.
 - Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
 - 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
 - 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
 - 11. Provide parallel arm closers with heavy duty rigid arm.

- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 $\frac{1}{2}$ " (38mm) minimum piston diameter.

2.5 FLOOR CLOSERS AND FLOOR PIVOT SETS

- A. Comply with ANSI A156.4. Provide stainless steel floor plates for floor closers and floor pivots, except where metal thresholds occur. Provide cement case for all floor closers. Floor closers specified for fire doors shall comply with Underwriters Laboratories, Inc., requirements for concealed type floor closers for classes of fire doors indicated on drawings. Hold-open mechanism, where required, shall engage when door is opened 105 degrees, except when door swing is limited by building construction or equipment, the hold-open feature shall engage when door is opened approximately 90 degrees. The hold-open mechanism shall be selectable on/off by turning a screw through the floor plate. Floor closers shall have adjustable hydraulic back-check, adjustable close speed, and adjustable latch speed. Provide closers with delayed action where a hold-open mechanism is not required. Floor closers shall be multi-sized. Single acting floor closers shall also have built in dead stop. Where required, provide closers with special cement cases appropriate for shallow deck installation or where concrete joint lines run through the floor blockout. At offset-hung doors installed in deep reveals, provide special closer arm and spindle to allow for installation. Where stone or terrazzo is applied over the floor closer case, provide closer without floor plate and with extended spindle (length as required) and special cover pan (depth as required) to allow closer to be accessed without damaging the material applied over the closer. Pivots for non-labeled doors shall be cast, forged or extruded brass or bronze.
- B. Where floor closer appears in hardware set provide the following as applicable.
 - 1. Double Acting Floor Closers: Type C06012.
 - Single Acting Floor Closer: Type C06021 (center pivoted). (Intermediate pivot is not required).
 - 3. Single Acting Floor Closers: Type C06041 (offset pivoted).

- Single Acting Floor Closer for Labeled Fire Doors: Type C06051 (offset pivoted).
- Single Acting Floor Closers For Lead Lined Doors: Type C06071 (offset pivoted).

2.6 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Provide floor stops (Type L02141 or L02161 in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.
- F. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement.
- G. Omit stops where floor mounted door holders are required and where automatic operated doors occur.
- H. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- J. Provide overhead surface applied stop Type C02541, ANSI A156.8 on patient toilet doors in bedrooms where toilet door could come in contact with the bedroom door.
- K. Provide door stops on doors where combination closer magnetic holders are specified, except where wall stops cannot be used or where floor stops cannot be installed within 4-inches of the wall.

L. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.7 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed holdopen on/off control at all other doors requiring overhead door stops.

2.9 LOCKS AND LATCHES

- A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall match the existing facility standard for number of pins. Cylinders for all locksets shall be removable core type. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core of allow opening and closing during construction and prior to the installation of final cores.
- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets, except on designated doors in Psychiatric (Mental Health) areas, shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching existing. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center

dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.

- 2. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Provide lever design to match design selected by Architect or to match existing lever design. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool.)
- 3. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.5.
- 4. Privacy locks in non-mental-health patient rooms shall have an inside thumbturn for privacy and an outside thumbturn for emergency entrance. Single occupancy patient privacy doors shall typically swing out; where such doors cannot swing out, provide center-pivoted doors with rescue hardware (see HW-2B).

2.10 PUSH-BUTTON COMBINATION LOCKS

- A. ANSI/BHMA A156.13, Grade 1. Battery operated pushbutton entry.
- B. Construction: Heavy duty mortise lock housing conforming to ANSI/BHMA A156.13, Grade 1. Lever handles and operating components in compliance with the UFAS and the ADA Accessibility Guidelines. Match lever handles of locks and latchsets on adjacent doors.
- C. Special Features: Key override to permit a master keyed security system and a pushbutton security code activated passage feature to allow access without using the entry code.

2.11 ELECTROMAGNETIC LOCKS

- A. ANSI/BHMA A156.23; electrically powered, of strength and configuration indicated; with electromagnet attached to frame and armature plate attached to door. Listed under Category E in BHMA's "Certified Product Directory."
 - 1. Type: Full exterior or full interior, as required by application indicated.
 - 2. Strength Ranking: 1000 lbf (4448 N.
 - 3. Inductive Kickback Peak Voltage: Not more than 3V.
 - 4. Residual Magnetism: Not more than 0 lbf (0 N) to separate door from magnet.

2.12 ELECTRIC STRIKES

- A. ANSI/ BHMA A156.31 Grade 1.
- B. General: Use fail-secure electric strikes at fire-rated doors.

2.13 KEYS

A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows:

Locks/Keys	Quantity
Cylinder locks	2 keys each
Cylinder lock change key blanks	100 each different key way
Master-keyed sets	6 keys each
Grand Master sets	6 keys each
Great Grand Master set	5 keys
Control key	2 keys

2.14 KEY CABINET

- A. ANSI Standard A156.5. Provide key cabinet made of cold rolled, 1.2 mm (0.0478 inch) thick furniture steel electro-welded. Doors shall have "no sag" continuous brass-pin piano type hinge and be equipped with chrome plated locking door handles, hook cam and mechanical pushbutton door lock. Key Cabinet and Key Control System shall accommodate all keys for this project plus 25 percent. Provide minimum number of multiple cabinets where a single cabinet of largest size will not accommodate the required number of keys.
- B. Key tags shall consist of two sets: Permanent self-locking and loan key snaphook type with tag colors as follows: Red fiber marker of the permanent self-locking type approximately 32 mm (1-1/4 inch) in diameter engraved with the legend "FILE KEY MUST NOT BE LOANED." Also
furnish for each hook a white cloverleaf key marker with snap-hooks engraved with the legend "LOAN KEY."

- C. The manufacturer of the lock cylinders and locks shall attach a key tag to keys of each lock cylinder and shall mark thereon the respective item number and key change number. Provide each group of keys in a key gathering envelope (supplied by Key Cabinet Manufacturer) in which the lock manufacturer shall include the following information: Item number, key change number and door number. The contractor shall furnish the Key Cabinet Manufacturer the hardware and keying schedules and change keys.
- D. The Key Cabinet Manufacturer shall set up a three-way cross index system, including master keys, listing the keys alphabetically, the hooks numerically and the key changes numerically on different colored index cards. Index cards shall be typewritten and inserted in a durable binder. Attach the keys to the two sets of numbered tags supplied with the cabinet. (The permanent tag and the loan key tag). Instruct the owner in proper use of the system. Install cabinet as directed by the Resident Engineer.

2.15 ARMOR PLATES, KICK PLATES, MOP PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates as specified below:
 - 1. Kick plates, mop plates and armor plates of metal, Type J100 series.
 - 2. Provide kick plates and mop plates where specified. Kick plates shall be 200 mm (8 inch) high. Mop plates shall be 200 mm (8 inch) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick and mop plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick and mop plates to within 6 mm (1/4 inch) of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.
 - 3. Kick plates and/or mop plates are not required on following door sides:
 - a. Armor plate side of doors;
 - b. Exterior side of exterior doors;
 - c. Closet side of closet doors;

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

d. Both sides of aluminum entrance doors.

- 4. Armor plates for doors are listed under Article "Hardware Sets". Armor plates shall be thickness as noted in the hardware set, 875 mm (35 inches) high and 38 mm (1-1/2 inches) less than width of doors, except on pairs of metal doors. Provide armor plates beveled on all 4 edges (B4E). Plates on pairs of metal doors shall be 25 mm (1 inch) less than width of each door. Where top of intermediate rail of door is less than 875 mm (35 inches) from door bottom, extend armor plates to within 13 mm (1/2 inch) of top of intermediate rail. On doors equipped with panic devices, extend armor plates to within 13 mm (1/2 inch) of panic bolt push bar.
- 5. Where louver or grille occurs in lower portion of doors, substitute stretcher plate and kick plate in place of armor plate. Size of stretcher plate and kick plate shall be 254 mm (10 inches) high.
- 6. Provide stainless steel edge guards where so specified at wood doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow. Provide edge guards of bevel and thickness to match wood door. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide fullheight edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front. Forward edge guards to wood door manufacturer for factory installation on doors.

2.16 EXIT DEVICES

- A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging.
- B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels. Do not provide surface vertical rod panics at exterior doors.
- C. Concealed vertical rod panics shall be provided less bottom rod at interior doors, unless lockable or otherwise specified; provide fire pins as required by exit device and door fire labels. Where concealed

vertical rod panics are specified at exterior doors, provide with both top and bottom rods.

- D. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature.
- E. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature.
- F. Exit devices for fire doors shall comply with Underwriters Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof of compliance.

2.17 FLUSH BOLTS (LEVER EXTENSION)

- A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
- B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
- C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
- D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.
- E. Provide extension rods for top bolt where door height exceeds 2184 mm (7 feet 2 inches).

2.18 FLUSH BOLTS (AUTOMATIC)

A. Conform to ANSI A156.3. Dimension of flush bolts shall conform to ANSI A115. Bolts shall conform to Underwriters Laboratories, Inc., requirements for fire door hardware. Flush bolts shall automatically latch and unlatch. Furnish dustproof strikes conforming to ANSI A156.16 for bottom flushbolt. Face plates for dustproof strike shall be rectangular and not less than 38 mm by 90 mm (1-1/2 by 3-1/2 inches).

2.19 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm (6 inches) high by 19 mm (3/4 inches) diameter with plate Type J302, 90 mm by 350 mm (3-1/2 inches by 14 inches), unless otherwise specified. Provide pull with projection of 70 mm (2 3/4 inches) and a clearance of 51 mm (2 inches). Cut plates of door pull plate for cylinders, or turn pieces where required.

2.20 PUSH PLATES

A. Conform to ANSI A156.6. Metal, Type J302, 200 mm (8 inches) wide by 350 mm (14 inches) high. Provide metal Type J302 plates 100 mm (4 inches

wide by 350 mm (14 inches) high) where push plates are specified for doors with stiles less than 200 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required.

2.21 COMBINATION PUSH AND PULL PLATES

A. Conform to ANSI 156.6. Type J303, stainless steel 3 mm (1/8 inch) thick, 80 mm (3-1/3 inches) wide by 800 mm (16 inches) high), top and bottom edges shall be rounded. Secure plates to wood doors with 38 mm (1-1/2 inch) long No. 12 wood screws. Cut plates for turn pieces, and cylinders where required. Pull shall be mounted down.

2.22 COORDINATORS

A. Conform to ANSI A156.16. Coordinators, when specified for fire doors, shall comply with Underwriters Laboratories, Inc., requirements for fire door hardware. Coordinator may be omitted on exterior pairs of doors where either door will close independently regardless of the position of the other door. Coordinator may be omitted on interior pairs of non-labeled open where open back strike is used. Open back strike shall not be used on labeled doors. Paint coordinators to match door frames, unless coordinators are plated. Provide bar type coordinators, except where gravity coordinators are required at acoustic pairs. For bar type coordinators, provide filler bars for full width and, as required, brackets for push-side surface mounted closers, overhead stops, and vertical rod panic strikes.

2.23 THRESHOLDS

- A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be installed in a bed of sealant with ¼-20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.
- B. For thresholds at elevators entrances see other sections of specifications.
- C. At exterior doors and any interior doors exposed to moisture, provide threshold with non-slip abrasive finish.
- D. Provide with miter returns where threshold extends more than 12 mm (0.5 inch) from fame face.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

2.24 AUTOMATIC DOOR BOTTOM SEAL AND RUBBER GASKET FOR LIGHT PROOF OR SOUND CONTROL DOORS

A. Conform to ANSI A156.22. Provide mortise or under-door type, except where not practical. For mortise automatic door bottoms, provide type specific for door construction (wood or metal).

2.25 WEATHERSTRIPS (FOR EXTERIOR DOORS)

A. Conform to ANSI A156.22. Air leakage shall not to exceed 0.50 CFM per foot of crack length (0.000774m³/s/m).

2.26 MISCELLANEOUS HARDWARE

- A. Access Doors (including Sheet Metal, Screen and Woven Wire Mesh Types): Except for fire-rated doors and doors to Temperature Control Cabinets, equip each single or double metal access door with Lock Type E76213, conforming to ANSI A156.5. Key locks as directed. Ship lock prepaid to the door manufacturer. Hinges shall be provided by door manufacturer.
- B. Cylinders for Various Partitions and Doors: Key cylinders same as entrance doors of area in which partitions and door occur, except as otherwise specified. Provide cylinders to operate locking devices where specified for following partitions and doors:
 - 1. Folding doors and partitions.
 - 2. Wicket door (in roll-up door assemblies).
 - 3. Slide-up doors.
 - 4. Swing-up doors.
 - 5. Fire-rated access doors-Engineer's key set.
 - 6. Doors from corridor to electromagnetic shielded room.
 - 7. Day gate on vault door.
- C. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame.

2.27 THERMOSTATIC TEMPERATURE CONTROL VALVE CABINETS

A. Where lock is shown, equip each cabinet door (metal) with lock Type E06213, conforming to ANSI A156.5. Key locks in Key Sets approved by

Contracting Officer. See mechanical drawings and specifications for location of cabinets.

B. Cabinet manufacturer shall supply the hinges, bolts and pulls. Ship locks to cabinet manufacturer for installation.

2.28 HINGED WIRE GUARDS (FOR WINDOWS, DOORS AND TRANSOMS) AND WIRE PARTITION DOORS

- A. Butt hinges, type A8133 (special swaging) 100 mm by 90 mm (4 inches by 3-1/2 inches), Finish US2C.
 - 1. 3 hinges for guards over 1060 mm (3-1/2 feet) high.
 - 2. 2 hinges for guards less than 1060 mm (3-1/2 feet) high.
- B. Conform to ANSI A156.5. Lock Type E06081 for guards and Type E06061 for partitions.
 - Keying: Except as noted otherwise, key locks like entrance door or space wherein guards and partitions are located except as otherwise specified.
 - Key locks for partitions enclosing mechanical and electrical equipment in Engineer's Set. (See detailed drawings for number of locks and butt hinges required for each guard).

2.29 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626 or 630.
 - 2. Hinges --interior doors: 652 or 630.
 - 3. Pivots: Match door trim.
 - 4. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 5. Thresholds: Mill finish aluminum.
 - 6. Cover plates for floor hinges and pivots: 630.
 - 7. Other primed steel hardware: 600.
- D. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

E. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.30 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
652	Steel
626	Brass or bronze
630	Stainless steel

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA Resident Engineer for approval, unless otherwise noted:.
 - B. Hardware Heights from Finished Floor:
 - 1. Exit devices centerline of strike (where applicable) 1024 mm (40-5/16 inches).
 - Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
 - 3. Deadlocks centerline of strike 1219 mm (48 inches).
 - 4. Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket.
 - 5. Centerline of door pulls to be 1016 mm (40 inches).
 - Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.
 - Push-pull latch to be 1024 mm (40-5/16 inches) to centerline of strike.
 - 8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors. At exterior doors, closers shall be mounted on interior side. Where closers are mounted on doors they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws.

B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height	
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)	
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)	
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)	

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by Resident Engineer. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.
- E. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.

G. After locks have been installed; show in presence of Resident Engineer that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also a copy of the invoice shall be sent to the Resident Engineer for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA Resident/Project Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

```
ELECTRIC HARDWARE ABBREVIATIONS LEGEND:
ADO = Automatic Door Operator
EMCH = Electro-Mechanical Closer-Holder
MHO = Magnetic Hold-Open (wall- or floor-mounted)
```

Philadelphia	a VA	A Medical	. Cent	er,	Phi	ladelphia,	PA	Proje	ect No.	642-11-150
Renovations	to	Upgrade	HVAC	in	SPD	F	inal	Documents	Issue:	8/17/2012

INTERIOR SINGLE DOORS

HW-1

NON-RATED

Ead	Each Door to Have:			
1	Continuous Hinge			
1	Door Pull w/ Plate	J401 x J302		
1	Push Plate	J302		
1	Kick Plate	J102		
1	Mop Plate (@ Inswing Doors)	J103		
1	Closer	C02011/C02021		
1	Floor Stop	L02121 x 3 FASTENERS		
3	Silencers	L03011		

HW-2

Ea	ch Door to Have:	RATED/NON-RATED
	Hinges	QUANTITY & TYPE AS REQUIRED
1	Keyed Privacy Indicator Lock	F13 x OCCUPANCY INDICATOR
1	Closer	C02011/C02021
1	Kick Plate	J102
1	Mop Plate (@ Inswing Doors)	J103
1	Floor Stop	L02121 x 3 FASTENERS
1	Set Self-Adhesive Seals	R0Y154
ST	ONE THRESHOLD BY OTHER TRADES.	

HW-3B

Ead	Each Door to Have: NON-RATED/RATED			
	Hinges	QUANTITY & TYPE AS REQUIRED		
1	Office Lock	F04		
1	Closer	C02011/C02021		
1	Kick Plate	J102		
1	Floor Stop	L02121 x 3 FASTENERS		
1	Door Viewer	L03221 - 190° (VIEW INTO CORRIDOR)		
1	Set Self-Adhesive Seals	R0Y154		
OM:	OMIT VIEWER IF DOOR PROVIDED WITH VISION LITE.			

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

HW-3E

Ead	ch Door to Have:	NON-RATED
	Hinges	QUANTITY & TYPE AS REQUIRED
1	Office Lock	F04
1	Kick Plate	J102
1	Floor Stop	L02121 x 3 FASTENERS
1	Set Self-Adhesive Seals	R0Y154
1	Coat Hook	L03121
OMI	IT COAT HOOK WHERE GLASS LITE I	PREVENTS INSTALLATION.

HW-4J

Each	Door to Have:	RATED/NON-RATED
	Hinges	QUANTITY & TYPE AS REQUIRED
1	Utility Lock	F09
1	Closer (@ Rated Doors)	C02011/C02021
1	Kick Plate	J102
1	Floor Stop	L02121 x 3 FASTENERS
1	Threshold	J32300 x 57 MM WIDTH (2-1/4 INCHES)
1	Auto Door Bottom	R0Y346 - HEAVY DUTY
2	Sets Self-Adhesive Seals	R0Y154

HW-4M

Each Door to Have:

RATED/NON-RATED

1	Continuous Hinge	$\mathbf x$ INTEGRAL HINGE GUARD CHANNEL
		X ADJUSTA-SCREWS
1	Classroom Hospital Lock	F08 x PADDLES POINTING DOWN
1	Closer (@ Rated Doors)	C02011/C020211 Heavy-Duty Armor Plate
	J101 x 3.175 MM (0.125	INCH) THICKNESS
1	Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY), CUT: HARDWARE
1	Floor Stop	L02121 x 3 FASTENERS
1	Set Self-Adhesive Seals	R0Y154

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents Issue: 8/17/2012

HW-5D

Each Door to Have:

NON-RATED

	Hinges	QUANTITY & TYPE AS REQUIRED
1	Storeroom Lock	F07
1	Kick Plate	J102 (@ STORAGE, EVM, & HAC ROOMS ONLY)
1	Floor Stop (@ Inswing Doors)	L02121 x 3 FASTENERS
1	Wall Stop (@ Outswing Doors)	L02101 CONVEX
3	Silencers	L03011

HW-10B

Each Pair to Have:

NON-RATED/RATED

2	Continuous Hinges	x INTEGRAL HINGE GUARD CHANNEL
		X ADJUSTA-SCREWS
1	Set Auto Flush Bolts	TYPE 25 LESS BOTTOM BOLT
1	Classroom Hospital Lock	F08 x PADDLES POINTING DOWN
1	Overlapping Astragal with	R0Y634 x R0Y154 x THRU-BOLTS
	Self-Adhesive Seal	
2	Closers (@ rated doors)	C02011/C02021
2	Heavy-Duty Armor Plates	J101 x 3.175 MM (0.125 INCH) THICKNESS
2	Kick Plate	J102
2	Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY), CUT: HARDWARE
2	Floor Stops	L02121 x 3 FASTENERS
INS	STALL LOCK TRIM PROTECTOR BAR (ON PUSH SIDE OF ACTIVE LEAF TO PROTECT
LE	VER TRIM.	

HW-11A

Each Pair to Have:

RATED

Continuous Hinge	x INTEGRAL HINGE GUARD CHANNEL
	X ADJUSTA-SCREWS
Storeroom Lock	F07
Closers	C02011/C02021
Armor Plates	J101 x 1.275 MM (0.050 INCH) THICKNESS
Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY), CUT: HARDWARE
Floor Stops	L02121 x 3 FASTENERS
Set Self-Adhesive Seals	R0Y154
	Continuous Hinge Storeroom Lock Closers Armor Plates Edge Guard (@ Wood Doors) Floor Stops Set Self-Adhesive Seals

HW-11B

Each Pair to Have:

RATED

2	Continuous Hinges	x INTEGRAL HINGE GUARD CHANNEL
		X ADJUSTA-SCREWS
1	Set Auto Flush Bolts	TYPE 25
1	Storeroom Lock	F07
1	Coordinator	TYPE 21A
1	Overlapping Astragal with	R0Y634 x R0Y154 x THRU-BOLTS
	Self-Adhesive Seal	
2	Closers	C02011/C02021
2	Armor Plates	J101 x 1.275 MM (0.050 INCH) THICKNESS
2	Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY), CUT: HARDWARE
2	Floor Stops	L02121 x 3 FASTENERS
1	Set Self-Adhesive Seals	R0Y154

- - - E N D - - -

SECTION 08 71 13 AUTOMATIC DOOR OPERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies equipment, controls and accessories for automatic operation of swing and sliding doors.

1.2 RELATED WORK

- A. Door hardware; Section 08 71 00, DOOR HARDWARE.
- B. Section 28 13 00, ACCESS CONTROL.
- C. Glass and glazing of doors and frames; Section 08 80 00, GLAZING.
- D. Electric general wiring, connections and equipment requirements; Division 26, ELECTRICAL.
- E. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 QUALITY ASSURANCE

- A. Automatic door operators, controls and other equipment shall be products of a manufacturer regularly engaged in manufacturing such equipment for a minimum of three years.
- B. One type of automatic door equipment shall be used throughout the building.
- C. Equipment installer shall have specialized experience and shall be approved by the manufacturer.

1.4 WARRANTY

A. Automatic door operators shall be subject to the terms of the "Warranty of Construction" Article of Section 00 72 00, GENERAL CONDITIONS, except that the Warranty period shall be two years in lieu of one year.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on automatic door operators.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data describing operators, power units, controls, door hardware and safety devices.
- C. Shop Drawings:
 - 1. Showing location of controls and safety devices in relationship to each automatically operated door.

- Showing layout, profiles, product components, including anchorage, accessories, as applicable.
- 3. Submit templates, wiring diagrams, fabrication details and other information to coordinate the proper installation of the automatic door operators.
- D. Submit in writing to Resident Engineer that items listed in Article 1.3 are in compliance.

1.7 DESIGN CRITERIA

- A. As a minimum automatic door equipment shall comply with the requirements of BHMA 156.10. Except as otherwise noted on drawings, provide operators which will move the doors from the fully closed to fully opened position in seven seconds maximum time interval, when speed adjustment is at maximum setting.
- B. Equipment: Conforming to UL 325. Provide key operated power disconnect wall switch for each door installation.
- C. Electrical Wiring, Connections and Equipment: Provide all motor, starter, controls, associated devices, and interconnecting wiring required for the installation. Equipment and wiring shall be as specified in Division 26, ELECTRICAL.

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Builders Hardware Manufacturers Association, Inc. (BHMA): A156.10-05.....Power Operated Pedestrian Doors (BHMA 1601)
- C. National Fire Protection Association (NFPA):

101-09.....Life Safety Code

1.9 DELIVERY AND STORAGE

A. Delivery shall be in factory's original, unopened, undamaged container with identification labels attached.

PART 2 - PRODUCTS

2.1 SWING DOOR OPERATORS

A. Manufacturer shall match existing, and specified requirements below.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- B. General: Swing door operators shall be of institutional type, door panel size 600 mm to 1250 mm (2'-0" to 5'-0") width, weight not to exceed 300 kg (600 pounds), electric operated for overhead mounting within the header or transom. Furnish metal mounting supports, brackets and other accessories necessary for the installation of operators at the head of the door frames. The motor on automatic door operator shall be provided with an interlock so that the motor will not operate when doors are electrically locked from opening.
- C. Operators shall have checking mechanism providing cushioning action at last part of door travel, in both opening and closing cycle. Operators shall be capable of recycling doors instantaneously to full open position from any point in the closing cycle when control switch is activated. Operators shall, when automatic power is interrupted or shut-off, permit doors to easily open manually without damage to automatic operator system.
- D. Operator, enclosed in housing, shall open door by energizing motor and shall stop by electrically reducing voltage and stalling motor against mechanical stop. Door shall close by means of spring energy, and close force shall be controlled by gear system and motor being used as dynamic break without power, or controlled by hydraulic closer in electro-hydraulic operators. System shall operate as manual door control in event of power failure. Opening and closing speeds shall be adjustable:
 - Operator Housing: Housing shall be a minimum of 112 mm (4-1/2 inches) wide by 140 mm (5.5 inches) high aluminum extrusions with enclosed end caps for application to 100 mm (4 inches) and larger frame systems. All structural sections shall have a minimum thickness of 3.2 mm (0.125 inch) and be fabricated of a minimum of 6063-T5 aluminum alloy.
 - 2. Power Operator: Completely assembled and sealed unit which shall include gear drive transmission, mechanical spring and bearings, all located in aluminum case and filled with special lubricant for extreme temperature conditions. Complete unit shall be rubber mounted with provisions for easy maintenance and replacement, without removing door from pivots or frame.
 - Connecting hardware shall have drive arm attached to door with a pin linkage rotating in a self-lubricating bearing. Door shall not pivot on shaft of operator.

4. Electrical Control: Operator shall have a self contained electrical control unit, including necessary transformers, relays, rectifiers, and other electronic components for proper operation and switching of power operator. All connecting harnesses shall have interlocking plugs.

2.2 MICROPRCESSOR CONTROLS

- A. The system shall include a multi-function microprocessor control providing adjustable hold open time (1-30 seconds), LED indications for sensor input signals and operator status and power assist close options. Control shall be capable of receiving activation signals from any device with normally open dry contact output. All activation modes shall provide fully adjustable opening speed:
- B. The door shall be held open by low voltage applied to the continuous duty motor. The control shall include an adjustable safety circuit that monitors door operation and stops the opening direction of the door if an obstruction is sensed. The motor shall include a recycle feature that reopens the door if an obstruction is sensed at any point during the closing cycle. The control shall include a standard three position key switch with functions for ON, OFF, and HOLD OPEN, mounted on operator enclosure, door frame, or wall, as indicated in the architectural drawings.

2.3 SLIDING DOOR OPERATORS

- A. General: Sliding doors shall have electric operators, conforming to BHMA A156.10 and the following requirements as applicable. Assembly shall be single or bi-parting sliding doors as shown on drawings.
- B. Door Operation: Doors shall be opened by electric motor pulling door from closed to open position and shall stop door by electrically reducing voltage and stalling door against mechanical stop. System shall permit manual control of door in event of power failure. Opening and closing speeds shall be adjustable. In compliance with NFPA-101, all door panels shall allow "breakout" to the full open position to provide instant egress at any point in the door's movement.
- C. Operators: Completely assembled and sealed electromechanical operating unit, all located in cast aluminum housing and filled with special lubricant for extreme conditions. Attached to transmission system shall be a minimum 1/8 Hp "DC" shunt-wound permanent magnet motor with sealed ball bearings. Complete unit shall be rubber mounted with provisions for easy maintenance and replacement. Operators shall have adjustable

opening and closing cycle. Housing shall be minimum 6063T-5 alloy aluminum not less than .005 mm (125 inch) minimum thickness, 150 mm by 200 mm (6 inch wide by 8 inch high).

- D. Sliding Door Hardware Guide Rollers, Door Carrier: Top door carriers shall ride on steel or delrin rollers incorporating sealed bearings with each door having two support rollers and one anti-rise roller. Each roller shall have a minimum of 9 mm (3/8-inch) of vertical adjustment with positive mechanical locks. Each door shall also include two urethane covered oil impregnated bearing bottom rollers attached with 5 mm (3/16-inch) thick formed steel guide brackets. Each door carrier supporting a door leaf shall include a vertical steel reinforcing member to prevent sagging when door is swung under breakaway conditions. All carbon steel brackets and fittings shall be plated for corrosion resistance.
- E. Locking Hardware: Do not provide any locking hardware at interior doors not requiring physical security. Provide doors with flush concealed vertical rod panic hardware integrated into the doors where physical security is required and free egress is required at all times. Provide doors with manufacturers' standard hookbolt lock (keyed both sides) where physical security is required and free egress is not required at all times. At doors with access control devices (card readers, etc.), provide doors with electronic deadbolt locking to prevent the doors from manually sliding open.
- F. Door Closers: Provide all breakout or swing-out panels with door closers concealed in the top rail of the door.

2.4 POWER UNITS

Each power unit shall be self-contained, electric operated and independent of the door operator. Capacity and size of power circuits shall be in accordance with automatic door operator manufacturer's specifications and Division 26 - ELECTRICAL.

2.5 DOOR CONTROLS

- A. Opening and closing actions of doors shall be actuated by controls and safety devices specified, and conform to ANSI 156.10. Controls shall cause doors to open instantly when control device is actuated; hold doors in open positions; then, cause doors to close, unless safety device or reactivated control interrupts operation.
- B. Manual Controls:

- Push Plate Wall Switch: Recess type, stainless steel push plate minimum 100 mm by 100 mm (four-inch by four-inch), with 13 mm (l/2inch) high letters "To Operate Door--Push" engraved on face of plate.
- C. Motion Detector: The motion detector may be surface mounted or concealed, to provide a signal to actuate the door operator, and monitor the immediate zone, to detect intrusion by persons, carts or similar objects. The zone which the detector monitors shall be 1500 mm (five feet) deep and 1500 mm (five feet) across, plus or minus 150 mm (six inches) on all dimensions. The maximum response time shall be no less than 25 milliseconds. Unit shall be designed to operate on 24 volts AC. The control shall not be affected by cleaning material, solvents, dust, dirt and outdoor weather conditions.

2.6 SAFETY DEVICES

- A. General: Area over which doors swing or slide shall be a safety section and anyone standing in path of door's movement shall be protected by a safety device.
- B. At sliding doors, provide two photoelectric beams mounted at heights of 600 mm (24 inches) and 1200 mm (48 inches) in the door frame on sliding doors. Provide overhead safety presence sensors at door head on each side of the opening. Beams shall parallel door openings to prevent doors from closing when anyone is in the center of the door or doors. When beams are activated, doors shall recycle to full open position. Actuation shall include a motion detector mounted on each side of the door for detection of traffic in each direction.
- C. Each swing door shall have installed on the pull side a presence sensor to detect any person standing in the door swing path and prevent the door from opening.
- D. Time delay switches shall be adjustable between 3 to 60 seconds and shall control closing cycle of doors.
- E. Decals with sign "In" or "Do Not Enter" shall be installed on both faces of each door where shown.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Coordinate installation of equipment with other related work. Manual controls and power disconnect switches shall be recessed or semi-flush mounted in partitions. Secure operator components to adjacent

construction with suitable fastenings. Conceal conduits, piping, and electric equipment, in finish work.

- B. Install power units in locations shown. Where units are to be mounted on walls, provide metal supports or shelves for the units. All equipment, including time delay switches, shall be accessible for maintenance and adjustment.
- C. Operators shall be adjusted and must function properly for the type of traffic (pedestrians, carts, stretchers and wheelchairs) expected to pass through doors. Each door leaf of pairs of doors shall open and close in synchronization. On pairs of doors, operators shall allow either door to be opened manually without the other door opening.
- D. Install controls at positions shown and make them convenient for particular traffic expected to pass through openings. Maximum height of push plate wall switches from finished floors shall be 40 inches unless otherwise approved by the Resident Engineer.

3.2 INSTRUCTIONS

- A. Following the installation and final adjustments of the door operators, the installer shall fully instruct VA personnel for 2 hours on the operating, servicing and safety requirements for the swing and sliding automatic door operators.
- B. Coordinate instruction to VA personnel with VA Resident Engineer.

- - - E N D - - -

Page intentionally left blank

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies glass, plastic, related glazing materials and accessories. Glazing products specified apply to factory or field glazed items.

1.2 RELATED WORK

- A. Factory glazed by manufacturer in following units:
 - 1. Sound resistant doors: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, and Section 08 14 00, WOOD DOORS.
 - 2. Mirrors: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.

1.3 LABELS

- A. Temporary labels:
 - Provide temporary label on each light of glass identifying manufacturer or brand and glass type, quality and nominal thickness.
 - Label in accordance with NFRC (National Fenestration Rating Council) label requirements.
 - 3. Temporary labels shall remain intact until glass is approved by Resident Engineer.

B. Permanent labels:

- 1. Locate in corner for each pane.
- 2. Label in accordance with ANSI Z97.1 and SGCC (Safety Glass Certification Council) label requirements.
 - a. Tempered glass.
 - b. Laminated glass or have certificate for panes without permanent label.
 - c. Organic coated glass.
- 3. Bullet resistance glass or plastic assemblies:
 - a. Bullet resistance glass or plastic assemblies in accordance with UL 752 requirements for power rating specified.
 - b. Identify each security glazing permanently with glazing manufacturer's name, date of manufacture, product number, and DOS Code number inconspicuously located in lower corner on protective side and visible after glazing is framed.
 - c. The "attack (threat) side" shall be identified in bold lettering on each side of glazing with removable label.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

Project No. 642-11-150 Final Documents: 8/17/2012

1.4 PERFORMANCE REQUIREMENTS

- A. Building Enclosure Vapor Retarder and Air Barrier:
 - 1. Utilize the inner pane of multiple pane sealed units for the continuity of the air barrier and vapor retarder seal.
 - 2. Maintain a continuous air barrier and vapor retarder throughout the glazed assembly from glass pane to heel bead of glazing sealant.
- B. Glass Thickness:
 - Select thickness of exterior glass to withstand dead loads and wind loads acting normal to plane of glass at design pressures calculated in accordance with applicable code.
 - 2. Test in accordance with ASTM E 1300.
 - 3. Thicknesses listed are minimum. Coordinate thicknesses with framing system manufacturers.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Certificates:
 - 1. Certificates stating that wire glass, meets requirements for safety glazing material as specified in ANSI Z97.1.
 - 2. Certificate on shading coefficient.
 - 3. Certificate on "R" value when value is specified.
 - Certificate test reports confirming compliance's with specified bullet resistive rating.
 - 5. Certificate that blast resistant glass meets the requirements of UFC4-010-01.
- C. Warranty: Submit written guaranty, conforming to General Condition requirements, and to "Warranty of Construction" Article in this Section.
- D. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
- E. Samples:
 - 1. Size: 150 mm by 150 mm (6 inches by 6 inches).
- F. Preconstruction Adhesion and Compatibility Test Report: Submit glazing sealant manufacturer's test report indicating glazing sealants were tested for adhesion to glass and glazing channel substrates and for compatibility with glass and other glazing materials.

Project No. 642-11-150 Final Documents: 8/17/2012

1.6 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.
- C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.
- D. Protect laminated security glazing units against face and edge damage during entire sequence of fabrication, handling, and delivery to installation location. Provide protective covering on exposed faces of glazing plastics, and mark inside as "INTERIOR FACE" or "PROTECTED FACE":
 - Treat security glazing as fragile merchandise, and packaged and shipped in export wood cases with width end in upright position and blocked together in a mass. Storage and handling shall comply with Manufacturer's directions and as required to prevent edge damage or other damage to glazing resulting from effects of moisture, condensation, temperature changes, direct exposure to sun, other environmental conditions, and contact with chemical solvents.
 - Protect sealed-air-space insulating glazing units from exposure to abnormal pressure changes, as could result from substantial changes in altitude during delivery by air freight. Provide temporary breather tubes which do not nullify applicable warranties on hermetic seals.
 - 3. Temporary protections: The glass front and polycarbonate back of glazing shall be temporarily protected with compatible, peelable, heat-resistant film which will be peeled for inspections and reapplied and finally removed after doors and windows are installed at destination. Since many adhesives will attack polycarbonate, the film used on exposed polycarbonate surfaces shall be approved and applied by manufacturer.
 - 4. Edge protection: To cushion and protect glass clad, polycarbonate, and Noviflex edges from contamination or foreign matter, the four edges shall be sealed the depth of glazing with continuous standard-

thickness Santoprene tape. Alternatively, continuous channel shaped extrusion of Santoprene shall be used, with flanges extending into face sides of glazing.

5. Protect "Constant Temperature" units including every unit where glass sheet is directly laminated to or directly sealed with metaltube type spacer bar to polycarbonate sheet, from exposures to ambient temperatures outside the range of 16 to 24 C, during the fabricating, handling, shipping, storing, installation, and subsequent protection of glazing.

1.7 PROJECT CONDITIONS

Field Measurements: Field measure openings before ordering tempered glass products. Be responsible for proper fit of field measured products.

1.8 WARRANTY

- A. Warranty: Conform to terms of "Warranty of Construction", FAR clause 52.246-21, except extend warranty period for the following:
 - 1. Bullet resistive plastic material to remain visibly clear without discoloration for 10 years.
 - 2. Insulating glass units to remain sealed for 10 years.
 - 3. Laminated glass units to remain laminated for 5 years.
 - 4. Polycarbonate to remain clear and ultraviolet light stabilized for 5 years.
 - 5. Insulating plastic to not have more than 6 percent decrease in light transmission and be ultraviolet light stabilized for 10 years.

1.9 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

Z97.1-04.....Safety Glazing Material Used in Building -Safety Performance Specifications and Methods of Test.

C. American Society for Testing and Materials (ASTM): C1363-05.....Thermal Performance of Building Assemblies, by Means of A Hot Box Apparatus C542-05.....Lock-Strip Gaskets.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Final Documents:8/17/2012

C716-06.....Installing Lock-Strip Gaskets and Infill Glazing Materials. C794-06.....Adhesion-in-Peel of Elastomeric Joint Sealants. C864-05.....Dense Elastomeric Compression Seal Gaskets, Setting Blocks, and Spacers. C920-08..... Sealants. C964-07..... Standard Guide for Lock-Strip Gasket Glazing. C1036-06.....Flat Glass. C1048-04..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass. C1172-09.....Laminated Architectural Flat Glass. C1376-10..... Pyrolytic and Vacuum Deposition Coatings on Flat Glass. D635-06.....Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastic in a Horizontal Position. D4802-02.....Poly (Methyl Methacrylate) Acrylic Plastic Sheet. E84-09.....Surface Burning Characteristics of Building Materials. E1300-09.....Determining Load Resistance of Glass in Buildings. E2190-08.....Insulating Glass Unit D. Commercial Item Description (CID): A-A-59502.....Plastic Sheet, Polycarbonate E. Code of Federal Regulations (CFR): 16 CFR 1201 - Safety Standard for Architectural Glazing Materials; 1977, with 1984 Revision. F. National Fire Protection Association (NFPA): 80-08.....Fire Doors and Windows. G. National Fenestration Rating Council (NFRC) H. Safety Glazing Certification Council (SGCC)2009: Certified Products Directory (Issued Semi-Annually). I. Underwriters Laboratories, Inc. (UL): 752-06.....Bullet-Resisting Equipment. J. Unified Facilities Criteria (UFC):

4-010-01-2007.....DOD Minimum Antiterrorism Standards for

Buildings

- K. Glass Association of North America (GANA): Glazing Manual (Latest Edition) Sealant Manual (2008)
- L. American Society of Civil Engineers (ASCE): ASCE 7-10.....Wind Load Provisions
- PART 2 PRODUCT

2.1 GLASS

- A. Use thickness stated unless specified otherwise in assemblies.
- B. Clear Glass:
 - 1. ASTM C1036, Type I, Class 1, Quality q3.
 - 2. Thickness, as indicated.
- C. Patterned and Wired Flat Glass:
 - 1. ASTM C1036, Type II, Class 1, Form 1, Pattern Pl, Finish F1, Quality Q6.
 - 2. Thickness, as indicated.

2.2 HEAT-TREATED GLASS

- A. Clear Heat Strengthened Glass:
 - 1. ASTM C1048, Kind HS, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness, as indicated.
- B. Clear Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness, as indicated.

2.3 GLAZING ACCESSORIES

- A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work shall have a finish that will not corrode or stain while in service.
- B. Setting Blocks: ASTM C864:
 - 1. Channel shape; having 6 mm (1/4 inch) internal depth.
 - 2. Shore a hardness of 80 to 90 Durometer.
 - 3. Block lengths: 50 mm (two inches) except 100 to 150 mm (four to six inches) for insulating glass.
 - Block width: Approximately 1.6 mm (1/16 inch) less than the full width of the rabbet.

- 5. Block thickness: Minimum 4.8 mm (3/16 inch). Thickness sized for rabbet depth as required.
- C. Spacers: ASTM C864:
 - 1. Channel shape having a 6 mm (1/4 inch) internal depth.
 - 2. Flanges not less 2.4 mm (3/32 inch) thick and web 3 mm (1/8 inch) thick.
 - 3. Lengths: One to 25 to 76 mm (one to three inches).
 - 4. Shore a hardness of 40 to 50 Durometer.
- D. Sealing Tapes:
 - Semi-solid polymeric based material exhibiting pressure-sensitive adhesion and withstanding exposure to sunlight, moisture, heat, cold, and aging.
 - 2. Shape, size and degree of softness and strength suitable for use in glazing application to prevent water infiltration.
- E. Spring Steel Spacer: Galvanized steel wire or strip designed to position glazing in channel or rabbeted sash with stops.
- F. Neoprene, EPDM, or Vinyl Glazing Gasket: ASTM C864.
 - 1. Channel shape; flanges may terminate above the glazing channel or flush with the top of the channel.
 - 2. Designed for dry glazing.
- G. Color:
 - Color of glazing compounds, gaskets, and sealants used for aluminum color frames shall match color of the finished aluminum and be nonstaining.
 - Color of other glazing compounds, gaskets, and sealants which will be exposed in the finished work and unpainted shall be black, gray, or neutral color.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verification of Conditions:

- Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
- 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer's approved shop drawings.
- B. Advise Contractor of conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation: Do

not proceed with installation until unsatisfactory conditions have been corrected.

C. Verify that wash down of adjacent masonry is completed prior to erection of glass and glazing units to prevent damage to glass and glazing units by cleaning materials.

3.2 PREPARATION

- A. For sealant glazing, prepare glazing surfaces in accordance with GANA-02 Sealant Manual.
- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.
- F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

- A. Install in accordance with GANA-01 Glazing Manual and GANA-02 Sealant Manual unless specified otherwise.
- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.
- D. Do not allow glass to rest on or contact any framing member.
- E. Glaze doors and operable sash, in a securely fixed or closed and locked position, until sealant, glazing compound, or putty has thoroughly set.
- F. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.

3.4 INSTALLATION - INTERIOR WET METHOD (COMPOUND AND COMPOUND)

- A. Install glazing resting on setting blocks. Install applied stop and center pane by use of spacer shims at 600 mm (24 inch) centers, kept 6 mm (1/4 inch) below sight line.
- B. Locate and secure glazing pane using glazers' clips.
- C. Fill gaps between glazing and stops with glazing compound until flush with sight line. Tool surface to straight line.

3.5 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by Resident Engineer.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.
- C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

3.6 PROTECTION

Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

3.7 GLAZING SCHEDULE

- A. Fire Resistant Glass:
 - 1. Install clear wire glass in interior fire rated or labeled doors and windows.
- B. Tempered Glass:

1. Install in full and half glazed doors unless indicated otherwise.

- D. Clear Glass:
 - 1. Interior observation windows not specified otherwise.
 - 2. Interior pane of dual glazed windows not receiving tempered, laminated or organic coated glass, or other special glass indicated or specified.

- - - E N D - - -

Page intentionally left blank

SECTION 09 06 00 SCHEDULE FOR FINISHES

SECTION 09 06 00-SCHEDULE FOR FINISHES

VAMC: Philadelphia Location: Philadelphia, Pennsylvania Project no. and Name: 642-11-150 Submission Final Documents Date: August 17, 2012 Page intentionally left blank

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART I - GENERAL

1.1 DESCRIPTION

This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITALS

Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES-provide quadruplicate samples for color approval of materials and finishes specified in this section.

1. DIGITAL COLOR PHOTOS-INTERIOR VIEWS:

Room Number and Name	Item/View to be Photographed
1.Exist Prep B2A116A	Perspective from Southeast
2.Sterile storage B2A117	Perspective from Southwest
3.Conference B2A120	Perspective from Northwest
4.	

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)

2001.....Architectural Painting Specification Manual

PART 2- PRODUCTS

2.1 DIGITAL COLOR PHOTOS

- A. Size 24 x 35 mm.
- B. Labeled for:
 - 1. Building name and Number.
 - 2. Room Name and Number.

2.2 DIVISION 31 - EARTHWORK

2.3 DIVISION 06 WOOD, PLASTICS, AND COMPOSITES

A. SECTION 06 20 00, FINISH CARPENTRY

1. THROUGH - WALL COUNTER OR PASS THROUGH COUNTER (TYPE B)					
Room No. and Name	Component	Finish/Color			
B2A116 - Exist. Sterile Storage	Countertop	Stainless Steel No 4			
2.4 DIVISION 07 - THERMAL AND MOISTURE PROTECTION

A. SECTION 07 92 00, JOINT SEALANTS

Location	Location Color		Manufacturer Color
Masonry Expansion Joints Match Adjacent			
CMU Control Joints Match Adjacent			
New to Existing Walls	Match Adjacent		

2.5 DIVISION 08 - OPENINGS

A. SECTION 08 11 13, HOLLOW METAL DOORS AND FRAMES

Paint both sides of door and frames same color i	ncluding ferrous metal louvers, and hardware attached		
to door			
Component	Color of Paint Type and Gloss		
Door	Match Existing		
Frame	Match Existing		
Window frame	Match Existing		

B. SECTION 08 31 13, ACCESS DOORS AND FRAMES

Material	Finish/Color
Steel	Match Existing
Stainless steel	No 4

C. SECTION 08 33 13, COILING COUNTER DOORS

Location	Material	Finish	Manufacturer	Manufacturer Color Name/No.
B2A116 - Exist.	Stainless Steel	No 4	Cookson	NA

Sterile Storage		

D. SECTION 08 56 19, PASS WINDOWS

Room No. and Name	Finish	Glazing	Manufacturer	Mfg. Color Name/No.
B2A116 – Exist. Sterile Storage	Alum	¼" Clear Tempered		

E. SECTION 08 71 00, BUILDERS HARDWARE

Item	Material	Finish
Hinges	Match Existing	Match Existing
Door Closers	Match Existing	Match Existing
Closer/ Holder	Match Existing	Match Existing
Floor Stops	Match Existing	Match Existing
Door Holders	Match Existing	Match Existing
Lock/ Latches	Match Existing	Match Existing
Key Cabinet	Steel	Match Existing
Armor Plates	Match Existing	Match Existing
Kick Mop Plates	Match Existing	Match Existing
Door Edging	Match Existing	Match Existing
Exit Device	Match Existing	Match Existing
Flush Bolts	Match Existing	Match Existing
Door Pulls	Match Existing	Match Existing
Push Plates	Match Existing	Match Existing
Combination Push Pull Plate	Match Existing	Match Existing
Coordinators	Match Existing	Match Existing
Threshold	Match Existing	Match Existing

F. SECTION 08 80 00, GLAZING

Glazing Type	Manufacturer	Mfg. Color Name/No.
G-1	Oldcastle	Clear Tempered Glass
G-2	Oldcastle	Clear Wired Glass

2.6 DIVISION 09 - FINISHES

A. SECTION 09 30 13, CERAMIC TILING

1. CERAMIC TILE						
Color	Size	Shape	Pattern	I	Manufacturer	Mfg. Color Name/No.
FT-1	2" x 2"	Square	N/A	A	merican Olean	Costa Rei – CR82 Terra Marrone
WT-1	4" x 4"	Square	N/A	A	merican Olean	Satinglo - OD12 Almond
3. SECTION	3. SECTION 09 30 13, PORCELAIN PAVER TILE GROUT					
Finis	Finish Code		Manufacturer		Mfg. Color Name/No.	
GR-1 Hy		Hydi	rdroment or Eq. To		То	match tile

4. SECTION 09 30 13, MARBLE TH	RESHOLDS	
Marble Type	Manufacturer	Mfg. Color Name/No.

Carerra Marble	T.B.D.	White

B. SECTION 09 51 00, ACOUSTICAL CEILINGS

Finish Code	Component	Color Pattern	Manufacturer	Mfg Name/No.
	Exposed Suspension System			
AT-1	Exposed Suspension System	White fine texture	Armstrong	Match Existing
AT-2	Exposed Suspension System	White fine texture	Armstrong	Style: Dune Size: 24" x 24" Tegular Grid: 15/16" Lay-in
AT-3	Exposed Suspension System	White mineral texture	Armstrong	Style: Clean Room Mylar Size: 24" x 48" Grid: 15/16" Lay-in

C. SECTION 09 65 19, RESILIENT TILE FLOORING

Finish Code	Size	Material/Component	Manufacturer	Mfg Name/No.
VCT	12" x 12"	VCT	Armstrong	Excelon Imperial 51858 Sand Drift White
Welded Sheet Vinyl	72" x 25'-0" min	WSF	Armstrong	Medintech 88432 Pumice Stone

L. SECTION 09 65 13, RESILIENT BASE STAIR TREADS AND ACCESSORIES

Finish Code	Item	Height	Manufacturer	Mfg Name/No.
-------------	------	--------	--------------	--------------

RB	Rubber Base (RB)	4″	Roppe	To Match Existing

D. SECTION 09 67 23, EPOXY RESINOUS FLOORING (RES6)

Finish code	Manufacturer	Mfg. Color Name/No.
RES6	Stonhard	Stonclad UR Beechwood

E. SECTION 09 68 00, CARPETING

Finish Code	Size	Material/Component	Manufacturer	Mfg Name/No.
CP	24" x 24"	Carpet Tile	Bigelow	7873 Thinking Tawny

F. SECTION 09 91 00, PAINT AND COATINGS

1. MPI Gloss and Sheen Standards

		Gloss @60	Sheen @85
Gloss Level 1	a traditional matte finish-flat	max 5 units, and	max 10 units
Gloss Level 2	a high side sheen flat-"a velvet-like"	max 10 units, and	
	finish		10-35 units
Gloss Level 3	a traditional "egg-shell like" finish	10-25 units, and	10-35 units
Gloss Level 4	a "satin-like" finish	20-35 units, and	min. 35 units
Gloss Level 5	a traditional semi-gloss	35-70 units	
Gloss Level 6	a traditional gloss	70-85 units	
Gloss level 7	a high gloss	more than 85 units	

2. Paint code	Gloss	Manufacturer	Mfg. Color Name/No.
P-1	Level 3	Sherwin Williams	Match Existing or

			SW6098 Pacer White
P-2	Level 5 - Epoxy	Sherwin Williams	Epoxy - Match P-1 Color
P-3	Level 3	Sherwin Williams	SW 0031 Dutch Tile Blue
P-4	Level 3	Sherwin Williams	Hollow Metal - Match Existing Typical all Hollow Metal
₽-5	Level 3	Sherwin Williams	Ceiling White Typical all Gyp bd ceilings
P-6	Level 5 - Epoxy	Sherwin Williams	Epoxy Ceiling White Typical all Gyp bd ceilings in areas that receive P-2 walls

2.7 DIVISION 10 - SPECIALTIES

A. SECTION 10 11 13 / 10 11 23, CHALKBOARDS / TACKBOARDS

Room No. and Name	Component	Material	Manufacturer	Mfg. Color Name/No.

B. SECTION 10 26 00, WALL GUARDS AND CORNER GUARDS

Item	Material	Manufacturer	Mfg. Color Name/No.
Corner Guards	Vynil	Acrovyn	SSM-20/ Color to Match Existing

C. SECTION 10 28 00 / 10 14 00 / 11 17 36, MISCELLANEOUS SPECIALITIES

Room No. and Name	Item	Finish	Manufacturer	Mfg. Color Name/No.
SPD Office B2A116D, Existing Sterile Storage B2A116, Conference B2A120, Exist Prep B2A116A	Lobby Clock	To Be Determined	Peter Pepper	Mfr: Peter Pepper Products Style: PPP SynTech Time System Items: Master Clock and Receiver Clocks

D. SECTION 10 44 13, FIRE EXTNGUISHER CABINETS

Component	Material	Finish
Fire Extinguisher Cabinet	Painted Steel	White

E. SECTION 10 28 00, TOILET AND BATH ACCESSORIES

Item	Material	Manufacturer	Mfg. Color Name/No.
1	Toilet Tissue	Bobrick	B-667
	Dispenser		Stainless Steel, No. 4
2	Soap Dispenser	Bobrick	B-155
			Stainless Steel, No. 4
3	Frameless Mirror	Bobrick	B-1556
4A, 4B, 4C,	Grab Bars	Bobrick	B-6106.99
			Stainless Steel, No. 4
5	Paper Towel Dispenser	Bobrick	в-4262

			Stainless Steel, No. 4
7	Sanitary Napkin	Bobrick	B-270
	Disposal		Stainless Steel, No. 4
10	Robe Hook	Bobrick	в-7672
			Stainless Steel, No. 4
11	Shower Seat, Folding	Bobrick	В-5181,
			Stainless Steel, No. 4, White Phenolic
12	Mop Rack	Bobrick	B-239x34
			Stainless Steel, No. 4
All exposed piping	Undercover Pipe Protection	TruBro	White

2.8 DIVISION II - EQUIPMENT

A. SECTION 11 71 01, STERILIZATION EQUIPMENT

Component	Manufacturer	Mfg. Color Name/No.
Cart Washer	By VA	
Scope Drying Cabinet	Stanley InnerSpace	3800 DA Large Diameter Scope Drying Cabinet
Steam Sterilizer	By VA	
Ethylene-Oxide Abator	Steris	TBD

2.9 DIVISION 12- FURNISHINGS

A. SECTION 12 31 00, METAL CASEWORK

Item/ Type	Finish	Manufacturer	Mfg. Color Name/No.
Scope Processing B2A112 - Countertop	Stainless Steel		No. 4
Exist Prep B2A116A - Countertop	Stainless Steel		No. 4

B. SECTION 12 32 00, WOOD CASEWORK

Item Type	Location	Finish/Color
Existing Sterile Storage B2A116	Solid Surface Countertop with P-Lam supports	TBD

C. SECTION 12 36 00, COUNTERTOPS AND ACCESSORIES

Туре	Finish/Color
Solid Surface	Corian, Grade E, Color TBD
Stainless Steel	No. 4

2.10 DIVISION 22 - PLUMBING

A. SECTION 22 40 00, PLUMBING FIXTURES AND TRIM

Item	Color
Water Closet	White
Lavatories	White
Service Sink Corner	White
Service Sink	White

2.11 DIVISON 26 - ELECTRICAL

A. SECTION 26 51 00, BUILDING LIGHTING INTERIOR

Fixture Type	Exterior Finish	Color
All	Painted	White

PART III EXECUTION

3.1 FINISH SCHEDULES & MISCELLANEOUS ABBREVIATIONS

FINISH SCHEDULE & MISCELLANEOUS ABBREVIATIONS		
Term	Abbreviation	
Access Flooring	AF	
Accordion Folding	AFP	
Partition		
Acoustical Ceiling	AT	
Acoustical Ceiling,	AT (SP)	
Special Faced		
Acoustical Metal Pan	AMP	
Ceiling		
Acoustical Wall Panel	AWP	
Acoustical Wall	AWT	
Treatment		
Acoustical Wallcovering	AWF	
Anodized Aluminum	AAC	
Colored		
Anodized Aluminum	AA	
Natural Finish		
Baked On Enamel	BE	
Brick Face	BR	
Brick Flooring	BF	
Brick Paving	BP	
Carpet	CP	
Carpet Athletic Flooring	CAF	
Carpet Module Tile	CPT	
Ceramic Glazed Facing	CGFB	
Brick		
Ceramic Mosaic Tile	FTCT	
Concrete	С	
Concrete Masonry Unit	CMU	

Divider Strips Marble	DS MB
Epoxy Coating	EC
Epoxy Resin Flooring	ERF
Existing	E
Exposed Divider Strips	EXP
Exterior	EXT
Exterior Finish System	EFS
Exterior Paint	EXT-P
Exterior Stain	EXT-ST
Fabric Wallcovering	WF
Facing Tile	SCT
Feature Strips	FS
Floor Mats & Frames	FM
Floor Tile, Mosaic	FT
Fluorocarbon	FC
Folding Panel Partition	FP
Foot Grille	FG
Glass Masonry Unit	GUMU
Glazed Face CMU	GCMU
Glazed Structural Facing	SFTU
Tile	
Granite	GT
Gypsum Wallboard	GWB
High Glazed Coating	SC
Latex Mastic Flooring	LM
Linear Metal Ceiling	LMC
Linear Wood Ceiling	LWC
Marble	MB
Material	MAT
Mortar	М
Multi-Color Coating	MC
Natural Finish	NF
Paint	P

Paver Tile	PVT
Perforated Metal Facing	PMF
(Tile or Panels)	
Plaster	PL
Plaster High Strength	HSPL
Plaster Keene Cement	KC
Plastic Laminate	HPDL
Polypropylene Fabric	PFW
Wallcovering	
Porcelain Paver Tile	PPT
Quarry Tile	QT
Radiant Ceiling Panel	RCP
System	
Resilient Stair Tread	RST
Rubber Base	RB
Rubber Tile Flooring	RT
Spandrel Glass	SLG
Stain	ST
Stone Flooring	SF
Structural Clay	SC
Suspension Decorative	SDG

Grids Grids	
Terrazzo Portland Cement	PCT
Terrazzo Tile	TT
Terrazzo, Thin Set	
Textured Gypsum Ceiling Panel	TGC
Textured Metal Ceiling Panel	TMC
Thin set Terrazzo	TST
Veneer Plaster	VP
Vinyl Base	VB
Vinyl Coated Fabric Wallcovering	W
Vinyl Composition Tile	VCT
Vinyl Sheet Flooring	VSF
Vinyl Sheet Flooring (Welded Seams)	WSF
Wall Border	WB
Wood	WD

3.2 FINSIH SCHEDULE SYMBOLS

Symbol Definition

- ** Same finish as adjoining walls
- No color required
- E Existing
- XX To match existing
- EFTR Existing finish to remain
- RM Remove

3.3 ROOM FINISH SCHEDULE

INTERIOR (COLOR AND ROOM 1	DATE: July 30, 2012											
ROOM NO.	ROOM NAME	FLC	OR		BASE		WALL		WAINSC T	20	CEILING		REMARKS
		MAT	C C		MAT	C C	MAT	C C	MAT	C C	MAT	CC	
CB2-4	Exist Corridor	VCT		Ν	RB		P-1		-		XX		
				Е	RB		P-1		-				
				s	RB		P-1		-				
				W	RB		P-1		-				
B2A108	Exist Vestibule	XX		Ν	QT	Ī	P-2		-		XX		
				Е	QT		P-2		-				
				S	QT		P-2		-				
				W	QT		P-2		-				
B2A109	Exist Decontamination	ХХ		N	ХХ		P-2		-		GWB		
				Е	ХХ		P-2		-				
				S	XX		P-2						
				W	XX		P-2		-				
B2A109B	Exist Manual Eq Wash	XX		N	WT1		WT1		-		GWB		Patch as required to match existing
				Е	WT1		WT1		-				

INTERIOR (COLOR AND ROOM	FINISH	SCHI	EDU	LE (New	Cc	onstructio	on	and Rer	107	vation)	DATE: July 30, 2012
				S	WT1		WT1		-			Patch as required to match existing
				W	WT1		WT1		-			Match Existing
B2A109C	H.A.C.	QT		Ν	QT		P-2		-		GWB	
				Е	QT		P-2		-			
				S	QT		P-2		-			
				W	QT		P-2		-			
B2A109J	Exist Ante Room	XX		Ν	QT		P-2		-		GWB	
				Е	QT		P-2		-			
				S	QT		P-2		-			
				W	QT		P-2		-			
B2A110	Exist Vestibule	XX		Ν	QT		P-2		-		XX	
				Е	QT		P-2		-			
				S	QT		P-2		-			
				W	QT		P-2		-			
B2A112	Existing Prep / Sterilization	RES6		Ν	RES		P-2		-		GWB	
				Е	RES		P-2		-			
	Existing floor	QT		S	RES		P-2		-			
				W	RES		P-2		-			

INTERIOR COLOR AND ROOM FINISH SCHEDULE (New Construction and Renovation)													DATE: July 30, 2012
B2A112A	ETO	RES6		Ν	RES		P-2		-		GWB		
				Е	RES		P-2		-				
	Existing floor	QT		S	RES		P-2		-				
				W	RES		P-2		-				
B2A112B	Surgical Cart Packing & Storage	WSF		Ν	RB		P-2		-		AT-3		
				Е	RB		P-2		-				
				S	RB		P-2		-				
				W	RB		P-2		-				
B2A112C	Surgical Storage	WSF		Ν	RB		P-2		-		AT-3		
				Е	RB		P-2		-				
				S	RB		P-2		-				
				W	RB		P-2		-				
B2A113	Scope Processing	RES6		Ν	RES		P-2		-		GWB		
				Е	RES		P-2		-				
				S	RES		P-2		-				
				W	RES		P-2		-				
B2A113A	Scope Dry	RES6		Ν	RES		P-2		-		GWB		
				Е	RES		P-2		-				

INTERIOR COLOR AND ROOM FINISH SCHEDULE (New Construction and Renovation)										DATE: July 30, 2012	
				S	RES		P-2		-		
				W	RES		P-2		-		
B2A114	Clerical	СР		Ν	RB		P-1		-	AT-2	
				Е	RB		P-1		-		
				S	RB		P-1		-		
				W	RB		P-3		-		
B2A114A	SPD Office	СР		Ν	RB		P-1		-	AT-2	
				Е	RB		P-1		-		
				S	RB		P-3		-		
				W	RB		P-1		-		
B2A114B	SPD Chief Office	СР		Ν	RB		P-1		-	AT-2	
				Е	RB		P-1		-		
				S	RB		P-3		-		
				W	RB		P-1		-		
B2A114C	SPD Office	СР		Ν	RB		P-1		-	AT-2	
				Е	RB		P-3		-		
				S	RB		P-1		-		
				W	RB		P-1		-		
B2A115	Hall	VCT		Ν	RB		P-1		-	AT-2	

INTERIOR (COLOR AND ROOM	FINISH	SCHE	DU	LE (New	Co	onstructio	on	and Ren	107	ration)	DATE: July 30, 2012
				Е	RB		P-1		-			
				S	RB		P-1		-			
				W	RB		P-1		-			
B2A115A	Men's Locker	VCT		Ν	RB		P-2		-		AT-3	
				Е	RB		P-2		-			
				S	RB		P-2		-			
				W	RB		P-2		-			
B2A115B	Men's Toilet	FT-1		Ν	PT1		P-2		WT1, 4'-0"		GWB	
				Е	PT1		P-2		WT1, 4'-0"			
				S	PT1		P-2		WT1, 4'-0"			
				W	PT1		P-2		WT1, 4'-0"			
B2A115C	Women's Toilet	FT-1		Ν	PT1		P-2		WT1, 4'-0"		GWB	
				Е	PT1		P-2		WT1, 4'-0"			
				S	PT1		P-2		WT1, 4'-0"			
				W	PT1		P-2		WT1, 4'-0"			
B2A115D	Women's Locker	VCT		Ν	RB		P-2		-		AT-3	

INTERIOR COLOR AND ROOM FINISH SCHEDULE (New Construction and Renovation)													DATE: July 30, 2012
				Е	RB		P-2		-				
				S	RB		P-2		-				
				W	RB		P-2		-				
B2A118	Existing Sterile Storage	WSF		Ν	RB		P-2		-		AT-3		
				Е	RB		P-2		-				
				S	RB		P-2		-				
				W	RB		P-2		-				
B2A118A	Breakdown / Bulk Storage	VCT		Ν	RB		P-2		-		AT-1		
				Е	RB		P-2		-				
				S	RB		P-2		-				
				W	RB		P-2		-				
B2A119	Hall	СР		Ν	RB		P-1		-		AT-2		
				Е	RB		P-1		-				
				s	RB		P-1		-				
				W	RB		P-1		-				
B2A119A	Conference	СР		Ν	RB		P-1		-		AT-2		
				Е	RB		P-1		-				
				S	RB		P-3		-				

INTERIOR	COLOR AND ROO	M FINISH	SCH	EDU	LE (New	Cc	onstructio	on	and Re	enov	vation)	DATE: July 30, 2012
				W	RB		P-1		-			
B2A119B	Office	СР		Ν	RB		P-1		-		AT-2	
				Е	RB		P-1		-			
				S	RB		P-3		-			
				W	RB		P-1		-			
B2A119C	Clerical	СР		Ν	RB		P-1		-		AT-2	
				Е	RB		P-1		-			
				S	RB		P-3		-			
				W	RB		P-1		-			
B2A121	Forms Room	XX		Ν	XX		P-2		-		XX	
				Е	XX		P-2		-			
				S	XX		P-2		-			
				W	XX		P-2		-			
B2A122	Mail Room	XX		Ν	XX		P-2		-		XX	
				Е	XX		P-2		-			
				S	XX		P-2		-			
				W	XX		P-2		-			

Page intentionally left blank

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards.

1.2 RELATED WORK

- A. Pull down tabs in steel decking: Section 05 36 00, COMPOSITE METAL DECKING.
- B. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS, Section 09 29 00, GYPSUM BOARD.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Hanger inserts.
 - 3. Channels (Rolled steel).
 - 4. Furring channels.
 - 5. Screws, clips and other fasteners.
- C. Shop Drawings:
 - 1. Typical ceiling suspension system.
 - 2. Typical metal stud and furring construction system including details around openings and corner details.
 - 3. Typical shaft wall assembly

- 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.
- D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society For Testing And Materials (ASTM)
 - A123-09.....Zinc (Hot-dip Galvanized) Coatings on Iron and Steel Products A653/A653M-09.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot-Dip Process A641-09.....Zinc-Coated (Galvanized) Carbon Steel Wire C11-10.....Terminology Relating to Gypsum and Related Building Materials and Systems C635-07......Manufacture, Performance, and Testing of Metal Suspension System for Acoustical Tile and Lay-in Panel Ceilings C636-06.....Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels C645-09.....Non-Structural Steel Framing Members C754-09.....Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products C841-03(R2008).....Installation of Interior Lathing and Furring C954-07.....Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs E580-09.....Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

2.1 PROTECTIVE COATING

Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G-60 minimum, per ASTM 123.

2.2 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
 - 1. Use ASTM A525 steel, 0.8 mm (0.0329-inch) thick bare metal (33 mil).
 - 2. Runners same thickness as studs.
- B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600 mm (12 feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
 - 1. Conform to rated wall construction.
 - 2. C-H Studs.
 - 3. E Studs.
 - 4. J Runners.
 - 5. Steel Jamb-Strut.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
 - 1. Not less than 0.45 mm (0.0179-inch) thick bare metal.
 - 2. Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.

- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items. Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
 - Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
 - For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396-inch) thick galvanized steel with corrugated edges.
- H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

2.5 SUSPENDED CEILING SYSTEM FOR GYPSUM BOARD (OPTION)

- A. Conform to ASTM C635, heavy duty, with not less than 35 mm (1-3/8 inch) wide knurled capped flange face designed for screw attachment of gypsum board.
- B. Wall track channel with 35 mm (1-3/8 inch) wide flange.

PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- B. Space studs not more than 406 mm (16 inches) on center.
- C. Cut studs 6 mm to 9 mm (1/4 to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and sound rated.
- F. Openings:
 - 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown.
 - Fasten back to back and back to front studs together with 9 mm (3/8-inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs.
 - 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks.
- G. Fastening Studs:
 - Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.
 - 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.
- H. Chase Wall Partitions:
 - 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
 - Use studs or runners as cross bracing not less than 63 mm (2-1/2 inches wide).
- I. Form building seismic or expansion joints with double studs back to back spaced 75 mm (three inches) apart plus the width of the seismic or expansion joint.
- J. Form control joint, with double studs spaced 13 mm (1/2-inch) apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - Framed with 63 mm (2-1/2 inch) or narrower studs, 406 mm (16 inches) on center.

- 2. Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three foot vertical intervals on side without finish.
- 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:
 - Install rigid (hat section) furring channels at 406 mm (16 inches) on center, horizontally or vertically.
 - Install "Z" furring channels vertically spaced not more than 406 mm (16 inches) on center.
 - 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
 - Ends of spliced furring channels shall be nested not less than 200 mm (8 inches).
 - 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
 - 6. Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 400 mm (16 inches) on center.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

- A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.
- B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

3.5 INSTALLING SHAFT WALL SYSTEM

A. Conform to UL Design No. U438 for two-hour fire rating. B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports with power driven fasteners at both ends and 406 mm (16 inches) on center.

- C. After liner panels have been erected, cut C-H studs and E studs, from 9 mm (3/8-inch) to not more than 13 mm (1/2-inch) less than floor-to-ceiling height. Install C-H studs between liner panels with liner panels inserted in the groove.
- D. Install full-length steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels.
- E. Suitably frame all openings to maintain structural support for wall:
 - 1. Provide necessary liner fillers and shims to conform to label frame requirements.
 - 2. Frame openings cut within a liner panel with E studs around perimeter.
 - 3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill.
- F. Elevator Shafts:
 - Frame elevator door frames with 0.87 mm (0.0341-inch) thick J strut or J stud jambs having 75 mm (three-inch) long legs on the shaft side.
 - Protrusions including fasteners other than flange of shaft wall framing system or offsets from vertical alignments more than 3 mm (1/8-inch) are not permitted unless shown.
 - 3. Align shaft walls for plumb vertical flush alignment from top to bottom of shaft.

3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits.
 - 1. Space framing at 400 mm (16-inch) centers for metal lath anchorage.
 - 2. Space framing at 600 mm (24-inch) centers for gypsum board anchorage.
- B. New exposed concrete slabs:
 - 1. Use metal inserts required for attachment and support of hangers or hanger wires with tied wire loops for embedding in concrete.
 - 2. Furnish for installation under Division 3, CONCRETE.
 - 3. Suspended ceilings under concrete rib construction shall have runner channels at right angles to ribs and be supported from ribs with hangers at ends and at 1200 mm (48-inch) maximum intervals along channels. Stagger hangers at alternate channels.
- C. Concrete slabs on steel decking composite construction:
 - 1. Use pull down tabs when available.

- 2. Use power activated fasteners when direct attachment to structural framing can not be accomplished.
- D. Where bar joists or beams are more than 1200 mm (48 inches) apart, provide intermediate hangers so that spacing between supports does not exceed 1200 mm (48 inches). Use clips, bolts, or wire ties for direct attachment to steel framing.
- E. Existing concrete construction exposed or concrete on steel decking:
 - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
 - Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists.
 - F. Steel decking without concrete topping:
 - 1. Do not fasten to steel decking 0.76 mm (0.0299-inch) or thinner.
 - 2. Toggle bolt to decking 0.9 mm (0.0359-inch) or thicker only where anchorage to steel framing is not possible.
 - G. Installing suspended ceiling system for gypsum board (ASTM C635 Option):
 - 1. Install only for ceilings to receive screw attached gypsum board.
 - 2. Install in accordance with ASTM C636.
 - a. Install main runners spaced 1200 mm (48 inches) on center.
 - b. Install 1200 mm (four foot) tees not over 600 mm (24 inches) on center; locate for edge support of gypsum board.
 - c. Install wall track channel at perimeter.
 - H. Installing Ceiling Bracing System:
 - Construct bracing of 38 mm (1-1/2 inch) channels for lengths up to 2400 mm (8 feet) and 50 mm (2 inch) channels for lengths over 2400 mm (8 feet) with ends bent to form surfaces for anchorage to carrying channels and over head construction. Lap channels not less than 600 mm (2 feet) at midpoint back to back. Screw or bolt lap together with two fasteners.
 - 2. Install bracing at an approximate 45 degree angle to carrying channels and structure overhead; secure as specified to structure overhead with two fasteners and to carrying channels with two fasteners or wire ties.
 - Brace suspended ceiling or soffit framing in seismic areas in accordance with ASTM E580.

3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8-inch) from the layout line.
- B. Plumb and align vertical members within 3 mm (1/8-inch.)

C. Level or align ceilings within 3 mm (1/8-inch.) - - - E = N D - - - Page intentionally left blank

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 05 40 00, COLD-FORMED METAL FRAMING, and Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- C. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.
- C. Shop Drawings:
 - 1. Typical gypsum board installation, showing corner details, edge trim details and the like.
 - 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
 - 3. Typical shaft wall assembly.
 - 4. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.
- D. Samples:
 - 1. Cornerbead.
 - 2. Edge trim.
 - 3. Control joints.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- E. Test Results:
 - 1. Fire rating test, each fire rating required for each assembly.
 - 2. Sound rating test.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM): C11-08.....Terminology Relating to Gypsum and Related Building Materials and Systems C475-02.....Joint Compound and Joint Tape for Finishing Gypsum Board C840-08..... Application and Finishing of Gypsum Board C919-08.....Sealants in Acoustical Applications C954-07.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033 in. (0.84mm) to 0.112 in. (2.84mm) in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-05.....Accessories for Gypsum Wallboard and Gypsum Veneer Base C1177-06.....Glass Mat Gypsum Substrate for Use as Sheathing C1658-06.....Glass Mat Gypsum Panels C1396-06.....Gypsum Board E84-08.....Surface Burning Characteristics of Building Materials C. Underwriters Laboratories Inc. (UL): Latest Edition.....Fire Resistance Directory D. Inchcape Testing Services (ITS): Latest Editions.....Certification Listings PART 2 - PRODUCTS

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi:

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise. Shall contain a minimum of 20 percent recycled gypsum.
- B. Coreboard or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X.
 - 2. ASTM C1658: Glass Mat Gypsum Panels,
 - 3. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Water Resistant Gypsum Backing Board: ASTM C620, Type X, 16 mm (5/8 inch) thick.
- D. Gypsum cores shall contain a minimum of 95 percent post industrial recycled gypsum content. Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 GYPSUM SHEATHING BOARD

- A. ASTM C1396, Type X, water-resistant core, 16 mm (5/8 inch) thick.
- B. ASTM C1177, Type X.

2.3 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:

09 29 00 - 3

- 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown (FHP).
 - e. Corridor partitions.
- 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
- Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.
 - 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- G. Walls (Except Shaft Walls):

- When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
- When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
- 3. Stagger screws on abutting edges or ends.
- 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
- 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
- 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.
- No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
- 8. Installing Two Layer Assembly Over Sound Deadening Board:
 - a. Apply face layer of wallboard vertically with joints staggered from joints in sound deadening board over framing members.
 - b. Fasten face layer with screw, of sufficient length to secure to framing, spaced 300 mm (12 inches) on center around perimeter, and 400 mm (16 inches) on center in the field.
- 9. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:
 - Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.

- 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
- 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.
 - b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
 - c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
 - d. Where shown.

3.3 INSTALLING GYPSUM SHEATHING

- A. Install in accordance with ASTM C840, except as otherwise specified or shown.
- B. Use screws of sufficient length to secure sheathing to framing.
- C. Space screws 9 mm (3/8 inch) from ends and edges of sheathing and 200 mm (8 inches) on center. Space screws a maximum of 200 mm (8 inches) on center on intermediate framing members.
- D. Apply 600 mm by 2400 mm (2 foot by 8 foot) sheathing boards horizontally with tongue edge up.
- E. Apply 1200 mm by 2400 mm or 2700 mm (4 ft. by 8 ft. or 9 foot) gypsum sheathing boards vertically with edges over framing.
3.4 CAVITY SHAFT WALL

- A. Coordinate assembly with Section 09 22 16, NON-STRUCTURAL METAL FRAMING, for erection of framing and gypsum board.
- B. Conform to UL Design No. U420 one-hour and 2-hour fire rating where shown.
- C. Cut coreboard (liner) panels 25 mm (one inch) less than floor-to-ceiling height, and erect vertically between J-runners on shaft side.
 - 1. Where shaft walls exceed 4300 mm (14 feet) in height, position panel end joints within upper and lower third points of wall.
 - 2. Stagger joints top and bottom in adjacent panels.
 - After erection of J-struts of opening frames, fasten panels to Jstruts with screws of sufficient length to secure to framing staggered from those in base, spaced 300 mm (12 inches) on center.

D. Gypsum Board:

- 1. Two hour wall:
 - a. Erect base layer (backing board) vertically on finish side of wall with end joints staggered. Fasten base layer panels to studs with 25 mm (one inch) long screws, spaced 600 mm (24 inches) on center.
 - b. Use laminating adhesive between plies in accordance with UL or FM if required by fire test.
 - c. Apply face layer of gypsum board required by fire test vertically over base layer with joints staggered and attach with screws of sufficient length to secure to framing staggered from those in base, spaced 300 mm (12 inches) on center.
- 2. One hour wall with one layer on finish side of wall: Apply face layer of gypsum board vertically. Attach to studs with screws of sufficient length to secure to framing, spaced 300 mm (12 inches) on center in field and along edges.
- 3. Where coreboard is covered with face layer of gypsum board, stagger joints of face layer from those in the coreboard base.
- E. Treat joints, corners, and fasteners in face layer as specified for finishing of gypsum board.
- F. Elevator Shafts:
 - Protrusions including fasteners other than flange of shaft wall framing system or offsets from vertical alignments more than 3 mm (1/8-inch) are not permitted unless shown.
 - 2. Align shaft walls for plumb vertical flush alignment from top to bottom of shaft.

3.5 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated smoke barrier, fire rated and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the smoke barrier, fire rated and sound rated construction. Sanding is not required of non decorated surfaces.

3.6 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non decorated surface to provide smoke tight construction or fire protection equivalent to the fire rated construction and STC equivalent to the sound rated construction.

3.7 UNACCESSIBLE CEILINGS

At Mental Health and Behavioral Nursing Units, areas accessible to patients and not continuously observable by staff (e.g., patient bedrooms, day rooms), ceilings should be a solid material such as gypsum board. This will limit patient access. Access doors are needed to access electrical and mechanical equipment above the ceiling. These doors should be locked to prevent unauthorized access and secured to ceiling using tamper resistant fasteners.

- - - E N D - - -

SECTION 09 30 13 CERAMIC/PORCELAIN TILING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies ceramic, porcelain, marble thresholds andwaterproofing membranes for thin-set applications, tile backer board.

1.2 RELATED WORK

- A. Preformed sealant joints in tile flooring: Section 07 95 13, EXPANSION JOINT COVER ASSEMBLIES.
- B. Sealing of joints where specified: Section 07 92 00, JOINT SEALANTS.
- C. Color, texture and pattern of field tile and trim shapes, size of field tile, trim shapes, and color of grout specified: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Metal and resilient edge strips at joints with new resilient flooring, Section 09 65 19, RESILIENT TILE FLOORING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - 1. Base tile, each type, each color, each size.
 - 5. Porcelain tile, each type, color, patterns and size.
 - 6. Wall (or wainscot) tile, each color, size and pattern.
 - 7. Trim shapes, bullnose cap and cove including bullnose cap and base pieces at internal and external corners of vertical surfaces, each type, color, and size.
- C. Product Data:
 - 1. Ceramic and porcelain tile, marked to show each type, size, and shape required.
 - 3. Cementitious backer unit.
 - 4. Dry-set Portland cement mortar and grout.
 - 7. Reinforcing tape.
 - 8. Leveling compound.
 - 9. Latex-Portland cement mortar and grout.
 - 10. Commercial Portland cement grout.
 - 13. Waterproofing isolation membrane.
 - 14. Fasteners.
- D. Certification:
 - 1. Master grade, ANSI A137.1.

- 2. Manufacturer's certificates indicating that the following materials comply with specification requirements:
 - c. Commercial Portland cement grout.
 - d. Cementitious backer unit.
 - e. Dry-set Portland cement mortar and grout.
 - f. Elastomeric membrane and bond coat.
 - h. Latex-Portland cement mortar and grout.
 - i. Leveling compound.
 - k. Waterproof isolation membrane.
 - Factory mounted tile suitability for application in wet area specified under 2.1, A, 3 with list of successful in-service performance locations.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

A10.20-05..... Safety Requirements for Ceramic Tile, Terrazzo, and Marble Works

A108.1A-05.....Installation of Ceramic Tile in the Wet-Set Method with Portland Cement Mortar

- A108.1B-05.....Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with dry-Set or latex-Portland Cement Mortar
- A108.1C-05.....Contractors Option; Installation of Ceramic Tile in the Wet-Set method with Portland Cement Mortar or Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex-Portland Cement Mortar
- A108.4-05.....Installation of Ceramic Tile with Organic Adhesives or Water Cleanable Tile Setting Epoxy Adhesives
- A108.5-05.....Installation of Ceramic Tile with Dry-Set Portland Cement Mortar or Latex-Portland Cement Mortar

Phila Renova	delphia VA Medical Cente ations to Upgrade HVAC i	r, Philadelphia, PA Project No. 642-11-150 n SPD Final Documents: 8/17/2012
	A108.6-05	.Installation of Ceramic Tile with Chemical
		Resistant, Water Cleanable Tile-Setting and
		Grouting Epoxy
	A108.8-05	.Installation of Ceramic Tile with Chemical
		Resistant Furan Resin Mortar and Grout
	A108.10-05	.Installation of Grout in Tilework
	A108.11-05	.Interior Installation of Cementitious Backer
		Units
	A108.13-05	.Installation of Load Bearing, Bonded, Waterproof
		Membranes for Thin-Set Ceramic Tile and
		Dimension Stone
	A118.1-05	.Dry-Set Portland Cement Mortar
	A118.3-05	.Chemical Resistant, Water Cleanable Tile-Setting
		Epoxy and Water Cleanable Tile-Setting and
		Grouting Epoxy Adhesive
	A118.4-05	.Latex-Portland Cement Mortar
	A118.5-05	.Chemical Resistant Furan Mortars and Grouts for
		Tile Installation
	A118.6-05	.Standard Cement Grouts for Tile Installation
	A118.9-05	.Cementitious Backer Units
	A118.10-05	.Load Bearing, Bonded, Waterproof Membranes for
		Thin-Set Ceramic Tile and Dimension Stone
		Installation
	A136.1-05	.Organic Adhesives for Installation of Ceramic
		Tile
	A137.1-88	.Ceramic Tile
C.	American Society For Te	sting And Materials (ASTM):
	A185-07	.Steel Welded Wire Fabric, Plain, for Concrete
		Reinforcing
	C109/C109M-07	.Standard Test Method for Compressive Strength of
		Hydraulic Cement Mortars (Using 2 inch. or [50-
		mm] Cube Specimens)
	C241-90 (R2005)	Abrasion Resistance of Stone Subjected to Foot
		Traffic
	C348-02	.Standard Test Method for Flexural Strength of
		Hydraulic-Cement Mortars
	C627-93(R2007)	.Evaluating Ceramic Floor Tile Installation
		Systems Using the Robinson-Type Floor Tester
	C954-07	.Steel Drill Screws for the Application of Gypsum
		Board on Metal Plaster Base to Steel Studs from

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Final Documents: 8/17/2012 Renovations to Upgrade HVAC in SPD

0.033 in (0.84 mm) to 0.112 in (2.84 mm) in thickness C979-05.....Pigments for Integrally Colored Concrete C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Panel Products C1027-99(R2004).....Determining "Visible Abrasion Resistance on Glazed Ceramic Tile" C1028-07.....Determining the Static Coefficient of Friction of Ceramic Tile and Other Like Surfaces by the Horizontal Dynamometer Pull Meter Method

- C1127-01.....Standard Guide for Use of High Solids Content, Cold Liquid-Applied Elastomeric Waterproofing Membrane with an Integral Wearing Surface
- C1178/C1178M-06.....Standard Specification for Coated Glass Mat Water-Resistant Gypsum Backing Panel
- D4397-02.....Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications
- D5109-99(R2004).....Standard Test Methods for Copper-Clad Thermosetting Laminates for Printed Wiring Boards
- D. Marble Institute of America (MIA): Design Manual III-2007
- E. Tile Council of America, Inc. (TCA):

2008..... Tile Installation

PART 2 - PRODUCTS

2.1 TILE

- A. Comply with ANSI A137.1, Standard Grade, except as modified:
 - 1. Inspection procedures listed under the Appendix of ANSI A137.1.
 - 2. Abrasion Resistance Classification:
 - a. Tested in accordance with values listed in Table 1, ASTM C 1027.
 - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms
 - 3. Slip Resistant Tile for Floors:
 - a. Coefficient of friction, when tested in accordance with ASTM C1028, required for level of performance:
 - 1) Not less than 0.7 (wet condition) for bathing areas.
 - b. Tile Having Abrasive Grains:
 - 1. Unglazed Ceramic Mosaic Tile: Abrasive grains throughout body of the tile.

- b. Porcelain Tile: Matte surface finish with raised ridges spaced uniformly over tile surface.
- 5. Do not use back mounted tiles in showers unless certified by manufacturer as noted in paragraph 1.3.D.
- 6. Factory Blending: For tile with color variations, within the ranges selected during sample submittals blend tile in the factory and package so tile units taken from one package show the same range in colors as those taken from other packages and match approved samples.
- 7. Factory-Applied Temporary Protective Coating:
 - a. Protect exposed face surfaces (top surface) of tile against adherence of mortar and grout by pre-coating with a continuous film of petroleum paraffin wax, applied hot.
 - b. Do not coat unexposed tile surfaces.
 - c. Pre-wax tiles set or grouted with latex modified mortars.
- D. Glazed Wall Tile: Cushion edges, glazing, as specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- E. Porcelain Paver Tile: Nominal 8 mm (5/16 inch) thick, with cushion edges. Porcelain tile produced by the dust pressed method shall be made of approximately 50% feldspar; the remaining 50% shall be made up of various high-quality light firing ball clays yielding a tile with a water absorption rate of 0.5% or less and a breaking strength of between 390 to 400 pounds.
- F. Trim Shapes:
 - 1. Conform to applicable requirements of adjoining floor and wall tile.
 - Use slip resistant trim shapes for horizontal surfaces of showers, overflow ledges, and seats.
 - Use trim shapes sizes conforming to size of adjoining field wall tile including existing spaces unless detailed or specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 4. Internal and External Corners:
 - a. Square internal and external corner joints are not acceptable.
 - b. External corners including edges: Use bullnose shapes.
 - c. Internal corners: Use cove shapes.
 - d. Base to floor internal corners: Use special shapes providing integral cove vertical and horizontal joint.
 - e. Base to floor external corners: Use special shapes providing bullnose vertical edge with integral cove horizontal joint. Use stop at bottom of openings having bullnose return to wall.

- f. Wall top edge internal corners: Use special shapes providing integral cove vertical joint with bullnose top edge.
- g. Wall top edge external corners: Use special shapes providing bullnose vertical and horizontal joint edge.

2.2 CEMENTITIOUS BACKER UNITS

- A. Use in showers or wet areas.
- B. ANSI A118.9.
- C. Use Cementitious backer units in maximum available lengths.
- D. Backer unit meet or exceed the following additional physical properties:

Property	Test Method	Value
Water absorption	ASTM C948	Less than 20 percent by weight

2.3 JOINT MATERIALS FOR CEMENTITIOUS BACKER UNITS

- A. Reinforcing Tape: Vinyl coated woven glass fiber mesh tape, open weave, 50 mm (2 inches) wide. Tape with pressure sensitive adhesive backing will not be permitted.
- B. Tape Embedding Material: Latex-Portland cement mortar complying with ANSI All8.4.
- C. Joint material, including reinforcing tape, and tape embedding material, shall be as specifically recommended by the backer unit manufacturer.

2.4 FASTENERS

- A. Screws for Cementitious Backer Units.
 - 1. Standard screws for gypsum board are not acceptable.
 - Minimum 11 mm (7/16 inch) diameter head, corrosion resistant coated, with washers.
 - 3. ASTM C954 for steel 1 mm (0.033 inch) thick.
 - 4. ASTM C1002 for steel framing less than 0.0329 inch thick.
- B. Washers: Galvanized steel, 13 mm (1/2 inch) minimum diameter.

2.5 GLASS MAT WATER RESISTANT GYPSUM BACKER BOARD

Confirm to ASTM C1178/C1178M, Optional System for Cementious Backer Units.

2.6 SETTING MATERIALS OR BOND COATS

- A. Conform to TCA Handbook for Ceramic Tile Installation.
- B. Portland Cement Mortar: ANSI A108.1.
- C. Latex-Portland Cement Mortar: ANSI A118.4.
 - 1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A118.4.
 - 2. Prepackaged Dry-Mortar Mix: Factory-prepared mixture of Portland cement; dry, redispersible, ethylene vinyl acetate additive; and

other ingredients to which only water needs to be added at Project site.

- D. Dry-Set Portland Cement Mortar: ANSI A118.1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A118.4.
- G. Elastomeric Waterproofing Membrane and Bond Coat:
 - 1. TCA F122-02.
 - 2. ANSI A118.10.
 - 3. One component polyurethane, liquid applied material having the following additional physical properties:
 - a. Hardness: Shore "A" between 40-60.
 - b. Elongation: Between 300-600 percent.
 - c. Tensile strength: Between 40-60 psig.
 - d. No volatile compounds.
 - 4. Coal tar modified urethanes are not acceptable.
- H. Waterproofing Isolation Membrane:
 - 1. Sheet System TCA F122-02.
 - 2. Optional System to elastomeric waterproof membrane.
 - Composite sheet consisting of ASTM D5109, Type II, Grade I Chlorinated Polyethylene (CM) sheet reinforced on both sides with a non-woven polyester fiber.
 - 4. Designed for use in wet areas as an isolation and positive waterproofing membranes for thin-set bonding of sheet to substrate and thin-set bonding of ceramic and porcelain tile or marble to sheet. Suited for both horizontal and vertical applications.
 - 5. Conform to the following additional physical properties:

Property	Units	Results	Test Method	
Hardness Shore A	Points	70-80	ASTM D2240 (10 Second Reading)	
Shrinkage	Percent	5 maximum	ASTM D1204	
Brittleness		No crack remains flexible at temperature-37 degrees C (-25 degrees F)	ASTM D2497 13 mm (1/2- inch) Mandrel Bend	
Retention of Properties after Heat Aging	Percent of original	80 Tensile 80 Breaking 80 Elongation	ASTM D3045, 90 degrees C (194 degrees F) for 168 hours	

- 6. Manufacturer's standard sheet size with prefabricated or preformed inside and outside corners.
- 7. Sheet manufacturer's solvent welding liquid or xylene and edge sealant.

2.7 GROUTING MATERIALS

- A. Coloring Pigments:
 - 1. Pure mineral pigments, limeproof and nonfading, complying with ASTM C979.
 - 2. Add coloring pigments to grout by the manufacturer.
 - 3. Job colored grout is not acceptable.
 - 4. Use is required in Commercial Portland Cement Grout, Dry-Set Grout, and Latex-Portland Cement Grout.
- B. White Portland Cement Grout:
 - 1. ANSI A118.6.
 - Use one part white Portland cement to one part white sand passing a number 30 screen.
 - 3. Color additive not permitted.
- D. Dry-Set Grout: ANSI A118.6 color as specified.
- E. Latex-Portland Cement Grout: ANSI A118.6 color as specified.
 - 1. Unsanded grout mixture for joints 3.2 mm (1/8 inch) and narrower.
 - 2. Sanded grout mixture for joints 3.2 mm (1/8 inch) and wider.

2.8 PATCHING AND LEVELING COMPOUND

- A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Shall have minimum following physical properties:
 - 1. Compressive strength 25 MPa (3500 psig) per ASTM C109/C109M.
 - 2. Flexural strength 7 MPa (1000 psig) per ASTM C348 (28 day value).
 - 3. Tensile strength 600 psi per ANSI 118.7.
 - 4. Density 1.9.
- C. Capable of being applied in layers up to 38 mm (1-1/2 inches) thick without fillers and up to 100 mm (four inches) thick with fillers, being brought to a feather edge, and being trowelled to a smooth finish.
- D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition.
- E. Ready for use in 48 hours after application.

2.9 MARBLE

A. Soundness Classification in accordance with MIA Design Manual III Groups.

- B. Thresholds:
 - 1. Group A, Minimum abrasive hardness (Ha) of 10.0 per ASTM C241.
 - 2. Honed finish on exposed faces.
 - 3. Thickness and contour as shown.
 - 4. Fabricate from one piece without holes, cracks, or open seams; full depth of wall or frame opening by full width of wall or frame opening; 19 mm (3/4-inch) minimum thickness and 6 mm (1/4-inch) minimum thickness at beveled edge.
 - 5. Set not more than 13 mm (1/2-inch) above adjoining finished floor surfaces, with transition edges beveled on a slope of no greater than 1:2. On existing floor slabs provide 13 mm (1/2-inch) above ceramic tile surface with bevel edge joint top flush with adjacent floor.
 - 6. One piece full width of door opening. Notch thresholds to match profile of door jambs.

2.11 WATER

Clean, potable and free from salts and other injurious elements to mortar and grout materials.

2.12 CLEANING COMPOUNDS

- A. Specifically designed for cleaning masonry and concrete and which will not prevent bond of subsequent tile setting materials including patching and leveling compounds and elastomeric waterproofing membrane and coat.
- B. Materials containing acid or caustic material not acceptable.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before installation and not less than three days after installation.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation.
- C. Do not install tile when the temperature is above 38 degrees C (100 degrees F).
- D. Do not install materials when the temperature of the substrate is below 16 degrees C (60 degrees F).
- E. Do not allow temperature to fall below 10 degrees C (50 degrees F) after fourth day of completion of tile work.

3.2 ALLOWABLE TOLERANCE

- A. Variation in plane of sub-floor, including concrete fills leveling compounds and mortar beds:
 - 1. Not more than 1 in 500 (1/4 inch in 10 feet) from required elevation where Portland cement mortar setting bed is used.
 - Not more than 1 in 1000 (1/8 inch in 10 feet) where dry-set Portland cement, and latex-Portland cement mortar setting beds and chemicalresistant bond coats are used.
- B. Variation in Plane of Wall Surfaces:
 - Not more than 1 in 400 (1/4 inch in eight feet) from required plane where Portland cement mortar setting bed is used.
 - Not more than 1 in 800 (1/8 inch in eight feet) where dry-set or latex-Portland cement mortar or organic adhesive setting materials is used.

3.3 SURFACE PREPARATION

- A. Cleaning New Concrete:
 - Chip out loose material, clean off all oil, grease dirt, adhesives, curing compounds, and other deterrents to bonding by mechanical method, or by using products specifically designed for cleaning concrete and masonry.
 - Use self-contained power blast cleaning systems to remove curing compounds and steel trowel finish from concrete slabs where ceramic tile will be installed directly on concrete surface with thin-set materials.
 - Steam cleaning or the use of acids and solvents for cleaning will not be permitted.
- B. Patching and Leveling:
 - 1. Mix and apply patching and leveling compound in accordance with manufacturer's instructions.
 - 2. Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound.
 - a. Thickness of compound as required to bring finish tile system to elevation shown.
 - b. Float finish except finish smooth for elastomeric waterproofing.
 - c. At substrate expansion, isolation, and other moving joints, allow joint of same width to continue through underlayment.
 - 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane.

- Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- C. Walls:
 - Prepare stud wall construction in accordance with manufacturer's instructions and TCA System W-244-08
 - 2. In showers or other wet areas cover studs with polyethylene sheet.
 - 3. Steel stud requirements:
 - a. Maximum stud spacing: 16 inches o.c.
 - B. Minimum stud depth: 3-5/8 inches.
 - C. Stud gauge: 20 gauge (0.039 inch) or heaver.
- D. Existing Floors and Walls:
 - Remove existing composition floor finishes and adhesive. Prepare surface by grinding, chipping, self-contained power blast cleaning or other suitable mechanical methods to completely expose uncontaminated concrete or masonry surfaces. Follow safety requirements of ANSI A10.20.
 - Remove existing concrete fill or topping to structural slab. Clean and level the substrate for new setting bed and waterproof membrane or cleavage membrane.
 - 3. Where new tile bases are required to finish flush with plaster above or where they are extensions of similar bases in conjunction with existing floor tiles cut channel in floor slab and expose rough wall construction sufficiently to accommodate new tile base and setting material.

3.4 CEMENTITIOUS BACKER UNITS

- A. Install in accordance with manufacturer's instructions TCA System W244 08 Cementitious Backer.
- B. Remove polyethylene wrapping from cementitious backer units and separate to allow for air circulation. Allow moisture content of backer units to dry down to a maximum of 35 percent before applying joint treatment and tile.
- C. Install in accordance with ANSI A108.11 except as specified otherwise.
- D. Install units horizontally or vertically to minimize joints with end joints over framing members. Units with rounded edges; face rounded edge away from studs to form a V joint for joint treatment.
- E. Secure cementitious backer units to each framing member with screws spaced not more than 200 mm (eight inches) on center and not closer than

13 mm (1/2 inch) from the edge of the backer unit or as recommended by backer unit manufacturer. Install screws so that the screw heads are flush with the surface of the backer unit.

- F. Where backer unit joins shower pans or waterproofing, lap backer unit over turned up waterproof system. Install fasteners only through top one-inch of turned up waterproof systems.
- G. Do not install joint treatment for seven days after installation of cementitious backer unit.
- H. Joint Treatment:
 - Fill horizontal and vertical joints and corners with latex-Portland cement mortar. Apply fiberglass tape over joints and corners and embed with same mortar.
 - Leave 6 mm (1/4 inch) space for sealant at lips of tubs, sinks, or other plumbing receptors.

3.5 GLASS MAT WATER-RESISTANT GYPSUM BACKER BOARD

- A. Install in accordance with manufacturer's instructions. TCA Systems W245-01.
- B. Treat joints with tape and latex-Portland cement mortar or adhesive.

3.6 MARBLE

- A. Secure thresholds and stools in position with minimum of two stainless steel dowels.
- B. Set in dry-set Portland cement mortar or latex-Portland cement mortar bond coat.
- C. Set threshold to finish 12mm (1/2 inch) above ceramic tile floor unless shown otherwise, with bevel edge joint top flush with adjacent floor similar to TCA detail TR611-02.

3.8 CERAMIC TILE - GENERAL

- A. Comply with ANSI A108 series of tile installation standards in "Specifications for Installation of Ceramic Tile" applicable to methods of installation.
- B. Comply with TCA Installation Guidelines:
 - 1. Set floor tile in elastomeric bond coat over elastomeric membrane ANSI 108. 13, TCA System F122-08.
 - Set wall tile installed over Steel studs and cementitious backer units in latex-Portland cement mortar, ANSI A108.1B and TCA System w244-08
 - 3. Set trim shapes in same material specified for setting adjoining tile.
- C. Installing Mortar Beds for Floors:

- Install mortar bed to not damage cleavage or waterproof membrane; 32 mm (1-1/2 inch) minimum thickness.
- 2. Install floor mortar bed reinforcing centered in mortar fill.
- 3. Screed finish to level plane or slope to drains where shown, float finish.
- 4. For thin set systems cure mortar bed not less than seven days. Do not use curing compounds or coatings.
- 5. For tile set with Portland cement paste over plastic mortar bed coordinate to set tile before mortar bed sets.
- D. Setting Beds or Bond Coats:
 - 4. Set floor tile in elastomeric bond coat over elastomeric membrane ANSI 108. 13, TCA System F122 where shown.
 - Set wall tile installed over concrete or masonry in dry-set Portland cement mortar, or latex-Portland cement mortar, ANSI 108.1B.and TCA System W211-02, W221-02 or W222-02.
 - 6. Set wall tile installed over concrete backer board in latex-Portland cement mortar, ANSI A108.1B.
 - Set trim shapes in same material specified for setting adjoining tile.
- E. Workmanship:
 - Lay out tile work so that no tile less than one-half full size is used. Make all cuts on the outer edge of the field. Align new tile work scheduled for existing spaces to the existing tile work unless specified otherwise.
 - 2. Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise.
 - 3. Form intersections and returns accurately.
 - 4. Cut and drill tile neatly without marring surface.
 - 5. Cut edges of tile abutting penetrations, finish, or built-in items: a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile.
 - b. Seal tile joints water tight as specified in Section 07 92 00, JOINT SEALANTS, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place.
 - Completed work shall be free from hollow sounding areas and loose, cracked or defective tile.
 - 7. Remove and reset tiles that are out of plane or misaligned.
 - 8. Floors:

- a. Extend floor tile beneath casework and equipment, except those units mounted in wall recesses.
- b. Align finish surface of new tile work flush with other and existing adjoining floor finish where shown.
- c. In areas where floor drains occur, slope to drains where shown.
- d. Shove and vibrate tiles over 200 mm (8 inches) square to achieve full support of bond coat.
- 9. Walls:
 - a. Cover walls and partitions, including pilasters, furred areas, and freestanding columns from floor to ceiling, or from floor to nominal wainscot heights shown with tile.
 - b. Finish reveals of openings with tile, except where other finish materials are shown or specified.
 - c. Finish wall surfaces behind and at sides of casework and equipment, except those units mounted in wall recesses, with same tile as scheduled for room proper.
- 10. Joints:
 - a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise.
 - b. Make joints 2 mm (1/16 inch) wide for glazed wall tile and mosaic tile work.
 - c. Make joints in quarry tile work not less than 6 mm (1/4 inch) nor more than 9 mm (3/8 inch) wide. Finish joints flush with surface of tile.
 - d. Make joints in Paver tile, porcelain type; maximum 3 mm (1/8 inch)
 wide.
- 11. Back Buttering: For installations indicated below, obtain 100 percent mortar coverage by complying with applicable special requirements for back buttering of tile in referenced ANSI A108 series of tile installation standards:
 - a. Tile wall installations in wet areas, including showers, tub enclosures, laundries and swimming pools.
 - b. Tile installed with chemical-resistant mortars and grouts.
 - c. Tile wall installations composed of tiles 200 by 200 mm (8 by 8 inches or larger.
 - d. Exterior tile wall installations.

3.11 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH DRY-SET PORTLAND CEMENT AND LATEX-PORTLAND CEMENT MORTAR

- A. Installation of Tile: ANSI A108.5, except as specified otherwise.
- B. Slope tile work to drains not less than 1 in 100 (1/8 inch per foot).

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

3.14 CERAMIC AND PORCELAIN TILE INSTALLED WITH ELASTOMERIC BOND COAT

- A. Surface Preparation: Prepare surfaces as specified in paragraph 3.3G
- B. Installation of Elastomeric Membrane: ANSI A108.13 and TCA F122-02.
 - 1. Prime surfaces, where required, in accordance with manufacturer's instructions.
 - Install first coat of membrane material in accordance with manufacturer's instructions, in thickness of 0.75 to 1.3 mm (30 to 50 mils).
 - Extend material over flashing rings of drains and turn up vertical surfaces not less than 100 mm (four inches) above finish floor surface.
 - When material has set, recoat areas with a second coat of elastomeric membrane material for a total thickness of 1.3 to 1.9 mm (50 to 75 mils).
 - 5. After curing test for leaks with 25 mm (one inch) of water for 24 hours.
- C. Installation of Tile in Elastomeric Membrane:
 - 1. Spread no more material than can be covered with tile before material starts to set.
 - 2. Apply tile in second coat of elastomeric membrane material in accordance with the coating manufacturer's instructions in lieu at aggregate surfacing specified in ASTM C1127. Do not install top coat over tile.

3.15 GROUTING

- A. Grout Type and Location:
 - Grout for glazed wall and base tile, paver tile and unglazed mosaic tile Portland cement grout, latex-Portland cement grout, dry-set grout, or commercial Portland cement grout.
- B. Workmanship:
 - 1. Install and cure grout in accordance with the applicable standard.
 - 2. Portland Cement grout: ANSI A108.10.
 - 3. Dry-set grout: ANSI A108.5.

3.16 MOVEMENT JOINTS

- A. Prepare tile expansion, isolation, construction and contraction joints for installation of sealant. Refer to Section 07 92 00, JOINT SEALANTS.
- B. TCA details EJ 171-02.

3.17 CLEANING

- A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths.
- B. Methods and materials used shall not damage or impair appearance of tile surfaces.
- C. The use of acid or acid cleaners on glazed tile surfaces is prohibited.
- D. Clean tile grouted with epoxy, furan and commercial Portland cement grout and tile set in elastomeric bond coat as recommended by the manufacturer of the grout and bond coat.

3.18 PROTECTION

- A. Keep traffic off tile floor, until grout and setting material is firmly set and cured.
- B. Where traffic occurs over tile floor, cover tile floor with not less than 9 mm (3/8 inch) thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover until time for final inspection. Clean tile of any tape, adhesive and stains.

3.19 TESTING FINISH FLOOR

A. Test floors in accordance with ASTM C627 to show compliance with codes 1 through 10.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1- GENERAL

1.1 DESCRIPTION

- A. Metal ceiling suspension system for acoustical ceilings.
- B. Acoustical units.

1.2 RELATED WORK

A. Color, pattern, and location of each type of acoustical unit: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTAL

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - Acoustical units, each type, with label indicating conformance to specification requirements, including units specified to match existing.
 - 2. Colored markers for units providing access.
- C. Manufacturer's Literature and Data:
 - Ceiling suspension system, each type, showing complete details of installation, including suspension system specified to match existing and upward access system details for concealed grid systems.
 - 2. Acoustical units, each type
- D. Manufacturer's Certificates: Acoustical units, each type, in accordance with specification requirements.

1.4 DEFINITIONS

- A. Standard definitions as defined in ASTM C634.
- B. Terminology as defined in ASTM E1264.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A641/A641M-03.....Zinc-coated (Galvanized) Carbon Steel Wire A653/A653M-07....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process C423-07....Sound Absorption and Sound Absorption

Coefficients by the Reverberation Room Method

Philadelphia	VA Medical Center, Philadelphia, PA Project No. 642-11-150
Renovations	opprade HVAC III SPD FINAL DOCUMENTS: 6/1//2012
C634-02	(E2007)Standard Terminology Relating to Environmental
	Acoustics
C635-04	
	Lay-in Panel Ceilings
C636-0	Installation of Metal Ceiling Suspension Systems
	for Acoustical Tile and Lay-in Panels
E84-07	Surface Burning Characteristics of Building
	Materials
E119-0'	Fire Tests of Building Construction and
	Materials
E413-04	Classification for Rating Sound Insulation.
E580-0	Application of Ceiling Suspension Systems for
	Acoustical Tile and Lay-in Panels in Areas
	Requiring Seismic Restraint
E1264-	R2005)Classification for Acoustical Ceiling Products

PART 2- PRODUCTS

2.1 METAL SUSPENSION SYSTEM

- A. ASTM C635, heavy-duty system, except as otherwise specified.
 - 1. Ceiling suspension system members may be fabricated from either of the following unless specified otherwise.
 - a. Galvanized cold-rolled steel, bonderized.
 - b. Extruded aluminum.
 - c. Fire resistant plastic (glass fiber) having a flame spread and smoke developed rating of not more than 25 when tested in accordance with ASTM E84.
 - 2. Use same construction for cross runners as main runners. Use of lighter-duty sections for cross runners is not acceptable.
- B. Exposed grid suspension system for support of lay-in panels:
 - Exposed grid width not less than 22 mm (7/8 inch) with not less than 8 mm (5/16 inch) panel bearing surface.
 - Fabricate wall molding and other special molding from the same material with same exposed width and finish as the exposed grid members.
 - 3. On exposed metal surfaces apply baked-on enamel flat texture finish in color to match adjacent acoustical units unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.

2.2 PERIMETER SEAL

- A. Vinyl, polyethylene or polyurethane open cell sponge material having density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
- B. Thickness as required to fill voids between back of wall molding and finish wall.
- C. Not less than 9 mm (3/8 inch) wide strip.

2.3 WIRE

- A. ASTM A641.
- B. For wire hangers: Minimum diameter 2.68 mm (0.1055 inch).
- C. For bracing wires: Minimum diameter 3.43 mm (0.1350 inch).

2.4 ANCHORS AND INSERTS

- A. Use anchors or inserts to support twice the loads imposed by hangers attached thereto.
- B. Hanger Inserts:
 - Fabricate inserts from steel, zinc-coated (galvanized after fabrication).
 - 3. Flush ceiling insert type:
 - a. Designed to provide a shell covered opening over a wire loop to permit attachment of hangers and keep concrete out of insert recess.
 - b. Insert opening inside shell approximately 16 mm (5/8 inch) wide by9 mm (3/8 inch) high over top of wire.
 - c. Wire 5 mm (3/16 inch) diameter with length to provide positive hooked anchorage in concrete.
- C. Clips:
 - 1. Galvanized steel.
 - Designed to clamp to steel beam or bar joists, or secure framing member together.
 - 3. Designed to rigidly secure framing members together.
 - Designed to sustain twice the loads imposed by hangers or items supported.
- D. Tile Splines: ASTM C635.

2.5 CARRYING CHANNELS FOR SECONDARY FRAMING

- A. Fabricate from cold-rolled or hot-rolled steel, black asphaltic paint finish, free of rust.
- B. Weighing not less than the following, per 300 m (per thousand linear feet):

Size mm	Size	Cold-rolled		Hot-rolled	
	Inches	Kg	Pound	Kg	Pound
38	1 1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

2.7 ACOUSTICAL UNITS

- A. General:
 - 1. Ceiling Tile shall meet minimum 37% bio-based content in accordance with USDA Bio-Preferred Product requirements.
 - 2. ASTM E1264, weighing 3.6 kg/m² (3/4 psf) minimum for mineral fiber panels or tile.
 - 3. Class A Flame Spread: ASTM 84
 - Minimum NRC (Noise Reduction Coefficient): 0.55 unless specified otherwise: ASTM C423.
 - 5. Minimum CAC (Ceiling Attenuation Class): 40-44 range unless specified otherwise: ASTM E413.
 - 6. Manufacturers standard finish, minimum Light Reflectance (LR) coefficient of 0.75 on the exposed surfaces, except as specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
 - Lay-in panels: Sizes as to match existing, unless shown otherwise, with square edges.
- B. Type III Units Mineral base with water-based painted finish less than 10 g/l VOC, Form 2 - Water felted, minimum 16 mm (5/8 inch) thick. Mineral base to contain minimum 65 percent recycled content.

2.9 ACCESS IDENTIFICATION

- A. Markers:
 - 1. Use colored markers with pressure sensitive adhesive on one side.
 - 2. Make colored markers of paper of plastic, 6 to 9 mm (1/4 to 3/8 inch) in diameter.
- B. Use markers of the same diameter throughout building.

```
C. Color Code: Use following color markers for service identification:
Color.....Service
Red.....Sprinkler System: Valves and Controls
Green.....Domestic Water: Valves and Controls
Yellow.....Chilled Water and Heating Water
Orange.....Ductwork: Fire Dampers
Blue.....Ductwork: Dampers and Controls
Black.....Gas: Laboratory, Medical, Air and Vacuum
```

PART 3 EXECUTION

3.1 CEILING TREATMENT

- A. Treatment of ceilings shall include sides and soffits of ceiling beams, furred work 600 mm (24 inches) wide and over, and vertical surfaces at changes in ceiling heights unless otherwise shown. Install acoustic tiles after wet finishes have been installed and solvents have cured.
- B. Lay out acoustical units symmetrically about center lines of each room or space unless shown otherwise on reflected ceiling plan.
- C. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - 2. Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- D. Perimeter Seal:
 - 1. Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - 2. Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.
- E. Existing ceiling:
 - 1. Where extension of existing ceilings occur, match existing.
 - Where acoustical units are salvaged and reinstalled or joined, use salvaged units within a space. Do not mix new and salvaged units within a space which results in contrast between old and new acoustic units.
 - 3. Comply with specifications for new acoustical units for new units required to match appearance of existing units.

3.2 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General:
 - Install metal suspension system for acoustical tile and lay-in panels in accordance with ASTM C636, except as specified otherwise.
 - 2. Use direct or indirect hung suspension system or combination thereof as defined in ASTM C635.
 - 3. Support a maximum area of 1.48 m² (16 sf) of ceiling per hanger.
 - 4. Prevent deflection in excess of 1/360 of span of cross runner and main runner.
 - 5. Provide extra hangers, minimum of one hanger at each corner of each item of mechanical, electrical and miscellaneous equipment supported by ceiling suspension system not having separate support or hangers.

- 6. Provide not less than 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown,
- 7. Use main runners not less than 1200 mm (48 inches) in length.
- 8. Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Anchorage to Structure:
 - 1. Concrete:
 - a. Install hanger inserts and wire loops required for support of hanger and bracing wire in concrete forms before concrete is placed. Install hanger wires with looped ends through steel deck if steel deck does not have attachment device.
 - b. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger and bracing wire. Install in sides of concrete beams or joists at mid height.
 - 2. Steel:
 - a. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels for attachment of hanger wires.
 - (1) Size and space carrying channels to insure that the maximum deflection specified will not be exceeded.
 - (2) Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.
 - b. Attach carrying channels to the bottom flange of steel beams spaced not 1200 mm (4 feet) on center before fire proofing is installed. Weld or use steel clips to attach to beam to develop full strength of carrying channel.
- C. Direct Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - Support main runners by hanger wires attached directly to the structure overhead.
 - Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- D. Seismic Ceiling Bracing System:
 - 1. Construct system is accordance with ASTM E580.

2. Connect bracing wires to structure above as specified for anchorage to structure and to main runner or carrying.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Install lay-in acoustic panels in exposed grid with not less than 6 mm (1/4 inch) bearing at edges on supports.
 - 1. Install tile to lay level and in full contact with exposed grid.
 - 2. Replace cracked, broken, stained, dirty, or tile not cut for minimum bearing.
- C. Markers:
 - 1. Install markers of color code specified to identify the various concealed piping, mechanical, and plumbing systems.
 - 2. Attach colored markers to exposed grid on opposite sides of the units providing access.
 - 3. Attach marker on exposed ceiling surface of upward access acoustical unit.

3.5 CLEAN-UP AND COMPLETION

- A. Replace damaged, discolored, dirty, cracked and broken acoustical units.
- B. Leave finished work free from defects.

- - - E N D - - -

Page intentionally left blank

SECTION 09 65 19 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the installation of vinyl or rubber base and resilient stair treads with sheet rubber flooring on landings.

1.2 RELATED WORK

- A. Color and texture: Section 09 06 00, SCHEDULE FOR FINISHESS.
- B. Integral base with sheet flooring: Section 09 65 16, RESILIENT SHEET FLOORING.
- C. Integral base with sheet flooring: Section 09 65 16, RESILIENT TILE FLOORING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Base and stair material manufacturer's recommendations for adhesives.
 - 3. Application and installation instructions.
- C. Samples:
 - 1. Base: 150 mm (6 inches) long, each type and color.
 - 2. Resilient Stair Treads: 150 mm (6 inches) long.
 - 3. Sheet Rubber Flooring: 300 mm (12 inches) square.
 - 4. Adhesive: Literature indicating each type.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weather tight and dry storage facility.
- B. Protect material from damage by handling and construction operations before, during, and after installation.

1.6 APPLICABLE PUBLICATIONS

A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi:

- B. American Society for Testing and Materials (ASTM): F1344-10.....Rubber Floor Tile F1859-10....Rubber Sheet Floor Covering without Backing F1860-10....Rubber Sheet Floor Covering with Backing F1861-08....Resilient Wall Base
- C. Federal Specifications (Fed. Spec.): RR-T-650E.....Treads, Metallic and Non-Metallic, Nonskid

PART 2 - PRODUCTS

2.1 GENERAL

Use only products by the same manufacturer and from the same production run.

2.2 RESILIENT BASE

- A. ASTM F1861, 3 mm (1/8 inch) thick, 100 mm (4 inches) high, Thermoplastics, Group 2-layered. Style B-cove.
- B. Where carpet occurs, use Style A-straight.
- C. Use only one type of base throughout.

2.3 PRIMER (FOR CONCRETE FLOORS)

As recommended by the adhesive and tile manufacturer.

2.4 LEVELING COMPOUND (FOR CONCRETE FLOORS)

Provide products with latex or polyvinyl acetate resins in the mix.

2.5 ADHESIVES

- A. Use products recommended by the material manufacturer for the conditions of use.
- B. Use low-VOC adhesive during installation. Water based adhesive with low VOC is preferred over solvent based adhesive.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials above 21° C (70 $^{\circ}F)\,,$ for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs, between 21° C and 27° C $(70^{\circ}F$ and $80^{\circ}F)$ for at least 48 hours, before, during, and after installation.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.

3.2 INSTALLATION REQUIREMENTS

A. The respective manufacturer's instructions for application and installation will be considered for use when approved by the Resident Engineer.

- B. Submit proposed installation deviation from this specification to the Resident Engineer indicating the differences in the method of installation.
- C. The Resident Engineer reserves the right to have test portions of material installation removed to check for non-uniform adhesion and spotty adhesive coverage.

3.3 PREPARATION

- A. Examine surfaces on which material is to be installed.
- B. Fill cracks, pits, and dents with leveling compound.
- C. Level to 3 mm (1/8 inch) maximum variations.
- D. Do not use adhesive for leveling or filling.
- E. Grind, sand, or cut away protrusions; grind high spots.
- F. Clean substrate area of oil, grease, dust, paint, and deleterious substances.
- G. Substrate area dry and cured. Perform manufacturer's recommended bond and moisture test.
- H. Preparation of existing installation:
 - 1. Remove existing base and stair treads including adhesive.
 - 2. Do not use solvents to remove adhesives.
 - 3. Prepare substrate as specified.

3.4 BASE INSTALLATION

- A. Location:
 - Unless otherwise specified or shown, where base is scheduled, install base over toe space of base of casework, lockers, laboratory, pharmacy furniture island cabinets and where other equipment occurs.
 - 2. Extend base scheduled for room into adjacent closet, alcoves, and around columns.
- B. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - 2. Set base with joints aligned and butted to touch for entire height.
 - Before starting installation, layout base material to provide the minimum number of joints with no strip less than 600 mm (24 inches) length.
 - a. Short pieces to save material will not be permitted.
 - b. Locate joints as remote from corners as the material lengths or the wall configuration will permit.
- C. Form corners and end stops as follows:
 - 1. Score back of outside corner.
 - 2. Score face of inside corner and notch cove.
- D. Roll base for complete adhesion.

3.5 CLEANING AND PROTECTION

- A. Clean all exposed surfaces of base and adjoining areas of adhesive spatter before it sets.
- B. Keep traffic off resilient material for at least 72 hours after installation.
- C. Clean and polish materials in the following order:
 - After two weeks, scrub resilient base, sheet rubber and treads materials with a minimum amount of water and a mild detergent. Leave surfaces clean and free of detergent residue. Polish resilient base to a gloss finish.
 - 2. Do not polish tread and sheet rubber materials.
- D. When construction traffic is anticipated, cover tread materials with reinforced kraft paper and plywood or hardboard properly secured and maintained until removal is directed by the Resident Engineer.
- E. Where protective materials are removed and immediately prior to acceptance, replace damaged materials and re-clean resilient materials. Damaged materials are defined as having cuts, gouges, scrapes or tears and not fully adhered.

- - - E N D - - -

SECTION 09 65 16 RESILIENT SHEET FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the installation of sheet flooring with no backing and integral cove base.
- B. Installation of sheet flooring including following:
 - 1. Heat welded seams.
 - 2. Integral cove base: Installed at intersection of floor and vertical surfaces.

1.2 RELATED WORK

- A. Concrete floors: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Color, pattern and texture: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Resilient base over base of lockers, equipment and casework: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 QUALITY CONTROL-QUALIFICATIONS:

- A. The Contracting Officer shall approve products or service of proposed manufacturer, suppliers, and installers, and the Contractor shall submit certification that:
 - 1. Heat welded seaming is manufacturer's prescribed method of installation.
 - Installer is approved by manufacturer of materials and has technical qualifications, experience, trained personnel, and facilities to install specified items.
 - 3. Manufacturer's product submitted has been in satisfactory operation, on three installations similar and equivalent in size to this project for three years. Submit list of installations.
- B. The sheet vinyl floor coverings shall meet fire performance characteristics as determined by testing products, per ASTM test method, indicated below by Underwriters Laboratories, Inc. (UL) or another recognized testing and inspecting agency acceptable to authorities having jurisdiction.
 - Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E648.
 - 2. Smoke Density: Less than 450 per ASTM E662.
- C. The floor covering manufacturer shall certify that products supplied for installation comply with local regulations controlling use of volatile organic compounds (VOC's).

1.4 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, submit following:
- B. Manufacturer's Literature and Data:
 - 1. Description of resilient material and accessories to be provided.
 - Resilient material manufacturer's recommendations for adhesives, weld rods, sealants, and underlayment.
 - 3. Application and installation instructions.
- C. Samples:
 - Sheet material, 38 mm by 300 mm (1-1/2 inch by 12 inch), of each color and pattern with a welded seam using proposed welding rod 300 mm (12 inches) square for each type, pattern and color.
 - 2. Cap strip and fillet strip, 300 mm (12 inches) for integral base.
 - 3. Shop Drawings and Certificates: Layout of joints showing patterns where joints are expressed, and type and location of obscure type joints. Indicate orientation of directional patterns.
 - 4. Certificates: Quality Control Certificate Submittals and lists specified in paragraph, QUALIFICATIONS.
 - 5. Edge strips: 150 mm (6 inches) long each type.
 - 6. Adhesive, underlayment and primer: Pint container, each type.

1.5 PROJECT CONDITIONS

- A. Maintain temperature of floor materials and room, where work occurs, above 18 ° C (65 °F) and below 38 °C (100 °F) for 48 hours before, during and for 48 hours after installation. After above period, room temperature shall not fall below 13 °C (55 °F).
- B. Construction in or near areas to receive flooring work shall be complete, dry and cured. Do not install resilient flooring over slabs until they have been cured and are sufficiently dry to achieve a bond with adhesive. Follow flooring manufacturer's recommendations for bond and moisture testing.
- C. Building shall be permanently enclosed. Schedule construction so that floor receives no construction traffic when completed.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Deliver materials to site in original sealed packages or containers; labeled for identification with manufacturer's name and brand.
- B. Deliver sheet flooring full width roll, completely enclosed in factory wrap, clearly marked with the manufacturer's number, type and color, production run number and manufacture date.
- C. Store materials in weathertight and dry storage facility. Protect from damage due to handling, weather, and construction operations before,

during and after installation. Store sheet flooring on end with ambient temperatures maintained as recommended by manufacturer.

- D. Store sheet flooring on end.
- E. Move sheet vinyl floor coverings and installation accessories into spaces where they will be installed at least 48 hours in advance of installation.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society For Testing Materials (ASTM):

E648-09.....Critical Radiant Flux of Floor-Covering Systems Using a Radiant Energy Source.

E662-09.....Specific Optical Density of Smoke Generated by Solid Materials.

F710-08.....Practice for Preparing Concrete Floors and Other Monolithic Floors to Receive Resilient Flooring.

F1303-04..... Sheet Vinyl Floor Covering with Backing.

- F1869-04......Moisture Vapor Emission Rate of Concrete Subfloor using Anhydrous Calcium Chloride
- F1913-04.....Sheet Vinyl Flooring without Backing
- F2170-09.....Determining Relative Humidity in Concrete Floor Slabs using In-situ Probes

C. Resilient Floor Covering Institute (RFCI):

Recommended Work Practices for Removal of Resilient Floor Coverings.

1.8 SCHEDULING

Interior finish work such as plastering, drywall finishing, concrete, terrazzo, ceiling work, and painting work shall be complete and dry before installation. Mechanical, electrical, and other work above ceiling line shall be completed. Heating, ventilating, and air conditioning systems shall be installed and operating in order to maintain temperature and humidity requirements.

1.9 WARRANTY:

Submit written warranty, in accordance with FAR clause 52.246-21, Warranty of Construction requirements except that warranty period shall be extended to include two (2) years.

PART 2 - PRODUCTS

2.1 SHEET VINYL FLOOR COVERINGS

A. Sheet Vinyl Floor Coverings: Smooth face, minimum thickness nominal

2 mm (0.08 inch). Sheet flooring shall conform to ASTM F1913 and material requirements specified in ASTM F1303, Type II, Grade 1, backing classification not applicable. Foam backed sheet flooring is not acceptable.

- B. Size: Provide maximum size sheet vinyl material produced by manufacturer to provide minimum number of joints. Minimum size width acceptable -1200 mm (48 inches).
- C. Each color and pattern of sheet flooring shall be of same production run.

2.2 SHEET LINOLEUM FLOORING

Sheet Homogenious Linoleum Coverings: Smooth face, minimum thickness nominal

2 mm (0.08 inch). Sheet flooring shall conform to ASTM F2304 and material requirements specified in ASTM F2304, with manufacturers standard jute backing. European standard EN 548 and EN 970

- B. Size: Provide maximum size sheet vinyl material produced by manufacturer to provide minimum number of joints. Sheet width 2 Meters (79 inches).
- C. Each color and pattern of sheet flooring shall be of same production run.

2.2 WELDING ROD:

Product of floor covering manufacturer in color shall match field color of sheet vinyl covering.

2.3 APPLICATION MATERIALS AND ACCESSORIES

- A. Floor and Base Adhesive: Type recommended by sheet flooring material manufacturer for conditions of use.
- B. Mastic Underlayment (for concrete floors): Provide products with latex or polyvinyl acetate resins in mix. Condition to be corrected shall determine type of underlayment selected for use.
- C. Base Accessories:
 - 1. Fillet Strip: 19 mm (3/4 inch) radius fillet strip compatible with resilient sheet material.
 - Cap Strip: Extruded flanged zero edge vinyl reducer strip approximately 25 mm (one inch) exposed height with 13 mm (1/2 inch) flange.

2.4 SHEET FLOORING

- A. ASTM F1303, Type II, Grade 1, except for backing requirements. Foam backed sheet flooring is not acceptable.
- B. Minimum nominal thickness 2 mm (0.08 inch); 1800 mm (6 ft) minimum width.

- C. Critical Radiant Flux: 0.45 watts per sq.cm or more, Class I, per ASTM E648.
- D. Smoke density: less than 450 per ASTM E662.
- E. Color and pattern of sheet flooring of the same production run.

2.5 ADHESIVES

Water resistant type recommended by the sheet flooring manufacturer for the conditions of use. VOC not to exceed 50 g/L

2.6 BASE CAP STRIP AND COVE STRIP

- A. Extruded vinyl compatible with the sheet flooring.
- B. Cap strip "J" shape with feathered edge flange approximately 25 mm (one inch) wide; top designed to receive sheet flooring with 13 mm (1/2 inch) flange lapping top of flooring
- C. Cove strip 70 mm (2-3/4 inch) radius.

2.7 LEVELING COMPOUND (FOR CONCRETE FLOORS)

Provide cementitious products with latex or polyvinyl acetate resins in the mix.

2.8 PRIMER (FOR CONCRETE SUBFLOORS)

As recommended by the adhesive or sheet flooring manufacturer.

2.9 EDGE STRIPS

- A. Extruded aluminum, mill finish, mechanically cleaned.
- B. 28 mm (1-1/8 inch) wide, 6 mm (1/4 inch) thick, bevel one edge to 3 mm (1/8 inch) thick.
- C. Drill and counter sink edge strips for flat head screws. Space holes near ends and approximately 225 mm (9 inches) on center in between.

2.10 SEALANT

- A. As specified in Section 07 92 00, JOINT SEALANTS.
- B. Compatible with sheet flooring.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of sheet flooring above 36 $^{\circ}\text{C}$ (65 $^{\circ}\text{F}), for 48 hours before installation.$
- B. Maintain temperature of rooms where sheet flooring work occurs above 36 °C (65 °F), for 48 hours, before installation and during installation.
- C. After installation, maintain temperature at or above 36 $^\circ C$ (65 $^\circ F.)$
- D. Building is permanently enclosed.
- E. Wet construction in or near areas to receive sheet flooring is complete, dry and cured.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

Project No. 642-11-150 Final Documents: 8/17/2012

3.2 SUBFLOOR PREPARATION

- A. Concrete Subfloors: Verify that concrete slabs comply with ASTM F710.
 - Installer shall examine surfaces on which resilient sheet flooring is to be installed, and shall advise Contractor, in writing, of areas which are unacceptable for installation of flooring material. Installer shall advise Contractor which methods are to be used to correct conditions that will impair proper installation. Installation shall not proceed until unsatisfactory conditions have been corrected.
 - 2. Slab substrates dry, free of curing compounds, sealers, hardeners, and other materials which would interfere with bonding of adhesive. Determine adhesion and dryness characteristics by performing bond and moisture tests recommended by Resilient Floor Covering Institute recommendations in manual RFCI-MRP.
- B. Broom or vacuum clean substrates to be covered by sheet vinyl floor coverings immediately before installation. Following cleaning, examine substrates to determine if there is visually any evidence of moisture, alkaline salts, carbonation, or dust.
- C. Primer: If recommended by flooring manufacturer, prior to application of adhesive, apply concrete slab primer in accordance with manufacturer's directions.
- D. Correct conditions which will impair proper installation, including trowel marks, pits, dents, protrusions, cracks or joints.
- E. Fill cracks, joints, depressions, and other irregularities in concrete with leveling compound.
 - 1. Do not use adhesive for filling or leveling purposes.
 - 2. Do not use leveling compound to correct imperfections which can be corrected by spot grinding.
 - 3. Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joint lines.
- F. Clean floor of oil, paint, dust and deleterious substances. Leave floor dry and cured free of residue from existing curing or cleaning agents.
- G. Moisture Testing: Perform moisture and pH test as recommended by the flooring and adhesive manufacturers. Perform test locations starting on the deepest part of the concrete structure. Proceed with installation only after concrete substrates meet or exceed the manufacturer's requirements. In the absence of specific guidance from the flooring or adhesive manufacturer the following requirements are to be met:
 - Perform moisture vapor emission tests in accordance with ASTM F1869.
 Proceed with installation only after substrates have a maximum
moisture-vapor-emission rate of 1.36 kg of water/92.9 sq. m (31b of water/1000 sq. ft.) in 24 hours.

- Perform concrete internal relative humidity testing using situ probes in accordance with ASTM F2170. Proceed with installation only after concrete reaches maximum 75 percent relative humidity level measurement.
- H. Preparation shall include the removal of existing resilient floor and existing adhesive. Do not use solvents to remove adhesives. Coordinate with Asbestos Abatement Section if asbestos abatement procedures will be involved.
- I. Remove existing resilient flooring and adhesive completely in accordance with Resilient Floor Covering Institute recommendations in manual RFCI-WP. Solvents shall not be used.

3.3 INSTALLATION OF FLOORING

- A. Install work in strict compliance with manufacturer's instructions and approved layout drawings.
- B. Maintain uniformity of sheet vinyl floor covering direction and avoid cross seams.
- C. Arrange for a minimum number of seams and place them in inconspicuous and low traffic areas, but in no case less than 150 mm (6 inches) away from parallel joints in flooring substrates.
- D. Match edges of resilient floor coverings for color shading and pattern at seams.
- E. Where resilient sheet flooring abuts other flooring material floors shall finish level.
- F. Extend sheet vinyl floor coverings into toe spaces, door reveals, closets, and similar openings.
- G. Inform the Resident Engineer of conflicts between this section and the manufacturer's instructions or recommendations for auxiliary materials, or installation methods, before proceeding.
- H. Install sheet in full coverage adhesives.
 - 1. Air pockets or loose edges will not be accepted.
 - Trim sheet materials to touch in the length of intersection at pipes and vertical projections; seal joints at pipe with waterproof cement or sealant.
- I. Keep joints to a minimum; avoid small filler pieces or strips.
- J. Follow manufacturer's recommendations for seams at butt joints. Do not leave any open joints that would be readily visible from a standing position.

- K. Follow manufacturer's recommendations regarding pattern match, if applicable.
- L. Installation of Edge Strips:
 - Locate edge strips under center lines of doors unless otherwise indicated.
 - 2. Set aluminum strips in adhesive, anchor with lead anchors and stainless steel Phillips screws.
- M. Integral Cove Base Installation:
 - 1. Set preformed fillet strip to receive base.
 - 2. Install the base with adhesive, terminate expose edge with the cap strip.
 - 3. Form internal and external corners to the geometric shape generated by the cove at either straight or radius corners.
 - 4. Solvent weld joints as specified for the flooring. Seal cap strip to wall with an adhesive type sealant.
 - 5. Unless otherwise specified or shown where sheet flooring is scheduled, provide integral base at intersection of floor and vertical surfaces. Provide sheet flooring and base scheduled for room on floors and walls under and behind areas where casework, laboratory and pharmacy furniture and other equipment occurs, except where mounted in wall recesses.

3.4 INSTALLATION OF INTEGRAL COVED BASE

- A. Set preformed cove to receive base. Install base material with adhesive and terminate exposed edge with cap strip. Integral base shall be 100 mm (4 inches) high.
- B. Internal and external corners shall be formed to geometric shape generated by cove at either square or radius corners.

3.5 WELDING

- A. Heat weld all joints of flooring and base using equipment and procedures recommended by flooring manufacturer.
- B. Welding shall consist of routing joint, inserting a welding rod into routed space, and terminally fusing into a homogeneous joint.
- C. Upon completion of welding, surface across joint shall finish flush, free from voids, and recessed or raised areas.
- D. Fusion of Material: Joint shall be fused a minimum of 65 percent through thickness of material, and after welding shall meet specified characteristics for flooring.

3.6 CLEANING

A. Clean small adhesive marks during application of sheet flooring and base before adhesive sets, excessive adhesive smearing will not be accepted.

- B. Remove visible adhesive and other surface blemishes using methods and cleaner recommended by floor covering manufacturers.
- C. Clean and polish materials per flooring manufacturer's written recommendations.
- D. Vacuum floor thoroughly.
- E. Do not wash floor until after period recommended by floor covering manufacturer and then prepare in accordance with manufacturer's recommendations.
- F. Upon completion, Resident Engineer shall inspect floor and base to ascertain that work was done in accordance with manufacturer's printed instructions.
- G. Perform initial maintenance according to flooring manufacturer's written recommendations.

3.7 PROTECTION:

- A. Protect installed flooring as recommended by flooring manufacturer against damage from rolling loads, other trades, or placement of fixtures and furnishings.
- B. Keep traffic off sheet flooring for 24 hours after installation.
- C. Where construction traffic is anticipated, cover sheet flooring with reinforced kraft paper properly secured and maintained until removal is authorized by the Resident Engineer.
- D. Where protective materials are removed and immediately prior to acceptance, repair any damage, re-clean sheet flooring, lightly re-apply polish and buff floor.

- - - E N D - - -

Page intentionally left blank

SECTION 09 65 19 RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the installation of solid vinyl tile flooring,

vinyl composition tile flooring, rubber tile flooring, and accessories.

1.2 RELATED WORK

- A. Color and pattern and location in room finish schedule: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient Base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Resilient material manufacturers recommendations for adhesives, underlayment, primers and polish.
 - 3. Application and installation instructions.
- C. Samples:
 - 1. Tile: 300 mm by 300 mm (12 inches by 12 inches) for each type, pattern and color.
 - 2. Edge Strips: 150 mm (6 inches) long, each type.
 - 3. Feature Strips: 150 mm (6 inches) long.
- D. Shop Drawings:
 - 1. Layout of patterns shown on the drawings and in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Edge strip locations showing types and detail cross sections.
- E. Test Reports:
 - Abrasion resistance: Depth of wear for each tile type and color and volume loss of tile, certified by independent laboratory.
 - 2. Tested per ASTM F510.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

A. Store materials in weathertight and dry storage facility.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

B. Protect from damage from handling, water, and temperature.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): D4078-02 (2008).....Water Emulsion Floor Finish E648-10....Critical Radiant Flux of Floor Covering Systems Using a Radiant Energy Source E662-09....Specific Optical Density of Smoke Generated by Solid Materials E1155-96 (R2008).....Determining Floor Flatness and Floor Levelness Numbers F510-93 (R 2008).....Resistance to Abrasion of Resilient Floor Coverings Using an Abrader with a Grit Feed Method
 - F710-08.....Preparing Concrete Floors to Receive Resilient

Flooring

F1066-04 (R2010).....Vinyl Composition Floor Tile

F1344-10.....Rubber Floor Tile

F1700-04 (R2010).....Solid Vinyl Floor Tile

- C. Resilient Floor Covering Institute (RFCI):
- D. Federal Specifications (Fed. Spec.):
 SS-T-312.....Tile Floor: Asphalt, Rubber, Vinyl and Vinyl
 Composition

PART 2 - PRODUCTS

2.1 GENERAL

- A. Furnish product type, materials of the same production run and meeting following criteria.
- B. Use adhesives, underlayment, primers and polish recommended by the floor resilient material manufacturer.
- C. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E 648.
- D. Smoke density: Less than 450 per ASTM E662.

2.2 VINYL COMPOSITION TILE

- A. ASTM F1066, Composition 1, Class 2 (through pattern), 300 mm (12 inches) square, 3 mm (1/8 inch) thick.
- B. Color and pattern uniformly distributed throughout thickness.

2.5 ADHESIVES

- A. Comply with applicable regulations regarding toxic and hazardous materials Green Seal (GS-36) for commercial adhesive.
- B. Use low-VOC adhesive during installation. Water based is preferred over solvent based adhesives.

2.6 PRIMER (FOR CONCRETE SUBFLOORS)

As recommended by the adhesive and tile manufacturer.

2.7 LEVELING COMPOUND (FOR CONCRETE FLOORS)

- A. Provide cementitious products with latex or polyvinyl acetate resins in the mix.
- B. Determine the type of underlayment selected for use by the condition to be corrected.

2.8 POLISH AND CLEANERS

- A. Cleaners RFCI CL-1.
- B. Polish: ASTM D4078.

2.9 EDGE STRIPS

- A. 28 mm (1-1/8 inch) wide unless shown otherwise.
- B. Bevel from maximum thickness to minimum thickness for flush joint unless shown otherwise.
- D. Resilient Edge Strip or Reducer Strip: Fed. Specs. SS-T-312, Solid vinyl.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials a minimum of 22 °C (70 °F,) for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs between 21 °C and 27 °C (70 °F and 80 °F), for at least 48 hours, before, during and after installation.
- C. Do not install flooring until building is permanently enclosed and wet construction in or near areas to receive tile materials is complete, dry and cured.

3.2 SUBFLOOR PREPARATION

- A. Verify that concrete slabs comply with ASTM F710. At existing slabs, determine levelness by F-number method in accordance with ASTM E1155. Overall value shall not exceed as follows: FF30/FL20
- B. Correct conditions which will impair proper installation.

- C. Fill cracks, joints and other irregularities in concrete with leveling compound:
 - 1. Do not use adhesive for filling or leveling purposes.
 - 2. Do not use leveling compound to correct imperfections which can be corrected by spot grinding.
 - Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joints.
- D. Clean floor of oil, paint, dust, and deleterious substances: Leave floor dry and cured free of residue from existing curing or cleaning agents.
- E. Concrete Subfloor Testing: Determine Adhesion and dryness of the floor by bond and moisture tests as recommended by RFCI manual MRP.
- F. Perform additional subfloor preparation to obtain satisfactory adherence of flooring if subfloor test patches allows easy removal of tile.
- G. Prime the concrete subfloor if the primer will seal slab conditions that would inhibit bonding, or if priming is recommended by the tile or adhesive manufacturers.
- H. Preparation of existing installation shall include the removal of existing resilient floor and existing adhesive. Do not use solvents to remove adhesives.

3.3 INSTALLATION

- A. Install in accordance with manufacturer's instructions for application and installation unless specified otherwise.
- B. Mix tile from at least two containers. An apparent line either of shades or pattern variance will not be accepted.
- C. Tile Layout:
 - 1. If layout is not shown on drawings, lay tile symmetrically about center of room or space with joints aligned.
 - 2. No tile shall be less than 150 mm (6 inches) and of equal width at walls.
 - 3. Place tile pattern in the same direction; do not alternate tiles.
- D. Trim tiles to touch for the length of intersections at pipes and vertical projections, seal joints at pipes with waterproof cement.
- E. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - a. Conform to RFC1-TM-6 for joint tightness and for corner intersection unless layout pattern shows random corner intersection.
 - b. More than 5 percent of the joints not touching will not be accepted.

- 2. Roll tile floor with a minimum 45 kg (100 pound) roller. No exceptions.
- 3. The Resident Engineer may have test tiles removed to check for nonuniform adhesion, spotty adhesive coverage, and ease of removal. Install new tile for broken removed tile.
- F. Installation of Edge Strips:
 - 1. Locate edge strips under center line of doors unless otherwise shown.
 - 2. Set resilient edge strips in adhesive. Anchor metal edge strips with anchors and screws specified.
 - 3. Where tile edge is exposed, butt edge strip to touch along tile edge.
 - 4. Where thin set ceramic tile abuts resilient tile, set edge strip against floor file and against the ceramic tile edge.

3.4 CLEANING AND PROTECTION

- A. Clean adhesive marks on exposed surfaces during the application of resilient materials before the adhesive sets. Exposed adhesive is not acceptable.
- B. Keep traffic off resilient material for a minimum 72 hours after installation.
- C. Clean and polish materials in the following order:
 - 1. For the first two weeks sweep and damp mopped only.
 - After two weeks, scrub resilient materials with a minimum amount of water and a mild detergent. Leave surface clean and free of detergent residue.
 - 3. Apply polish to the floors in accordance with the polish manufacturer's instructions.
- D. When construction traffic occurs over tile, cover resilient materials with reinforced kraft paper properly secured and maintained until removal is directed by Resident Engineer. At entrances and where wheeled vehicles or carts are used, cover tile with plywood, hardboard, or particle board over paper, secured and maintained until removal is directed by Resident Engineer.
- E. When protective materials are removed and immediately prior to acceptance, replace any damage tile, re-clean resilient materials, lightly re-apply polish and buff floors.

3.6 LOCATION

- A. Unless otherwise specified or shown, install tile flooring, on floor under areas where casework, laboratory and pharmacy furniture and other equipment occurs, except where mounted in wall recesses.
- B. Extend tile flooring for room into adjacent closets and alcoves.

- - - E N D - - -

Page intentionally left blank

SECTION 09 67 23.30

RESIN (EPOXY RESIN COMPOSITION) MORTAR FLOORING (RES-3)

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies a seamless resinous (epoxy resin composition) and aliphatic poly urethane sealer, flooring systems with integral cove base.

1.2 RELATED WORK

- A. Concrete and Moisture Vapor Barrier: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Color and location of each type of resinous (epoxy resin composition) flooring: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Floor Drains: Division 22, PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product to be provided.
 - 2. Application and installation instructions.
 - 3. Maintenance Instructions: Submit manufacturer's written instructions for recommended maintenance practices.
- C. Qualification Data: For Installer.
- D. Sustainable Submittal:
 - Product data for products having recycled content, submit documentation indicating percentages by weight of postconsumer and pre consumer recycled content.
 - a. Include statements indicating costs for each product having recycled content, and low emitting materials.
 - Product data for Environmental Quality Credit EQ 4.2 low emitting materials, include printed statement of VOC content indicating compliance with environmental requirements.
 - 3. Product data for Material Resource Credit MR 4.1, 12%-35% postconsumer recycled glass content.
- E. Samples:
 - 1. Each color and texture specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - Samples for verification: For each (color and texture) resinous flooring system required, 6 inches (152 mm) square, applied to a rigid backing by installer for this project.

- 3. Sample showing construction from substrate to finish surface in thickness specified and color and texture of finished surfaces. Finished flooring must match the approved samples in color and texture.
- F. Shop Drawings: Include plans, sections, component details, and attachment to other trades. Indicate layout of the following:
 - 1. Patterns.
 - 2. Edge configuration.
- G. Certifications and Approvals:
 - Manufacturer's certification of material and substrate compliance with specification.
 - 2. Manufacturer's approval of installer
 - 3. Contractor's certificate of compliance with Quality Assurance requirements.
- H. Warranty: As specified in this section.

1.4 QUALITY ASSURANCE

- A. Manufacture Certificate: Manufacture shall certify that a particular resinous flooring system has been in use for a minimum of (5) five years.
- B. Installer Qualifications: Engage an experienced installer (applicator) who is experienced in applying resinous flooring systems similar in material, design, and extent to those indicated for this project for a minimum period of (5) five years, whose work has resulted in applications with a record of successful in-service performance, and who is acceptable to resinous flooring manufacturer.
 - Engage an installer who is certified in writing by resinous flooring manufacturer as qualified to apply resinous flooring systems indicated.
 - 2. Contractor shall have completed at least (5) five projects of similar size and complexity. Include list of at least (5) five projects. List must include owner (purchaser); address of installation, contact information at installation project site; and date of installation.
 - Installer's Personnel: Employ persons trained for application of specified product.
- C. Source Limitations:
 - Obtain primary resinous flooring materials including primers, resins, hardening agents, grouting coats and finish or sealing coats from a single manufacturer.

- Provide secondary materials, including patching and fill material, joint sealant, and repair material of type and from source recommended by manufacturer of primary materials.
- D. Pre-Installation Conference:
 - 1. Convene a meeting not less than thirty days prior to starting work.
 - 2. Attendance:
 - a. Contractor
 - b. VA Resident Engineer
 - c. Manufacturer and Installer's Representative
 - 3. Review the following:
 - a. Environmental requirements
 - 1) Air and surface temperature
 - 2) Relative humidity
 - 3) Ventilation
 - 4) Dust and contaminates
 - b. Protection of surfaces not scheduled to be coated
 - c. Inspect and discus condition of substrate and other preparatory work performed
 - d. Review and verify availability of material; installer's personnel, equipment needed
 - e. Design and edge conditions.
 - f. Performance of the coating with chemicals anticipated in the area receiving the resinous (epoxy resin composition) flooring system
 - g. Application and repair
 - h. Field quality control
 - i. Cleaning
 - j. Protection of coating systems
 - k. One-year inspection and maintenance
 - 1. Coordination with other work
- E. Manufacturer's Field Services: Manufacturer's representative shall provide technical assistance and guidance for surface preparation and application of resinous flooring systems.
- F. Contractor Job Site Log: Contractor shall document daily; the work accomplished environmental conditions and any other condition event significant to the long term performance of the resinous flooring systems installation. The Contractor shall maintain these records for one year after Substantial Completion.

1.5 MATERIAL PACKAGING DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Protect materials from damage and contamination in storage or delivery, including moisture, heat, cold, direct sunlight, etc.
- C. Maintain temperature of storage area between 60 and 80 degrees F (15 and 26 degrees C).
- D. Keep containers sealed until ready for use.
- E. Do not use materials beyond manufacturer's shelf life limits.
- F. Package materials in factory pre-weighed and in single, easy to manage batches sized for ease of handling and mixing proportions from entire package or packages. No On site weighing or volumetric measurements are allowed

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with resinous flooring manufacturer's written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting resinous flooring applications.
 - Maintain material and substrate temperature between 65 and 85 degrees
 F (18 and 30 degrees C) during resinous flooring application and for not less than 24 hours after application.
- B. Lighting: Provide permanent lighting or, if permanent lighting is not in place, simulate permanent lighting conditions during resinous flooring application.
- C. Close spaces to traffic during resinous flooring application and for not less than 24 hours after application, unless manufacturer recommends a longer period.
- D. Concrete substrate shall be properly cured for a minimum of 30 days. A vapor barrier must be present for concrete subfloors on or below grade. Otherwise, an osmotic pressure resistant grout must be installed prior to the resinous flooring.

1.7 WARRANTY

- A. Work subject to the terms of the Article "Warranty of Construction" FAR clause 52.246-21.
- B. Warranty: Manufacture shall furnish a single, written warranty covering the full assembly for both material and workmanship for a extended period of (3) full years from date of installation, or provide a joint and several warranty signed on a single document by manufacturer and applicator jointly and severally warranting the materials and

workmanship for a period of (3) full years from date of installation. A sample warranty letter must be included with bid package or bid may be disqualified.

1.8 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): B221-08.....Standard Specification for Aluminum and Aluminum-Alloy, Extruded Bars, Rods, Wire, Profiles and Tubes. C307-03 (2008).....Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings C413-01(2006).....Standard Test Method for Absorption of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings and Polymer Concretes C531-00(R2005).....Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings and Polymer Concretes C579-01(2006).....Standard Test Method for Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes C580-02(2008).....Standard Test Method for Flexural Strength and Modulus of Elasticity of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes C811-98(2008).....Standard Practice for Surface Preparation of Concrete for Application of Chemical-Resistant Resin Monolithic Surfacings D1308-02(2007).....Standard Test Method for Effect of Household Chemicals on Clear and Pigmented Organic Finishes D2240-05.....Standard Test Method for Rubber Property -

Durometer Hardness

D4060-07.....Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 D4226-09.....Standard Test Methods for Impact Resistance of Rigid Poly (Vinyl Chloride) (PVC) Building Products

D7234-05.....Standard Test Method for Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers

- F1869-09.....Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride
- F2170-09.....Standard Test Methods for Determining Relative Humidity in Concrete Floor Slabs Using Situ Probes
- C. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Finishes for Aluminum

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION FOR RESINOUS FLOORING

- A. System Descriptions:
 - Monolithic, multi-component epoxy chemistry, steel trowel applied resinous flooring mortar system, nominal 3/16"/5mm thick system comprised of a penetrating primer, multi component 100% solids epoxy mortar, grout coat sealer and clear VOC compliant, aliphatic polyurethane non-reflective finish.
 - 2. Decorative quartz broadcast systems will not be accepted. Steel trowel finish mortars only
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up.
- C. System Components: Verify specific requirements as systems vary by manufacturer. Verify mortar base product, build up layers of broadcast systems will not be accepted. Verify compatibility with substrate. Use manufacturer's standard components, compatible with each other and as follows:
 - Primer (Bond) Coat: Verify inclusion of primer in manufacturer's system.
 - a. Resin: Epoxy.
 - b. Formulation Description: 100% solids.
 - c. Application Method: Apply by Squeegee and finish roller.
 - 2. Mortar (Base) Coat: Verify mortar composition.
 - a. Resin: Epoxy.
 - b. Formulation Description: 100% solids, UV stable.

- c. Application Method: Screed and steel finish trowel.
 - Thickness of coat: Verify thickness as systems vary by manufacturer; approximately from 3/16 to 1/4 inch (4.76 to 6.35 mm).
- d. Aggregate: Pigmented color quartz silica, and a minimum or 12% recycled glass aggregates integral component to mortar.
- 3. Grout Coat: Verify inclusion of base coat in manufacturer's system.
 - a. Resin: Epoxy.
 - b. Formulation Description: 100 percent solids, UV stable.
 - c. Application Method: Flat squeegee and roller applied.
 - d. Number of coats: (2) two, wet on wet application.
- 4. Top (Seal) Coat: Verify inclusion of water based aliphatic polyurethane sealer coat as systems vary by manufacturer.
 - a. Resin: multi-component water based aliphatic polyurethane.
 - b. Formulation Description: High UV stability, stain and mar resistant. LEED compliant low V.O.C.
 - c. Application Method: Finish roller, dip into coating and back roll.1) Number of coats: (1) one
 - d. Aggregates: Optional if needed verify inclusion of slip-retardant aggregates in sealer coat.

D. System Characteristics:

- Color and Pattern: As selected by VA Resident Engineer from manufacturer's standard colors.
- Integral cove base: 1 inch (25.4 mm) radius epoxy mortar cove keyed into concrete substrate. Verify cove base installation with manufacturer's system.
- 3. Overall System Thickness: Verify thickness as systems vary by manufacturer; between 3/16 inch (4.76 mm) and 1/4 inch (6.35 mm)
- 4. Finish: Standardanti-slip resistant to meet or exceed 0.06 dry; 0.08 wet.
- E. Physical Properties:
 - 1. Physical Properties of flooring system when tested as follows:

Property	Test	Value
Compressive Strength	ASTM C579	7,500 psi after 7 days
Volatile Organic Compound Limits (V.O.C.)	EPA & LEED	Below 100 g/l
Tensile Strength	ASTM C307	1,750 psi
Flexural Modulus of Elasticity	ASTM C580	2,800 psi
Water Absorption	ASTM C413	0.1%
Slip Resistance Index	ASTM F1679	0.81 dry and 0.56 wet. Minimal levels
Impact Resistance	ASTM D4226	> 160 in. lbs
Abrasion Resistance	ASTM D4060 Cs-17 wheel, 1000 cycles	0.06 gm maximum weight loss
Thermal Coefficient of Linear Expansion	ASTM C531	1.3x 10 ⁻⁵ mm/ °C mm
Hardness Shore D	ASTM D2240	85 to 90
Bond Strength	ASTM D7234	>300 psi 100% concrete failure
Chemical Resistance of the following: Betadyne stain resistance	ASTM D1380	No Effect
Acetic acid Ammonium hydroxide	5 percent 10 percent	
Citric Acid Fatty acid Motor Oil, 20W Hydrochloric acid	50 percent	
Salt water	10 percent	
Sulfuric acid	10 percent	
Trisodium phosphate	10 percent 5 percent	
Urine Feces		
Hydrogen peroxide Distilled Water	28 percent	
Sodium Hypochloride	5.28 percent	

2.2 BASE CAP STRIP

- A. Aluminum, Extruded: ASTM B221, Alloy 6063-T6.
- B. Shape for 5 mm (3/16 inch) depth of base material, "J" configuration.
- C. Finish:
 - 1. Finish exposed surfaces in accordance with NAAMM Metal Finishes Manual.
 - 2. Aluminum: NAAMM Amp 500:
 - a. Clear anodic coating, AA-C22A41 chemically etched medium matte, with Architectural Class 1, 0.7 mils or thicker.

b. Colored anodic coating, AA-C22A42, chemically etched medium matte with Architectural Class 1, 0.7 mils or thicker.

2.3 SUPPLEMENTAL MATERIALS

- A. Textured Top Coat: Type recommended or produced by manufacturer of seamless resinous flooring system, slip resistancetype for desired final finish.
- B. Joint Sealant: Type recommended or produced by resinous flooring manufacturer for type of service or joint conditioned indicated.
- C. Waterproof Membrane: Type recommended or produced by manufacturer of resinous floor coatings for type of service and conditions .
- D. Provide a chemical resistant epoxy novolac top coat capable of resisting sustained temperatures up to $120^{\circ}C$ (250°F).
- E. Crack Isolation Membrane: Type recommended or produced by manufacturer of resinous flooring for conditions as
- F. Anti-Microbial Additive: Incorporate anti-microbial chemical additive to prevent growth of most bacteria, algae, fungi, mold, mildew, yeast, etc.
- G. Patching and Fill Material: Resinous product of or approved by resinous coating manufacturer for application indicated. Resinous based materials only. Cementitious or single component product are not expectable.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Examine the areas and conditions where monolithic resinous flooring system with integral base is to be installed with the VA Resident Engineer.
- B. Moisture Vapor Emission Testing: Perform moisture vapor transmission testing in accordance with ASTM F1869 to determine the MVER of the substrate prior to commencement of the work. See section 3.4, 3.

3.2 PROJECT CONDITIONS

- A. Maintain temperature of rooms (air and surface) where work occurs, between 70 and 90 degrees F (21 and 32 degrees C) for at least 48 hours, before, during, and 24 hours after installation. Maintain temperature at least 70 degrees F (21 degrees C) during cure period.
- B. Maintain relative humidity less than 75 percent.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.
- D. Maintain proper ventilation of the area during application and curing time period.
 - 1. Comply with infection control measures of the VA Medical Center.

3.3 INSTALLATION REQUIREMENTS

- A. The manufacturer's instructions for application and installation shall be reviewed with the VA Resident Engineer for the seamless resinous flooring system with integral cove base and trench liner.
- B. Substrate shall be approved by manufacture technical representative.

3.4 PREPARATION

- A. General: Prepare and clean substrates according to resinous flooring manufacturer's written instructions for substrate indicated. Provide clean, dry, and neutral Ph substrate for resinous flooring application.
- B. Concrete Substrates: Provide sound concrete surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants incompatible with resinous flooring.
 - 1. Prepare concrete substrates as follows:
 - a. Shot-blast surfaces with an apparatus that abrades the concrete surface, contains the dispensed shot within the apparatus, and re circulates the shot by vacuum pickup.
 - b. Comply with ASTM C 811 requirements, unless manufacturer's written instructions are more stringent.
 - 2. Repair damaged and deteriorated concrete according to resinous flooring manufacturer's written recommendations.
 - 3. Verify that concrete substrates are dry.
 - a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisturevapor-emission rate of [5 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours.
 - b. MVT threshold for monolithic resinous Non climatic flooring shall not exceed 5 lbs/1000 square feet (0.0001437 kPa) in a 24 hour period. MVT threshold for monolithic resinous climatic flooring shall not exceed 6 lbs/1000 square feet (0.0002155 kPa) over a 24 hour period.
 - c. When MVT emission exceeds this limit, apply manufacturer's recommended vapor control primer or other corrective measures as recommended by manufacturer prior to application of flooring or membrane systems.
 - d. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity of 75-80 percent.
 - e. Provide a written report showing test placement and results.
 - 4. Verify that concrete substrates have neutral Ph and that resinous flooring will adhere to them. Perform tests recommended by

manufacturer. Proceed with application only after substrates pass testing.

- C. Resinous Materials: Mix components and prepare materials according to resinous flooring manufacturer's written instructions.
- D. Use patching and fill material to fill holes and depressions in substrates according to manufacturer's written instructions.
- E. Treat control joints and other nonmoving substrate cracks to prevent cracks from reflecting through resinous flooring according to manufacturer's written recommendations. Allowances should be included for flooring manufacturer recommended joint fill material, and concrete crack treatment.
- F. Prepare wall to receive integral cove base and trench liner:
 - Verify wall material is acceptable for resinous flooring application, if not, install material (e.g. cement board) to receive base.
 - Fill voids in wall surface to receive base, install undercoats (e.g. water proofing membrane, and/or crack isolation membrane) as recommended by resinous flooring manufacturer.
 - 3. Install base and trench liner prior to flooring if required by resinous flooring manufacturer.
 - 4. Grind, cut or sand protrusions to receive base application.

3.5 APPLICATION

- A. General: Apply components of resinous flooring system according to manufacturer's written instructions to produce a uniform, monolithic wearing surface of thickness indicated.
 - Coordinate application of components to provide optimum adhesion of resinous flooring system to substrate, and optimum inter-coat adhesion.
 - Cure resinous flooring components according to manufacturer's written instructions. Prevent contamination during application and curing processes.
 - At substrate expansion and isolation joints, provide joint in resinous flooring to comply with resinous flooring manufacturer's written recommendations.
 - a. Apply joint sealant to comply with manufacturer's written recommendations.
- B. Apply Primer: over prepared substrate at manufacturer's recommended spreading rate.
- C. Apply cove base: Trowel to wall surfaces at a 1 inch radius, before applying flooring. Apply according to manufacturer's written instructions and details including those for taping, mixing, priming,

and troweling, sanding, and top coating of cove base. Round internal and external corners.

- D. Trowel mortar base: Mix mortar material according to manufacturer's recommended procedures. Uniformly spread mortar over substrate using a specially designed screed box adjusted to manufacturer's recommended height. Metal trowel hand or plastic blade power trowel, single mortar coat in thickness indicated for flooring system, Pre fill or grout to fill substrate voids. When cured, scrape or lightly stone mortar base to remove left unbounded material.
- E. Grout coat: Mix and roller apply the grout coats with strict adherence to manufacturer's installation procedures and coverage rates. (2) Two grout coatings to insure uniform coverage with wet on wet application.
- F. Topcoat: Mix and roller apply the topcoat(s) with strict adherence to manufacturer's installation procedures and coverage rates.

3.6 TOLERANCE

- A. From line of plane: Maximum 1/8 inch (3.18 mm) in total distance of flooring and base.
- B. From radius of cove: Maximum of 1/8 inch (3.18 mm) plus or 1/16-inch (1.59 mm) minus.

3.7 CURING, PROTECTION AND CLEANING

- A. Cure resinous flooring materials in compliance with manufacturer's directions, taking care to prevent contamination during stages of application and prior to completion of curing process.
- B. Close area of application for a minimum of 24 hours.
- C. Protect resinous flooring materials from damage and wear during construction operation.
 - 1. Cover flooring with kraft type paper.
 - Optional 6 mm (1/4 inch) thick hardboard, plywood, or particle board where area is in foot or vehicle traffic pattern, rolling or fixed scaffolding and overhead work occurs.
- D. Remove temporary covering and clean resinous flooring just prior to final inspection. Use cleaning materials and procedures recommended by resinous flooring manufacturer.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

- A. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 - OPENINGS, Division 10 - SPECIALTIES, Division 11 -EQUIPMENT, Division 12 - FURNISHINGS, Division 13 - SPECIAL CONSTRUCTION, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY sections.
- B. Contractor option: Prefinished flush doors with transparent finishes: Section 08 14 00, WOOD DOORS.
- C. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- C. Sample Panels:
 - 1. After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.

- 2. Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
- 3. Panel to show transparent finishes: Wood of same species and grain pattern as wood approved for use, 100 by 250 by 3 mm (4 inch by 10 inch face by 1/4 inch) thick minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 by 50 mm (2 by 2 inch) minimum or actual wood member to show complete finish.
- 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - c. Product type and color.
 - d. Name of project.
- 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- D. Sample of identity markers if used.
- E. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.5 MOCK-UP PANEL

- A. Before starting application of water paint mixtures, apply paint as specified to an area, not to exceed 9 m^2 (100 ft²), selected by Resident Engineer.
- B. Finish and texture approved by Resident Engineer will be used as a standard of quality for remainder of work.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2008.....Threshold Limit Values (TLV) for Chemical

Substances and Physical Agents and Biological Exposure Indices (BEIs)

ACGIH TLV-DOC-2008.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)

- C. American National Standards Institute (ANSI): A13.1-07.....Scheme for the Identification of Piping Systems
- D. American Society for Testing and Materials (ASTM): D260-86.....Boiled Linseed Oil
- E. Commercial Item Description (CID): A-A-1555......Water Paint, Powder (Cementitious, White and Colors) (WPC) (cancelled)

A-A-3120.....Paint, For Swimming Pools (RF) (cancelled)

F. Federal Specifications (Fed Spec):

TT-P-1411A.....Paint, Copolymer-Resin, Cementitious (For

- Waterproofing Concrete and Masonry Walls) (CEP)
- G. Master Painters Institute (MPI):
 - No. 1-07..... Aluminum Paint (AP)

No. 4-07.....Interior/ Exterior Latex Block Filler

No. 5-07.....Exterior Alkyd Wood Primer

- No. 7-07..... Exterior Oil Wood Primer
- No. 8-07.....Exterior Alkyd, Flat MPI Gloss Level 1 (EO)

No. 9-07.....Exterior Alkyd Enamel MPI Gloss Level 6 (EO)

- No. 10-07.....Exterior Latex, Flat (AE)
- No. 11-07..... Exterior Latex, Semi-Gloss (AE)
- No. 18-07.....Organic Zinc Rich Primer
- No. 22-07.....Aluminum Paint, High Heat (up to 590% 1100F) (HR)

No. 26-07.....Cementitious Galvanized Metal Primer

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

Project No. 642-11-150 Final Documents: 8/17/2012

No. 27-07.....Exterior / Interior Alkyd Floor Enamel, Gloss (FE) No. 31-07.....Polyurethane, Moisture Cured, Clear Gloss (PV) No. 36-07.....Knot Sealer No. 43-07.....Interior Satin Latex, MPI Gloss Level 4 No. 44-07.....Interior Low Sheen Latex, MPI Gloss Level 2 No. 45-07.....Interior Primer Sealer No. 46-07.....Interior Enamel Undercoat No. 47-07.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK) No. 48-07.....Interior Alkyd, Gloss, MPI Gloss Level 6 (AK) No. 49-07......Interior Alkyd, Flat, MPI Gloss Level 1 (AK) No. 50-07..... Interior Latex Primer Sealer No. 51-07.....Interior Alkyd, Eggshell, MPI Gloss Level 3 No. 52-07.....Interior Latex, MPI Gloss Level 3 (LE) No. 53-07.....Interior Latex, Flat, MPI Gloss Level 1 (LE) No. 54-07.....Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE) No. 59-07.....Interior/Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE) No. 60-07..... Interior/Exterior Latex Porch & Floor Paint, Low Gloss No. 66-07.....Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC) No. 67-07..... Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) No. 68-07......Interior/ Exterior Latex Porch & Floor Paint, Gloss No. 71-07......Polyurethane, Moisture Cured, Clear, Flat (PV) No. 74-07......Interior Alkyd Varnish, Semi-Gloss No. 77-07.....Epoxy Cold Cured, Gloss (EC) No. 79-07..... Marine Alkyd Metal Primer No. 90-07.....Interior Wood Stain, Semi-Transparent (WS) No. 91-07......Wood Filler Paste No. 94-07.....Exterior Alkyd, Semi-Gloss (EO) No. 95-07.....Fast Drying Metal Primer No. 98-07.....High Build Epoxy Coating No. 101-07..... Epoxy Anti-Corrosive Metal Primer No. 114-07.....Interior Latex, Gloss (LE) and (LG) No. 119-07.....Exterior Latex, High Gloss (acrylic) (AE) No. 135-07.....Non-Cementitious Galvanized Primer

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Cementitious Paint (CEP): TT-P-1411A [Paint, Copolymer-Resin, Cementitious (CEP)], Type 1 for exterior use, Type II for interior use.
- B. Plastic Tape:
 - Pigmented vinyl plastic film in colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES or specified.
 - 2. Pressure sensitive adhesive back.
 - 3. Widths as shown.
- C. Identity markers options:
 - 1. Pressure sensitive vinyl markers.
 - 2. Snap-on coil plastic markers.
- D. Interior/Exterior Latex Block Filler: MPI 4.
- E. Exterior Alkyd Wood Primer: MPI 5.
- F. Non-Cementitious Galvanized Primer: MPI 135.
- G. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138.
- H. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139.
- I. Interior High Performance Latex, MPI Gloss Level 4: MPI 140.
- J. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
 - c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
 - 3. Asbestos: Materials shall not contain asbestos.
 - Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
 - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
 - 6. Use high performance acrylic paints in place of alkyd paints, where possible.
 - VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - Do not apply coating when air or substrate conditions are:
 a. Less than 3 degrees C (5 degrees F) above dew point.

09 91 00 - 6

- b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
- 2. Maintain interior temperatures until paint dries hard.
- 3. Do no exterior painting when it is windy and dusty.
- 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
- 5. Apply only on clean, dry and frost free surfaces except as follows:
 - Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - 3. See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.
- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.

- 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Zinc-Coated (Galvanized) Metal, Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.
- F. Masonry, Concrete:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.
 - Replace mortar and fill open joints, holes, cracks and depressions with new mortar specified in Section 04 05 13 MASONRY MORTARING . Do not fill weep holes. Finish to match adjacent surfaces.
 - 5. Neutralize Concrete floors to be painted by washing with a solution of 1.4 Kg (3 pounds) of zinc sulfate crystals to 3.8 L (1 gallon) of water, allow to dry three days and brush thoroughly free of crystals.
 - 6. Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods.
- G. Gypsum Board:

Project No. 642-11-150 Final Documents: 8/17/2012

- Remove efflorescence, loose and chalking plaster or finishing materials.
- 2. Remove dust, dirt, and other deterrents to paint adhesion.
- 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Resident Engineer.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush, roller or spray, except as otherwise specified.
- G. Do not spray paint in existing occupied spaces unless approved by Resident Engineer, except in spaces sealed from existing occupied spaces.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.
- H. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Gypsum Board :
 - Surfaces scheduled to have MPI 53 (Interior High Performance Level 1(LF)) flat ceilings MPI 139(Interior High Performance Latex Gloss 3(LL))eggshell walls.
 - Primer: MPI 50(Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) MPI 46 (Interior Enamel Undercoat) in shower and bathrooms, Decontamination, Prep Pack and other spaces with steam equipment.

3.6 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
- C. Gypsum Board:
 - One coat of MPI 45 (Interior Primer Sealer) plus two coat of MPI 138 and 139 (Interior High Performance Latex, MPI Gloss level 1 (LL) (Ceilings- flat) and Gloss level 3 (LL)(walls eggshell).

3.7 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. In existing rooms and areas where alterations occur, clean existing stained and natural finished wood retouch abraded surfaces and then give entire surface one coat of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV)).
- G. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- H. Sand or dull glossy surfaces prior to painting.
- I. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.8 PAINT COLOR

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.9 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.

09 91 00 - 11

- B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified under paragraph H, colors.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- G. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED.
- H. Color:
 - 1. Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces.
 - 2. Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following:
 - a. White of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.
 - b. Gray: Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.
 - c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).
 - d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
 - e. Federal Safety Orange: .Entire lengths of electrical conduits containing feeders 600 volts or more.

- f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Exterior Locations:
 - a. Apply two coats of MPI 8 (Exterior Alkyd, Flat (EO)) to the following ferrous metal items: Vent and exhaust pipes with temperatures under 94 degrees C (200 degrees F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping and similar items.
 - b. Apply two coats of MPI 10 (Exterior Latex, Flat (AE)) to the following metal items: Galvanized and zinc-copper alloy metal.
 - c. Apply one coat of MPI 22 (High Heat Resistant Coating (HR)), 650 degrees C (1200 degrees F) to incinerator stacks, boiler stacks, and engine generator exhaust.
 - 2. Interior Locations:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) to following items:
 - 1) Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports.
 - 2) Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards.
 - 3) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.
 - e. Paint electrical conduits containing cables rated 600 volts or more using two coats of MPI 9 (Exterior Alkyd Enamel (EO)) in the Federal Safety Orange color in exposed and concealed spaces full length of conduit.
 - 3. Other exposed locations:
 - a. Cloth jackets of insulation of ducts and pipes in connection with plumbing, air conditioning, ventilating refrigeration and heating systems: One coat of MPI 50 (Interior Latex Primer Sealer) and one coat of MPI 10 (Exterior Latex, Flat (AE)).

3.10 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B.
 - 1. Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.

- 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
- 3. Painting of ferrous metal and galvanized metal.
- 5. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
 - 3. Concealed surfaces:
 - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
 - 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
 - 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
 - 6. Galvanized metal:
 - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Gas Storage Racks.
 - c. Except where specifically specified to be painted.
 - 7. Metal safety treads and nosings.
 - 8. Gaskets.
- 9. Concrete retaining walls, exposed foundations walls and interior walls in pipe basements.
- 11. Structural steel encased in concrete, masonry, or other enclosure.
- 12. Structural steel to receive sprayed-on fire proofing.
- 13. Ceilings, walls, columns in interstitial spaces.
- 14. Ceilings, walls, and columns in pipe basements.

3.11 IDENTITY PAINTING SCHEDULE

- A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.
 - 1. Legend may be identified using 2.1 G options or by stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
 - 6. Legend name in full or in abbreviated form as follows:

	COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	BBREVIATIONS
Blow-off		Yellow	Black	Blow-off
Boiler Feedwater		Yellow	Black	Blr Feed
A/C Condenser Water	Supply	Green	White	A/C Cond Wtr Sup
A/C Condenser Water	Return	Green	White	A/C Cond Wtr Ret
Chilled Water Suppl	У	Green	White	Ch. Wtr Sup
Chilled Water Retur	n	Green	White	Ch. Wtr Ret

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Denovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

Shop Compressed Air		Yellow	Black	Shop Air
Air-Instrument Controls		Green	White	Air-Inst Cont
Drain Line		Green	White	Drain
Emergency Shower		Green	White	Emg Shower
High Pressure Steam		Yellow	Black	H.P*
High Pressure Condensate	e Return	Yellow	Black	H.P. Ret*
Medium Pressure Steam		Yellow	Black	M. P. Stm*
Medium Pressure Condensate Return		Yellow	Black	M.P. Ret*
Low Pressure Steam		Yellow	Black	L.P. Stm*
Low Pressure Condensate	Return	Yellow	Black	L.P. Ret*
High Temperature Water Supply		Yellow	Black	H. Temp Wtr Sup
High Temperature Water Return		Yellow	Black	H. Temp Wtr Ret
Hot Water Heating Supply	-	Yellow	Black	H. W. Htg Sup
Hot Water Heating Return	L	Yellow	Black	H. W. Htg Ret
Gravity Condensate Retur	'n	Yellow	Black	Gravity Cond Ret
Pumped Condensate Return		Yellow	Black	Pumped Cond Ret
Vacuum Condensate Return		Yellow	Black	Vac Cond Ret
Fuel Oil - Grade		Green	White	Fuel Oil-Grade*
Boiler Water Sampling		Yellow	Black	Sample
Chemical Feed		Yellow	Black	Chem Feed
Continuous Blow-Down		Yellow	Black	Cont. B D
Pumped Condensate		Black		Pump Cond
Pump Recirculating		Yellow	Black	Pump-Recirc.
Vent Line		Yellow	Black	Vent
Alkali		Yellow	Black	Alk
Bleach		Yellow	Black	Bleach
Detergent		Yellow	Black	Det
Liquid Supply		Yellow	Black	Liq Sup
Reuse Water		Yellow	Black	Reuse Wtr
Cold Water (Domestic)	White	Green	White	C.W. Dom
Hot Water (Domestic)				
Supply	White	Yellow	Black	H.W. Dom
Return	White	Yellow	Black	H.W. Dom Ret
Tempered Water	White	Yellow	Black	Temp. Wtr
Ice Water				
Supply	White	Green	White	Ice Wtr
Return	White	Green	White	Ice Wtr Ret
Sanitary Waste		Green	White	San Waste
Sanitary Vent		Green	White	San Vent

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Project No. 642-11-150 Final Documents: 8/17/2012

Storm Drainage	Green	White	St Drain
Pump Drainage	Green	White	Pump Disch
Chemical Resistant Pipe			
Waste	Yellow	Black	Acid Waste
Vent	Yellow	Black	Acid Vent
Atmospheric Vent	Green	White	ATV
Silver Recovery	Green	White	Silver Rec
Oral Evacuation	Green	White	Oral Evac
Fuel Gas	Yellow	Black	Gas
Fire Protection Water			
Sprinkler	Red	White	Auto Spr
Standpipe	Red	White	Stand
Sprinkler	Red	White	Drain
Standpipe Sprinkler	Red Red	White White	Stand Drain
-			

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50 mm (2 inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6100 mm (20 foot) intervals in between. Use labels with yellow background with black border and words Danger High Voltage Class, 5000.
- 8. See Sections for methods of identification, legends, and abbreviations of the following:
 - f. Conduits containing high voltage feeders over 600 volts: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS / Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS / Section 28 05 33, RACEWAYS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- B. Fire and Smoke Partitions:
 - 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
 - Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition.
 - 4. Use semigloss paint of color that contrasts with color of substrate.
- C. Identify columns in pipe basements and interstitial space:
 - 1. Apply stenciled number and letters to correspond with grid numbering and lettering shown.
 - Paint numbers and letters 100 mm (4 inches) high, locate 450 mm (18 inches) below overhead structural slab.

09 91 00 - 17

- 3. Apply on four sides of interior columns and on inside face only of exterior wall columns.
- 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

3.12 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

SECTION 10 11 13 CHALKBOARDS AND MARKERBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies chalkboards, markerboards and related items.
- B. Boards may be either factory or field assembled.
- C. Where shown, assemble either chalkboards or markerboards with tackboards into a single unit.

1.2 RELATED WORK

Color of chalkboard and markerboard writing surface: Section 09 06 00, SCHEDULE FOR FINISHES

1.3 QUALITY ASSURANCE

Boards shall be the products of one manufacturer.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Shop Drawings: Identifying all parts by name and material and showing design, construction, installation, anchorage and relation to adjacent construction.
- C. Manufacturer's Literature and Data:
 - 1. Chalkboard.
 - 2. Markerboard
- D. Samples:
 - Chalkboard and markerboard writing surface, 300 by 300 mm (six by six inches), each color, mounted on backing.
 - 2. Integrally colored anodized aluminum, 300 mm (six inch) length.
 - 3. Each accessory (after approval, may be used in the work).

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards (ANSI): Z97.1-09.....Safety Glazing Materials Used in Buildings -Safety Performance Specifications and Methods of Test
 C. American Society for Testing and Materials (ASTM): B221/B221M-08.....Aluminum and Aluminum Alloy Extruded Bars, Rods.
 - B221/B221M-08.....Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Shapes and Tubes C1036-06.....Flat Glass

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

C1048-04.....Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass

F104-03(R2009).....Nonmetallic Gasket Materials

D. Composite Panel Association (CPA):

A208.1-09.....Particleboard

A135.4-04.....Basic Hardboard

E. Porcelain Enamel Institute (PEI)

1001-11.....Architectural Porcelain Enamel

PART 2 - PRODUCTS

2.1 CHALKBOARD AND MARKERBOARD

Chalkboards and markerboards shall consist of a writing surface, snap on aluminum frame, chalk trough, mullions, display rail and accessories, grounds and other items specified and shown.

2.2 FABRICATION

- A. Materials:
 - 1. Aluminum, extruded: ASTM B221.
 - 2. Backing: Hardboard, AHBA A135.4 or particleboard, CPA A208.1.
- B. Components:
 - Writing Surface: Factory assembly consisting of face sheet of 24 gauge sheet steel with porcelain enamel board texture finish conforming to PEI 1001, laminated to a hardboard or particleboard backing, 9 mm to 13 mm (3/8 to 1/2-inch) thick, and a 0.13 mm (0.005inch) thick aluminum foil back sheet laminated to back-face.
 - Frames (Trim): Extruded aluminum, 1.5 mm (0.060-inch) thick, snap-on type, approximate face width 44 mm (1-3/4 inch), depth and configuration as required to return to wall and engage clips.
 - 3. Trough: Extruded aluminum, 2.34 mm (0.092-inch) thick, not less than 75 mm (3-inch) projection from writing surface with grooved top surface, closed ends and return to wall surface at underside. Design to be snap-on type with concealed fasteners.
 - 4. Accessories: Fabricate from aluminum with holders from spring steel. Design to suit display rail. Furnish accessories as follows:

	Lineal mm (feet) of rail
Accessory Type	per accessory
Paper holder.	Full Width of unit

5. Mullions: Snap-on type, same material and face width as frames, designed to finish flush with frame.

- 6. Grounds: Continuous zinc-coated (galvanized) steel or extruded aluminum members designed to support the board writing surface and clips for snap-on frames, map rail and chalk tray.
- 7. Clips: Manufacturer's standard as required to support frame, mullions, display rail, and trough.
- C. Boards 3660 mm (12 feet) or less in length shall be in one piece. Larger units shall have one joint at center.
- D. Finish exposed aluminum surfaces as follows:
 - 1. AA 45 chemically etched medium matte, with clear anodic coating Class II Architectural, 0.4 mils thick (AA-M12C22A32).
 - 2. AA 45 chemically etched medium matte, with integrally colored anodic coating, Class II Architectural, 0.4 mils thick (AA-M12C22A32, of color to match approved sample).

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install units in accordance with the manufacturer's installation instructions, use concealed fasteners.
- B. Inspect surfaces and related construction to receive units. Partitions shall have reinforcing to receive fasteners. Verify type and placement of reinforcement.
- C. Do not proceed with the installation until reinforcement is in place and surfaces are flat.
- D. Assemble units as specified by the manufacturer.

3.2 INSTALLATION OF CHALKBOARD AND MARKERBOARD

- A. Mount board with adhesive and blocking pads spaced 16 inches on center each way.
- B. Grounds designed to receive clips for snap-on trim shall be continuous and be secured 300 mm (12 inches) on center. Space clips 300 mm (12 inches) on center.
- C. Miter trim at corners, conceal fasteners. Modify trim as required to conform to surrounding construction details.

Page intentionally left blank

SECTION 10 26 00 WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies wall guards (crash rails or bumper guards), handrail/wall guard combinations, and corner guards.

1.2 RELATED WORK

- A. Structural steel corner guards: Section 05 50 00, METAL FABRICATIONS.
- B. Armor plates and kick plates not specified in this section: Section 08 71 00, DOOR HARDWARE.
- C. Color and texture of aluminum and resilient material: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Show design and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Handrail/Wall Guard Combinations.
 - 2. Wall Guards.
 - 3. Corner Guards.
- D. Test Report: Showing that resilient material complies with specified fire and safety code requirements.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers marked with the name and brand, or trademark of the manufacturer.
- B. Protect from damage from handling and construction operations before, during and after installation.
- C. Store in a dry environment of approximately 21° C (70 degrees F) for at least 48 hours prior to installation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes D256-06.....Impact Resistance of Plastics

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

D635-06.....Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position

E84-09.....Surface Burning Characteristics of Building Materials

- C. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- D. National Fire Protection Association (NFPA): 80-10.....Standard for Fire Doors and Windows
- E. Society of American Automotive Engineers (SAE): J 1545-05.....Instrumental Color Difference Measurement for Exterior Finishes.
- F. Underwriters Laboratories Inc. (UL): Annual Issue.....Building Materials Directory

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Stainless Steel: ASTM A167, Type 302B.
- B. Aluminum Extruded: ASTM B221, Alloy 6063, Temper T5 or T6. C. Resilient Material:
 - 1. Extruded and injection molded acrylic vinyl or extruded polyvinyl chloride meeting following requirements:
 - a. Minimum impact resistance of 1197 ps (25 ft lbs per sq.ft) when tested in accordance with ASTM D256 (Izod impact, ft.lbs. per inch notch).
 - b. Class 1 fire rating when tested in accordance with ASTM E84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less.
 - c. Rated self extinguishing when tested in accordance with ASTM D635.
 - d. Material shall be labeled and tested by Underwriters Laboratories or other approved independent testing laboratory.
 - e. Integral color with all colored components matched in accordance with SAE J 1545 to within plus or minus 1.0 on the CIE-LCH scales.
 - f. Same finish on exposed surfaces.

2.2 CORNER GUARDS

- A. Resilient, Shock-Absorbing Corner Guards: Surface mounted type of 6 mm (1/4-inch corner) formed to profile shown.
 - Snap-on corner guard formed from resilient material, minimum 2 mm (0.078-inch) thick, free floating on a continuous 1.6 mm (0.063-inch)

thick extruded aluminum retainer. Provide appropriate mounting hardware, cushions and base plates as required.

2. Provide factory fabricated end closure caps at top and bottom of surface mounted corner guards.

2.3 WALL GUARDS AND HANDRAILS

- A. Resilient Wall Guards and Handrails:
 - Handrail/Wall Guard Combination: Snap-on covers of resilient material, minimum 2 mm (0.078-inch) thick, shall be free-floated on a continuous, extruded aluminum retainer, minimum 1.8 mm (0.072-inch) thick, anchored to wall at maximum 760 mm (30 inches) on center.
 - 2. Wall Guards (Crash Rails): Snap-on covers of resilient material, minimum 2.8 mm (0.110-inch) thick, shall be free-floated over 50 mm (two-inch) wide aluminum retainer clips, minimum 2.3 mm (0.090-inch) thick, anchored to wall at maximum 600 mm (24 inches) on center, supporting a continuous aluminum retainer, minimum 1.6 mm (0.062inch) thick; or, shall be free-floated over a continuous extruded aluminum retainer, minimum 2.3 (0.090-inch) thick anchored to wall at maximum 600 mm (24 inches) on center.
 - 3. Provide handrails and wall guards (crash rails) with prefabricated and closure caps, inside and outside corners, concealed splices, cushions, mounting hardware and other accessories as required. End caps and corners shall be field adjustable to assure close alignment with handrails and wall guards (crash rails). Screw or bolt closure caps to aluminum retainer.

2.4 FASTENERS AND ANCHORS

- A. Provide fasteners and anchors as required for each specific type of installation.
- B. Where type, size, spacing or method of fastening is not shown or specified, submit shop drawings showing proposed installation details.

2.5 FINISH

- A. In accordance with NAAMM AMP 500 series.
- B. Resilient Material: Embossed texture and color in accordance with SAE J 1545 and as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

PART 3 - INSTALLATION

3.1 RESILIENT CORNER GUARDS

Install corner guards on walls in accordance with manufacturer's instructions.

3.3 RESILIENT HANDRAIL, WALL GUARD COMBINATIONS, AND RESILIENT WALL GUARDS (CRASH RAIL)

Secure guards to walls with, mounting cushions, brackets, and fasteners in accordance with manufacturer's details and instructions.

SECTION 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies manufactured items usually used in dressing rooms, toilets, baths, locker rooms and at sinks in related spaces.
- B. Items Specified:
 - 1. Paper towel dispenser.
 - 2. Combination paper towel dispenser and disposal unit.
 - 3. Waste receptacles. (By VA)
 - 4. Toilet tissue dispenser.
 - 5. Grab Bars.
 - 6. Shower curtain rods.
 - 7. Clothes hooks, robe or coat.
 - 8. Towel bars.
 - 9. Metal framed mirror.
 - 10. Medicine cabinet.
 - 11. Soap dispensers (By VA).
 - 12. Mop racks.

1.2 RELATED WORK

- A. Color of finishes: Section 09 06 00, SCHEDULE FOR FINISHES
- B. Ceramic toilet and bath accessories: Section 09 30 13, CERAMIC TILING
- C. Color of vinyl fabric: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - 1. Each product specified.
 - 2. Paper towel dispenser and combination dispenser and disposal units.
 - 3. Metal framed mirrors, showing shelf where required, fillers, and design and installation of units when installed on ceramic tile wainscots and offset surfaces.
 - 4. Shower Curtain rods, showing required length for each location.
 - 5. Grab bars, showing design and each different type of anchorage.
 - 6. Medicine cabinets showing design and installation.
 - 7. Foot operated soap dispenser, showing anchorage and components.
 - 8. Show material and finish, size of members, and details of construction, installation and anchorage of mop racks.
- C. Samples:

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- 1. One of each type of accessory specified.
- 2. After approval, samples may be used in the work.
- D. Manufacturer's Literature and Data:
 - 1. All accessories specified.
 - Show type of material, gages or metal thickness in inches, finishes, and when required, capacity of accessories.
 - 3. Show working operations of spindle for toilet tissue dispensers.
 - 4. Mop racks.
- E. Manufacturer's Certificates:
 - Attesting that soap dispensers are fabricated of material that will not be affected by liquid soap or aseptic detergents, Phisohex and solutions containing hexachlorophene.
 - 2. Anodized finish as specified.

1.4 QUALITY ASSURANCE

- A. Each product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each accessory type shall be the same and be made by the same manufacturer.
- C. Each accessory shall be assembled to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 PACKAGING AND DELIVERY

- A. Pack accessories individually to protect finish.
- B. Deliver accessories to the project only when installation work in rooms is ready to receive them.
- C. Deliver inserts and rough-in frames to site at appropriate time for building-in.
- D. Deliver products to site in sealed packages of containers; labeled for identification with manufacturer's name, brand, and contents.

1.6 STORAGE

- A. Store products in weathertight and dry storage facility.
- B. Protect from damage from handling, weather and construction operations before, during and after installation in accordance with manufacturer's instructions.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip. A176-99(R2009).....Stainless and Heat-Resisting Chromium Steel Plate, Sheet, and Strip A269-10.....Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-09.....Seamless and Welded Austenitic Stainless Steel Pipes A653/A653M-10.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B456-03(R2009).....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium C1036-06.....Flat Glass C1048-04..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass D635-10.....Rate of Burning and/or Extent and Time of Burning of Self Supporting Plastics in a Horizontal Position F446-85(R2009).....Consumer Safety Specification for Grab Bars and Accessories Installed in the Bathing Area. D3453-07.....Flexible Cellular Materials - Urethane for Furniture and Automotive Cushioning, Bedding, and Similar Applications D3690-02(R2009).....Vinyl-Coated and Urethane-Coated Upholstery Fabrics C. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual D. American Welding Society (AWS): D10.4-86 (R2000).....Welding Austenitic Chromium-Nickel Stainless Steel Piping and Tubing E. Federal Specifications (Fed. Specs.):
 - A-A-3002..... Glass

FF-S-107C (2).....Screw, Tapping and Drive
FF-S-107C....Screw, Tapping and Drive.
WW-P-541E(1)....Plumbing Fixtures (Accessories, Land Use) Detail
Specification

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum: ASTM B221, alloy 6063-T5 and alloy 6463-T5.
- B. Stainless Steel:
 - Plate or sheet: ASTM A167, Type 302, 304, or 304L, except ASTM A176 where Type 430 is specified, 0.0299-inch thick unless otherwise specified.
 - 2. Tube: ASTM A269, Alloy Type 302, 304, or 304L.
- C. Stainless Steel Tubing: ASTM A269, Grade 304 or 304L, seamless or welded.
- D. Stainless Steel Pipe: ASTM A312; Grade TP 304 or TP 304L.
- E. Steel Sheet: ASTM A653, zinc-coated (galvanized) coating designation G90.
- F. Glass:
 - 1. ASTM C1036, Type 1, Class 1, Quality q2, for mirrors, and for mirror doors in medicine cabinets.
 - 2. ASTM C1036, Type 1 Class 1 Quality q3, for shelves in medicine cabinets.
 - 3. ASTM C1048, Kind FT, Condition A, Type 1, Class 1 (use in Mental Health and Behavior Nursing Unit Psychiatric Patient Areas and Security Examination Rooms where mirrors and glass are specified).
- G. Foam Rubber: ASTM D3453, Grade BD, Type 2.
- H. Vinyl Covering: ASTM D3690, Vinyl coated fabric, Class A.
- I. Plywood: PS1, Grade CD.

2.2 FASTENERS

- A. Exposed Fasteners: Stainless steel or chromium plated brass, finish to match adjacent surface.
- B. Concealed Fasteners: Steel, hot-dip galvanized (except in high moisture areas such as showers or bath tubs use stainless steel).
- C. Toggle Bolts: For use in hollow masonry or frame construction.
- D. Hex bolts: For through bolting on thin panels.
- E. Expansion Shields: Lead or plastic as recommended by accessory manufacturer for component and substrate for use in solid masonry or concrete.
- F. Screws:

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

- 1. ASME B18.6.4.
- 2. Fed Spec. FF-S-107, Stainless steel Type A.
- G. Adhesive: As recommended by manufacturer for products to be joined.

2.3 FINISH

- A. In accordance with NAAMM AMP 500 series.
 - 1. Stainless Steel: NAAMM AMP 503, finish number 4.

2.4 FABRICATION - GENERAL

- A. Welding, AWS D10.4.
- B. Grind dress, and finish welded joints to match finish of adjacent surface.
- C. Form exposed surfaces from one sheet of stock, free of joints.
- D. Provide steel anchors and components required for secure installation.
- E. Form flat surfaces without distortion. Keep exposed surfaces free from scratches and dents. Reinforce doors to prevent warp or twist.
- F. Isolate aluminum from dissimilar metals and from contact with building materials as required to prevent electrolysis and corrosion.
- G. Hot-dip galvanized steel, except stainless steel, anchors and fastening devices.
- H. Shop assemble accessories and package with all components, anchors, fittings, fasteners and keys.
- I. Key items alike.
- J. Provide templates and rough-in measurements as required.
- K. Round and deburr edges of sheets to remove sharp edges.

2.5 PAPER TOWEL DISPENSERS

- A. Surface mounted type with sloping top.
- B. Dispensing capacity for 300 sheets of any type of paper toweling.
- C. Fabricate of stainless steel.
- D. Provide door with continuous hinge at bottom, and either spring tension cam lock or tumbler lock, keyed alike, at top and a refill sight slot in front.

2.6 PAPER TOWEL DISPENSER

- A. Mounting: Surface.
- B. Dispensing capacity for 350 sheets of any type of paper toweling.
- C. Fabricate of stainless steel.
- D. Provide door with continuous hinge at bottom, and either spring tension cam lock or tumbler lock, keyed alike, at top and a refill sight slot in front.

Project No. 642-11-150 Final Documents: 8/17/2012

2.7 WASTE RECEPTACLES (BY OWNER)

2.8 TOILET TISSUE DISPENSERS

- A. Single roll recessed mounted type.
- B. Mount on continuous backplate.
- C. Removable spindle ABS plastic or chrome plated plastic.
- D. Wood rollers are not acceptable.

2.9 GRAB BARS

- A. Fed. Spec WW-P-541/8B, Type IV, bars, surface mounted, Class 2, grab bars and ASTM F446.
- B. Fabricate of either stainless steel or nylon coated steel, except use only one type throughout the project:
 - Stainless steel: Grab bars, flanges, mounting plates, supports, screws, bolts, and exposed nuts and washers.
- C. Concealed mount.
- D. Bars:
 - 1. Fabricate from 38 mm (1-1/2 inch) outside diameter tubing.
 - a. Stainless steel, minimum 1.2 mm (0.0478 inch) thick.
 - b. Nylon coated bars, minimum 1.5 mm (0.0598 inch) thick.
 - Fabricate in one continuous piece with ends turned toward walls, except swing up and where grab bars are shown continuous around three sides of showers, bars may be fabricated in two sections, with concealed slip joint between.
 - 3. Continuous weld intermediate support to the grab bar.
 - 4. Swing up bars manually operated. Designed to prevent bar from falling when in raised position.
- E. Flange for Concealed Mounting:
 - Minimum of 2.65 mm (0.1046 inch) thick, approximately 75 mm (3 inch) diameter by 13 mm (1/2 inch) deep, with provisions for not less than three set screws for securing flange to back plate.
 - 2. Insert grab bar through center of the flange and continuously weld perimeter of grab bar flush to back side of flange.
- G. In lieu of providing flange for concealed mounting, and back plate as specified, grab rail may be secured by being welded to a back plate and be covered with flange.
- H. Back Plates:
 - 1. Minimum 2.65 mm (0.1046 inch) thick metal.
 - Fabricate in one piece, approximately 6 mm (1/4 inch) deep, with diameter sized to fit flange. Provide slotted holes to accommodate anchor bolts.

2.10 SHOWER CURTAIN RODS

- A. Stainless steel tubing, ASTM A569, minimum 1.27 mm (0.050 inch) wall thickness, 32 mm (1 1/4 inch) outside diameter.
- B. Flanges, stainless steel rings, 66 mm (2 5/8 inch) minimum outside diameter, with 2 holes opposite each other for 6 mm (1/4 inch) stainless steel fastening bolts. Provide a set screw within the curvature of each flange for securing the rod.

2.11 CLOTHES HOOKS-ROBE OR COAT

- A. Fabricate hook units either of chromium plated brass with a satin finish, or stainless steel, using 6 mm (1/4 inch) minimum thick stock, with edges and corners rounded smooth to the thickness of the metal, or 3 mm (1/8 inch) minimum radius.
- B. Fabricate each unit as a double hook on a single shaft, integral with or permanently fastened to the wall flange, provided with concealed fastenings.

2.12 METAL FRAMED MIRRORS

- A. Fed. Spec. A-A-3002 metal frame; stainless steel, type 302 or 304.
- B. Mirror Glass:
 - 1. Minimum 6 mm (1/4 inch) thick.
 - 2. Set mirror in a protective vinyl glazing tape.
 - 3. Use tempered glass for mirrors in Mental Health and Behavioral Nursing units.
- C. Frames:
 - Channel or angle shaped section with face of frame not less than 9 mm (3/8 inch) wide. Fabricate with square corners.
 - Use either 0.9 mm (0.0359 inch) thick stainless steel, chrome finished steel, or extruded aluminum, with clear anodized finish 0.4 mils thick.
 - 3. Filler:
 - a. Where mirrors are mounted on walls having ceramic tile wainscots not flush with wall above, provide fillers at void between back of mirror and wall surface.
 - b. Fabricate fillers from same material and finish as the mirror frame, contoured to conceal the void behind the mirror at sides and top.
 - 4. Attached Shelf for Mirrors:
 - a. Fabricate shelf of the same material and finish as the mirror frame.

- b. Make shelf approximately 125 mm (five inches) in depth, and extend full width of the mirror.
- c. Close the ends and the front edge of the shelf to the same thickness as the mirror frame width.
- d. Form shelf for aluminum framed mirror as an integral part of the bottom frame member. Form stainless steel shelf with concealed brackets to attach to mirror frame.
- D. Back Plate:
 - Fabricate backplate for concealed wall hanging of either zinc-coated, or cadmium plated 0.9 mm (0.036 inch) thick sheet steel, die cut to fit face of mirror frame, and furnish with theft resistant concealed wall fastenings.
 - 2. Use set screw type theft resistant concealed fastening system for mounting mirrors.
- E. Mounting Bracket:
 - 1. Designed to support mirror tight to wall.
 - 2. Designed to retain mirror with concealed set screw fastenings.
- 2.13 SOAP DISPENSER(by Owner)

2.14 MOP RACKS WITH SHELF

- A. Minimum 1.0M (40 inches) long with five holders.
- B. Clamps:
 - Minimum of 1.3 mm (0.050-inch) thick stainless steel bracket retaining channel with a hard rubber serrated cam; pivot mounted to channel.
 - 2. Clamps to hold handles from 13 mm (1/2-inch) minimum to 32 mm (1-1/4 inch) maximum diameter.
- C. Support:
 - Minimum of 1 mm (0.0375 inch) thick stainless steel hat shape channel to hold clamps away from wall as shown.
 - 2. Drill wall flange for 3 mm (1/8 inch) fasteners above and below clamp locations.
- D. Secure clamps to support with oval head machine screws or rivets into continuous reinforcing back of clamps.
- E. Finish on stainless Steel: AMP 503-No. 4.
- F. Shelf: 205 mm (8 inches) wide, and 1.3 mm (0.05inch) thick, supported by two shelf brackets.

2.15 SANITARY-NAPKIN DISPOSAL UNIT

A. Mounting: Surface.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- B. Door or Cover: Self-closing disposal-opening cover.
- C. Receptacle: Removable, leak proof 1.2 gal. (4.6 L) plastic.
- D. Material and Finish: Stainless steel, No. 4 finish (satin).
- E. Dimensions: 10-11/16" wide x 15-1/8" high x 4-1/16" deep (270 x 385 x 105 mm).
- F. Average Mounting Height: 30" (760 mm) to top of unit. Barrier free Design.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Before starting work notify Resident Engineer in writing of any conflicts detrimental to installation or operation of units.
- B. Verify with the Resident Engineer the exact location of accessories.

3.2 INSTALLATION

- A. Set work accurately, in alignment and where shown. Items shall be plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Toggle bolt to steel anchorage plates in frame partitions or hollow masonry.
- C. Install accessories in accordance with the manufacturer's printed instructions and ASTM F446.
- D. Install accessories plumb and level and securely anchor to substrate.
- E. Install accessories in a manner that will permit the accessory to function as designed and allow for servicing as required without hampering or hindering the performance of other devices.
- F. Position and install dispensers, and other devices in countertops, clear of drawers, permitting ample clearance below countertop between devices, and ready access for maintenance as needed.
- G. Align mirrors, dispensers and other accessories even and level, when installed in battery.
- H. Install accessories to prevent striking by other moving, items or interference with accessibility.
- I. Install wall mirrors in Mental Health and Behavioral Units with tamper resistant screws that are flush mounted so that they will not support a rope or material for hanging.

3.3 CLEANING

After installation, clean as recommended by the manufacturer and protect from damage until completion of the project.

Page intentionally left blank

SECTION 10 44 13 FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 DESCRIPTION

This section covers recessed fire extinguisher cabinets.

1.2 RELATED WORK

- A. Acrylic glazing: Section 08 80 00, GLAZING.
- B. Field Painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Fire extinguisher cabinet including installation instruction and rough opening required.

1.4 APPLICATION PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): D4802-10.....Poly (Methyl Methacrylate) Acrylic Plastic Sheet

PART 2 - PRODUCTS

2.1 FIRE EXTINGUISHER CABINET

Recessed type with flat trim of size and design shown.

2.2 FABRICATION

- A. Form body of cabinet from 0.9 mm (0.0359 inch) thick sheet steel.
- B. Fabricate door and trim from 1.2 mm (0.0478 inch) thick sheet steel with all face joints fully welded and ground smooth.
 - Glaze doors with 6 mm (1/4 inch) thick ASTM D4802, clear acrylic sheet, Category B-1, Finish 1.
 - 2. Design doors to open 180 degrees.
 - 3. Provide continuous hinge, pull handle, and adjustable roller catch.

2.3 FINISH

- A. Finish interior of cabinet body with baked-on semigloss white enamel.
- B. Finish door, frame with manufacturer's standard baked-on prime coat suitable for field painting.

PART 3 - EXECUTION

- A. Install fire extinguisher cabinets in prepared openings and secure in accordance with manufacturer's instructions.
- B. Install cabinet so that bottom of cabinet is 975 mm (39 inches) above finished floor.

SECTION 11 71 01 MEDICAL WASHING AND STERILIZING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTIONS

This section specifies Medical Reprocessing and Sterilization Equipment including ethylene oxide (EtO) abators, plasma sterilizers, ethylene oxide (EtO) monitoring stations, drying cabinets, detergent dispensing units, and endoscope pre-processing sinks.

1.2 DEFINITIONS

- A. Cart Washer: An automated washing unit that uses high-temperature water and detergent to clean and high-level disinfect carts and equipment.
- B. Endoscope Drying Cabinet: Freestanding cabinet used to dry endoscopes with forced, filtered air within the cabinet, as well as through the channels of the scopes.
- C. Automated Endoscopic Re-Processor (AER): Automated washing unit that uses water and EPA-approved high level disinfectants to clean and high level disinfect immersible, flexible endoscopes.
- D. Steam Sterilizer: A machine used to sterilize instruments and equipment by subjecting them to high-pressure steam up to 275°F. Sterilizers are available in both cart-loading and floor-loading models. They can be either freestanding or recessed, with single or double doors (passthru). Steam sterilizers are also known as autoclaves.
- E. Ethylene Oxide (EtO) Disposal System (Abator): A machine used as a pollution-control device, that converts ethylene oxide gas exhausted from sterilizer/aerator units to CO2 and water vapor through a heated catalytic process.
- F. Endoscope Pre-Processing Sink: Refer to Section 22 40 00, PLUMBING FIXTURES.

1.3 RELATED WORK

- A. Section 22 11 00, FACILITY WATER DISTRIBUTION and Section 22 13 00, FACILITY SANITARY SEWERAGE
- C. Section 22 40 00, PLUMBING FIXTURES.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:

1.4 PERFORMANCE REQUIREMENTS

A. Equipment shall have built-in monitoring for timed cycles, and control devices for proper temperature and pressure. Equipment shall have a

printer, either integrated or remote, for recording cycle time, temperature, and pressure.

B. Manufacturer safeguards must be provided with the equipment to protect the operator from harm during normal operation of the equipment.

1.5 QUALITY CONTROL

- A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC: Quality Assurance 1.3.D - Products Criteria.
- B. Mechanical, electrical, and associated systems shall be safe, reliable, efficient, durable, easily and safely operable, maintainable, and accessible.
- C. Standard Products: Material and equipment shall be the standard products of the selected manufacturer, and they should be regularly engaged in the manufacture of such products for at least 3 years. The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work stations, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
- D. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- E. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- F. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- G. Installer Qualifications: Installer is authorized representative of sterilizer manufacturer and employs factory-trained personnel to install sterilizers. Installer is licensed as may be necessary by regulatory organizations.
- H. Steam Sterilizers: Comply with the most current version of ANSI/AAMI ST8.
- I. Ethylene-Oxide Sterilizers: Comply with the most current version of ANSI/AAMI ST24.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

1.6 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Include the following:
 - 1. Illustrations and descriptions of medical reprocessing equipment.
 - 2. Optional auxiliary equipment and controls.
 - 3. Catalog or model numbers for each component.
 - 4. Utility requirements.
- C. Shop Drawings: Show details of fabrication, installation, adjoining construction, coordination with mechanical and electrical work, anchorage, and other work required for complete installation.
- D. Field Test Reports: Provide certification reports from accredited service technicians or installers.
- E. Operating Instructions: Comply with requirements in specification Section 01 00 00, GENERAL REQUIREMENTS.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute/Association for the Advancement of Medical Instrumentation (ANSI/AAMI): ST8-2008...... Hospital Steam Sterilizer, 3rd edition

ST24-1999 (R2009).....Automatic, General-Purpose Ethylene Oxide Sterilizers and Ethylene Oxide Sterilant Sources Intended for Use in Health Care Facilities

C. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06..... Metal Finishes Manual

1.8 WARRANTY

Comply with FAR clause 52.246-21 in all areas except for warranty period, which shall be two years for all equipment.

1.9 GUARANTEE PERIOD SERVICES

Engage factory-trained authorized manufacturers' representatives to perform maintenance service on equipment during guarantee period.

- 1. Maintenance Service:
 - a. Inspection of equipment at regularly scheduled intervals as defined by the manufacturer.

- b. Testing, cleaning, adjusting, repairing, and furnishing and installing replacement components as required to maintain equipment in reliable working condition.
- Maintenance service does not include cleaning, adjusting, repairing, furnishing and installing replacement components required because of improper use.

PART 2 - PRODUCTS

2.1 CART WASHER

A. To be provided by Owner for Contractor Installation.

2.2 ENDOSCOPE DRYING CABINET

- A. Chamber:
 - 1. Interior: Painted steel
 - 2. Capacity: Up to 10 Endoscopes.
- B. Doors:
 - 1. Quantity: Single.
 - 2. Operation: Rolling overhead.
 - 3. Configuration: Front opening.
- C. Loading: Manual.
- D. Heat Source: Electric:
 - 1. Cabinet Temperature: 149 158 degrees F.
 - 2. Standard Drying Time: 0 120 minutes.
- E. Cabinet Filtration: HEPA filtered air through chamber and internal endoscope channels.
- F. Air Flow Monitoring: Constant.
- G. Electrical Requirements: 120V.

2.3 STEAM STERILIZER

A. TO BE PROVIDED BY OWNER FOR CONTRACTOR INSTALLATION.

2.4 ETHYLENE-OXIDE ABATOR (FURNISHED AS A PACKAGE)

- A. Furnish and install an Ethylene-Oxide Abator package compatible with the existing Eagle 3017 ETO Sterilizers as manufactured by Steris. Ethylene Oxide Abator package to include an Abator, exhaust fan, and Safety & Monitoring Panel provided by a single supplier.
- B. System Components (Abator):
 - 1. Dry reactant media / Dry bed filter.
 - 2. UL Certified
 - 3. Removal Efficiency: 99.9+ %
 - 4. Construction: Stainless Steel.
 - 5. Electrical Requirements: 220V.

- 6. Interconnection Kit: Links Abator to ethylene-oxide sterilizer.
- Function: Abator must have provisions to accept venting from two
 (2) Eagle 3017 Ethylene-Oxide sterilizers.
- 8. Provide manufacturer's leveling base extension to align with associated exhaust fan.
- C. Safety & Monitoring Panel:
 - 1. Electrical Requirements: 220V/1PH/60Hz, 15 AMP
 - 2. Disconnect switch furnished and installed by Contractor.
 - Interconnecting conduit & wiring between panel and Abator, and between panel and exhaust fan to be furnished and installed by Contractor.

D. Exhaust Fan:

- 1. Class/Wheel Type: 0 / Univ
- 2. Rotation: CW
- 3. Arrangement: 4
- 4. Discharge: Upblast
- 5. Performance: 125 SCFM, 3.7" WC ESP
- 6. Power: 220V/1PH/60Hz
- 7. Electrical: 1 HP Motor, 6.5 FLA, 1800 RPM
- E. Options:
 - 1. Maintenance & Service Contract: 5 Year, Renewable
 - 2. Remote Alarm Panel: Coordinate location with the Resident Engineer.
 - 3. Reactant Change-Out Package
 - 4. Spare Parts Package
 - 5. EPA Performance Testing Assistance
 - 6. Onsite Installation & Start-Up Assistance
- F. Vent Accessories:
 - 1. Inlet Vent: Ethylene oxide vent pipe connection for vent pipe connection to sterilizer.
 - Auxiliary Vent: Ethylene oxide emergency vent pipe connection for vent pipe connection to outdoors (existing).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install sterilizers according to manufacturer's written instructions.
- B. Coordinate installation with related mechanical and electrical work. Provide cutouts and openings for plumbing and electrical work as indicated or as required by trades involved.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

3.2 TESTS

- A. Field test installed equipment after water and steam systems are pressurized for proper operation.
 - 1. Operate each unit for six hours through repeated full cycles. During and after testing, there shall be no evidence of leaks, overheating, electrical failure, or other symptoms of failure.
 - 2. For units that fail testing, make adjustments and corrections to installation, or replace equipment, and repeat tests until equipment complies with requirements.

3.3 PROTECTING AND CLEANING

- A. Protect equipment from dirt, water, and chemical or mechanical injury during the remainder of the construction period.
- B. At the completion of work, clean equipment as required to produce ready-for-use condition.

3.4 INSTRUCTIONS

- A. Instruct personnel and transmit operating instructions in accordance with requirements in specification Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training must be provided by the manufacturer or installer.

SECTION 12 32 00 MANUFACTURED WOOD CASEWORK

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies plastic laminate casework as detailed on the drawings, including related components and accessories required to form integral units. Wood casework items shown on the drawings, but not specified below shall be included as part of the work under this section, and applicable portions of the specification shall apply to these items. Each like item of casework shall be of the same design and by one manufacturer.

B. Where shown, provide plastic laminate casework items as follows:

1.2 STERILE STORAGE BASE CABINETS AND SUPPORTS.1.2 RELATED WORK

- A. Custom Casework: Section 06 20 00, FINISH CARPENTRY.
- B. Color and Finish of Plastic Laminate: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 MANUFACTURER'S QUALIFICATIONS

The fabrication of casework shall be by a manufacturer who produces casework similar to the casework specified and shown.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Sinks, trim and fittings. Locks for doors and drawers Adhesive cements

- C. Samples: Counter top, plastic laminate, 150 mm (six inch) square Wood Face Veneer or Hardwood Plywood
- -
- D. Shop Drawings (1/2 full size):
 - All casework, showing details of construction, including materials, hardware and accessories.
 - Cabinets and counters showing faucets in connection with sink bowls, and electrical fixtures and receptacles which are mounted on cabinets and counters.
 - 3. Fastenings and method of installation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A167-99 (R2009).....Stainless and Heat-Resisting chromium-Nickel Steel Plate, Sheet and Strip A1008-10.....Steel, Sheet, Cold-Rolled, Carbon, Structural,

High Strength Low Alloy

- C1036-06.....Flat Glass
- C. Composite Panel Association (CPA): A208.1-09.....Particleboard
- D. U.S. Department of Commerce Product Standards (Prod. Std): PS1-95.....Construction and Industrial Plywood
- F. Architectural Woodwork Institute (AWI): Architectural Woodwork Quality Standards, Guide Specifications Quality Certification Program - 1999
- G. American Society of Mechanical Engineers (ASME): A112.18.1-05.....Plumbing Fixture Fittings

PART 2 - PRODUCTS

2.2 PLASTIC LAMINATE:

- A. NEMA LD-3.
- B. Exposed decorative surfaces including countertops, both sides of cabinet doors, and for items having plastic laminate finish. General purpose Type HGL.
- C. Cabinet Interiors Including Shelving: Both of following options to comply with NEMA, LD3.1 as a minimum.
 - 1. Plastic laminate clad plywood or particle board.
 - 2. Resin impregnated decorative paper thermally fused to particle board.
- D. Backing sheet on bottom of plastic laminate covered wood tops. Backer Type BKL.
- E. Post Forming Fabrication, Decorative Surface: Post forming Type HGP.

2.3 PLYWOOD, SOFTWOOD

Prod. Std. PS1, five ply construction from 13 mm to 28 mm (1/2 inch to 1-1/8 inch) thickness, and seven ply for 31 mm $(1 \ 1/4 \text{ inch})$ thickness.

2.4 PARTICLEBOARD

CPA A208.1, Type 1, Grade 1-M-3.

2.5 RUBBER OR VINYL BASE

Straight (for carpet), cove (for resilient floor); 100 mm (4 inch) high, 3 mm (1/8 inch) thick, flexible to conform to irregularities in walls, partitions and floors.

2.6 PLUMBING FIXTURES

ASME A112.18.1, except die-cast zinc-alloy material is not acceptable.

2.9 SHEET STEEL

ASTM A1008.

2.10 STAINLESS STEEL

ASTM A167, with No. 4 finish.

2.11 HARDWARE

- A. Where pin tumbler locks are specified, disc tumbler lock "Duo A", with brass working parts and case, as manufactured by the Illinois Lock Company will be an acceptable substitute. Locks for each type casework, shall be keyed differently and shall be master-keyed for each type service, such as Nurses, Psychiatric, and Administration. Provide two keys for each lock. Exposed hardware, except as otherwise specified, shall be satin finished chromium plated brass or nickel plated brass.
- B. Marking of Locks and Keys:
 - 1. The name of the manufacturer, or trademark by which manufacturer can readily be identified, legibly marked on each lock.
 - 2. The key change number marked on the exposed face of lock, and also stamped on each key.
 - 3. Key change numbers shall provide sufficient information for replacement of the key by the manufacturer.

C. Hinged Doors:

- Doors 900 mm (36 inches) and more in height shall have three hinges and doors less than 900 mm (36 inches) in height shall have two hinges. Each door shall close against two rubber bumpers.
- 2. Hinges: Fabricate hinges with minimum 2 mm (0.072 inch) thick chromium plated steel leaves, and with minimum 3.5 mm (0.139 inch) diameter stainless steel pin. Hinges shall be five knuckle design with 63 mm (2-1/2 inch) high leaves and hospital type tips.

- 3. Fasteners: Provide full thread wood screws to fasten hinge leaves to door and cabinet frame. Finish screws to match finish of hinges.
- D. Door Catches:
 - 1. Friction or Magnetic type, fabricated with metal housing.
 - 2. Provide one catch for cabinet doors 1200 mm (48 inches) high and under, and two for doors over 1200 mm (48 inches) high.
- E. Locks:
 - 1. Cylinder type pin tumbler.
 - 2. Equip doors and drawers where shown with locks.
- F. Drawer and Door Pulls:

Doors and drawers shall have flush pulls, fabricated of either chromium plated brass, chromium plated steel, stainless steel, or anodized aluminum.

- G. Drawer Slides:
 - 1. Full extension steel slides with nylon ball-bearing rollers.
 - 2. Slides shall have positive stop.
 - 3. Equip drawers with rubber bumpers.
- H. Sliding Doors:
 - Each door shall be supported by two ball bearing bronze or nylon rollers, or sheaves riding on a stainless steel track at top or bottom, and shall be restrained by a nylon or stainless steel guide at the opposite end.
 - 2. Plastic guides are not acceptable.
 - 3. Each door shall have rubber silencers set near top and bottom of each jamb.
- I. Shelf Standards (Except For Fixed Shelves):

Bright zinc-plated steel for recessed mounting with screws, 16 mm (5/8 inch) wide by 5 mm (3/16 inch) high providing 13 mm (1/2 inch) adjustment, complete with shelf supports.

- **2.12 SOLID-SURFACING MATERIAL:** Homogeneous solid sheets of filled plastic resins complying with ISSFA-2.
 - 1. Standard Type, made from materials complying with requirements for standard type, as indicated.
 - 2. Countertop Surface: 19.5mm (3/4 inches) eased edges.

2.13 FABRICATION

A. Casework shall be of the flush overlay exposed face frame reveal overlay design and, except as otherwise specified, be of premium grade construction and of component thickness in conformance with AWI Quality Standards.

- B. Fabricate casework of plastic laminated covered plywood or particleboard as follows:
 - 1. Where shown, doors drawers / shelves all semi-concealed surfaces shall be plastic laminated.
- C. Electrical fixtures, receptacles, wiring and junction boxes required for fixtures and receptacles:
 - 1. Factory installed in casework.
 - 2. For electrical lighting fixtures, see drawings.
 - For electric receptacles and lighting fixtures installed below or adjacent to wall cabinets or above counter tops, see electrical sections or specifications.
 - 4. Install wiring in built-in raceways and terminate at junction box mounted on rear of cabinet and counter.
 - 5. For final hook-up at junction box see electrical sections of specifications.
- D. Provide 18 gage sheet steel sloping tops for casework where shown. Fasten sloping tops with oval-head screws inserted from interior. Exposed ends of sloping tops shall have flush closures fastened as recommended by manufacturer.
- E. Base:
 - Provide rubber or vinyl base with close, flush joints; set with adhesive.
 - 2. Remove adhesive from exposed surfaces.
 - 3. Install base at floor line after casework has been accurately leveled.
 - 4. Rub base to glossy finish.
- F. Support Members for Tops of Tables:
 - 1. Construct as detailed.
 - 2. Provide miscellaneous steel members and anchor as shown.
- G. Legs For Counters:
 - 1. Fabricate legs for counters of 1.6 mm (0.0635 inch) thick, 38 mm (1-1/2 inch) square tubular steel where shown.
 - 2. Secure legs to counter tops and provide legs at bottom with shoes not less than 25 mm (one inch) in height.
 - 3. Fabricate shoes of either stainless steel, aluminum or chromium plated brass.
- H. Solid-Surfacing -Material Countertops:
 - 1. Grade: Premium.
 - 2. Solid-Surfacing-Material Thickness: 3/4 inch (19 mm).

3. Colors, Patterns, and Finishes: Provide materials and products that result in colors of solid-surfacing material complying with the following requirements:

a.Refer to Schedule for Finishes Section 09 06 00.

- Fabricate tops in one piece, unless otherwise indicated. Comply with solid-surfacing-material manufacturer's written recommendations for adhesives, sealers, fabrication, and finishing.
 - a. Fabricate tops with shop-applied edges of materials and configuration indicated.
 - b. Fabricate tops with shop-applied back splashes or loose applied for field application.
- 5. Install integral sink bowls in countertops in shop.
- 6. Drill holes in countertops for plumbing fittings in shop
- 7. Provide manufacturer's standard countertops with under mounted sinks in toilets as indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Set casework in place; level, plumb and accurately scribe and secure to walls, and/or floors.
- B. The installation shall be complete including all trim and hardware. Leave the casework clean and free from defects.

3.2 FASTENINGS

- A. Fastenings for securing casework to adjoining construction shall be as detailed on the drawings or approved shop drawings.
- B. See Section 05 50 00, METAL FABRICATIONS for reinforcement of walls and partitions for casework anchorage.
SECTION 13 05 41

SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide seismic restraint in accordance with the requirements of this section in order to maintain the integrity of nonstructural components of the building so that they remain safe and functional in case of seismic event.
- B. Definitions: Non-structural building components are components or systems that are not part of the building's structural system whether inside or outside, above or below grade. Non-structural components of buildings include:
 - 1. Architectural Elements: Facades that are not part of the structural system and its shear resistant elements; cornices and other architectural projections and parapets that do not function structurally; glazing; nonbearing partitions; suspended ceilings; stairs isolated from the basic structure; cabinets; bookshelves; medical equipment; and storage racks.
 - 2. Electrical Elements: Power and lighting systems; substations; switchgear and switchboards; auxiliary engine-generator sets; transfer switches; motor control centers; motor generators; selector and controller panels; fire protection and alarm systems; special life support systems; and telephone and communication systems.
 - 3. Mechanical Elements: Heating, ventilating, and air-conditioning systems; medical gas systems; plumbing systems; sprinkler systems; pneumatic systems; boiler equipment and components.
 - Transportation Elements: Mechanical, electrical and structural elements for transport systems, i.e., elevators and dumbwaiters, including hoisting equipment and counterweights.

1.2 QUALITY CONTROL:

A. Shop-Drawing Preparation:

- Have seismic-force-restraint shop drawings and calculations prepared by a professional structural engineer experienced in the area of seismic force restraints. The professional structural engineer shall be registered in the state where the project is located.
- Submit design tables and information used for the design-force levels, stamped and signed by a professional structural engineer registered in the State where project is located.

- B. Coordination:
 - 1. Do not install seismic restraints until seismic restraint submittals are approved by the Resident Engineer.
 - 2. Coordinate and install trapezes or other multi-pipe hanger systems prior to pipe installation.
- C. Seismic Certification:

In structures assigned to IBC Seismic Design Category C, D, E, or F, permanent equipments and components are to have Special Seismic Certification in accordance with requirements of section 13.2.2 of ASCE 7 except for equipment that are considered rugged as listed in section 2.2 OSHPD code application notice CAN No. 2-1708A.5, and shall comply with section 13.2.6 of ASCE 7.

1.3 SUBMITTALS:

- A. Submit a coordinated set of equipment anchorage drawings prior to installation including:
 - Description, layout, and location of items to be anchored or braced with anchorage or brace points noted and dimensioned.
 - Details of anchorage or bracing at large scale with all members, parts brackets shown, together with all connections, bolts, welds etc. clearly identified and specified.
 - 3. Numerical value of design seismic brace loads.
 - 4. For expansion bolts, include design load and capacity if different from those specified.
- B. Submit prior to installation, a coordinated set of bracing drawings for seismic protection of piping, with data identifying the various supportto-structure connections and seismic bracing structural connections, include:
 - 1. Single-line piping diagrams on a floor-by-floor basis. Show all suspended piping for a given floor on the same plain.
 - Type of pipe (Copper, steel, cast iron, insulated, non-insulated, etc.).
 - 3. Pipe contents.
 - 4. Structural framing.
 - 5. Location of all gravity load pipe supports and spacing requirements.
 - 6. Numerical value of gravity load reactions.
 - 7. Location of all seismic bracing.
 - 8. Numerical value of applied seismic brace loads.
 - 9. Type of connection (Vertical support, vertical support with seismic brace etc.).

- 10. Seismic brace reaction type (tension or compression): Details illustrating all support and bracing components, methods of connections, and specific anchors to be used.
- C. Submit prior to installation, bracing drawings for seismic protection of suspended ductwork and suspended electrical and communication cables, include:
 - 1. Details illustrating all support and bracing components, methods of connection, and specific anchors to be used.
 - 2. Numerical value of applied gravity and seismic loads and seismic loads acting on support and bracing components.
 - 3. Maximum spacing of hangers and bracing.
 - 4. Seal of registered structural engineer responsible for design.
- D. Submit design calculations prepared and sealed by the registered structural engineer specified above in paragraph 1.3A.
- E. Submit for concrete anchors, the appropriate ICBC evaluation reports, OSHPD pre-approvals, or lab test reports verifying compliance with OSHPD Interpretation of Regulations 28-6.

1.5 APPLICABLE PUBLICATIONS:

- A. The Publications listed below (including amendments, addenda revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI): 355.2-07.....Qualification for Post-Installed Mechanical

Anchors in Concrete and Commentary

- C. American Institute of Steel Construction (AISC): Load and Resistance Factor Design, Volume 1, Second Edition
- D. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A53/A53M-10....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A307-10....Standard Specification for Carbon Steel Bolts and Studs; 60,000 PSI Tensile Strength. A325-10....Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength A325M-09.....Standard Specification for High-Strength Bolts for Structural Steel Joints [Metric]

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

A490-10.....Standard Specification for Heat-Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength A490M-10.....Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural

Steel Joints [Metric]

- A500/A500M-10.....Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
- A501-07.....Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing
- A615/A615M-09.....Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement A992/A992M-06.....Standard Specification for Steel for Structural

Shapes for Use in Building Framing

A996/A996M-09.....Standard Specification for Rail-Steel and Axel-Steel Deformed Bars for Concrete

Reinforcement

E488-96(R2003).....Standard Test Method for Strength of Anchors in Concrete and Masonry Element

- E. American Society of Civil Engineers (ASCE 7) Latest Edition.
- F. International Building Code (IBC) Latest Edition
- G. VA Seismic Design Requirements, H-18-8, February 2011
- H. National Uniform Seismic Installation Guidelines (NUSIG)
- I. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Seismic Restraint Manual - Guidelines for Mechanical Systems, 1998 Edition and Addendum

1.6 REGULATORY REQUIREMENT:

- A. IBC 2003.
- B. Exceptions: The seismic restraint of the following items may be omitted:
 - 1. Equipment weighing less than 400 pounds, which is supported directly on the floor or roof.
 - 2. Equipment weighing less than 20 pounds, which is suspended from the roof or floor or hung from a wall.
 - 3. Gas and medical piping less than 2 ½ inches inside diameter.
 - 4. Piping in boiler plants and equipment rooms less than 1 ¼ inches inside diameter.
 - 5. All other piping less than 2 ½ inches inside diameter, except for automatic fire suppression systems.

- All piping suspended by individual hangers, 12 inches or less in length from the top of pipe to the bottom of the support for the hanger.
- 7. All electrical conduits, less than 2 ½ inches inside diameter.
- 8. All rectangular air handling ducts less than six square feet in cross sectional area.
- 9. All round air handling ducts less than 28 inches in diameter.
- 10. All ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of support for the hanger.

PART 2 - PRODUCTS

2.1 STEEL:

- A. Structural Steel: ASTM A36.
- B. Structural Tubing: ASTM A500, Grade B.
- C. Structural Tubing: ASTM A501.
- D. Steel Pipe: ASTM A53/A53M, Grade B.
- E. Bolts & Nuts: ASTM A325.

2.2 CAST-IN-PLACE CONCRETE:

- A. Concrete: 28 day strength, f'c = 25 MPa (3,000 psi)
- B. Reinforcing Steel: ASTM A615/615M or ASTM A996/A996M deformed.

PART 3 - EXECUTION

3.1 CONSTRUCTION, GENERAL:

- A. Provide equipment supports and anchoring devices to withstand the seismic design forces, so that when seismic design forces are applied, the equipment cannot displace, overturn, or become inoperable.
- B. Provide anchorages in conformance with recommendations of the equipment manufacturer and as shown on approved shop drawings and calculations.
- C. Construct seismic restraints and anchorage to allow for thermal expansion.
- D. Testing Before Final Inspection:
 - Test 10-percent of anchors in masonry and concrete per ASTM E488, and ACI 355.2 to determine that they meet the required load capacity. If any anchor fails to meet the required load, test the next 20 consecutive anchors, which are required to have zero failure, before resuming the 10-percent testing frequency.
 - Before scheduling Final Inspection, submit a report on this testing indicating the number and location of testing, and what anchor-loads were obtained.

3.2 EQUIPMENT RESTRAINT AND BRACING:

A. See drawings for equipment to be restrained or braced.

3.3 MECHANICAL DUCTWORK AND PIPING; BOILER PLANT STACKS AND BREACHING; ELECTRICAL BUSWAYS, CONDUITS, AND CABLE TRAYS; AND TELECOMMUNICATION WIRES AND CABLE TRAYS

- A. Support and brace mechanical ductwork and piping; electrical busways, conduits and cable trays; and telecommunication wires and cable trays including boiler plant stacks and breeching to resist directional forces (lateral, longitudinal and vertical).
- B. Brace duct and breeching branches with a minimum of 1 brace per branch.
- D. Provide supports and anchoring so that, upon application of seismic forces, piping remains fully connected as operable systems which will not displace sufficiently to damage adjacent or connecting equipment, or building members.
- E. Seismic Restraint of Piping:
 - 1. Design criteria:
 - a. Piping resiliently supported: Restrain to support 120-percent of the weight of the systems and components and contents.
 - b. Piping not resiliently supported: Restrain to support 60-percent of the weight of the system components and contents.
- F. Piping Connections: Provide flexible connections where pipes connect to equipment. Make the connections capable of accommodating relative differential movements between the pipe and equipment under conditions of earthquake shaking.

3.4 PARTITIONS

- A. In buildings with flexible structural frames, anchor partitions to only structural element, such as a floor slab, and separate such partition by a physical gap from all other structural elements.
- B. Properly anchor masonry walls to the structure for restraint, so as to carry lateral loads imposed due to earthquake along with their own weight and other lateral forces.

3.5 CEILINGS AND LIGHTING FIXTURES

- A. At regular intervals, laterally brace suspended ceilings against lateral and vertical movements, and provide with a physical separation at the walls.
- B. Independently support and laterally brace all lighting fixtures. Refer to applicable portion of lighting specification, Section 26 51 00, INTERIOR LIGHTING.

3.6 FACADES AND GLAZING

A. Do not install concrete masonry unit filler walls in a manner that can restrain the lateral deflection of the building frame. Provide a gap

with adequately sized resilient filler to separate the structural frame from the non-structural filler wall.

- B. Tie brick veneers to a separate wall that is independent of the steel frame as shown on construction drawings to ensure strength against applicable seismic forces at the project location.
- C. Install attachments to structure for all façade materials as shown on construction drawings to ensure strength against applicable seismic forces at the project location.

3.7 STORAGE RACKS, CABINETS, AND BOOKCASES

- A. Install storage racks to withstand earthquake forces and anchored to the floor or laterally braced from the top to the structural elements.
- B. Anchor medical supply cabinets to the floor or walls and equip them with properly engaged, lockable latches.
- C. Anchor filing cabinets that are more than 2 drawers high to the floor or walls, and equip all drawers with properly engaged, lockable latches.
- D. Anchor bookcases that are more than 30 inches high to the floor or walls, and equip any doors with properly engaged, lockable latches.

- - - E N D - - -

Page intentionally left blank

SECTION 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Excavation and Backfill: Section 31 20 00, EARTH MOVING.
- D. Concrete and Grout: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- E. Building Components for Attachment of Hangers: Section 05 36 00, COMPOSITE METAL DECKING.
- F. Section 05 50 00, METAL FABRICATIONS.
- G. Section 07 84 00, FIRESTOPPING.
- H. Flashing for Wall and Roof Penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- I. Section 07 92 00, JOINT SEALANTS.
- J. Section 09 91 00, PAINTING.
- K. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- L. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- M. Section 21 05 12, GENERAL MOTOR REQUIREMENTS FOR FIRE-SUPPRESSION EQUIPMENT.
- N. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.
 - Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site.

- 3. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 4. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- C. Guaranty: In GENERAL CONDITIONS.
- D. Supports for sprinkler piping shall be in conformance with NFPA 13.
- E. Supports for standpipe shall be in conformance with NFPA 14.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire-stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- C. Coordination Drawings: Provide detailed layout drawings of all piping systems. Provide details of the following.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- D. Maintenance Data and Operating Instructions:

- Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
- Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A36/A36M-2001.....Carbon Structural Steel A575-96....Steel Bars, Carbon, Merchant Quality, M-Grades R (2002) E84-2003....Standard Test Method for Burning Characteristics of Building Materials E119-2000....Standard Test Method for Fire Tests of Building Construction and Materials C. National Fire Protection Association (NFPA): 90A-09.....Installation of Air Conditioning and Ventilating Systems

101-09.....Life Safety Code

PART 2 - PRODUCTS

2.1 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.2 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.

- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.5 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.6 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.7 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.

- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.8 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.9 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment.
- C. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- E. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- F. Work in Animal Research Areas: Seal all pipe penetrations with silicone sealant to prevent entrance of insects.
- G. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- H. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

3.6 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 21 10 00 WATER-BASED FIRE-SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The design and installation of a hydraulically calculated automatic fire sprinkler system complete and ready for operation, for all portions of the Supply Processing and Distribution (SPD) Areas addition on the ground floor of Building #1.
- B. Installation of new sectional valves in the sprinkler/standpipe system feed mains as indicated on the drawings.
- C. Modification of the existing sprinkler systems as indicated on the drawings.
- D. Existing occupant-use hose racks, valves, and accessible piping to be disconnected from their supply, drained, removed, and all remaining inaccessible piping capped.
- E Work to include all necessary piping modifications, new sprinklers and new sprinkler escutcheons.
- F Provide access doors or panels where control or drain valves are located behind plaster or gypsum walls or ceilings as necessary to install piping above suspended plaster or gypsum ceilings.
- G. Painting of exposed piping and supports to follow Section 09 91 00, PAINTING.

1.2 RELATED WORK

- A. Treatment of penetrations through rated enclosures: Section 07 84 00, FIRESTOPPING.
- B. Access panels for plaster ceilings: Section 08 31 13, ACCESS DOORS AND FRAMES.
- C. Painting of exposed pipe: Section 09 91 00, PAINTING.
- D. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION.
- E. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 DESIGN CRITERIA

- A. The design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system shall be in accordance with the required advisory provisions of NFPA 13. Exceptions to NFPA Fire Codes are as follows:
 - Standpipe system shall be sized to meet volume requirements of NFPA 14 but not pressure requirements.

- 2. Sprinklers are not required in interstitial areas, except along AGV track systems if the vehicle is combustible.
- B. Base system design hydraulic calculations using the area/density method on the following criteria and in accordance with NFPA 13 latest edition.
 - 1. Sprinkler Protection:
 - All patient care, sleeping, treatment, office, waiting areas, educational areas, dining areas, corridors and attics: Light hazard, (0.10 gpm/sq. ft.) over the hydraulically most remote 140 m² (1500 sq. ft.).
 - b. Patient Sleeping Rooms/Areas: Sprinklers with a residential listing shall be installed in accordance with their listed flows and pressures.
 - c. Kitchen, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, Elevator Shafts (if required), Elevator Machine Rooms, Refrigeration Service Rooms, and storage between 9 and 23 m² (100 and 250 sq. ft.): Ordinary Hazard, Group 1, 6.1 L/minute/m² (0.15 gpm/sq. ft.) over the hydraulically most remote 140 m² (1500 sq. ft.).
 - d. Clean and soiled linen rooms, trash rooms, clean and soiled utility rooms, laundry, laboratories, retail sales and storage rooms, storage room over 23 m² (250 sq. ft.), boiler plants, loading docks, warehouse spaces, energy centers, Pharmacy and SPD areas: Ordinary Group 2, 8.1 L/minute/m² (0.20 gpm/sq. ft.) over the hydraulically most remote 140 m² (1500 sq. ft.).
 - e. File Storage Areas with "Rolling Files" Racks: Ordinary Group 2 for the entire area of the space up to 140 m² (1500 sq. ft.) area of sprinkler operation.
 - f. Supply warehouse with storage height less than 3650 mm (12 ft. high): Ordinary Hazard Group 2. Storage height exceeding 3650 mm (12 ft.), per NFPA 13 latest edition.
 - Add water allowance of 15 L/s (250 gpm) for inside and outside hose streams to the sprinkler requirements at the connection to the distribution main.
 - 3. Hydraulic Calculations: The calculated demand including hose stream requirements shall fall no less than 10 percent below the available supply curve.
 - 4. Water Supply:

- a. Elevation of static and elevation of residual test gage: 600 mm 10 ft. below site grade
- b. Churn pressure: __188__psi
- c. Residual pressure: _133____ psi
- d. Flow: _1500_ gpm
- e. Date:4/19/11___ Time:_____
- C. For each sprinkler zone provide a control valve, flow switch, selfcontained test, drain assembly and pressure gage.
- D. Provide a separate sprinkler valve for each traction elevator machine room and other areas as required by NFPA 13 latest edition.
- E. Provide a guard for each sprinkler in the janitors' closets, the elevator machine room and sprinklers within 2100 mm (7 ft.) of the floor and other areas as required by NFPA 13.
- 1.4 QUALIFICATIONS:
- A. Designer's Qualifications: Design work and shop drawings shall be prepared by a licensed engineer practicing in the field of Fire Protection Engineering or a NICET (National Institute for Certification in Engineering Technologies) Level III sprinkler technician.
- B. Installer's Qualifications: The installer shall possess a valid State fire protection contractor's license. The installer shall provide documentation of having successfully completed three projects of similar size and scope.
- C. On-site emergency service within four hours of notification.

1.5 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sprinkler design shall be done by a certified professional. All plans shall be stamped by qualified P.E.
- C. Emergency service point of contact name and 24 hour emergency telephone number.
- D. Manufacturer's Literature and Data:
 - 1. Pipe and fittings.
 - 2. Valves
 - 3. Drips
 - 4. Sprinklers-each type, temperature and model
 - 5. Inspectors Test Alarm Modules
 - 6. Sprinkler Cabinets
 - 7. Sprinkler Plugs

- 8. Pressure Gages
- 9. Pipe Hangers and Supports
- 10. Water Flow Switches
- 11. Valve Tamper Switches
- 12. Water Measuring Device
- E. Detailed drawings in accordance with NFPA 13 the latest editions. Drawings shall be prepared using CADD software stamped by fire protection professional engineer and include all new and existing sprinklers and piping. Use format in use at the VA medical center. Drawings are subject to change during the bidding and construction periods. Any wall and ceiling changes occurring prior to the submittal of contractors shop drawings shall be incorporated into the contractors detailed design at no additional contract cost.
- F. Hydraulic calculations for each sprinkler system in accordance with NFPA 13 latest edition.
- G. Operation and Maintenance Data:
 - 1. Indicating Valves
 - 2. Water Flow and valve tamper switches
 - 3. Alarm Valves
 - 4. Copy of NFPA 25
- H. Recommended preventive maintenance schedule.

1.6 AS-BUILT DOCUMENTATION

- A. A Mylar as-built drawing and two blueline copies shall be provided for each drawing. One copy of final CADD drawing files shall also be provided on 89 mm (3 1/2 in.), 1.44 mb diskette, for each drawing.
- B. Four sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- C. Four sets of hydraulic calculations for each sprinkler system updated to include submittal review comments and any changes to the installation which affect the calculations including one electronic set in PDF format.
- D. Four copies of the hydrostatic report and NFPA 13 material and test certificate for each sprinkler system.
- E. Four sets of operation and maintenance data updated to include submittal review comments and any equipment substitutions including one copy of NFPA 25.
- F. Manufacturers literature, hydraulic calculations, reports and operation and maintenance data shall be in a labeled 3-ring binder.

1.7 WARRANTY

- A. All work performed and materials and equipment furnished under this contract shall be free from defects for a period of one year from date of acceptance by the government.
- B. All new piping and equipment incorporated into the new system shall be hydrostatically tested and warranted as new.

1.8 APPLICABLE PUBLICATIONS

supervisory devices.

- A. Publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA)
- 13-2010..... Installation of Sprinkler Systems 14-2010..... Installation of Standpipe and Hose Systems 17A-2009.....Standard for wet chemical extinguishing systems 20-2003.....Installation of Centrifugal Fire Pump 24-2010..... Fire Service Mains and Their Appurtenances Based Fire Protection Systems 70-2011.....National Electrical Code 72-2010.....National Fire Alarm Code 82-2009.....Incinerators, Waste and Linen Handling Systems and Equipment 170-2009.....Standards for Fire Safety Symbols 291-2010...... Fire Flow Testing and Marking of Hydrants C. Underwriters Laboratories Inc. (UL) 2011..... Fire Protection Equipment Directory D. Factory Mutual Engineering Corporation (FM) 2010.....Approval Guide E. American Society for Testing and Materials (ASTM) F442-09.....Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe F. American Society of Sanitary Engineering (ASSE) 1015-2009......Double Check Backflow Prevention Assembly G. All inspections, testing and maintenance work required by NFPA 25, NFPA 20, NFPA 13 and recommended by the equipment manufacturer shall be provided. Work shall include operation of sprinkler system alarm and

- Maintenance and testing shall be performed on a quarterly basis. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment, and cleaning of all equipment.
- I. Non-included Work: Maintenance service shall not include the performance of any work due to improper use, accidents or negligence for what the contractor is not responsible.
- J Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of work performed and parts replaced shall be provided.
- K Emergency Service:
 - Normal and overtime emergency call-back service shall consist of an on-site response to calls within four hours of notification.
 - 2. Overtime emergency call-back service shall be limited to minor adjustments and repairs to affect the integrity of the system.
 - 3. The fire pump, standpipe system and all but a single sprinkler system must be operational before the responding service person leaves the facility.
- N. The contractor shall maintain a log at the fire pump controller. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

PART 2 - PRODUCTS

2.1 GENERAL

All devices and equipment shall be Underwriters Laboratories Inc. listed for their intended purpose. All sprinklers shall be Factory Mutual approved.

2.2 PIPING AND FITTINGS

- A. Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Fire Protection water supply within the building up to sprinkler system isolation valves shall be per NFPA 13 black steel, schedule 10 minimum.

- C. Sprinkler piping downstream of the isolation valve on wet-pipe systems shall be per NFPA 13 black steel, schedule 10 minimum.
- D. Sprinkler piping of a dry pipe system shall be galvanized. Schedule 40 minimum.
- E. MRI Suite: Copper.
- F. Threaded or flanged fittings shall be ANSIB1 6.3 cast iron, class 125 minimum. Threaded fittings are not permitted on pipe with wall thickness less than schedule 40.
- G. All fittings on galvanized piping shall be galvanized in accordance with ASTM A53.
- H. Slip type or clamp-on type rubber gasketed fittings shall be listed for each piping application.
- I. Piping Materials Standards:
 - 1. Ferrous piping follow ASTM A 795 Standard
 - 2. Welded and seamless steel pipe follow ANSI/ASTM A 53
 - 3. Wrought steel pipe follow ANSI/ASME B36.10M
 - 4. Electric resistance welded steel pipe follow ASTM A 135
 - 5. Seamless copper tube follow ASTM B 75
 - 6. Seamless copper water tube follow ASTM B 88
 - 7. Wrought seamless copper and copper alloy tube follow ASTM B 251
 - Fluxes for soldering applications of copper and copper alloy tube follow ASTM B 813
 - 9. Brazing filler metal follow AWS A5.8
 - 10. Solder metal, 95-5 follow ASTM B 32
 - 11. Alloy material follow ASTM B 446
 - 12. Non-metallic piping CPVC pipe follow ASTM F 442
- J. Fitting Materials Standards:
 - 1. Cast iron threaded fitting, Class 125 and 250 follow ASME B16.4
 - 2. Cast iron pipe flanges and flanged fittings follow ASME B16.1
 - 3. Malleable iron threaded fittings, Class 150 and 300 steel follow ASME B16.3
 - 4. Factory made wrought steel buttweld fittings follow ASME B16.9
 - Buttwelding ends for pipe, valves, flanges, and fitting follow ASME B16.25
 - 6. Wrought copper and copper alloy solder joint pressure fittings follow ASME B16.22
 - 7. Cast copper alloy solder joint pressure fitting follow ASME B16.18
 - 8. Chlorinated polyvinyl chloride (CPVC) follow ASTM F 437

K. Pipe Identification - All pipe, including specially listed pipe allowed by NFPA 13, shall be marked continuously along its length by the manufacturer in such a way as to properly identify the type of pipe. Pipe identification shall include the manufacturer's name, model designation, or schedule.

2.3 VALVES

- A. Listed Indicating Valves:
 - 1. Gate: OS&Y, 2400 kPa (350 psi) Water Working Pressure (WWP) .
 - Butterfly: Gear operated, indicating type, 2400 kPa (350 psi) water working pressure (WWP). Butterfly valves are to be installed in a manner that does not interfere with the operation of any system component.
 - 3. Ball (inspectors test and drain only): iron body, stainless steel trim, for 2050 kPa (300 psi) service, indicating type.
 - Ball and butterfly valves shall not be used on incoming water service, and on the suction side of either the fire pump or jockey pump.
- B. Check Valves: Swing type, rubber faced or wafer type spring loaded butterfly check valve, 2400 kPa (350 lb.) water working pressure (WWP).
- C. Alarm Check: Iron body, bronze mounted, variable pressure type with retarding chamber. Provide basic trimmings for alarm test by pass, gages, drain connections, mounting supports for retarding chamber, and drip funnel. Provide pressure sensitive alarm switch to actuate the fire alarm system.
- D. Drain Valves: Threaded bronze angle, globe, ball or butterfly, 4100 kPa (600 psi), Water or gas (WOG) equipped with reducer and hose connection with cap or connected to a drain line.
- E. Self-contained Test and Drain Valve:
 - Ductile iron body with bronze "Drain" and "Test" bonnets. Acrylic sight glass for viewing test flow. Various sized orifice inserts to simulate flow through 14 mm (17/32 in.), 13 mm (1/2 in.), 12 mm (7/16 in.), and 10 mm (3/8 in.) diameter sprinklers, 32 mm (1 1/4 in.) female threaded outlets or 32 mm (1 1/4 in.) one-quarter turn locking lug outlets for plain end pipe (end preparation to be in accordance with manufacturer's recommendation).
 - Bronze body, with chrome plated bronze ball, brass stem, steel handle, Teflon seat and sight glasses. Provide valve with three position indicator plate (off, test, and drain), 6 mm (1/4 in.)

tapping for pressure gage and various other orifice inserts to simulate flow through 10 mm (3/8 in.), 12 mm (7/16 in.), 13 mm (1/2 in.), and 14 mm (17/32 in.) diameter sprinklers.

- F. Dry Pipe Valve: Flanged, iron body. Provide basic trimmings for alarm test bypass, water flow alarm, high and low pressure switches, gages, drain connections, drip funnel, accelerator and necessary pipe, fittings and accessories required to provide a complete installation.
- G. Standpipe Hose Valve: 65 mm (2 1/2 in.) screwed, brass hose angle valve, 2400 kPa (350 psi) water working pressure, WWP, male hose threads same as local fire department service, 65 mm x 40 mm (2 1/2 in. x 1 1/2 in.) reducer, and with permanently attached polished brass cap and chain: Provide for valves installed in a cabinet a 65 mm (2 1/2 in.) attached cap and chain and a 65 mm x 40 mm (2 1/2 in. x 1 1/2 in.) reducer placed in cabinet.
- 2.4 AUTOMATIC BALL DRIPS

Cast brass 20 mm (3/4 in.) in line automatic ball drip with both ends threaded with iron pipe threads.

2.5 SPRINKLERS

A. Quick response sprinklers shall be standard type except as noted below. The maximum distance from the deflector to finished ceiling shall be 50 mm (2 in.) for pendent sprinklers. Pendent sprinklers in finished areas shall be provided with semi-recessed adjustable screwed escutcheons and installed within the center one-third of their adjustment. The sprinkler shall be installed in the flush position with the element exposed below the ceiling line. At the specified locations, provide the following type of sprinklers. All sprinklers except "institutional" type sprinklers shall be FM approved. Provide quick response sprinklers in all areas, except where specifically prohibited by their listing or approval, and the following:

LOCATION	TYPE
Mechanical Equipment Rooms, Electrical & Electrical Switch Gear Rooms	Quick Response, Upright or Telephone Closets, Transformer Vaults Pendent Brass [93 °C (200 °F)]
Elevator Shafts, Dumbwaiter Shafts, Elevator Machine Rooms, Elevator Pits	Standard Upright or Sidewall Brass [93 °C (200 °F)]
Gravity Type Linen & Trash Chutes	Standard Upright or Pendent Brass [66-74 °C (150-165 °F)]
Warehouse [Storage under 3600 mm (12 ft.)]	Quick Response, Pendent or Upright, Brass [77-74 °C (150- 165 °F)]
Warehouse [Storage over 3600 mm (12 ft.)]	See NFPA 13
Cold rooms, Freezers, Controlled Temperature Rooms and Unheated Areas	Standard Pendent, Dry Type [66- 74 °C (150-165 °F)]
Kitchen Hoods, Exhaust Ducts & Duct Collars	Standard Pendent or Upright (Extra High Temperature [163-191 °C (325- 375 °F.)]
Generator Rooms	Standard Pendent or Upright [141 °C (286 °F)]
Mental Health and Behavioral Unit: Nursing Bedroom, Toilets and all areas with plaster/ dry wall ceilings within the area	Institutional Quick Response; Chrome plated with 85 lb. breakaway, Pendent, Horizontal Sidewall [66-74 °C (150-165 °F)]
Patient Sleeping, Patient Bathrooms, and Corridors within a Patient Ward	Residential, Quick Response, Recessed Pendent, Chrome Plated, [66-74 °C (150-165 °F)]
All Patient Treatment, Elevator Lobbies and Corridors	Quick Response, Recessed Pendent, Chrome Plated [66-74 °C [150- 165 °F)]
Operating Rooms, Radiology Rooms, Nuclear Medicine Rooms	Quick Response, Recessed Pendent, Chrome Plated, Sidewall [66-74 °C (150-165 °F)]
All Areas Not Listed Above	Quick Response, Recessed Pendent, Sidewall, Chrome Plated [66-74 °C (150-165 °F)]

- B. Do not use quick response sprinklers in the same sprinkler zone with other sprinklers types. In sprinklered light hazard patient zones that are expanded into fully sprinklered zones, revise the existing system to contain quick response sprinklers.
- C. Sprinklers to be installed as per NFPA 13.

2.7 TOOLS AND REPLACEMENT PARTS

- A. Sprinkler Cabinet:
 - 1. Provide a minimum 5 percent spare sprinklers with escutcheons with a minimum of two of each type/or as required by NFPA-13, whichever is more demanding.
 - 2. Provide a minimum of two of each type sprinkler wrenches used.
 - 3. Install cabinets in each building where directed by the Resident Engineer.
 - 4. Spare sprinklers shall be kept in a cabinet where ambient temperatures do not exceed 100 Deg F.
- B. Sprinkler system water flow switch: one of each size provided.
- C. Sprinkler system valve tamper switch: one of each type provided.
- D. Sprinkler system pressure switch: one of each type provided.
- E. Provide two sprinkler plugs attached to multi-section extension poles 2400 mm (8 ft.) minimum.

2.8 IDENTIFICATION SIGNS

Provide for all new and existing sectional valves, riser control valves, system control valves, drain valves, test and drain connections and alarm devices with securely attached identification signs (enamel on metal) in accordance with NFPA 13.

2.9 HANGERS AND EARTHQUAKE BRACING

In accordance with NFPA 13 and 14. Comply with seismic requirements as per 15050 for seismic zone locations.

2.10 WATERFLOW SWITCHES

A. Integral, mechanical, non-coded, non-accumulative retard type, with two sets of SPDT auxiliary contacts and adjustable from 0 to 90 seconds. Set flow switches at an initial setting between 20 and 30 seconds.

2.11 VALVE SUPERVISORY SWITCHES

- A. Provide each indicating sprinkler, standpipe and fire pump control valve with adequate means for mounting a valve supervisory switch.
- B. Mount switch so as not to interfere with normal operation of the valve and adjust to operate within two revolutions toward the closed position of the valve control, or when the stem is moved no more than one fifth of the distance from its normal position.
- C. The mechanism shall be contained in a weatherproof die cast aluminum housing, which shall provide a 20 mm (3/4 in.) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.

- D. Switch housing to be finished in red baked enamel.
- E. Supervisory switches for ball and butterfly valves may be integral with the valve.

2.12 WALL, FLOOR AND CEILING PLATES

- A. Exposed piping passing through walls, floors or ceilings shall be provided with chrome colored escutcheon plates.
- B. Comply with NFPA 101 Fire Barrier Penetration codes.

2.13 PRESSURE GAUGE

A. Provide a 1280 kPa (200 psi) pressure gauge at each flow alarm switch location, at the top of each sprinkler or standpipe riser, at each main drain connection, and on the suction and discharge of the fire pump.

2.14 HANGERS

- A. Hangers shall be designed to support five times the weight of the water filled pipe plus 250 Lb (114Kg) at each point of piping support.
- B. These points of support shall be adequate to support the system.
- C. The spacing between hangers shall not exceed the value given for the type of pipe as indicated in NFPA 13 tables.
- D. Hanger components shall be ferrous.
- E. Detailed calculations shall be submitted, when required by the reviewing

Authority, showing stress developed in hangers, piping, fittings and safety factors allowed.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Supervisory Switches: For each indicating sprinkler system riser, sprinkler zone, control valve, provide a supervisory switch that is connected to the fire alarm system. Standpipe hose valves and test and drain valves shall not be provided with supervisory switches.
- B. Waterflow Switches: For each sprinkler zone and each standpipe riser and where indicated on drawings, provide a waterflow switch. Install waterflow switch and adjacent valves in easily accessible locations.
- C. Sprinkler Zone: Each sprinkler zone shall coincide with each smoke zone and fire alarm zone.
- D. Piping connections:
 - 1. Sprinkler System Only: Start at the point of connection noted on the drawings to extend the existing sprinkler system.
- E. Drains, Test Pipes and Accessories:

- 1. Provide a drain at base of risers, drain connection on valved sections, and drains at other locations for complete drainage of the system. Provide valve in drain lines and connect to the central drain riser. Discharge riser outside over splash block, indirectly over standpipe drain connected to storm sewer, or as indicated. The main drain shall be capable of full discharge test without allowing water to flow onto the floor.
- 2. Provide test pipes in accordance with NFPA 13. Test pipes shall be valved and piped to discharge through proper orifice as specified above for drains.
- F. Provide a 1280 kPa (200 psi) pressure gage at each flow alarm switch location, at the top of each sprinkler or standpipe riser, at each main drain connection, and on the suction and discharge of the fire pump.
- G. Conceal all piping, except in pipe basements, stairwells and rooms without ceilings.
- H. Install new piping and sprinklers aligned with natural building and other sprinklers lines.
- I. Locate piping in stairways as near ceiling as possible to prevent tampering by unauthorized personnel. Provide a minimum headroom of 2250 mm (7 ft.-6 in.) for all piping.
- J. Piping arrangement shall avoid contact with other piping and equipment and allow clear access to other equipment or devices requiring access or maintenance.
- K. Cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections, shall be affixed near to the pipe where the originated. They shall be displayed until final inspection and then removed.
- L. For each new or existing fire department connection, locate the symbolic sign given in NFPA 170 a distance of 2400 to 3000 mm (8 to 10 ft.) above each connection location. The sign shall be 450 x 450 mm (18 x 18 in.) with symbol at least 350 x 350 mm (14 x 14 in.).
- M. Firestopping shall comply with Section 07 84 00, FIRESTOPPING. All holes through stairways, smoke barrier walls, and fire walls shall be sealed on a daily basis.
- N. Provide hydraulic design information signage as required by NFPA 13 and 14.
- 0. Install access doors in ceilings of rooms where above ceiling access is required.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

3.2 TEST

A. Automatic Sprinkler System: NFPA 13 and 25.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two four-hour periods for instructing personnel in the operation and maintenance of the fire pump and sprinkler system, on the dates requested by the Resident Engineer.

- - - END - - -

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SCOPE OF WORK

- A. Design, installation and testing shall be in accordance with NFPA 13 except for specified exceptions.
- B. The design and installation of a hydraulically calculated automatic wet system complete and ready for operation, for all portions of the Supply Processing and Distribution (SPD) Areas addition on the ground floor of Building #1.
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING, Treatment of penetrations through rated enclosures.
- C. Section 09 91 00, PAINTING.
- D. Section 21 10 00, WATER-BASED FIRE-SUPPRESSION SYSTEMS, Dry sprinklers, fire pumps, etc.
- E. Section 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION

1.3 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Pennsylvania and City of Philadelphia fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL and approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA.
- C. Submittals: Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering. As Government review is for

technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide index referencing the appropriate specification section. Submittals shall include, but not be limited to, the following:

- 1. Qualifications:
 - a. Provide a copy of the installing contractors' fire sprinkler city and state contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering.
- Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to NFPA 13. Include a site plan showing the piping to the water supply test location.
- 3. Manufacturers Data Sheets:
 - a. For backflow preventers, provide flow test curves from UL, FM, or the Foundation for Hydraulic Research and Cross-Connection Control to verify pressure loss calculations.
 - b. Provide for materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheet describes items in addition to that item being submitted, clearly identify proposed item on the sheet.
- 4. Calculation Sheets: Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of NFPA 13.
- 5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submittals shall include, but not be limited to, the following:
 - a. One complete set of reproducible as-built drawings showing the installed system with the specific interconnections between the waterflow switch or pressure switch and the fire alarm equipment.
 - b. Complete, simple, understandable, step-by-step, testing instructions giving recommended and required testing frequency of all equipment, methods for testing all equipment, and a complete

trouble shooting manual. Provide maintenance instructions on replacing any components of the system including internal parts, periodic cleaning and adjustment of the equipment and components with information as to the address and telephone number of both the manufacturer and the local supplier of each item.

- c. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13.
- d. Certificates shall document all parts of the installation.
- e. Instruction Manual: Provide one copy of the instruction manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser.
- D. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13. Recommendations in appendices shall be treated as requirements.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.
 - b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets.
 - c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
 - d. Request clarification from the Government for any hazard classification not identified.

- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Base water supply on a flow test of:
 - a. Location _ Fire Pump Discharge.
 - b. Elevation Static Test Gauge _-10__ ft
 - c. Elevation Residual Test Gauge _-10 ft
 - d. Churn pressure: <u>188</u> psi
 - e. Residual pressure: <u>133</u> psi
 - f. Flow: <u>1500</u> gpm
 - g. Date: <u>4/19/11</u>_ Time _____
- 5. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch and a test and drain assembly with pressure gauge.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 13-2010......Installation of Sprinkler Systems 101-2009.....Safety to Life from Fire in Buildings and Structures (Life Safety Code)
 - 170-1999.....Fire Safety Symbols
- C. Underwriters Laboratories, Inc. (UL):
 Fire Protection Equipment Directory 2009
- D. Factory Mutual Engineering Corporation (FM): Approval Guide - 2010
- E. International Building Code 2009
- F. Foundation for Cross-Connection Control and Hydraulic Research-2005

PART 2 PRODUCTS

2.1 PIPING & FITTINGS

A. Sprinkler systems in accordance with NFPA 13. Use nonferrous piping in MRI Scanning Rooms.

2.2 VALVES

A. Valves in accordance with NFPA 13.

- B. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- C. The wet system control valve shall be a listed indicating type valve. Control valve shall be UL Listed and FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI. (No Substitutions Allowed).
- G. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.3 FIRE DEPARTMENT SIAMESE CONNECTION

A. Existing Fire Department Connection to remain.

2.4 SPRINKLERS

- A. All sprinklers except "institutional" type sprinklers shall be FM approved. Provide quick response sprinklers in all areas, except where specifically prohibited by their listing or approval.
 - 1. Cold storage rooms: Standard response dry pendant sprinklers.
- B. Temperature Ratings: In accordance with NFPA 13, except as follows:
 - Sprinklers in elevator shafts, elevator pits, and elevator machine rooms: Intermediate temperature rated.

2.5 SPRINKLER CABINET

Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each system. Locate adjacent to the riser. Sprinkler heads shall be installed in center of tile or center to center.

2.6 IDENTIFICATION SIGNS/HYDRAULIC PLACARDS

Plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Enter pertinent data for each system on the hydraulic placard.

2.7 SWITCHES:

- A. Contain in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.
- C. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.8 GAUGES

A Provide gauges as required by NFPA 13.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

Project No. 642-11-150 Final Documents: 8/17/2012

2.9 PIPE HANGERS AND SUPPORTS

A Supports, hangers, etc., of an approved pattern placement to conform to NFPA 13. System piping shall be substantially supported to the building structure. The installation of hangers and supports shall adhere to the requirements set forth in NFPA 13, Standard for Installation of Sprinkler Systems. Materials used in the installation or construction of hangers and supports shall be listed and approved for such application. Hangers or supports not specifically listed for service shall be designed and bear the seal of a professional engineer.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates for exposed piping passing though walls, floors or ceilings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Install concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. Locate piping in stairways as near to the ceiling as possible to prevent tampering by unauthorized personnel, and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). To prevent an obstruction to egress, provide piping clearances in accordance with NFPA 101.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow switch and adjacent valves in easily accessible locations.
- G. Inspector's Test Connection: Install and supply in conformance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- I. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- J. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- K. Provide pressure gauge at each water flow alarm switch location and at each main drain connection.
- L. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- N. Securely attach identification signs to control valves, drain valves, and test valves. Locate hydraulic placard information signs at each sectional control valve where there is a zone water flow switch.
- O. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- P. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve in occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Resident Engineer or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests. Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

Project No. 642-11-150 Final Documents: 8/17/2012

B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise Resident Engineer to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the Resident Engineer.

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 31 20 00, EARTH MOVING: Excavation and Backfill.
- D. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- E. Section 05 36 00, COMPOSITE METAL DECKING. Building Components for Attachment of Hangers.
- F. Section 07 84 00, FIRESTOPPING.
- G. Section 07 92 00, JOINT SEALANTS.
- H. Section 09 91 00, PAINTING.
- I. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- J. Section 22 07 11, PLUMBING INSULATION.
- K. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- L. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- M. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
 - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These

organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Resident Engineer (RE).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".

- 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
- 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the Resident Engineer for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the Resident Engineer at least two weeks prior to commencing installation of any item.
 - 2. Complete layout drawings shall be required by Paragraph 1.4, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code.

1.4 SUBMITTALS

- A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMNON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems.

Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Fire stopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.

- 3. Hangers, inserts, supports, and bracing.
- 4. Pipe sleeves.
- 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- I. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided.
 - 3. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Damaged equipment shall be replaced with an identical unit as determined and directed by the Resident Engineer. Such replacement shall be at no additional cost to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing

Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.

4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): SEC IX-2007.....Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications.
- C. American Society for Testing and Materials (ASTM):
 - A36/A36M-2008.....Standard Specification for Carbon Structural Steel
 - A575-96 (R 2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002)
 - E84-2005.....Standard Test Method for Surface Burning Characteristics of Building Materials
 - E119-2008a.....Standard Test Methods for Fire Tests of Building Construction and Materials
- D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:
 - SP-58-02.....Pipe Hangers and Supports-Materials, Design and Manufacture
 - SP 69-2003 (R 2004)....Pipe Hangers and Supports-Selection and Application
- E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007...Motors and Generators
- D. International Code Council, (ICC): IBC-06, (R 2007).....International Building Code IPC-06, (R 2007).....International Plumbing Code

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.

- All components of an assembled unit need not be products of same manufacturer.
- Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

2.4 LIFTING ATTACHMENTS

Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.

- B. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71° C (160°F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.
 - 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1, Part 31.4.4.2.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of

the Energy Policy Act of 1992 (EPACT). Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.

- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC).
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. A time delay (20 seconds minimum) relay shall be provided for switching from high to low speed.
- F. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.6 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications.
- B. The combination of controller and motor shall be provided by the respective pump manufacturer, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficient type, "invertor duty", and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
 - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00,

PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified.

- C. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage, 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling.

2.8 FIRE STOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for pipe insulation.

2.9 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.10 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC), latest edition, and SECTION 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Submittals based on the International Building Code (IBC), latest edition, SECTION 13 05 41 requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in a state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the Resident Engineer in all cases. See these specifications for lateral force design requirements.

- B. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8-inch) outside diameter.
- E. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 36 00, COMPOSITE METAL DECKING.
- F. For Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm

(1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.

- I. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC and BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
 - j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
 - 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.

- c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
- d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- J. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of one inch past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- K. Seismic Restraint of Piping: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.11 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.

- For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- F. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel Sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- G. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.12 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.

- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.13 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3 inch) pipe, 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.14 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.

B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.

- C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.
 - 2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
 - 3. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or

mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- J. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- K. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and section 23 09 23 DIRECT DIGITAL CONTROLS FOR HVAC
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- M. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.
- N. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
- 0. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.

2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Percentions to Upgrade HVAC in SPDFinal Documents: 8/17/2012

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the Resident Engineer.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
 - 1. Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves,

anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to Resident Engineer in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and

specifications of the other disciplines in the project for additional facilities to be demolished or handled.

C. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the facilities for beneficial use by the Government, the area of work, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material And Equipment shall NOT be painted::
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
 - Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint obtained from manufacturer or computer matched.

- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

A. Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems

respectively during first actual seasonal use of respective systems following completion of work.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to Resident Engineer not less than 30 days prior to completion of a phase or final inspection.
- B. All new and temporary equipment and all elements of each assembly shall be included.
- C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- E. Lubrication instructions, type and quantity of lubricant shall be included.
- F. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- G. Set points of all interlock devices shall be listed.
- H. Trouble-shooting guide for the control system troubleshooting guide shall be inserted into the Operations and Maintenance Manual.
- The combustion control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- J. Emergency procedures.

3.12 INSTRUCTIONS TO VA PERSONNEL

Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

Page intentionally left blank

SECTION 22 05 12

GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section describes the general motor requirements for plumbing equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one section of Division 26.
- B. 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection of motors

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Motor nameplate information shall be submitted including electrical ratings, dimensions, mounting details, materials, horsepower, power factor, current as a function of speed, current efficiency, speed as a function of load, RPM, enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
 - 3. Motor parameters required for the determination of the Reed Critical Frequency of vertical hollow shaft motors shall be submitted.
- C. Manuals:
 - Companion copies of complete maintenance and operating manuals, including technical data sheets and application data shall be submitted simultaneously with the shop drawings.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, four copies of the following certification shall be submitted to the Resident Engineer:
 - 1. Certification shall be submitted stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.

1.4 APPLICABLE PUBLICATIONS:

A. The publications listed below (including amendments, addenda, revisions, supplements and errata) shall form a part of this

specification to the extent referenced. Publications are referenced in the text by designation only.

- B. National Electrical Manufacturers Association (NEMA):
 - MG 1-07.....Motors and Generators

MG 2-01.....Safety Standard and Guide for Selection,

Installation and Use of Electric Motors and Generators

C. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - c. Motors connected to high voltage systems: Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- C. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- D. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.

- E. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- F. Motor Enclosures:
 - 1. Shall be the NEMA types shown on the drawings for the motors.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
 - All motors in hazardous locations shall be approved for the application and meet the Class and Group as required by the area classification.
- G. Electrical Design Requirements
 - 1. Motors shall be continuous duty.
 - The insulation system shall be rated minimum of class B, 130° C (266° F).
 - The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80° C (176° F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted.
- H. Mechanical Design Requirements
 - Bearings shall be rated for a minimum of 26,280 hours L-10 life at full load direct coupled, except vertical high thrust motors.
 - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30% of normal down thrust.
 - 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.
 - 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
 - 6. Vibration shall not exceed 0.15 inch per second, unfiltered peak.
 - 7. Noise level shall meet the requirements of the application.
 - 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.

- 9. All external fasteners shall be corrosion resistant.
- 10. Condensation heaters, when specified, shall keep motor windings at least 5° C (41° F) above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- Additional requirements for specific motors, as indicated in other sections, shall also apply.
- J. NEMA Premium Efficiency Electric Motors, Motor Efficiencies: All permanently wired polyphase motors of 746 Watts (1 Horsepower) or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 Watts (one horsepower) or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Efficiencies				Minimum Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%

K. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. Power factor correction capacitors shall be installed unless the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

Megger all motors after installation, before start-up. All shall test free from grounds.

- - - E N D - - -

Page intentionally left blank

SECTION 22 05 19 METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

This section describes the requirements for water meters and pressure gages.

1.2 RELATED WORK

Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Water Meter.
 - 2. Pressure Gages.
 - 3. BACnet communication protocol
 - 4. Product certificates for each type of meter and gauge
- C. Operations and Maintenance manual shall include:
 - 1. System Description
 - 2. Major assembly block diagrams
 - 3. Troubleshooting and preventive maintenance guidelines
 - 4. Spare parts information.
- D. Shop Drawings shall include the following:
 - One line, wiring and terminal diagrams including terminals identified, protocol or communication modules, and Ethernet connections.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI): American Society of Mechanical Engineers (ASME): (Copyrighted Society) B40.1-05.....Gauges-Pressure Indicating Dial Type-Elastic
- C. American Water Works Association (AWWA): C700-07 (R 2003).....Standard for Cold Water Meters, Displacement Type, Bronze Main Case
 - C701-07.....Cold Water Meters-Turbine Type, for Customer Service AWWA/ ANSI

C702-01.....Cold water meters - Compound Type

D. International Code Council (ICC): IPC-06......(2007 Supplement) International Plumbing Code

1.5 AS-BUILT DOCUMENTATION

- A. The electronic documentation and copies of the Operations and Maintenance Manual, approved submittals, shop drawings, and other closeout documentation shall be prepared by a computer software program complying with Section 508 of the Rehabilitation Act of 1973, as amended (29 U.S.C 794d). The manufacturer or vendor of the software used to prepare the electronic documentation shall have a Voluntary Product Accessibility Template made available for review and included as part of the Operations and Maintenance Manual or closeout documentation. All available accessibility functions listed in the Voluntary Accessibility Template shall be enabled in the prepared electronic files. As Adobe Acrobat is a common industry format for such documentation, following the document, Creating Accessible Adobe PDF files, A Guide for Document Authors" that is maintained and made available by Adobe free of charge is recommended.
- B. Four sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- C. Four sets of operation and maintenance data updated to include submittal review comments shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 PRESSURE GAGES FOR WATER AND SEWAGE USAGE

A. ANSI B40.1 all metal case 114 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1375 kPa (0 to 200 psi) gauge.

- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psi.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gages shall be installed in piping tees with pressure gage located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gage.
- C. Pressure gages shall be installed where indicated on the drawings and at the following locations:
 - 1. Inlet and outlet of each pressure reducing valve
 - 2. Suction and discharge of each domestic water pump.

- - - E N D - - -

Page intentionally left blank
SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section describes the requirements for general-duty valves for domestic water and sewer systems.

1.2 RELATED WORK

A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Valves.
 - 2. Backflow Preventers.
 - 3. Pressure Reducing Valves.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):A536-84(R 2004) Standard Specification for Ductile Iron Castings
- C. American Society of Sanitary Engineering (ASSE) ASSE 1003-01 (R 2003)...Performance Requirements for Water Pressure Reducing Valves ASSE 1012-02.....Backflow Preventer with Intermediate Atmospheric Vent

ASSE 1013-05.....Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers

E. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS):

SP-25-98.....Standard Marking System for Valves, Fittings, Flanges and UnionsSP-67-02a (R 2004) Butterfly Valve of the Single flange Type (Lug Wafer) Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

SP-70-06.....Cast Iron Gate Valves, Flanged and Threaded Ends.

SP-72-99.....Ball Valves With Flanged or Butt Welding For General Purpose

SP-80-03.....Bronze Gate, Globe, Angle and Check Valves.

SP-110-96.....Ball Valve Threaded, Socket Welding, Solder

Joint, Grooved and Flared Ends

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces
 - 5. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 meters (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.

- E. Ball valves, pressure regulating valves, gate valves, globe valves, and plug valves used to supply potable water shall meet the requirements of NSF 61.
- F. Shut-off:
 - 1. Cold, Hot and Re-circulating Hot Water:
 - a. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-72, SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4140 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be solder,
 - b. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A 536, ductile iron.
 - c. 100 mm (DN100) (4 inches) and larger:
 - 1) Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS-SP-70 type I standard. The gate valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall meet ASTM A 126, grey iron with bolted bonnet, flanged ends, bronze trim, and solid wedge disc. The gate valve shall be gear operated for sizes under 200 mms or DN200 (8 inches) and crank operated for sizes 200 mms or DN200 (8 inches) and above
 - 2) Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The butterfly valve shall be lug type, suitable for bidirectional dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall be EPDM with stainless steel disc and stem.
 - 3) Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 1380 kPa

(200 psig). The valve materials shall be polyamide coated ductile iron conforming to ASTM A536 with two piece stainless steel stem, EPDM encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated

 Reagent Grade Water: Valves for reagent grade, reverse osmosis, or deionized water service shall be ball type of same material as used for pipe.

C. Check:

- 1. Check valves less than 80 mm or DN80 (3 inches) and smaller) shall be class 125, bronze swing check valves with non metallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B 62, solder joints, and PTFE or TFE disc.
- 2. Larger than 100 mm or DN100 (4 inches and larger):
 - a. Check values shall be class 125, iron swing check value with lever and weight closure control. The check value shall meet MSS SP-71 Type I standard. The check value shall have a CWP rating of 1380 kPa (200 psig). The check value shall have a clear or full waterway body design with gray iron body material conforming to ASTM A 126, bolted bonnet, flanged ends, bronze trim.
 - b. All check valves on the discharge side of submersible sump sumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops.

2.2 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

- A. 80 mm or DN80 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The bronze bell housing and access cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly shall be accessible for maintenance without having to remove the body from the line.
- B. The regulator shall have a tap for pressure gauge.

- C. The regulator shall have a temperature rating of 100° C (210° F) for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9-kPa (+/- 1 psig).
- D. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
- E. Connections Valves and Strainers: shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gage shall be installed on the low pressure side of the line.

2.3 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be ASSE 1013 listed and certified.
- B. Reduced pressure backflow preventers shall be installed in the following applications.
 - 1. Deionizers.
 - 2. Sterilizers.
 - 3. Atmospheric Vacuum Breaker: ASSE 1001
 - a. Hose bibs and sinks w/threaded outlets.
 - b. Detergent system
- C. The atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be either cast bronze. All internal polymers shall be NSF listed. The seat disc elastomer shall be silicone. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable.
- D. The double check detector backflow prevention assembly shall be ASSE listed 1048 and supply with full port OS&Y gate valves. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade. The seat ring and check valve shall be Noryl (NSF listed). The stem shall be stainless steel conforming to ASTM A 276. The seat disc elastomers shall be EPDM. The first and second check valve shall be accessible for maintenance without removing the device from the line.

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Final Documents: 8/17/2012

CHAINWHEELS 2.5

- A. Valve chain wheel assembly with sprocket rim brackets and chain shall be constructed according to the following:
 - 1. Brackets: type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to valve stem.
 - 3. Sprocket rim with chain guides: ductile or cast iron of type and size required for valve with zinc coating.
 - 4. Chain: hot dipped galvanized steel of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe
- D. Valves shall be installed in a position to allow full stem movement.

- E. Install chain wheels on operators for [ball] [butterfly] [gate] and [globe] valves NPS 100 mm or DN100 (4 inches) and larger and more than [2400 mm (12 feet) above floor. Chains shall be extended to 1500 mm 3600 mm (60 inches) above finished floor.
- F. Check valves shall be installed for proper direction of flow and as follows:

1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves shall be replaced if persistent leaking occurs.

- - E N D - - -

Page intentionally left blank

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. Plumbing piping and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: Plumbing equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per square meter (BTU per hour per linear foot).
 - 10. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 11. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum

published permeance of 0.001 perms.

- 12. R: Pump recirculation.
- 13. CW: Cold water.
- 14. SW: Soft water.
- 15. HW: Hot water.
- 16. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- C. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING and Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 OUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, unless otherwise provided for in 4.3.3.1.12 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.3 Pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.10.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.10.2.6.7 Smoke detectors shall not be required to meet the provisions of this section.

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)-91.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.):
 - MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and
 - Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread,

Glass and Wire-Reinforced Glass

- D. American Society for Testing and Materials (ASTM):
 - A167-04Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
 - B209-07..... for Aluminum and Aluminum-Alloy Sheet and Plate
 - C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation
 - C449-07.....for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement
 - C533-09.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012
C534-08Standard Specification for Preformed Flexible
Elastomeric Cellular Thermal Insulation in
Sheet and Tubular Form
C547-07Standard Specification for Mineral Fiber pipe
Insulation
C552-07Standard Specification for Cellular Glass
Thermal Insulation
C553-08 Fiber
Blanket Thermal Insulation for Commercial and
Industrial Applications
C585-09 Diameters
of Rigid Thermal Insulation for Nominal Sizes
of Pipe and Tubing (NPS System) R (1998)
C612-10 Standard Specification for Mineral Fiber Block
and Board Thermal Insulation
C1126-10Standard Specification for Faced or Unfaced
Rigid Cellular Phenolic Thermal Insulation
C1136-10Standard Specification for Flexible, Low
Permeance Vapor Retarders for Thermal
Insulation
D1668-97a (2006)Standard Specification for Glass Fabrics (Woven
and Treated) for Roofing and Waterproofing
E84-10Standard Test Method for Surface Burning
Characteristics of Building
Materials
E119-09C Standard Test Method for Fire Tests of Building
Construction and Materials
E136-09 bof Materials
in a Vertical Tube Furnace at 750 degrees C
(1380 F)
E. National Fire Protection Association (NFPA):
101-09Life Safety Code
251-06 Standard methods of Tests of Fire Endurance of
Building Construction Materials
255-06Burning
Characteristics of Building Materials

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

F. Underwriters Laboratories, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with

- Revision of 08/03
- G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2002.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F)
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F)with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).

B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.6 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics			
ITEMS	TYPE I	TYPE II	
Temperature, maximum degrees C	649 (1200)	927 (1700)	
(degrees F)			
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)	
Thermal conductivity:			
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078	
mean temperature of 93 degrees C	(0.41)	(0.540)	
(200 degrees F)			
Surface burning characteristics:			
Flame spread Index, Maximum	0	0	
Smoke Density index, Maximum	0	0	

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping. The vapor barrier jacket shall consist of a multilayer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inchpounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

2.7 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.8 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.9 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.

D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.10 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.11 FIRESTOPPING MATERIAL

Other than pipe insulation, refer to Section 07 84 00 FIRESTOPPING.

2.12 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and

smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Plumbing work not to be insulated:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Small horizontal cold water branch runs in partitions to individual fixtures may be without insulation for maximum distance of 900 mm (3 feet).
 - 5. Distilled water piping.
- I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights.

Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.

- K. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- L. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. All interior piping conveying fluids below ambient air temperature.
- O. Provide metal jackets over insulation as follows:
 - a. All plumbing piping exposed to outdoor weather.
 - b. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - c. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.

- b. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
 a. Water filter, chemical feeder pot or tank.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- C. Rigid Cellular Phenolic Foam:

- Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
- 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. Plumbing piping as follows:
 - Body of roof and overflow drains horizontal runs and offsets (including elbows) of interior downspout piping in all areas above pipe basement.
 - Waste piping located above basement floor from air handling units, from equipment (including trap) to main vertical waste pipe.
 - 3) Reagent grade water piping.
 - 4) Cold water piping.
- D. Cellular Glass Insulation:
 - Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
- G. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified below for piping other than in boiler plant.

Nominal Thickness Of Calcium Silicate Insulation				
(Non-Boiler Plant)				
Nominal Pipe Size	Thru 25	32 to 75	100-200	Over 200
Millimeters (Inches)	(1)	(1-1/4 to	(4 to 6)	(6)
		3)		

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Rigid Cellular Phenolic Foam (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-16 degrees C (40-60 degrees F)	Rigid Cellular Phenolic Foam (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)

- - - E N D - - -

Page intentionally left blank

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Section 22 07 11, PLUMBING INSULATION.
- Ε

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. All items listed in Part 2 Products.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI):

American Society of Mech	anical Engineers (ASME): (Copyrighted Society)
A13.1-2007	Scheme for Identification of Piping Systems
B16.3-2006	Malleable Iron Threaded Fittings Classes 150
	and 300
B16.9-2007	Gray Iron Threaded Fittings Classes 125 and 250
в16.9-2007	Factory-Made Wrought Butt Welding Fittings
	ANSI/ASME
B16.11-2009	Forged Fittings, Socket-Welding and Threaded
	ANSI/ASME
B16.15-2006	Cast Bronze Threaded Fittings Classes 125 and
	250 ANSI/ASME
B16.18-01 (R2005)	Cast Copper Alloy Solder-Joint Pressure
	Fittings ANSI/ASME

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-15Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/201	0 2
B16.22-01 (R2005)Wrought Copper and Copper Alloy Solder Joint	
Pressure Fittings ANSI/ASME Element ANSI/ASME	
NSF/ANSI 61Drinking Water System Components - Health	
Effects	
C. American Society for Testing and Materials (ASTM):	
A47/A47M-99(2009)Ferritic Malleable Iron Castings Revision 1989	
A53/A53M-07Pipe, Steel, Black And Hot-Dipped, Zinc-coated	
Welded and Seamless	
A183-03(2009)Carbon Steel Track Bolts and Nuts	
A269-10Standard Specification for Seamless and Welded	
Austenitic Stainless Steel Tubing for General	
Service	
A312/A312M-09Seamless, Welded, and Heavily Cold Worked	
Austenitic Stainless Steel Pipes	
A403/A403M-10aStandard Specification for Wrought Austenitic	
Stainless Steel Piping Fittings	
A536-84(2009)Ductile Iron Castings	
A733-03(2009)Welded and Seamless Carbon Steel and Austeniti	С
Stainless Steel Pipe Nipples	
B32-08Solder Metal	
B61-08Steam or Bronze Castings	
B62-09 Composition Bronze or Ounce Metal Castings	
B75-02Seamless Copper Tube	
B88-09Seamless Copper Water Tube	
B300-10AWWA Standard for Hypochlorites	
B301-10 AWWA Standard for Liquid Chlorine	
B584-09aCopper Alloy Sand Castings for General	
Applications Revision A	
B687-99(2005) e1Brass, Copper, and Chromium-Plated Pipe Nipple	S
D1785-06Standard Specification for Poly (Vinyl	
Chloride) (PVC) Plastic Pipe, Schedules 40, 80 and 120	,
D2000-08Rubber Products in Automotive Applications	
D4101-09Propylene Plastic Injection and Extrusion	
Materials	
D2447-03Polyethylene (PE) Plastic Pipe, Schedule 40 an	d
80, Based on Outside Diameter	

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 D2564-04(2009) e1.....Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings D4101-09.....Propylene Plastic Injection and Extrusion Materials E1120-08.....Standard Specification For Liquid Chlorine E1229-08..... Standard Specification For Calcium Hypochlorite D. American Water Works Association (AWWA): C651-05.....Disinfecting Water Mains E. American Welding Society (AWS): A5.8/A5.8M:2004.....Filler Metals for Brazing F. International Plumbing Code International Plumbing Code - 2009 G. American Society of Sanitary Engineers (ASSE): ANSI/ASSE (Plumbing) 1001-2008..... Pipe Applied Atmospheric Type Vacuum Breakers ANSI/ASSE 1010-2004.....Water Hammer Arresters ANSI/ASSE 1018-2001.... Performance for trap seal primer valves potable water supplied. ANSI/ASSE (Plumbing) 1020-2004.....Pressure Vacuum Breaker Assembly H. Plumbing and Drainage Institute (PDI): PDI WH-201 2007.....Water Hammer Arrestor 1.5 QUALITY ASSURANCE A. Submit prior to welding of steel piping a certificate of Welder's

- certification. The certificate shall be current and more than one year old.
- B. For mechanical pressed sealed fittings, only tools of fitting manufacture shall be used.
- C. Mechanical pressed fittings shall be installed by factory trained workers.
- D. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- E. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

PART 2 - PRODUCTS

2.1 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. For pipe 150 mm (6 inches) and larger, stainless, steel ASTM A312, schedule 10 may be used.
- B. Fittings for Copper Tube:
 - 1. Wrought copper or bronze castings conforming to ANSI B16.18 and B16.22. Unions shall be bronze, MSS SP72 & SP 110, Solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75 $\,$ C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, CDA 844. Mechanical grooved couplings, ductile iron, ASTM A536 (Grade 65-45-12), or malleable iron, ASTM A47 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
 - 3. Mechanical press sealed fittings, 65 mm (2-1/2") in size and smaller. Fittings shall be double pressed type NSF/ANSI 61 approved and utilize EPDM (Ethylene Propylene Diene Monomer) non toxic synthetic rubber sealing elements.
 - 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
- C. Fittings for Stainless Steel:
 - 1. Stainless steel butt-welded fittings, Type 316, Schedule 10, conforming to ANSI B16.9.
 - 2. Grooved fittings, stainless steel, Type 316, Schedule 10, conforming to ASTM A403. Segmentally fabricated fittings are not allowed. Mechanical grooved couplings, ductile iron, ASTM A536 (Grade 65-45-12), or Malleable iron, ASTM A47 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
- D. Adapters: Provide adapters for joining screwed pipe to copper tubing.
- E. Solder: ASTM B32 Composition Sb5 HA or HB. Provide non-corrosive flux.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- F. Brazing alloy: AWS A5.8, Classification BCuP.
- G. Reagent Grade Water Piping:
 - 1. Polypropylene, ASTM D4101, Schedule 80 pressure pipe with dimensions in conformance with ASTM D2447, but without additions of modifiers, plasticizers, colorants, stabilizers or lubricants. This virgin unplasticized pipe and fittings shall transport 10 megohm water with no loss of purity. Provide socket fusion joints.
 - 2. Polyethylene, food and medical grade, capable of transporting 10 megohm water with no loss of purity. Processed by continuous compression molding without the addition of fillers, polymer modifiers or processing aids. Uniform color with no cracks, flaws, blisters or other imperfections in appearance. Provide heat fusion butt welded joints. In accordance with manufacturer's recommendations, provide continuous channel support under all horizontal piping.

2.2 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: Fed. Spec. WW-P-351, standard weight.
 - 2. Fittings: ANSI B16.15 cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples: ASTM B 687, Chromium-plated.
 - 4. Unions: Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.3 ETO (ETHYLENE OXIDE) STERILIZER WATER SUPPLY PIPING

A. Stainless steel, ASTM A312, Schedule 10 with stainless steel butt welded fittings. Provide on sterilizer water supply.

2.4 TRAP PRIMER WATER PIPING:

- A. Pipe: Copper tube, ASTM B88, type K, hard drawn.
- B. Fittings: Bronze castings conforming to ANSI B16.18 Solder joints.
- C. Solder: ASTM B32 composition Sb5. Provide non-corrosive flux.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

2.5 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Smaller than 80 mm (3 inches), brass or bronze; 80 mm (3 inches) and larger, cast iron or semi-steel.

2.6 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between ferrous and non-ferrous pipe.

2.7 STERILIZATION CHEMICALS

- A. Hypochlorites ANSI/AWWA B300-10
- B. Liquid Chlorine ANSI/AWWA B301-10

2.8 WATER HAMMER ARRESTER:

- A. Closed copper tube chamber with permanently sealed 410 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010 for sealed wall installations without an access panel. Size and install in accordance with Plumbing and Drainage Institute requirements (PDI WH 201). Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.
 - 4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to full size after cutting.

- 3. All pipe runs shall be laid out to avoid interference with other work.
- 4. Install union and shut-off valve on pressure piping at connections to equipment.
- 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the International Plumbing Code, Chapter No. 3.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with red lead or zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split unplated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Riser Clamps: Malleable iron or steel.
 - 8) Rollers: Cast iron.
 - 9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gauge steel. The shield shall be sized for the insulation.
 - 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
 - 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint.

Provide calculations supporting the restraint length design and type of selected restraints.

- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 Completely fill and seal clearances between raceways and openings with the fire stopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- B. Piping shall conform to the following:
 - 1. Domestic Water:
 - a. Grade all lines to facilitate drainage. Provide drain values at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - b. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections.
- B. Potable Water System: Test after installation of piping but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 690 kPa (100 psi) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested.
- C. Reagent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 690 kPa (100 psi) gage during inspection and prove tight.
- D. All Other Piping Tests: Test new installed piping under 1 1/2 times actual operating conditions and prove tight.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the new interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorites for sterilization.

- - - E N D - - -

Page intentionally left blank

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- D. Section 07 92 00 Joint Sealants: Sealant products.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Cleanouts.
 - 4. All items listed in Part 2 Products.
- C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): (Copyrighted Society) A112.6.3-01 (R 2007)....Standard for Floor and Trench Drains A13.1-07.....Scheme for Identification of Piping Systems B16.3-06.....Malleable Iron Threaded Fittings, Classes 150 and 300. B16.4-06....Standard for Grey Iron Threaded Fittings Classes 125 and 250 B16.12-98 (R 2006).....Cast Iron Threaded Drainage Fittings

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 B16.15-06.....Cast Bronze Threaded Fittings, Classes 125 and 250 C. American Society for Testing and Materials (ASTM): A47/A47M-99 (R 2004)....Standard Specification for Steel Sheet, Aluminum Coated, by the Hot Dip Process A53/A53M-07.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless A74-06.....Standard Specification for Cast Iron Soil Pipe and Fittings A183-03.....Standard Specification for Carbon Steel Track Bolts and Nuts A536-84(R 2004).....Standard Specification for Ductile Iron Castings B32-08.....Standard Specification for Solder Metal B75-02.....Standard Specification for Seamless Copper Tube B306-02..... Standard Specification for Copper Drainage Tube (DWV) B584-06a.....Standard Specification for Copper Alloy Sand Castings for General Applications C564-03a.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-08.....Standard Classification System for Rubber Products in Automotive Applications D2564-04E1.....Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings D2665-08..... Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D. International Code Council: IPC-06.....International Plumbing Code E. Cast Iron Soil Pipe Institute (CISPI): 301-05..... Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-04..... Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary
Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

and Storm Drain, Waste, and Vent Piping

Applications

F. American Society of Sanitary Engineers (ASSE):
 1018-01.....Trap Seal Primer Valves - Potable, Water

Supplied

G. Plumbing and Drainage Institute (PDI):
 PDI WH-201.....Water Hammer Arrestor

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. pipe buried in or in contact with earth
 - b. sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
 - c. interior waste and vent piping above grade.
 - Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
 - The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
 - 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM Standard C-564 or be installed with lead and oakum.
- B. Copper Tube, (DWV):
 - Copper DWV tube sanitary waste, drain and vent pipe may be used only to extend existing drain from crawlspace to H.A.C. as indicated on drawings.
 - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

- C. Polyvinyl Chloride (PVC)
 - 1. Polyvinyl chloride (PVC) pipe and fittings are permitted where the waste temperature is below 60°C (140°F).
 - 2. PVC piping and fittings shall NOT be used for the following applications:
 - a. Waste collected from steam condensate drains
 - b. spaces such as mechanical equipment rooms, kitchens, SPD, and sterilizer areas.
 - b. Vertical waste and soil stacks serving more than two floors
 - c. Exposed in mechanical equipment rooms.
 - d. Exposed inside of ceiling return plenums
 - 3. Polyvinyl chloride sanitary waste, drain, and vent pipe and fittings shall be schedule 40 solid core sewer piping conforming to ASTM D 1785 and ASTM D2665, sewer and drain series with ends for solvent cemented joints.
 - 4. Fittings:
 - a. PVC fittings shall be solvent welded socket type using solvent cement conforming to ASTM D2564.

2.2 EXPOSED WASTE PIPING

- A. Full iron pipe size chrome plated brass piping shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet Fed. Spec. WW-P-351, standard weight.
 - 2. The Fittings shall conform to ANSI B16.15, cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples shall conform to ASTM B 687, Chromium-plated.
 - 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved qaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - 2. For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F 477 or ASTM D5926.
 - For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 860 kPa (125 psig) at a minimum temperature of 82°C (180°F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F 1545 with a pressure ratings of 2070 kPa (300 psig) at 107°C (225°F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME All2.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze

closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.

- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

- A. Type C (FD-C) floor drain shall comply with ANSI A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty square or round nickel bronze adjustable strainer and grate with vandal proof screws. The grate shall be square, 150 mm (6 inches) minimum.
- B. Type D (FD-D) floor drain shall comply with ANSI A112.6.3. The type D floor drain shall have a Cast iron body with flange, integral reversible clamping device, seepage openings and 175 mm (7 inch)

diameter or square satin nickel bronze or satin bronze strainer with 100 mm (4 inch) flange.

- C. Type R (FD-R) floor drain shall comply with ANSI A112.6.3. The type R floor drain shall have a cast iron body, double drainage pattern and clamping device, less grate and sediment basket but with dome type secondary strainer. The drain shall be 200 mm (8 inches) in diameter or 200 mm (8 inches) square and approximately 150 mm (6 inches) deep. The interior and exposed exterior surfaces and rim shall have an acid resisting finish.
- D. Type S (FD-S) floor sink shall comply with ANSI All2.6.3. The type S floor sink shall be constructed from type 304 stainless steel and shall be 300 mm (12 inches) square, and 200 mm (8 inches deep). The interior surface shall be polished. The double drainage flange shall be provided with weep holes, internal dome strainer, and heavy duty non-tilting loose set grate. A clamping device shall be provided.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as pipe connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 TRAP SEAL PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS

- A. Trap Primer (TP-1): The trap seal primer system shall be electronic type conforming to ASSE 1044.
 - The controller shall have a 24 hour programmable timer, solid state, 6 outlet zones, minimum adjustable run time of 1 minute for each zone, 12 hour program battery backup, manual switch for 120VAC power, 120VAC to 24VAC internal transformer, fuse protected circuitry, UL listed, 120VAC input-24VAC output, constructed of enameled steel or plastic.
 - 2. The cabinet shall be recessed mounting with a stainless steel cover.
 - The solenoid valve shall have a brass body, Buna "N" seats, normally closed, 5.98 kPa (125 psi) rated, 24VAC.
 - 4. The control wiring shall be copper in accordance with the latest edition of the National Electric Code, Article 725 and not less than

18 gauge. All wiring shall be in conduit and in accordance with Division 26 of the specifications.

5. The vacuum breaker shall conform to ASSE 1001.

- B. Trap Primer (TP-2): The trap seal primer valve shall be hydraulic, supply type with a pressure rating of 5.98 kPa (125 psig) and conforming to standard ASSE 1018.
 - 1. The inlet and outlet connections shall be 15 mm or DN15 (NPS ½ inch)
 - 2. The trap seal primer valve shall be fully automatic with an all brass or bronze body.
 - 3. The trap seal primer valve shall be activated by a drop in building water pressure, no adjustment required.
 - 4. The trap seal primer valve shall include a manifold when serving two, three, or four traps.
 - 5. The manifold shall be omitted when serving only one trap.

2.8 WATERPROOFING

- A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.
- B. Walls: See detail shown on drawings.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.

- G. Unless specifically indicated on the drawings, the minimum slope shall be 2% slope.
- H. The piping shall be installed free of sags and bends.
- I. Seismic restraint shall be installed where required by code.
- J. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to CDA's "Copper Tube Handbook".
- M. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
- 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.
- F. For PVC piping, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendixes.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.3 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 80 mm or DN 80 (NPS 3 inch): 1500 mm (60 inches) with 13 mm (½ inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 to NPS 5): 1500 mm (60 inches) with 16 mm (5/8 inch) rod.

- 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch):
 1500 mm (60 inches) with 19 mm (¾ inch) rod.
- 5. 250 mm or DN250 to 300 mm or DN 300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 22 mm (7/8 inch) rod.
- E. The maximum spacing for plastic pipe shall be 1.22 m (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.57 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.
 - See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.

- 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Piping shall conform to the following:
 - 1. Waste and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
80 mm or DN 80 (3 inches) and smaller	2%
100 mm or DN 100 (4 inches) and larger	18

2. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.4 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - For an air test, an air pressure of 35 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all

p-traps shall be inspected for leaks and any leaks found shall be corrected.

- 3. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1.3 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

Page intentionally left blank

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- D. Section 23 07 11, PLUMBING, INSULATION: Pipe Insulation.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Cleanouts.
 - 3. All items listed in Part 2 Products.
- C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI).
- C. American Society of Mechanical Engineers (ASME): (Copyrighted Society) A13.1-07.....Scheme for Identification of Piping Systems B16.3-06.....Malleable Iron Threaded Fittings, Classes 150 and 300. B16.9-07 Factory-Made Wrought Steel Butt welding Fittings B16.11-05.....Forged Steel Fittings, Socket-Welding and Threaded B16.12-98 (R 2006) Cast Iron Threaded Drainage Fittings B16.15-06).....Cast Bronze Threaded Fittings, Class 125 and

250

Phila Renova	delphia VA Medical Center ations to Upgrade HVAC in	r, Philadelphia, PA SPD	Project No. 642-11-150 Final Documents: 8/17/2012
D.	American Society for Tes	ting and Materials	(ASTM):
	A74-06	Standard Specificat	ion for Cast Iron Soil Pipe
		and Fittings	
	A733-03	Standard Specificat	ion for Welded and Seamless
		Carbon Steel and Au	stenitic Stainless Steel
		Pipe Nipples	
	в61-08	Standard Specificat	ion for Steam or Bronze
		Castings	
	В62-02	Standard Specificat	ion for Composition Bronze
		or Ounce Metal Cast	ings
	В687-99	Standard Specificat	ion for Brass, Copper, and
		Chromium-Plated Pip	pe Nipples
	C564-06a	Standard Specificat	ion for Rubber Gaskets for
		Cast Iron Soil Pipe	and Fittings
	D2000-08	Standard Classifica	tion System for Rubber
		Products in Automot	ive Applications
Ε.			
	A5.8-04	Specification for F	Tiller Metals for Brazing and
		Braze Welding	
F.	International Code Counc	il (ICC):	
	IPC-06	International Plumb	oing Code
G.	Cast Iron Soil Pipe Inst	itute (CISPI):	
	301-05	Hubless Cast Iron S	Soil and Fittings for
		Sanitary and Storm	Drain, Waste, and Vent
		Piping Applications	3
	310-04	Couplings for Use i	n Connection with Hubless
		Cast Iron Soil and	Fittings for Sanitary and
		Storm Drain, Waste,	and Vent Piping
		Applications	

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - 1. Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.

 $22 \ 14 \ 00 \ - \ 2$

- c. Interior storm piping above grade.
- d. All mechanical equipment rooms or other areas containing mechanical air handling equipment.
- 2. The cast iron storm Pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
- 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM Standard C-564 or be installed with leak and oakum.
- B. Roof drain piping in locations where the outdoor conditions are subject to freezing shall be insulated.

2.2 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear erring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 860 kPa (125 psig) at a minimum temperature of 82°C (180°F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The dielectric nipples shall be electroplated steel nipple comply with ASTM F 1545 with a pressure ratings of 2070 kPa (300 psig) at 107°C (225°F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

22 14 00 - 3

2.3 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.
- B. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- C. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.5 WATERPROOFING

- A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.
- B. Walls: See detail shown on drawings.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International code and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 1.22 m (4 feet) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep ¼ bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
- Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

3.3 SPECIALTY PIPE FITTINGS

A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.

22 14 00 - 5

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

- A. All piping shall be supported according to the International plumbing code, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.
- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 13 mm (1/2 inch) rod.
 - 3. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 16 mm (5/8 inch) rod.
 - 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 19 mm (3/4 inch) rod.
 - 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 22 mm (7/8 inch) rod.
- E. The maximum support spacing for horizontal plastic shall be 1.22 m (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.57 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.

22 14 00 - 6

- 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. Shield shall be 4 inches in length and be 16 gage steel. Shield shall be sized for the insulation.
- H. Miscellaneous Materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Piping shall conform to the following:
 - 1. Storm Water Drain and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
80 mm (3 inches) and smaller	2%
100 mm (4 inches) (4 inches) and larger	18

3.5 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to

point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- For an air test, an air pressure of 35 kPa (5 psi) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
- 3. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1.3 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.

1.2 RELATED WORK

- A. Sealing between fixtures and other finish surfaces: Section 07 92 00, JOINT SEALANTS.
- B. Flush panel access doors: Section 08 31 13, ACCESS DOORS AND FRAMES.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submit plumbing fixture information in an assembled brochure, showing cuts and full detailed description of each fixture.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI):

The American Society of Mechanical Engineers (ASME):

A112.6.1M-02(R2008).....Floor Affixed Supports for Off-the-Floor

Plumbing Fixtures for Public Use

A112.19.1M-08Enameled Cast Iron Plumbing Fixtures

A112.19.2M-03.....Vitreous China Plumbing Fixtures

C. American Society for Testing and Materials (ASTM): A276-2010Stainless and Heat-Resisting Steel Bars and

Shapes

WW-P-541-E/GENPlumbing Fixtures with Amendment 1

D. National Association of Architectural Metal Manufacturers (NAAMM): NAAMM AMP 500-505

Metal Finishes Manual (1988)

- E. American Society of Sanitary Engineers (ASSE):
 - 1016-05.....Performance Requirements for Individual Thermostatic, Pressure Balancing and Combination Pressure Balancing and Thermostatic Control Valves for Individual Fixture Fittings

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

F. National Sanitation Foundation (NSF)/American National Standards Institute (ANSI):

61-2009Drinking Water System Components-Health Effects

- G. American with Disabilities Act (A.D.A) Section 4-19.4 Exposed Pipes and Surfaces
- H. Environmental Protection Agency EPA PL 93-523 1974; A 1999) Safe

Drinking Water Act.

I. International Building Code, ICC IPBC 2009.

PART 2 - PRODUCTS

2.1 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.2 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to Resident Engineer.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.

2.3 ESCUTCHEONS

Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.4 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing.
- B. Flow Control Restrictor:

- Capable of restricting flow from 95 ml/s to 110 ml/s (1.5 gpm to 1.7 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks P-505 through P-520, P-524 and P-528; and 170 ml/s to 190 ml/s (2.75 gpm to 3.0 gpm) for dietary food preparation and rinse sinks or as specified.
- 2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psi and 80 psi).
- Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.5 CARRIERS

- A. ASME/ANSI A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME/ANSI A112.6.1M, lavatory, chair carrier for thin wall construction. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.

2.6 WATER CLOSETS

- A. (P-103) Water Closet (Wall Hung, ASME/ANSI A112.19.2M, Figure 9) office and industrial, elongated bowl, siphon jet 6 L (1.6 gallons) per flush, wall outlet. Top of rim shall be between 406 mm and 432 mm (16 inches and 17 inches) above finished floor. Handicapped water closet shall have rim set 457 mm (18 inches) above finished floor.
 - Seat: Institutional/Industrial, extra heavy duty, chemical resistant, solid plastic, open front less cover for elongated bowls, integrally molded bumpers, concealed check hinge with stainless steel post. Seat shall be posture contoured body design. Color shall be white.
 - 2. Fittings and Accessories: Gaskets neoprene; bolts with chromium plated caps nuts and washers.
 - 3. Flush valve: Large chloramines resistant diaphragm, semi-red brass valve body, exposed chrome plated, non-hold open ADA approved side oscillating handle, water saver design 6 L (1.6 gallons) per flush with maximum 10 percent variance 25 mm (1 inch) screwdriver back check angle stop with vandal resistant cap, adjustable tailpiece, a high back pressure vacuum breaker, spud coupling for 38 mm (1 1/2 inches) top spud, wall and spud flanges, and sweat solder adapter with cover tube and set screw wall flange. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM alloy

classification for semi-red brass. Seat bumpers shall be integral part of flush valve. Set centerline of inlet 292 mm (11 1/2 inches) above rim.

2.7 LAVATORIES

- A. Dimensions for lavatories are specified, Length by width (distance from wall) and depth.
- B. Brass components in contact with water shall contain no more than 3 percent lead content by dry weight.
- C. (P-403) Lavatory (Foot Pedal Control, ASME/ANSI A112.19.2M, Figure 16) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) maximum apron, first quality vitreous china. Centrally located single hole in slab for rigid gooseneck spout. Escutcheons shall be either copper alloy or CRS. Provide valve plate for foot control. Set with rim 864 mm (34 inches) above finished floor.
 - 1. Faucets: Solid cast brass construction, single rigid gooseneck spout with outlet 127 to 203 mm (5 to 8 inches) above slab. Provide laminar flow control device. Wall mounted, mechanical pedal mixing valve with self-closing pedal valve with stops, renewable seats, and supply from valve to spout, indexed lift up pedals having clearances of not more than 13 mm (1/2 inch) above the floor and not less than 356 mm (14 inches) from wall when in operation. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe. Supply pipe from valve to faucet shall be manufacturer's option. Exposed brass parts shall be chrome plated with a smooth bright finish.
 - 2. Drain: Cast or wrought brass with flat grid strainer and tailpiece, chrome plated finish.
 - 3. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extension nipple to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish.
- D. (P-414) Lavatory (Wrist Control, ASME/ANSI A112.19.2M, Figure 16) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) minimum apron, first quality vitreous china. Punching for faucet shall be on 203 mm (8 inches) centers. Set rim 864 mm (34 inches) above finished floor.
 - Faucet: Solid cast brass construction with washerless ceramic mixing cartridge type and centrally exposed rigid gooseneck spout with outlet 102 mm to 127 mm (4 inches to 5 inches) above rim. Provide laminar flow control device. One hundred two millimeter (4-inch)

wrist blade type, handles on faucets shall be cast, formed or drop forged copper alloy. Faucet, wall and floor escutcheons shall be either copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall be chrome plated with a smooth bright finish.

- Drain: Cast or wrought brass with flat grid strainer, offset tailpiece, chrome plated.
- 3. Stops: Angle type. See paragraph 2.2.Stops
- 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches)P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extension to wall. Exposed metal trap surface, and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to the wall.
- 5. Provide cover for drain, stops and trap per A.D.A 4-19.4.

2.8 SINKS AND LAUNDRY TUBS

- A. Dimensions for sinks and laundry tubs are specified, length by width (distance from wall) and depth.
- B. (P-502) Service Sink (Corner, Floor Mounted) stain resistant terrazzo, 711 mm by 711 mm by 305 mm (28 inches by 28 inches by 12 inches) with 152 mm (6 inches) drop front. Terrazzo, composed of marble chips and white Portland cement, shall develop compressive strength of 20684 kPa (3000 psi) seven days after casting. Provide extruded aluminum cap on front side.
 - 1. Faucet: Solid brass construction, combination faucet with replaceable monel seat, removable replacement unit containing all parts subject to wear, integral stops, mounted on wall above sink. Spout shall have a pail hook, 19 mm (3/4 inch) hose coupling threads, vacuum breaker, and top or bottom brace to wall. Four-arm handles on faucets shall be cast, formed, or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Provide 914 mm (36 inches) hose with wall hook. Centerline of rough in is 1219 mm (48 inches) above finished floor.
 - 2. Drain: Seventy six millimeter (3 inches) cast brass drain with nickel bronze strainer.
 - 3. Trap: P-trap, drain through floor.

2.9 SHOWER BATH FIXTURE

- A. (P-704) Shower Bath Fixture (Wall Mounted, Concealed Supplies, Hose Spray):
 - 1. Shower Installation: Wall mounted showerhead connected to shower arm.

- 2. Shower Heads: Chrome plated metal head, adjustable ball joint, self cleaning head with automatic flow control device to limit discharge to not more than three gpm. Body, internal parts of shower head and flow control fittings shall be copper alloy or CRS. Install showerhead 1829 mm (72 inches) above finished floor.
- 3. Valves: Type T/P combination temperature and pressure balancing, with chrome plated metal lever type operating with adjustment for rough-in variations handle and chrome plated metal or CRS face plate. Install diverter selector valve and elevated vacuum breaker to provide tempered water to shower head and hose spray. Valve body shall be any suitable copper alloy. Internal parts shall be copper nickel alloy, CRS or thermoplastic material. Valve inlet and outlet shall be 13 mm (1/2 inch) IPS. Provide external screwdriver check stops, and temperature limit stops. Set stops for a maximum temperature of 105 degrees F. All exposed fasteners shall be vandal resistant. Valve shall provide a minimum of 160 ml/s at 310 kPa (2.5 gpm at 45 psi) pressure drop.
- 4. Spray Assembly: Shall consist of a 1524 mm (60 inches) length of rubber lined CRS, chrome plated metal flexible, or white vinyl reinforced hose with coupling for connection to 13 mm (1/2 inch) hose supply elbow protruding through wall. Spray shall consist of a selfclosing, lever-handle, faucet with thumb control having open-shut positions and intermediate positions for regulating water flow and elevated pressure type vacuum breaker. Provide wall hook for faucet.

2.10 EMERGENCY FIXTURES

A. (P-708) Emergency Eye and Face Wash (Wall Mounted): CRS, wall mounted, foot pedal control. Mount eye and face wash spray heads 1067 mm (42 inches) above finished floor. Pedal shall be wall mounted, entirely clear of floor, and be hinged to permit turning up. Receptor shall be complete with drain plug with perforated strainer, P-trap and waste connection to wall with escutcheon.

2.11 HYDRANT, HOSE BIBB AND MISCELLANEOUS DEVICES

A.(P-807) Reagent Grade Water Faucet: Gooseneck, deck mounted for recirculating reagent grade water, forged brass valve body and 13 mm (1/2 inch) I.P.S. brass riser with polypropylene interior lining, polypropylene serrated hose end. Polypropylene inlet and outlet tube, compression control polypropylene diaphragm valve inside valve body. Provide inlet and outlet adapters. Color code faucets with full view plastic index buttons.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Toggle Bolts: For hollow masonry units, finished or unfinished.
- D. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.
- E. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 1/4 inches) into wall.
- F. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- G. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- H. Do not use aerators on lavatories and sinks.

3.2 CLEANING

At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

3.3 WATERLESS URINAL

Manufacturer shall provide an operating manual and onsite training for the proper care and maintenance of the urinals.

- - - E N D - - -

Page intentionally left blank

SECTION 22 62 00 VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Central Laboratory and Healthcare Vacuum Systems: This section describes the labor, equipment, and services necessary for and incidental to the installation of piped medical vacuum systems. Medical vacuum system shall be installed started, tested, and ready for use. The scope of work shall include all necessary piping, fittings, valves, cabinets, station inlets, rough ins, gages and all necessary parts, accessories, connections and equipment. Match existing station inlet terminal connections.
- B. All necessary connections to owner furnished equipment shall be made as indicated on the documents. A separate construction isolation valve shall be made at the point of connection to an existing vacuum system.
- C. Pressure testing, cross connection testing and final testing per NFPA99 most recent edition and using procedures shall be performed.
- D. The contractor shall retain a qualified third party medical vacuum verifier acceptable to the engineer and VA to perform and attest to final verification of the systems. The contractor shall make all corrections as determined by this third party verifier, including additional testing if necessary to attain full and unqualified certification.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around pipe penetrations to maintain the integrity of time rated construction.
- B. Section 07 92 00, JOINT SEALANTS: Sealing around pipe penetrations through the floor to prevent moisture migration.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General requirements and items common to more than one section of Division 22.
- D. SECTION 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES: Laboratory and Healthcare Gas Piping and Equipment:

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

Project No. 642-11-150 Final Documents: 8/17/2012

1.3 QUALITY ASSURANCE

- A. Contractor shall include with submittals an affidavit attesting to compliance with all relevant paragraphs of NFPA 99 most recent edition. Personnel assembling medical vacuum system shall meet NFPA 99 5.1.10.10.11 "Qualification of Installers" and hold medical gas endorsements as under ASSE 6010. The Contractor shall furnish documentation attesting that all installed piping materials were purchased cleaned and complied with the requirements of NFPA 99 5.1.10.1 and 5.1.10.2.
- B. Equipment Installer: The equipment installer shall show documentation proving that the personnel installing the equipment meet the standards set by the American Society of Sanitary Engineers (ASSE) 6010 Professional Qualification Standards for Medical Gas System Installers. Show technical qualifications and previous experience in installing medical gas equipment on three similar projects. Submit names and addresses of referenced projects. The equipment install shall perform the following coordination functions:
 - Coordinate with other trades to ensure timely installations and avoid conflicts and interferences.
 - Work with the metal stud partition installer and/or mason to ensure anchors, sleeves and similar items are provided in sufficient time to avoid delays; chases and openings are properly sized and prepared.
 - 3. Coordinate with VA to ensure medical vacuum inlets, whether owner supplied or contractor supplied, in walls, ceiling and all equipment is provided by the same Medical Vacuum Equipment Manufacturer satisfactory to the owner.
 - The contractor shall coordinate with the Medical Vacuum System Verifier to deliver a complete, tested medical gas installation ready for owner's use.
- C. Medical Gas System Testing Organization: The Medical vacuum verifier shall show documentation proving that the medical gas verifier meet the standards set by the American Society of Sanitary Engineers (ASSE) 6010 Professional Qualification Standards for Medical Gas SyStem Verifiers.

The testing shall be conducted by a party technically competent and experienced in the field of medical gas pipeline testing. Such testing shall be performed by a party other than the installing contractor.

- D. Names of three projects where testing of vacuum systems has been performed by the testing agency shall be provided. The name of the project, names of such persons at that project who supervised the work for the project owner, or who accepted the report for the project owner, and a written statement that the projects listed required work of similar scope to that set forth in this specification shall be included in the documentation.
- E. The testing agency's detailed procedure which will be followed in the testing of this project shall be submitted. In the testing agency's procedure documentation, include details of the testing sequence, procedures for cross connection tests, outlet function tests, alarm tests, purity tests, etc., as required by this specification. For purity test procedures, data on test methods, types of equipment to be used, calibration sources and method references shall be submitted.
- F. Certification: The Final inspection documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits allowed by this specification.
- G. The installing contractor shall maintain as-built drawings for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings shall be provided, and a copy of them on Auto-Cad version (R-14 or later) provided on compact disk.

1.4 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - Complete specifications for the product intended to be installed, and dimensional drawings.
 - 2. Piping.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Project No. 642-11-150 Final Documents: 8/17/2012

- 3. Valves.
- 4. Inlet and outlet cocks
- 5. Valve cabinets.
- 6. Gages.
- 7. Station inlets, and rough in assemblies.
- 8. Vacuum switches.
- C. Station Inlets: A letter from manufacturer shall be submitted stating that inlets are designed and manufactured to comply with NFPA 99. Inlet shall bear label of approval as an assembly, of Underwriters Laboratories, Inc., or Associated Factory Mutual Research Corporation. In lieu of above labels, certificate may be submitted by a nationally recognized independent testing laboratory, satisfactory to the Contracting Officer, certifying that materials, appliances and assemblies conform to published standards, including methods of tests, of above organizations.
- D. Certification: The completed systems have been installed, tested, purged and analyzed in accordance with the requirements of this specification.

1.5 TRAINING

A. The training requirements specified in Section 01 00 00, GENERAL REQUIREMENTS shall be coordinated with the above paragraph.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the test by the basic designation only.
- B. American National Standards Institute (ANSI):

A13.1-2007.....Scheme for Identification of Piping Systems B16.22-01 (R2005).....Wrought Copper and Bronze Solder-Joint Pressure Fittings

B40.1-(2006)..... Pressure Gauges and Gauge Attachments

C. American Society for Testing and Materials (ASTM):

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012B819-00.....Standard Specification for Seamless Copper Tube

for Medical Gas Systems

D. American Society of Mechanical Engineers (ASME):

Section IX-04.....Welding and Brazing Qualifications

E. American Welding Society (AWS):

AWS A5.8/A5.8M-2004....Brazing Filler Metal

AWS B2.2-91.....Standard for Brazing Procedure and Performance Qualification (Modified per NFPA 99)

F. Compressed Gas Association (CGA):

P-9-92.....Inert Gases Argon, Nitrogen and Helium

G. National Fire Protection Association (NFPA):

70(2007).....National Electric Code

99-2005.....Health Care Facilities with 2005 errata

- H. United States Pharmacopoeia XXI/National Formulary XVI (USP/NF)
- I. Manufacturing Standardization Society (MSS):

MSS-SP-72-99.....Ball Valves With Flanged or Butt Welding For General Purpose

MSS-SP-110-96.....Ball Valve Threaded, Socket Welding, Solder Joint, Grooved and Flared Ends

MSS-SP-73-03.....Brazing Joints for Copper and Copper Alloy Solder Pressure Fittings

1.7 WARRANTY

A. Warranties shall include on site repairs including travel, labor and parts. Warranties requiring return of equipment for adjustment are not acceptable.

Project No. 642-11-150 Final Documents: 8/17/2012

PART 2 - PRODUCTS

2.1 GENERAL PRODUCT REQUIREMENTS

A. One Medical Vacuum Equipment Manufacturer shall supply the medical vacuum system equipment to include outlets, valves and gauges, and valve boxes.

2.2 PIPING

- A. Copper Tubing: Copper tubing shall be type "K" or "L", ASTM B88, seamless copper tube, hard drawn temper, with wrought copper fittings conforming to ANSI B16.22 or brazing fittings complying with MSS SP-73. The copper tubing size designated reflects nominal inside diameter. All tubing and fittings shall be labeled "ACR/OXY", "OXY", "OXY/MED", "ACR/MED", "MED", or "VAC".
- B. Brazing Alloy: The brazing alloy shall comply with AWS A5.8, Classification BCuP, greater than 537 °C (1000 °F) melting temperature. During the brazing process, the system shall be continuously purged with nitrogen, until the joint is cool. Flux shall be strictly prohibited for copper to copper connections.
- C. Piping identification labels shall be applied at time of installation in accordance with current NFPA. Supplementary color identification shall be in accordance with CGA Pamphlet C-9.

2.3 EXPOSED LABORATORY AND HEALTHCARE VACUUM PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping shall be used for exposed laboratory and healthcare vacuum piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: Fed. Spec. WW-P-351, standard weight.
 - 2. Fittings: Fittings shall comply with ANSI B16.15 cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples: Nipples shall comply with ASTM B 687, Chromium-plated.
 - Unions: Unions shall comply with Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

5. Valves: Valves shall comply with Mss SP-72, SP-110, Brass or bronze with chrome finish.

2.4 VALVES

- A. Ball: Ball valves shall be in line, other than zone valves in cabinets.
 - 1. Sixty five millimeter or DN65 (2 1/2 inches) and smaller: Ball valves shall be bronze/ brass body, Fed. Spec. MSS SP72 & SP 110, Type II, Class 150, Style 1, with tubing extensions for brazed connections, full ported, three piece or double union end connections, teflon seat seals, full flow, 4125 kPa (600 psi) WOG minimum working pressure, with locking type handle. 2. Eighty millimeter or DN80 to 100 millimeter or DN100 (3" to 4" inches): Ball valves shall be bronze/ brass body, Fed. Spec. MSS SP72 & SP 110, Type II, Class 150, Style 1 with tubing extensions brazed to flanges, full ported, three piece, double seal, teflon seals, full flow, 4125 kPa (600 psi) WOG minimum working pressure, with locking type handle.

B. Check:

- Check valves eighty millimeters (DN80) (3 inches) and smaller: brass and Bronze body, straight through design for minimum pressure drop, spring loaded, self aligning with teflon cone seat, vibration free, silent operation, supplied NPT female threads at each end with flow direction arrow permanently cast into, 2750 kPa (400 psi) WOG minimum working pressure.
- 2. One hundred millimeter or DN100 (4 inches) and larger check valves shall be iron body, bronze trim, swing type, vertical or horizontal installation, flange connection, 1025 kPa (150 psi) WSP.
- C. Zone valve in cabinet shall be ball valve with bronze/ brass body, double seal, three piece or double union end connections, replaceable teflon seat seals, teflon stem seal, 4125 kPa (600 psi) WOG, cold, non shock gas working pressure or vacuum service to 29 inch Hg, blowout proof stem, one quarter turn of handle to completely open or close. Tubing extensions, factory brazed, pressure tested, cleaned for oxygen service shall be provided. A 3 mm (1/8 inch) NPT gauge port shall be provided for a 50mm (2 inch) diameter monitoring gauge downstream of

Project No. 642-11-150 Final Documents: 8/17/2012

the shut off valve. Zone valves shall be securely attached to the cabinet and provided with type-K copper tube extensions for making connection to system piping outside the cabinet. Zone valves shall be products of one manufacturer, and uniform throughout in pattern, overall size and appearance. Trim with color coded plastic inserts or color coded stick on labels. Valves shall be in cabinets such that cover window cannot be in place when any valve is in the closed position. Color coding for identification plates and labels is as follows:

SERVICE LABEL	IDENTIFICATION COLORS	MFG. STD. CLR.
MEDICAL VACUUM	Black letters on white background	WHITE
Evacuation (Waste Gas)	White letters on purple background	PURPLE

2.5 VALVE CABINETS

- A. Valve cabinets shall be flush mounted, commercially available item for use with medical gas services, constructed from steel not lighter than 1.3 mm (18 gage) steel or extruded aluminum not lighter than 1.9 mm (14 gage). The valve cabinets shall be rigidly assembled, of adequate size to accommodate all valve(s) and fittings indicated. Holes shall be predrilled to receive pipe connections. These pipe connections shall be made outside of the valve box. Anchors shall be provided to secure cabinet to wall construction. Openings in cabinet shall be sealed to be dust tight. Bottom of cabinet shall be located 1375 mm (4 foot 6 inches) above finished floor.
- B. Engraved rigid plastic identification plate shall be mounted on the wall above or adjacent to the cabinet. Color code identification plate to match gas identification colors as indicated above. Identification plate shall be clearly visible at all times. Inscriptions shall be provided on plate to read in substance: "VALVE CONTROL SUPPLY TO ROOMS." The final wording must be approved by the VA project manager.
- C. Cover plate: The cover plate shall be fabricated from 1.3 mm (18 gage) sheet metal with satin chromed finish, extruded anodized aluminum, or .85 mm (22 gage) stainless steel. A cover window shall be provided of replaceable plastic, with a corrosion resistant device or lever secured
to window for emergency window removal. The following shall be permanently painted or stenciled on window: "FOR EMERGENCY SHUT-OFF VALVES ONLY, SHUT OFF VALVES FOR PIPED GASES", or equivalent wording. The valve cabinet shall be configured such that it is not possible to install window with any valve in the closed position. Each valve shall have a pressure gauge upstream of valve and this pressure gage shall be inside valve box.

D. Cabinets and isolation valves shall be located and piped as shown, and at a minimum, so as to allow the isolation of each smoke compartment separately. Each cabinet shall serve no more than one smoke compartment.

2.6 GAGES

- A. Vacuum Gages:
 - 1. For vacuum line adjacent to source equipment the vacuum gages shall comply with ANSI B40.1, vacuum gage type, size 115 mm (4-1/2 inches), gage listed for vacuum, accurate to within 2-1/2 percent, with metal case. The vacuum gage range shall be 0 to-100 kPa (0-30 inches Hg). Dial graduations and figures shall be black on a white background, or white on a black background. Label shall be for vacuum service. A gage cock shall be installed. Compound gages shall be installed for Vacuum system.
 - 2. For vacuum service upstream of main shutoff valve: A 40 mm (1-1/2 inch) diameter gage shall be provided with steel case, bourdon tube and brass movement, dial range 0 to -100 kPa (0-30 inches Hg). Compound gages shall be provided for Vacuum system.

2.7 STATION INLETS

- A. Vacuum Station inlets:
 - Station inlets shall be for designated service, consisting of a quick coupler, quick disconnect type with inlet supply tube.
 - 2. The outlet station shall be made, cleaned, and packaged to NFPA 99 standards and shall be UL listed and CSA certified.
 - 3. A coupler shall be provided that is non-interchangeable with other services, and leak proof under three times normal working pressure.

22 62 00 - 9

- 4. Each station inlet shall be equipped with an automatic valve to conform with NFPA 99. Valves shall be placed in the assembly to provide easy access after installation for servicing and replacement, and to facilitate line blow-out, purging, and testing.
- 5. Each inlet shall be securely fastened to rough-in to prevent floating and provide each with a capped stub length of 6 mm (1/4inch) (10 mm outside diameter) (3/8-inch outside diameter) tubing for connection to supply tubing. Stub tubing shall be labeled for appropriate service. Rough in shall be indexed and gas specified latch vale with non-interchangeable safety keying with color coded gas service identification.
- Rough-in kits and test plugs for Prefabricated Bedside Patient Units (PBPU) shall be furnished under this specification but installed by manufacturer of PBPUs before initial test specified herein.
- 7. Completion kits (valve body and face plate) shall be installed for the remainder of required tests.

2.8 STATION INLET ROUGH-IN

- A. Station inlet rough in shall be Flush mounted, and protected against corrosion. Rough in shall be anchored securely to unit or wall construction.
- B. The modular cover plate shall be constructed from die cast plate, two piece .85 mm (22 gage) stainless steel or 1.6 mm (16 gage) chromium plated metal, secured to rough in with stainless steel or chromium plated countersunk screws. The latch mechanism shall be designed for one handed, singe thrust mounting and one handed fingertip release of secondary equipment.
- C. Cover Plate for Prefabricated Bedside Patient Units (PBPU) shall be One piece with construction and material as indicated for modular cover plate.
- D. Permanent, metal or plastic, identification plates shall be provided securely fastened at each inlet opening, with inscription for appropriate service using color coded letters and background. Metal plates shall have letters embossed on baked on enamel background. Color coding for identification plates is as follows:

22 62 00 - 10

SERVICE LABEL	IDENTIFICATION PLATE COLORS
MEDICAL VACUUM	Black letters on white background
EVACUATION (Waste Gas)	White letters on purple background

2.9 VACUUM SWITCHES

A. Vacuum switches shall be general purpose, contact or mercury type, allowing both high and low set points, with contact type provided with a protective dust cover. The vacuum switch shall have an adjustable range set by inside or outside adjustment. Vacuum switches shall activate when indicated by alarm requirements. One orifice nipple (or DISS demand check valve) shall be used for each sensor switch.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. All installation shall be performed in strict accordance with NFPA 99 5.1.10. Brazing procedures shall be as detailed in NFPA 99 5.1.10.5. Brazing shall be performed only by brazers qualified under NFPA 99 5.1.10.10.11. Where piping runs underground, the installation shall be made in accordance with NFPA 99 5.1.10.10.5.
- B. Cast escutcheon shall be installed with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- C. Open ends of tube shall be capped or plugged at all times or otherwise sealed until final assembly.
- D. Piping shall be cut square and accurately with a tube cutter (sawing not permitted) to measurements determined at place of installation. the tubing shall be reamed to remove burrs, being careful not to expand tube, and so no chips of copper remain in the tube. The tubing shall be worked into place without springing or forcing. The tubing shall be bottomed in socket so there are no gaps between tube and fitting. Care shall be exercised in handling equipment and tools used in cutting or reaming of tube to prevent oil or grease from being introduced into the tubing. Where contamination has occurred, material shall be no longer suitable for vacuum service and new, sealed tube sections used.

- E. Piping shall be supported with pipe trays or hangers at intervals as shown on the drawings or as defined in NFPA 99 Table 5.1.10.10.4.5. Piping shall not be supported by other piping. Isolation of copper piping from dissimilar metals shall be of a firm, positive nature. Duct tape is not acceptable as an isolation material.
- F. Valves and other equipment shall be rigidly supported to prevent strain on tube or joints.
- G. Piping exposed to physical damage shall be protected.
- H. During any brazing operation, the interior of the pipe shall be purged continuously with oil free, dry nitrogen NF, following the procedure in NFPA 99 5.1.10.5.5. At the completion of any section, all open pipe ends shall be capped using an EXTERNAL cap. The flow of purged gas shall be maintained until joint is cool to touch. The use of flux is prohibited when making of joints between copper to copper pipes and fittings.
- I Threaded joints in piping systems shall be avoided whenever possible. Where unavoidable, make up the male threads with Teflon tape. Liquid sealants shall not be used.
- J. Tubing shall not be bent. Fittings shall be used in all change of direction or angle.
- K. After installation of the piping, but before installation of the outlet valves, blow lines clear using nitrogen NF.
- L. Pressure and vacuum switches, transmitter and gauges shall be installed to be easily accessed, and provide access panel where installed above plaster ceiling. Pressure switch and sensors shall be installed with orifice nipple between the pipe line and switches/sensors.
- M. Pipe labeling shall be applied during installation process and not after installation is completed. Size of legend letters shall be in accordance with ANSI A13.1.
- N. After initial leakage testing is completed, the piping shall be allowed to remain pressurized with testing gas until testing agency performs final tests.

- 0. Penetrations:
 - 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoked partitions, or floors, fire stopping shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, Clearances between raceways and openings with the fire stopping material shall be completely filled and sealed.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- P. A vacuum gage 40mm (1 1/2 inch) diameter line shall be installed downstream of each zone valve in cabinets.
- Q. Zone valves shall be provided in cabinets where indicated and outside each Operating Room and a minimum one zone valve assembly for each 18 outlets.
- R. Piping shall be labeled with name of service, identification color and direction of flow. Where non-standard pressures are piped, pressure shall be labeled. Labels shall be placed at least once every 20 feet of linear run or once in each story (whichever is more frequent). A label shall additionally be placed immediately on each side of all wall or floor penetrations. Pipe labels shall be self adhesive vinyl type or other water resistant material with permanent adhesive colored in accordance with NFPA 99 Table 5.1.11 and shall be visible on all sides of the pipe. Each master alarm signal shall be labeled for function after ring out. Each zone valve shall be labeled and each area alarm labeled for the area of control or surveillance after test. Labels shall be permanent and of a type approved by the VAMC.

3.2 INSTALLER TESTING

A. Prior to declaring the lines ready for final verification, the installing contractor shall strictly follow the procedures for verification as described in NFPA 99 5.1.12.2 and attest in writing over the notarized signature of an officer of the installing company the following;

- 1. That all brazing was conducted by brazers qualified to ASSE 6010 and holding current medical gas endorsements.
- That all brazing was conducted with nitrogen purging. (Procedure per NFPA 99 5.1.10.5.5).
- That the lines have been blown clear of any construction debris using oil free dry nitrogen or air are clean and ready for use. (Procedure per NFPA 99 5.1.12.2.2).
- 4. That the assembled piping, prior to the installation of any devices, maintained a test pressure 1 1/2 times the standard pressures listed in NFPA 99 Table 5.1.11 without leaks. (Procedure per NFPA 99 5.1.12.2.3).
- 5. That after installation of all devices, the pipeline was proven leak free for 24 hours at a pressure 20% above the standard pressures listed in NFPA 99 Table 5.1.11. (Procedure per NFPA 99 5.1.12.2.2.6)
- That the systems have been checked for cross connections and none were found. (Procedure per NFPA 99 5.1.12.2.4)
- B. Four originals of the affidavit, shall be distributed; (1) to the engineer, (1) to the owners representative, (1) to the general contractor and (1) to the verifier.

3.3 CONNECTION TO EXISTING LABORATORY VACUUM SYSTEM:

- A. Contactor shall test the existing system for hydrocarbons, dew point, etc. If problems are present, the resident engineer (RE) would notify the facility of the results. The facility would then make the necessary repairs and/ or maintenance.
- B. Double Shut-off valves shall be installed at the connection of new line to existing line.
- C. Time for shut-down of the existing vacuum system shall be coordinated with the VA medical center.
- D. Prior to any work being done, new pipeline shall be checked for particulate or other forms of contamination.

- E. Insure that the correct type of pipe tubing and fittings are being used.
- F. A spot check of the existing pipelines shall be made in the facility to determine the level of cleanness present.
- G. The tie-in shall be made as quickly as possible. A nitrogen purge is not required since this would require another opening in the pipe.
- H. After the tie-in is made and allowed to cool, slowly bleed the source Vacuum back into the pipeline. Test the work area for leaks with soapy water and repair any leaks.
- I. After all leaks, if any, are repaired and the line is fully recharged, perform blow down and testing. Open the zone that is closest to the main to the system, access the closest outlet to the work, and blow the main through the inlet. After the inlet blows clear into a white cloth, make an additional check at a zone most distant from the work. Perform all required current NFPA tests after connection.

- - - E N D - - -

Page intentionally left blank

SECTION 22 63 00 GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. Central Laboratory and Healthcare Gas Systems: Consisting of compressed air services; complete, ready for operation, including all necessary piping, fittings, valves, cabinets, station outlets, rough-ins, ceiling services, gages, and all necessary parts, accessories, connections and equipment. Match existing station outlet and inlet terminal connections.

1.2 RELATED WORK

- A. Sealing around pipe penetrations to maintain the integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. Sealing around pipe penetrations through the floor to prevent moisture migration: Section 07 92 00, JOINT SEALANTS.
- C. General requirements and items common to more than one section of Division 22. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- K. Vacuum Piping and Equipment: SECTION 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

1.3 QUALITY ASSURANCE

- A. Materials and Installation: In accordance with NFPA 99, (2005) and as specified.
- B. Equipment Installer: Show technical qualifications and previous experience in installing laboratory and healthcare equipment on three similar projects. Submit names and addresses of referenced projects. Installers shall meet the qualifications of ANSI/ASSE Standard 6010.
- C. Equipment Supplier: Show evidence of equivalent product installed at three installations similar to this project that has been in satisfactory and efficient operation for three years. Submit names and addresses where the product is installed.
- D. Certification: Provide documentation prior to submitting request for final inspection to include all test results, the names of individuals performing work for the testing agency on this project, detailed

22 63 00 - 1

procedures followed for all tests, and a certification that all results of tests were within limits allowed by this specification.

E. Installing contractor shall maintain as-built drawings of each completed phases for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings shall be provided on prints and in digital format. The digital format shall be in the native CAD system required for the project design. F. "Hot taps" are not permitted for operating medical oxygen systems. Methods for connection and extension of active and pressurized medical gas systems without subsequent medical gas testing and verification are not allowed.

1.4 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Valves.
 - 3. Inlet and outlet cocks
 - 4. Valve cabinets.
 - 5. Gages.
 - 6. Station outlets and rough-in assemblies.
 - 7. Pressure Switches.
- C. Station Outlets: Submit letter from manufacturer stating that outlets are designed and manufactured to comply with NFPA 99. Outlet shall bear label of approval as an assembly, of Underwriters Laboratories, Inc., or Associated Factory Mutual Research Corporation. In lieu of above labels, certificate may be submitted by a nationally recognized independent testing laboratory, satisfactory to the Resident Engineer, certifying that materials, appliances and assemblies conform to published standards, including methods of tests, of above organizations.
- D. Certification: The completed systems have been installed, tested, purged, analyzed and verified in accordance with the requirements of this specification.

1.5 TRAINING

A. Coordinate with other requirements specified in Section 01 00 00, GENERAL REQUIREMENTS.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the test by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

B819-(R2006).....Seamless Copper Tube for Medical Gas Systems

C. American Society of Mechanical Engineers (ASME):

A13.1-07.....Scheme for Identification of Piping Systems

B16.22-01(R2005).....Wrought Copper and Bronze Solder-Joint Pressure Fittings

B40.100 (2005)Pressure Gauges and Gauge Attachments Boiler and Pressure Vessel Code -

Section VIII-07.....Pressure Vessels, Division I

Section IX-07......Welding and Brazing Qualifications

D. American Welding Society (AWS):

AWS A5.8-04.....Brazing Filler Metal

AWS B2.2-91.....Standard for Brazing Procedure and Performance Qualification (Modified per NFPA 99)

E. Compressed Gas Association (CGA):

C-9-04.....Standard Color Marking of Compressed Gas Cylinders

G-4.1 (2009).....Cleaning Equipment for Oxygen Service

G-10.1(2008)Nitrogen, Commodity

P-9-01.....Inert Gases Argon, Nitrogen and Helium

V-1-05.....Standard for Compressed Gas Cylinder Valve Outlet and Inlet Connections Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

F. National Electrical Manufacturers Association (NEMA):

ICS-6-93(R2006).....Industrial Controls and Systems Enclosures

G. National Fire Protection Association (NFPA):

99-05.....Health Care Facilities

- H. United States Pharmacopoeia XXI/National Formulary XVI (USP/NF)
- I. Manufacturing Standardization Society (MSS):

MSS-SP-72-99.....Ball Valves With Flanged or Butt Welding For General Purpose

MSS-SP-110-96.....Ball Valve Threaded, Socket Welding, Solder Joint, Grooved and Flared Ends

MSS-SP-73-03.....Brazing Joints for Copper and Copper Alloy Solder Pressure Fittings

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Copper Tubing: Type "K", ASTM B819, seamless copper tube, hard drawn temper, with wrought copper fittings conforming to ASME B16.22 or brazing fittings complying with MSS SP-73. Size designated reflecting nominal inside diameter. All tubing and fittings shall be labeled "ACR/OXY", "OXY", "OXY/MED", "ACR/MED", or "MED".
- B. Brazing Alloy: AWS A5.8, Classification BCuP, greater than 537 °C (1000 °F) melting temperature. Flux is strictly prohibited for copper-to-copper connections.
- C. Screw Joints: Polytetrafluoroethylene (teflon) tape.
- D. Memory metal couplings: Temperature and pressure rating shall not be less than that of a brazed joint.
- E. Apply piping identification labels at the time of installation in accordance with current NFPA. Apply supplementary color identification in accordance with CGA Pamphlet C-9.
- F. Special Fittings: The following special fittings shall be permitted to be used in lieu of brazed joints:

 $22 \ 63 \ 00 \ - \ 4$

- 1. Memory-metal couplings having temperature and pressure ratings joints not less than that of a brazed joint.
- Listed or approved metallic gas tube fittings that, when made up, provide a permanent joint having the mechanical, thermal, and sealing integrity of a brazed joint.
- Dielectric fittings where required by the manufacturer of special medical equipment to electrically isolate the equipment from the piping distribution system.
- 4. Axially swaged, elastic strain preload fittings providing metal to metal seal having pressure and temperature ratings not less than that of a brazed joint and when complete are permanent and non-separable.

2.2 EXPOSED LABORATORY AND HEALTHCARE GASES PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed laboratory and healthcare gas piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: Fed. Spec. WW-P-351, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish, (125 and 250 PS1 Classes).
 - 3. Nipples: ASTM B 687, Chromium-plated.
 - Unions: Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
 - 5. Valves: Mss SP-72, SP-110, Brass or bronze with chrome finish.

2.3 VALVES

- A. Ball: In-line, other than zone valves in cabinets:
 - 1. Seventy five millimeter (2 1/2 inches) and smaller: Bronze/ brass body, Fed. Spec. MSS SP72 & SP 110 , Type II, Class 150, Style 1, with tubing extensions for brazed connections, full port, three-piece or double union end connections, teflon seat seals, full flow, 4125 kPa (600 psi) WOG minimum working pressure, with locking type handle, cleaned for oxygen use and labeled for intended service

22 63 00 - 5

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- 2. Eighty to one hundred millimeter (3-4 inches): Bronze/ brass body, Fed. Spec. MSS SP72 & SP 110, Type II, Class 150, Style 1 with tubing extensions brazed to flanges, full ported, three piece, double seal, teflon seals, full flow, 4125 kPa (600 psi) WOG minimum working pressure, with locking type handle, cleaned for oxygen use and labeled for intended service.
- B. Check:
 - Eighty millimeter (3 inches) and smaller: Bronze/brass body, straight through design for minimum pressure drop, spring loaded, self aligning with teflon cone seat, vibration free, silent operation, supplied NPT female threads at each end with flow direction arrow permanently cast into, cleaned for oxygen use and labeled for intended service, 2750 kPa (400 psi) WOG minimum working pressure.
 - 2. One hundred millimeter (4 inches) and larger: Iron body, bronze trim, swing type, vertical or horizontal installation, flange connection, with flow direction arrow permanently cast into, cleaned for oxygen use and labeled for intended service, 1025 kPa (150 psi) WSP.
- C. Zone Valve in Cabinet: Ball valve, bronze/ brass body, double seal, three piece or double union end connections, replaceable teflon seat seals, teflon stem seal, 4125 kPa (600 psi) WOG, cold, non-shock gas working pressure service to 100 kPa (29 inch Hg), cleaned for oxygen use and labeled for intended service, blowout proof stem, one quarter turn of handle to completely open or close. Provide tubing extensions factory brazed, and pressure tested. Provide 3 mm (1/8 inch) NPT gauge port for a 50mm (2 inch) diameter monitoring gauge downstream of the shut off valve. Zone valves shall be securely attached to the cabinet and provided with type-K copper tube extensions for making connection to system piping outside the cabinet. Zone valves shall be products of one manufacturer, and uniform throughout in pattern, overall size and appearance. Trim with color coded plastic inserts or color coded stick-on labels. Install valves in cabinets such that cover window cannot be in place when any valve is in the closed position. Color coding for identification plates and labels is as follows:

SERVICE LABEL	IDENTIFICATION COLORS	MFG. STD.
		CLR.

SERVICE LABEL	IDENTIFICATION COLORS	MFG. STD.
		CLR.
OXYGEN	White letters on green background	GREEN
NITROUS OXIDE	White letters on blue background	BLUE
NITROGEN	White letters on black background	BLACK
MEDICAL AIR	Black or white letters on yellow background	YELLOW
CARBON DIOXIDE	Black or white letters on gray background	GRAY

2.4 VALVE CABINETS

- A. Flush mounted commercially available item for use with laboratory and healthcare services, not lighter than 1.3 mm (18 gage) steel or 1.9 mm (14 gage) extruded aluminum, rigidly assembled, of adequate size to accommodate valve(s) and fittings. Punch or drill sides to receive tubing. Provide anchors to secure cabinet to wall construction. Seal openings in cabinet to be dust tight. Locate bottom of cabinet 1375 mm (4 foot 6 inches) above floor.
- B. Mount engraved rigid plastic identification plate on wall above or adjacent to cabinet. Color code identification plate to match gas identification colors as indicated above. Identification plate must be clearly visible at all times. Provide inscriptions on plate to read in substance: "VALVE CONTROL SUPPLY TO ROOMS."
- C. Cover plate: Fabricate from 1.3 mm (18 gage) sheet metal with satin chromed finish, extruded anodized aluminum, or .85 mm (22 gage) stainless steel. Provide cover window of replaceable plastic, with a corrosion resistant device or lever secured to window for emergency window removal. Permanently paint or stencil on window: CAUTION-CLOSE ONLY IN EMERGENCY, SHUT-OFF VALVES FOR PIPED GASES", or equivalent wording. Configure such that it is not possible to install window with any valve in the closed position. Each valve shall have gauge upstream of valve inside valve box.
- D. Cabinets and isolation valves shall be located and piped as shown, and at a minimum, so as to allow the isolation of each smoke compartment separately. No cabinet shall serve more than one smoke compartment.

22 63 00 - 7

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

2.5 GAGES

- A. Pressure Gages: Includes gages temporarily supplied for testing purposes.
 - 1. For line pressure use adjacent to source equipment: ASME B40.1, pressure gage, single, size 115 mm (4-1/2 inches), for compressed air, nitrogen and oxygen, accurate to within two percent, with metal case. Range shall be two times operating pressure. Dial graduations and figures shall be black on a white background, or white on a black background. Gage shall be cleaned for oxygen use, labeled for appropriate service, and marked "USE NO OIL". Install with gage cock.
 - 2. For all services downstream of main shutoff valve: Manufactured for oxygen use, labeled for the appropriate service and marked "USE NO OIL", 40 mm (1-1/2 inch) diameter gage with dial range 1-690 kPa (1-100 psi) for air service.

2.6 STATION OUTLETS

A. For all services except ceiling hose drops and nitrogen system: For designated service, consisting of a quick coupler and inlet supply tube. Provide coupler that is non-interchangeable with other services, and leak proof under three times the normal working pressure. Equip each station outlet with an automatic valve and a secondary check valve to conform with NFPA 99. Equip each station inlet with an automatic valve to conform with NFPA 99. Place valves in the assembly to provide easy access after installation for servicing and replacement, and to facilitate line blow-out, purging, and testing. Fasten each outlet and inlet securely to rough-in to prevent floating and provide each with a capped stub length of 6 mm (1/4-inch) (10 mm outside diameter) (3/8-inch)outside diameter) tubing for connection to supply. Identification of each gas service shall be permanently cast into the back plate and shall be visible through a transparent plastic guard. Label stub tubing for appropriate service. Rough-in kits and test plugs for Prefabricated Bedside Patient Units (PBPU) are furnished under this specification but installed by manufacturer of PBPUs before initial test specified herein. Install completion kits (valve body and face plate) for the remainder of required tests.

2.7 STATION OUTLET ROUGH-IN

A. Flush mounted, protected against corrosion. Anchor rough-in securely to unit or wall construction.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- B. Modular Cover Plate: Die cast back plate, two-piece .85 mm (22 gage) stainless steel or 1.6 mm (16 gage) chromium plated metal, with mounting flanges on all four sides, secured to rough-in with stainless steel or chromium plated countersunk screws.
- C. Cover Plate for Prefabricated Bedside Patient Units (PBPU): One-piece with construction and material as indicated for modular cover plate.
- D. Provide permanent, metal or plastic, identification plates securely fastened at each outlet and inlet opening, with inscription for appropriate service using color coded letters and background. Metal plates shall have letters embossed on baked-on enamel background. Color coding for identification plates is as follows:

SERVICE LABEL	IDENTIFICATION PLATE COLORS
OXYGEN	White letters on green background
NITROUS OXIDE	White letters on blue background
NITROGEN	White letters on black background
MEDICAL AIR	Black or white letters on yellow
CARBON DIOXIDE	White letters on gray background

2.8 PRESSURE SWITCHES

General purpose, contact or mercury type, allowing both high and low pressure set points, with contact type provided with a protective dust cover; adjustable range set by inside or outside adjustment; switches activate when indicated by alarm requirements. Use one orifice nipple (or DISS demand check valve) for each sensor or pressure switch.

2.9 PRESSURE REGULATORS:

- A. For 690 kPa (100 psi) regulator, provide duplex in parallel, valve for maintenance shut-down without service interruption. For additional pressures, locate regulators remote from compressor near point of use, and provide with isolation valves and valve bypass.
 - 1. For systems 5 L/s (10 scfm) and below: Brass or bronze body and trim, reduced pressure range 170 - 850 kPa (25 - 125 psi) adjustable, spring type, diaphragm operated diaphragm operated, relieving. Delivered pressure shall vary not more than one kPa (0.15psi) for each 10 kPa (1.5psi) variation in inlet pressure.

22 63 00 - 9

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

PART 3 - EXECUTION

3.1 INSTALLATION

- A. In accordance with current NFPA. Run buried oxygen piping in PVC protective pipe for entire length including enclosure of fittings and changes of direction.
- B. Install cast escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- C. Keep open ends of tube capped or plugged at all times or otherwise sealed until final assembly.
- D. Cut piping square and accurately with a tube cutter (sawing not permitted) to measurements determined at place of installation. Ream tube to remove burrs, being careful not to expand tube, and so no chips of copper remain in the tube. Work into place without springing or forcing. Bottom tube in socket so there are no gaps between tube and fitting. Exercise care in handling equipment and tools used in cutting or reaming of tube to prevent oil or grease being introduced into tubing. Where contamination has occurred, material is no longer suitable for oxygen service.
- E. Spacing of hangers: Current NFPA.
- F. Rigidly support valves and other equipment to prevent strain on tube or joints.
- G. While being brazed, joints shall be continuously purged with *oil* free nitrogen. The flow of purged gas shall be maintained until joint is cool to touch.
- H. Do not bend tubing. Use fittings.
- I. Support ceiling column assembly from heavy sub-mounting castings furnished with the unit as part of roughing-in. Anchor with 15 mm (1/2-inch) diameter bolts attached to angle iron frame supported from structural ceiling, unless otherwise indicated.
- J. Provide two 25 mm (1 inch) minimum conduits from ceiling column assembly to adjacent corridor, one for mass spectrometer tubing and wiring and one for monitor wiring, for connection to signal cabling network.

- K. Install pressure switches, transmitter and gauges to be easily accessed, and provide access panel where installed above plaster ceiling. Install pressure switch and sensors with orifice nipple between the pipe line and switches/sensors.
- L. Apply pipe labeling during installation process and not after installation is completed. Size of legend letters shall be in accordance with ANSI A13.1.
- M. Pipe compressor intake to a source of clean ambient air as indicated in current NFPA.
- N. After initial leakage testing is completed, allow piping to remain pressurized with testing gas until testing agency performs final tests.
- 0. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoked partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with intumescent materials only. Completely fill and seal clearances between raceways and openings with the fire stopping material.
 - 2. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- P. Provide 40mm (1 1/2 inch) diameter line pressure gage downstream of zone valve in cabinets.
- Q. Provide zone values in cabinets where indicated and outside each Operating Room and a minimum one zone value assembly for each 18 outlet set.

3.2 TESTS

A. Initial Tests: Blow down, and high and low pressure leakage tests as required by current NFPA with documentation.

3.3 CONNECTION TO EXISTING LABORATORY GAS SYSTEM:

A. Contactor shall test the existing system for hydrocarbons, dew point, etc. If problems are present, the resident engineer (RE) would notify the facility of the results. The facility would then make the necessary repairs and/ or maintenance.

22 63 00 - 11

- B. Install shut-off valve at the connection of new line to existing line.
- C. Coordinate time for shut-down of the existing laboratory and healthcare system with the VA medical center.
- D. Shut off all oxygen zone valves and gas riser valves if the section to be connected to cannot be totally isolated from the remainder of the system.
- E. Prior to any work being done, check the new pipeline for particulate or other forms of contamination.
- F. Insure that the correct type of pipe tubing and fittings are being used.
- G. Make a spot check of the existing pipelines in the facility to determine the level of cleanness present.
- H. Reduce the pressure to zero and make the tie-in as quickly as possible.A nitrogen purge is not required since this would require another opening in the pipe.
- After the tie-in is made and allowed to cool, slowly bleed the source gas back into the pipeline. Test the work area for leaks with soapy water and repair any leaks.
- J. After all leaks, if any, are repaired and the line is fully recharged, perform blow down and testing. Open the zone that is closest to the main to the system, access the closest outlet to the work, and blow the main through the outlet. After the outlet blows clear into a white cloth, make an additional check at a zone most distant from the work. Perform all required current NFPA tests after connection.
- 3.4 DEMONSTRATION AND TRAINING
 - A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of units.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout
- E. Section 05 36 00, COMPOSITE METAL DECKING: Building Components for Attachment of Hangers
- F. Section 07 84 00, FIRESTOPPING
- G. Section 07 92 00, JOINT SEALANTS
- H. Section 09 91 00, PAINTING
- I. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- J. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- K. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- L. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- M. Section 23 07 11, HVAC and Boiler Plant Insulation
- N. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- O. Section 23 21 13, HYDRONIC PIPING
- P. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- Q. Section 23 25 00, HVAC WATER TREATMENT
- R. Section 23 31 00, HVAC DUCTS and CASINGS
- S. Section 23 34 00, HVAC FANS
- T. Section 23 37 00, AIR OUTLETS and INLETS
- U. Section 23 40 00, HVAC AIR CLEANING DEVICES
- V. Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT
- W. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS
- X. Section 23 82 16, AIR COILS
- Y. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

lphia, PA Project No. 642-11-150 Final Documents: 8/17/2012

Z. Section 26 29 11, MOTOR STARTERS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.

- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.

H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Layout Drawings:
 - 1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - In addition, for HVAC systems, provide details of the following:
 a. Mechanical equipment rooms.

- b. Hangers, inserts, supports, and bracing.
- c. Pipe sleeves.
- d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- I. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2007.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA):

IP-20-2007.....Specifications for Drives Using Classical

V-Belts and Sheaves

IP-21-2009......Specifications for Drives Using Double-V

(Hexagonal) Belts

IP-22-2007.....Specifications for Drives Using Narrow V-Belts and Sheaves Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 E. Air Movement and Control Association (AMCA): 410-96..... Recommended Safety Practices for Air Moving Devices F. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): Section I-2007.....Power Boilers Section IX-2007......Welding and Brazing Qualifications Code for Pressure Piping: B31.1-2007.....Power Piping G. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application I. National Electrical Manufacturers Association (NEMA): MG-1-2009..... Motors and Generators J. National Fire Protection Association (NFPA): 70-08.....National Electrical Code 90A-09.....of Air Conditioning and Ventilating Systems 101-09.....Life Safety Code 1.6 DELIVERY, STORAGE AND HANDLING A. Protection of Equipment:

 Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.

- Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the Resident Engineer during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the Resident Engineer.
- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or

ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.

- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- G. Temporary Facilities: Refer to Article, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm

(one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.

- C. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- D. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications.
- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:

1. Suitable for variable torque load.

2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 25,000 AIC. Provide AC input on incoming power line. Provide output line reactors on line between drive and motor where the distance between the breaker and motor exceeds 50 feet.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. HVAC: Provide for all valves.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm (1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.9 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.10 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- F. Attachment to existing structure: Support from existing floor/roof frame.
- G. Attachment to Wood Construction: Wood screws or lag bolts.
- H. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to

accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.

- 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
 - 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.

- b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- K. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- L. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.12 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.

- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.13 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.14 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.

- C. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the Resident Engineer.
- D. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.15 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.16 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This is generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Install steam piping expansion joints as per manufacturer's recommendations.
- M. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- N. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).

- 0. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.
- D. As part of the requirements of this project, Contractor shall provide temporary heating, ventilation and air conditioning equipment to maintain existing space conditions during fixed building equipment shutdowns and removal/replacement of existing air handling systems. Temporary systems shall be capable of supply 25,000 CFM, supply air discharge temperature as indicated on the plans and specifications, and level of air filtration as indicated on the plans and specifications. Temporary equipment to be self-contained, stand alone type with flexible supply ducting and high pressure hoses to temporary tie-in connection point(s) inside ground floor mechanical room. All costs associated with the Temporary HVAC Provisions shall be included within the base bid, including any required safety and security measures, and electrical connections (feeders, conduit, connections, overcurrent protective devices, etc.). Contractor is responsible to provide fencing to protect temporary equipment and supply connections.

Temporary Power Requirements (Temporary HVAC Installation): It is the responsibility of the Contractor to provide all temporary electrical services associated with installations of temporary HVAC equipment.

Electrical Contractor shall coordinate temporary HVAC unit power requirements with Mechanical Contractor prior to bid and rough-in. (1) temporary unit to be utilized at location as indicated on drawing G-100. Provide (30) day advance testing and metering of systems to ensure existing electrical distribution system can accommodate new temporary load. Upon confirmation of existing electrical distribution system spare amperage capacity, provide letter to Resident Engineer and Engineer of Record, stating recorded results and confirmation that design intent can proceed without compromising/overloading existing systems. Provide temporary feeders and connections from existing Emergency Main Distribution Panel 'EMDP'.

Contractor shall be responsible for providing and installing temporary feeders, conduit, disconnect switches, circuit breakers, transformers, etc. and all associated connections to ensure temporary systems are fully operational, meet all N.E.C. requirements, safety provisions and do not cause overload of existing electrical distribution systems. Utilize existing available spare circuit breakers if feasible, otherwise provide new to accommodate final, provided electrical requirements.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.

- F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted

thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained.

Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer

- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation.Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.

D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.11 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.12 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

Page intentionally left blank

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
- B. Section 26 29 11, MOTOR STARTERS: Starters, control and protection for motors.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 34 00, HVAC FANS.
- F. Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.
- G. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.

1.4 APPLICABLE PUBLICATIONS:

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 ..Motors and Generators MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators
- C. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code (NEC)
- D. Institute of Electrical and Electronics Engineers (IEEE): 112-04.....Standard Test Procedure for Polyphase Induction Motors and Generators
- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2007.....Energy Standard for Buildings Except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - 1. Contractor's Option Electrically Commutated motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic commutation. The motor shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.
- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.

- Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 40°C (104°F) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 40°C (104°F), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.

- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:
 - 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C
 (160 degrees F) shall be stranded copper with Teflon FEP
 insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions

of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	Efficie	ncies	Minimum Premium Efficiencies							
	Open Drip	-Proof		Totally Enclosed Fan-Cooled							
Rating	1200	1800	3600	Rating	1200	1800	3600				
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM				
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%				
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%				
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%				
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%				
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%				
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%				
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%				
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%				
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%				
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%				
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%				
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%				
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%				
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%				
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%				
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%				
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%				
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%				
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%				

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.

- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

- - - E N D - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, seismic restraints for equipment, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Requirements for flexible pipe connectors to reciprocating and rotating mechanical equipment.
- D. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Requirements for optional Air Handling Unit internal vibration isolation.
- E. Section 23 31 00, HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- F. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
- G. SECTION 23 37 00, AIR OUTLETS and INLETS: noise requirements for Ggrilles.
- H. SECTION 23 34 00, HVAC FANS: sound and vibration isolation requirements for fans.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Ante Room	40
Assistant Chief	35
Case Cart Holding	40
Chief	35

Clean HAC	40
Clean Lockers - Men	40
Clean Lockers - Women	40
Clean Toilet/Showers - Men	40
Clean Toilet/Showers - Women	40
ETO Sterilizer/Aerator Room	40
First Clerk Office	40
PPE	40
Preparation, Assembly, and Sterilization Area	40
Receiving & Breakout	40
Scope Storage Room	40
Staff Breakroom/Conference	35
Sterile Storage	40
Automatic Cart Washer	45
Decontamination Ante Room	40
Decontamination Area	40
Decontamination HAC	40
Decontamination Lockers/PPE Ante Room	40
Decontamination Lockers/Toilet/Shower - Men	40
Decontamination Lockers/Toilet/Shower - Women	40
Detergent and Water Treatment	40
Endoscope Processing/High Level Disinfection	40
Manual Equipment Wash	40
Sterilizer Equipment Room	45

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after

occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

 In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.

C. Seismic Restraint Requirements:

- 1. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
 - b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of 100 percent of the weight of the equipment furnished.
- 2. Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- 3. Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.

- 3. Seismic restraint provisions and bolting.
 - 4. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- Seismic Requirements: Submittals are required for all equipment an-D. chors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):

Vibration

C. American Society for Testing and Materials (ASTM):

A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness

- D. Manufacturers Standardization (MSS): SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95.....Occupational Noise Exposure

F. American Society of Civil Engineers (ASCE): ASCE 7-10Minimum Design Loads for Buildings and Other Structures.

- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008..... Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC):

2009 IBC..... International Building Code.

I. Department of Veterans Affairs (VA):

H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REOUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- 2. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
- 3. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. Isolators shall have a minimum seismic rating of one G.
- 4. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.

- 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.

- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.5 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.

- 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

- - - E N D - - -

Page intentionally left blank

Philadelphia	a VZ	A Medical	Center	, Philadelphia,	PA	Project No.	642-11-150
Renovations	to	Upgrade	HVAC in	SPD		Final Documents:	8/17/2012

SELECTION GUIDE FOR VIBRATION ISOLATORS

AIR HANDLING UNIT PACKAGES															
EQUIPMENT	ON GRADE		20FT FLOOR SPAN		30FT FLOOR SPAN		40FT FLOOR SPAN		50FT FLOOR SPAN						
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
FLOOR MOUNTED:															
7-1/2 HP & OVER:															
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
ROOF FANS															
ABOVE OCCUPIED AREAS:															
5 HP & OVER				СВ	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0

Page intentionally left blank

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - Hydronic Systems: Includes chilled water, heating hot water and glycol-water systems.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- D. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION: Piping and Equipment Insulation.
- E. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- G. Section 23 82 16, AIR COILS
- H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS
- I. Section 23 34 00, HVAC FANS
- J. Section 23 37 00, AIR OUTLETS AND INLETS
- K. Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall

immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.

- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - c. Hot water coils: Minus 5 percent to plus 5 percent.
 - d. Glycol coils: Minus 5 percent to plus 5 percent.
 - e. Chilled water coils: Minus 0 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three rooms randomly selected by the Resident Engineer) and one hydronic system coils as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.

- 2. Systems inspection report on equipment and installation for conformance with design.
- 3. Duct Air Leakage Test Report.
- 4. Systems Readiness Report.
- 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
- 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): 2007HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter

47, Sound and Vibration Control

C. Associated Air Balance Council (AABC): 2002......AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration

 $3^{\rm rd}$ Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.

- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 60 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, and room diffusers/outlets/inlets.

- Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
- Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include coils:
 - 1. Adjust flow rates for equipment. Set coils to values on equipment submittals, if different from values on contract drawings.
 - 2. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - Take readings in rooms, approximately ten percent of all rooms. The Resident Engineer may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified
 equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 10 meters (30 feet) for sound level location.

- 3. Where sound pressure levels are specified in terms of dB(A), measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F);HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 14. MPR: Medium pressure steam condensate return.
- 15. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 16. LPR: Low pressure steam condensate gravity return.
- 17. PC: Pumped condensate.
- 18. HWH: Hot water heating supply.
- 19. HWHR: Hot water heating return.
- 20. GH: Hot glycol-water heating supply.
- 21. GHR: Hot glycol-water heating return.
- 22. GR: Glycol water run around supply.
- 23. GRR: Glycol water run around return.
- 24. CH: Chilled water supply.
- 25. CHR: Chilled water return.
- 26. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EOUIPMENT
- D. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- E. Section 23 21 13, HYDRONIC PIPING: Hot water, chilled water, and glycol piping.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1)UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

UL 181B, Standard for Safety Closure Systems for Use with (2)Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

Not exceeding a 25.4 mm (1 in.) average clearance on all (1)sides

Filled solid with an approved material capable of (2) preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.

C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012
MIL-A-24179A (1)-87Adhesive, Flexible Unicellular-Plastic
Thermal Insulation
MIL-C-19565C (1)-88Coating Compounds, Thermal Insulation, Fire-and
Water-Resistant, Vapor-Barrier
MIL-C-20079H-87Cloth, Glass; Tape, Textile Glass; and Thread,
Glass and Wire-Reinforced Glass
D. American Society for Testing and Materials (ASTM):
A167-99(2004)Standard Specification for Stainless and
Heat-Resisting Chromium-Nickel Steel Plate,
Sheet, and Strip
B209-07and Specification for Aluminum and
Aluminum-Alloy Sheet and Plate
C411-05Standard test method for Hot-Surface
Performance of High-Temperature Thermal
Insulation
C449-07 Fiber
Hydraulic-Setting Thermal Insulating and
Finishing Cement
C533-09Standard Specification for Calcium Silicate
Block and Pipe Thermal Insulation
C534-08 Standard Specification for Preformed Flexible
Elastomeric Cellular Thermal Insulation in
Sheet and Tubular Form
C547-07 Fiber pipe
Insulation
C552-07Class
Thermal Insulation
C553-08 Fiber
Blanket Thermal Insulation for Commercial and
Industrial Applications
C585-09 Diameters
of Rigid Thermal Insulation for Nominal Sizes
of Pipe and Tubing (NPS System) R (1998)
C612-10 Fiber Block
and Board Thermal Insulation
C1126-04 Or Infaced Specification for Faced or Unfaced
Rigid Cellular Phenolic Thermal Insulation

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 C1136-10.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation D1668-97a (2006).....Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Method for Fire Tests of Building Construction and Materials E136-09b.....of Materials in a Vertical Tube Furnace at 750 degrees C (1380 F) E. National Fire Protection Association (NFPA): 90A-09.....of Air Conditioning and Ventilating Systems 96-08.....Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-09....Life Safety Code 251-06.....Standard methods of Tests of Fire Endurance of Building Construction Materials 255-06..... Standard Method of tests of Surface Burning Characteristics of Building Materials F. Underwriters Laboratories, Inc (UL): 723..... Test for Surface Burning Characteristics of Building Materials with Revision of 09/08 G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009......Pipe Hangers and Supports Materials, Design, and Manufacture PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.

- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
- B. Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 CALCIUM SILICATE

A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.

- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics				
ITEMS	TYPE I	TYPE II		
Temperature, maximum degrees C	649 (1200)	927 (1700)		
(degrees F)				
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)		
Thermal conductivity:				
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078		
mean temperature of 93 degrees C	(0.41)	(0.540)		
(200 degrees F)				
Surface burning characteristics:				
Flame spread Index, Maximum	0	0		
Smoke Density index, Maximum	0	0		

2.7 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.8 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- 2.9 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
 - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
 - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
 - D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
 - E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
 - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
 - G. Other: Insulation manufacturers' published recommendations.

2.10 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.11 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.12 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.13 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous

through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Insulate steam traps.
- I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.

- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- O. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - 2. All interior piping and ducts conveying fluids below ambient air temperature in high humidity areas.
- P. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

- Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
- 2. Plain board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, interstitial spaces and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct.
 - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.

- b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.

Philadelphia VA Medical Center, Philadelphia, PA Pr Renovations to Upgrade HVAC in SPD Final D

- 4. Apply insulation with joints tightly drawn together
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- Exposed, unlined supply ductwork exposed to outdoor weather: 50 mm
 (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - Exposed, unlined supply ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.
- F. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).
 - Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
 - Install insulation with all joints tightly butted (except expansion) joints in hot applications).
 - 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
 - 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable

of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.

- 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
- For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
- 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- Exposed, unlined supply ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- 10. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 11. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- G. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
 - ETO Exhaust (High Temperature): Type II, class D, 65 mm (2.5 inches) nominal thickness. Cover duct for entire length. Provide sheet aluminum jacket for all exterior ductwork.

3.7 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

122-177 degrees C (251-350 degrees F) (MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
100-121 degrees C (212-250 degrees F) (MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
100-121 degrees C (212-250 degrees F) (MPR, LPS,	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, HWH, HWHR, GH, GHR, GR and GRR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99 degrees C (100-211 degrees F) (LPR, HWH, HWHR, GH, GHR, GR and GRR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
39-99 degrees C (100-211 degrees F) (LPR, HWH, HWHR, GH, GHR, GR and GRR)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F) (CH, CHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)	Cellular Glass Closed- Cell	50(2.0)	50 (2.0)	75 (3.0)	75 (3.0)
4-16 degrees C (40-60 degrees F)	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

(CH, CHR)					
4-16 degrees C	Polyiso- cyanurate	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(40-60 degrees F)	Closed-Cell				
(CH, CHR)	Rigid				
4-16 degrees C	Polyiso-	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Cyanurate Closed-Cell	(1.5)			
(CH, CHR)	Rigid				
	(Exterior				
	only)				
	011277				

- - - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Modify existing direct-digital control system as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system modifications shall consist of high-speed, peer-to-peer network of DDC controllers compatible with the existing control system server and Engineering Control Center.
 - 2. The direct-digital control system shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
 - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure

of the ECC shall have no effect on the field controllers, including those involved with global strategies.

- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - 2. Terminal units' velocity sensors
 - 3. HVAC equipment (air handling systems) controls. These include:
 - a. Discharge temperature control.
 - b. Flowrate control.
 - c. Setpoint reset.d. Status alarm.

- 4. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 5. The following systems have limited control (as individually noted below) from the ECC:
 - a. Constant temperature rooms: temperature out of acceptable range and status alarms.
 - b. Medical gas systems (if not bottled at point of use): low pressure and status alarms.
 - c. Medical and dental vacuum systems: high pressure and status alarms.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Water treatment system	23	23	23	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
VFDs	23 09 23	26	23 09 23	26
Medical gas panels	23	23	26	26
Laboratory Air Valves	23	23	23 09 23	N/A
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Air system space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Air handling unit-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26

- F. This facility's existing direct-digital control system is manufactured by Barber-Colman, and its ECC is located at the security office near the front entrance. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
- G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract

procuring the controls contractor administered by this Section of the technical specifications.

- 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall modify the existing peer-to-peer networked, stand-alone, distributed control system. This contractor is responsible for all device mounting and wiring.
 - Item/Task Section Control VA 23 09 23 system contactor integrator ECC expansion Х ECC programming Х Devices, controllers, control panels Х and equipment Point addressing: all hardware and Х software points including setpoint, calculated point, data point(analog/ binary), and reset schedule point Point mapping Х Network Programming Х ECC Graphics Х Х Controller programming and sequences Integrity of LAN communications Х Electrical wiring Х Operator system training Х LAN connections to devices Х LAN connections to ECC Х IP addresses Х Overall system verification Х Controller and LAN system verification Х
- 4. Responsibility Table:

H. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA. Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fina

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 22 13, Steam and Condensate Heating Piping.
- C. Section 23 31 00, HVAC Ducts and Casings.
- D. Section 23 36 00, Air Terminal Units.
- E. Section 23 73 00, Indoor Central-Station Air-Handling Units.
- F. Section 23 74 13, Packaged, Outdoor, Central-Station Air-Handling Units.
- G. Section 26 05 11, Requirements for Electrical Installations.
- H. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- I. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- J. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- K. Section 26 09 23, Lighting Controls.
- L. Section 26 27 26, Wiring Devices.
- M. Section 26 29 11, Motor Starters.
- N. Section 27 15 00, Communications Horizontal Cabling
- O. Section 28 31 00, Fire Detection and Alarm.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.

- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.

- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.

- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- NN. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- OO. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- PP. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- QQ. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- RR. Operating system (OS): Software, which controls the execution of computer application programs.
- SS. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- TT. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- UU. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- VV. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- WW. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- XX. Repeater: A network component that connects two or more physical segments at the physical layer.

- YY. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- ZZ. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- AAA. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be

involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disgualification of the supplier.

- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The

Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.

- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Project No. 642-11-150 Final Documents: 8/17/2012

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final turnover, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters,
electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.

- 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
- 3. Control dampers and control valves schedule, including the size and pressure drop.
- Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
- 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
- 6. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.

- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.

- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 3. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).

- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):

B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

В32-08	.Standard Specification for Solder Metal
в88-09	.Standard Specifications for Seamless Copper
	Water Tube
В88М-09	.Standard Specification for Seamless Copper
	Water Tube (Metric)
В280-08	.Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	.Standard Specification for Polyethylene (PE)
	Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE): 802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications
- G. National Fire Protection Association (NFPA):

70-11.....National Electric Code 90A-09.....Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10....Access Control System Units 486A/486B-10....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10....Energy Management Equipment 1076-10....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal (existing).
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment, where required.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.

- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-

controller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.

D. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC is existing and all components installed as part of this project must be compatible with the existing ECC.
- B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
- C. ECC Software:
 - !. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.
 - 2. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
 - 3. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall

include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.

- 4. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
- 5. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - a. Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.
 - c. Collection and analysis of historical data.
 - d. Alarm reporting, routing, messaging, and acknowledgement.
 - e. Definition and construction of dynamic color graphic displays.
 - f. Real-time graphical viewing and control of environment.
 - g. Scheduling trend reports.
 - h. Program editing.
 - i. Operating activity log and system security.
 - j. Transfer data to third party software.
- 6. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.
 - c. Event scheduling.
 - d. Dynamic trend definition and presentation.
 - e. Program and database editing.
 - f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System

security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.

- 7. Graphic Displays:
 - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
 - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
 - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
 - d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
 - e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
 - f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
 - g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work

in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.

- 8. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g. List of weekly schedules.
 - h. List of holiday programming.
 - i. List of limits and dead bands.
 - j. Custom reports.
 - k. System diagnostic reports, including, list of digital controllers on the network.
 - 1. List of programs.
- 9. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
 - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.
- 10. Collection and Analysis of Historical Data:
 - a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based

intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.

- b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
- c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
- d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.
- 11. Alarm Management:
 - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
 - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
 - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message

in English language. The operator shall be able to sort out the alarms.

- d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
- e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.

2.5 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.6 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.

- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.7 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
 - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
 - 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.

- b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.

- 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:

- a. Two position (on-off, slow-fast) control.
- b. Proportional control.
- c. Proportional plus integral (PI) control.
- d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
- e. Automatic tuning of control loops.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
 - b. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be

possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- c. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- d. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- e. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.8 SPECIAL CONTROLLERS

A. Room Differential Pressure Controller: The differential pressure in laboratory rooms, operating rooms and isolation rooms shall be

maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space, and display the value on its monitor. The sensor-controller shall meet the following as a minimum:

- 1. Operating range: -0.25 to +0.25 inches of water column
- 2. Resolution: 5 percent of reading
- 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
- 4. Analog output: 0-10 VDC or 4-20 ma
- 5. Operating temperature range: 32°F-120°F

2.9 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - 2) Psychiatric patient room sensor: sensor shall be flush with wall, shall not include an override switch, numerical

temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless steel cover plate with an insulated back and security screws.

- d. Wire: Twisted, shielded-pair cable.
- e. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40° C to 60° C (-40° F to 140° F), 5 to 100% humidity.
 - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.

- d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet).
- e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
- f. Ambient temperature effects, less than 0.005 percent calibrated span per °C (°F) temperature change.
- g. RFI effect flow meter shall not be affected by RFI.
- h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
- E. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed,
 SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall
 be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale
 range and differential suitable for specified application.
- F. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.10 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.

- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.11 THERMOSTATS AND HUMIDISTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have satin chrome finish, setpoint range and temperature display and external adjustment:

- a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
- b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
- c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
- d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers

and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.

- 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
- 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Duct mounted damper: 600 meter per minute (2000 fpm).
 - b. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - 3. See drawings for required control operation.

2.15 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in

Project No. 642-11-150 Final Documents: 8/17/2012

temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.

- b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
- 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
 - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
 - c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
 - b. Electronics Panel shall be A/C powered 120 VAC 24 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from $-45^{\circ}C$ to $70^{\circ}C$ ($-50^{\circ}F$ to $160^{\circ}F$).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	
<=1	2	
>1 to <4	4	
4 to <8	6	
8 to <12	8	
12 to <16	12	
>=16	16	

- a. Complete installation shall not exhibit more than ± 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within ± 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true

representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:

- Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
- 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
- 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
- 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.
- F. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure

transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.

 The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
 - 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.

- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations

shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.

- Calibrate sensors to accuracy specified, if not factory calibrated.
- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.

- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.

5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance want with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.

- 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
 - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.

- d. Execute digital and analog commands in graphic mode.
- e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
- f. Demonstrate EMS performance via trend logs and command trace.
- g. Demonstrate scan, update, and alarm responsiveness.
- h. Demonstrate spreadsheet/curve plot software, and its integration with database.
- i. Demonstrate on-line user guide, and help function and mail facility.
- j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
- k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
- Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

----- END -----

Page intentionally left blank
SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Glycol-water piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for piping.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Piping insulation.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding gualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. For mechanical pressed sealed fittings, only tools of fitting manufacturer shall be used.
- D. Mechanical pressed fittings shall be installed by factory trained workers.
- E. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Grooved joint couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gages.
 - 15. Thermometers and test wells.
 - 16. Seismic bracing details for piping.
- C. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. As-Built Piping Diagrams: Provide drawing as follows for chilled water, and heating hot water system and other piping systems and equipment.
 - 1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-06.....Gray Iron Threaded Fittings B16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings B40.100-05.....Pressure Gauges and Gauge Attachments C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI): 70-2-2006.....Control Valve Seat Leakage D. American Society of Mechanical Engineers (ASME): B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-2006......Malleable Iron Threaded Fittings: Class 150 and 300 B16.4-2006.....Gray Iron Threaded Fittings: (Class 125 and 250) B16.5-2003.....Pipe Flanges and Flanged Fittings: NPS $\frac{1}{2}$ through NPS 24 Metric/Inch Standard B16.9-07.....Factory Made Wrought Butt Welding Fittings B16.11-05.....Forged Fittings, Socket Welding and Threaded B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-01.....Wrought Copper and Bronze Solder Joint Pressure Fittings. B16.24-06.....Cast Copper Alloy Pipe Flanges and Flanged Fittings B16.39-06......Malleable Iron Threaded Pipe Unions B31.1-08.....Power Piping E. American Society for Testing and Materials (ASTM): A47/A47M-99 (2004).....Ferritic Malleable Iron Castings A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-04.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings

Philad Renova	delphia VA Medical Center ations to Upgrade HVAC ir	r, Philadelphia, PA Project No. 642-11-150 n SPD Final Documents: 8/17/2012
	A183-03	Standard Specification for Carbon Steel Track
		Bolts and Nuts
	A216/A216M-08	Standard Specification for Steel Castings,
		Carbon, Suitable for Fusion Welding, for High
		Temperature Service
	A234/A234M-07	Piping Fittings of Wrought Carbon Steel and
		Alloy Steel for Moderate and High Temperature
		Service
	A307-07	Standard Specification for Carbon Steel Bolts
		and Studs, 60,000 PSI Tensile Strength
	A536-84 (2004)	Standard Specification for Ductile Iron Castings
	A615/A615M-08	Deformed and Plain Carbon Steel Bars for
		Concrete Reinforcement
	A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
		Iron Alloy Coated (Galvannealed) By the Hot-Dip
		Process
	B32-08	Standard Specification for Solder Metal
	B62-02	Standard Specification for Composition Bronze or
		Ounce Metal Castings
	B88-03	Standard Specification for Seamless Copper Water
		Tube
	B209-07	Aluminum and Aluminum Alloy Sheet and Plate
	C177-04	Standard Test Method for Steady State Heat Flux
		Measurements and Thermal Transmission Properties
		by Means of the Guarded Hot Plate Apparatus
	C478-09	Precast Reinforced Concrete Manhole Sections
	C533-07	Calcium Silicate Block and Pipe Thermal
		Insulation
	C552-07	Cellular Glass Thermal Insulation
	D3350-08	Polyethylene Plastics Pipe and Fittings
	ar 0.1 0.0	Materials
	C591-08	Unfaced Preformed Rigid Cellular
	F 477 00	Foryisocyanurate Thermai Insulation
	F4//-UØ	Elastomeric Seals Gaskets) for Joining Plastic
ст.	Amoriaan Matan Maria -	ripe
Ľ.	Allerican Water Works ASS	Ductilo Iron and Croy Iron Fittings for Mater
	CTT0_00	Ducting iton and drey iton fittings for Waler

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 C203-02.....Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied G. American Welding Society (AWS): B2.1-02.....Standard Welding Procedure Specification H. Copper Development Association, Inc. (CDA): CDA A4015-06.....Copper Tube Handbook I. Expansion Joint Manufacturer's Association, Inc. (EJMA): EMJA-2003..... Expansion Joint Manufacturer's Association Standards, Ninth Edition J. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-02a.....Butterfly Valves SP-70-06.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-05.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-08.....Bronze Gate, Globe, Angle and Check Valves SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-96.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-00.....Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI): 14-06.....Plastic Piping System Components and Related Materials and other Recreational Water Facilities -Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities 61-2008.....Drinking Water System Components - Health

Effects

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fina

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

A. Chilled Water, Condenser Water, Heating Hot Water, and Glycol-Water and Vent Piping:

1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.

B. Cooling Coil Condensate Drain Piping:

1. From air handling units: Copper water tube, ASTM B88, Type M.

C. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.

- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

A. Joints:

- Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).

2.6SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform.

- D. Shut-Off Valves
 - Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 4140 kPa (600 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
 - c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
- E. Globe and Angle Valves
 - 1. Globe Valves
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.

- b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
- 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle.
- F. Check Valves
 - 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.), 45 degree swing disc.
 - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.
 - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62.Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:

- Gray iron (ASTM A126) or brass body rated 1205 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
- Brass or ferrous body designed for 2067 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
- Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
- I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.9 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.
- D. Self-Averaging Annular Sensor Type: Brass or stainless steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in l/m (gpm).

2.10 STRAINERS

- А. Ү Туре.
 - 1. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.

2.12 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 340 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.

- 5. Conform to the standards of EJMA and ASME B31.1.
- 6. Threaded connection at bottom, 25 mm (one inch) minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - 1. Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- G. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
- H. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.13 HYDRONIC SYSTEM COMPONENTS

A. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 1034 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.14 GAGES, PRESSURE AND COMPOUND

A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.

- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.15 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
- B. Provide one each of the following test items to the Resident Engineer:
 - 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, -100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
 - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.16 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Glycol-Water: 0-38 degrees C (32-100 degrees F).
 - 2. Hot Water and Glycol-Water: -1 116 degrees C (30-240 degrees F).

2.17 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, coils, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.

- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- E. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.

- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 SEISMIC BRACING ABOVEGROUND PIPING

Provide in accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool

pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer.

- 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.7 WATER TREATMENT

- A. Close and fill system as soon as possible after final flushing to minimize corrosion.
- B. Charge systems with chemicals to match existing as indicated by Resident Engineer.
- C. Utilize this activity, by arrangement with the Resident Engineer, for instructing VA operating personnel.

3.8 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

Page intentionally left blank

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings.

1.2 RELATED WORK

- A. Excavation and backfill: Section 31 20 00, EARTH MOVING.
- B. Seismic restraints for piping: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- E. Piping insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- H. Water treatment for open and closed systems: Section 23 25 00, HVAC WATER TREATMENT.
- I. Heating Coils and Humidifiers: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS and SECTION 23 31 00, HVAC DUCTS AND CASING.
- J. Heating coils: Section 23 82 16, AIR COILS.
- K. Temperature and pressure sensors and valve operators: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.

- 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
- 11. All specified steam system components.
- 12. Gages.
- 13. Thermometers and test wells.
- 14. Seismic bracing details for piping.
- C. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - 1. One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-2006.....Gray Iron Threaded Fittings C. American Society of Mechanical Engineers (ASME): B16.1-2005.....Gray Iron Pipe Flanges and Flanged Fittings B16.3-2006......Malleable Iron Threaded Fittings B16.9-2007......Factory-Made Wrought Buttwelding Fittings B16.11-2005.....Forged Fittings, Socket-Welding and Threaded B16.14-91......Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads B16.22-2001.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2002.....Cast Copper Alloy Solder Joint Drainage Fittings B16.24-2006.....Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 B16.39-98.....Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300 B31.1-2007.....Power Piping B31.9-2008.....Building Services Piping

B40.100-2005.....Pressure Gauges and Gauge Attachments Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1 D. American Society for Testing and Materials (ASTM): A47-99..... Ferritic Malleable Iron Castings A53-2007.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106-2008.....Seamless Carbon Steel Pipe for High-Temperature Service A126-2004.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A181-2006.....Carbon Steel Forgings, for General-Purpose Piping A183-2003 Carbon Steel Track Bolts and Nuts A216-2008 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A285-01 Pressure Vessel Plates, Carbon Steel, Low-and-Intermediate-Tensile Strength A307-2007 Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A516-2006 Pressure Vessel Plates, Carbon Steel, for Moderate-and- Lower Temperature Service A536-84 (2004) e1 Standard Specification for Ductile Iron Castings B32-2008 Solder Metal B61-2008 Steam or Valve Bronze Castings B62-2009 Composition Bronze or Ounce Metal Castings B88-2003 Seamless Copper Water Tube E. American Welding Society (AWS): A5.8-2004..... Filler Metals for Brazing and Braze Welding B2.1-00..........Welding Procedure and Performance Qualifications F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-95.....Butterfly Valves SP-70-98.....Cast Iron Gate Valves, Flanged and Threaded Ends SP-71-97.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-78-98.....Cast Iron Plug Valves, Flanged and Threaded Ends SP-80-97.....Bronze Gate, Globe, Angle and Check Valves

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

SP-85-94.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends

G. Military Specifications (Mil. Spec.): MIL-S-901D-1989.....Shock Tests, H.I. (High Impact) Shipboard

Machinery, Equipment, and Systems

- H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000
- PART 2 PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping:
 - Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
 - All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.

- Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
- 2. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2100 mm (7 feet) or more above the floor or operating platform.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

delphia, PA Project No. 642-11-150 Final Documents: 8/17/2012

- D. Shut-Off Valves
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 lb.), wedge disc, rising stem, union bonnet.
 - b. 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke.
 - High pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - All other services: MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150lb.) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger:
 - Globe valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
 - 2. Angle Valves
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150lb.) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger:
 - Angle valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle valves.
- F. Swing Check Valves
 - 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 psig),
 45 degree swing disc.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- 2. 65 mm (2-1/2 inches) and Larger:
 - a Check valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.
 - 50 mm (2 inches) and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).
 - 2. 65 mm (2-1/2 inches) and larger: Flanged cast steel or 1723 kPa (250
 psig) cast iron.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast iron or bronze.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, iron body.
- D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids.

2.9 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.10 EXPANSION JOINTS

A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.

- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-30 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-125 psig): Rated 1025 kPa (150 psig)
 at 186 degrees C (366 degrees F).
 - c. Steam Service 869-1025 kPa (126-150 psig): Rated 1375 kPa (200
 psig) at 194 degrees C (382 degrees F).
 - d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C (310 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 340 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.
 - 6. Threaded connection at bottom, 25 mm (one inch) minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature,

date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.11 FLEXIBLE BALL JOINTS

A. Design and Fabrication: One piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1720 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 750 mm (30 inches). Joints through 350 mm (14 inches) shall have forged pressure retaining members; while size 400 mm (16 inches) through 760 mm (30 inches) shall be of one piece construction.

B. Material:

- Cast or forged steel pressure containing parts and bolting in accordance with Section II of the ASME Boiler Code or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME Section II SA 515, Grade 70.
- Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - Low pressure leakage test: 41 kPa (6psig) saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 3445 kPa (500 psig) saturated steam.
 - 3. Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
 - Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
 - 5. Vibration: 170 hours on each of three mutually perpendicular axis at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.1 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.12 STEAM SYSTEM COMPONENTS

- A. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless

otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:

- a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
- b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
- 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be 5. Mechanism: Brass, stainless steel or corrosion resistant alloy. rated for the pressure upstream of the PRV supplying the system.
- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 5. Floats: Stainless steel.
- 6. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- B. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- C. Steam Humidifiers:
 - Steam separator type that discharges steam into the air stream through a steam jacketed distribution manifold or dispersion tube. Humidifiers shall be complete with Y-type steam supply strainer; modulating, normally closed steam control valve; normally closed condensate temperature switch; and manufacturer's standard steam trap.
 - 2. Steam separator: Stainless steel or cast iron.
 - 3. Distribution manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
 - a. Duct section height exceeds 900 mm (36 inches).
 - b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute).
 - b. If within 900 mm (3 feet) upstream of fan, damper or pre-filter.
 - d. If within 3000 mm (10 feet) upstream of after-filter.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- D. Steam Gun Set: Furnish for ready coupling to building steam and cold water and designed for rinsing equipment (such as carts and racks) with hot or cold water, cleaning such articles with detergent-laden hot water or steam, or alternately sanitizing the articles with only live steam.
 - Gun: Fit gun for finger-tip release of steam. Design so siphoning action will automatically mix detergent with gun effluent. Equip gun with hardwood front and rear handgrips. Include a 25 mm (15/16-inch) diameter, double tube butyl hose reinforced with braid and designed for 1034 kPa (150 psig) pressure. Hose shall be 3600 mm (12 feet) long.
 - 2. Detergent Tank: Furnish 9.5 L (2-1/2 gallon) polyethylene or fiberglass storage tank and fit for wall mounting. Also provide 13 mm (1/2 inch) diameter neoprene double wall detergent hose of the same length as steam hose. Fit hose-to-tank connection with strainer. Fit other end of hose with valve to regulate amount of detergent to be mixed with steam.
 - 3. Steam/Water Selector: Furnish manifold for wall mounting; design manifold to deliver only steam or water, or steam and water mix to gun. Construct mounting panel of stainless steel. Valves and piping located in panel shall be brass.
 - 4. Accessories: Provide one pair of protective gloves and three 50 mm (2 inch) diameter brushes, one nylon and two stainless-steel.

2.13 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam condensate to 103 kPa(15 psig)	0 to 207 kPa (30 psig).
Medium pressure steam and steam condensate nominal 413 kPa (60 psig)	0 to 689 kPa (100 psig).
High pressure steam and steam condensate nominal 620 kPa to 861 kPa (90 to 125 psig)	0 to 1378 kPa (200 psig).

Pumped condensate, steam condensate,	0 to 415 kPa (60 psig)
gravity or vacuum	
(30" HG to 30 psig)	

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the Resident Engineer:
 - 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762
 mm (30 inches) Hg to 689 kPa (100 psig) range.
 - 3. 0 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.15 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam,

condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.

- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M (8 feet) above grade with down turned elbow.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three

threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.

C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space.Locate joints to permit access without removing piping or other devices.Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

3.5 SEISMIC BRACING

A. Provide is accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.6 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.7 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.8 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

Page intentionally left blank

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for open loop systems.
 - 3. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Test requirements and instructions on use of equipment/system: Section 01 00 00, GENERAL REQUIREMENTS.
- B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Piping and valves: Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period. Minimum service during construction/start-up shall be 6 hours.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.

3. Glycol-water system materials, equipment, and installation.

- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

70-2008.....National Electric Code (NEC)

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Consult with the Resident Engineer to determine the exact compounds and concentrations required to match the existing chemical treatment systems.
- B. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- C. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Final Documents:8/17/2012

D. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

2.3 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows 40 percent for run-around coil systems and hydronic system air handling unit heating coil.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Demolition: Properly dispose of all chemicals in accordance with all national, state and local codes governing as required to drain hot water, glycol hot water, chilled water and glycol water energy recovery piping and coils.
- B. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for piping system flushing and cleaning procedure.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.

- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
 - 2. Exhaust duct for "wet exhaust" ducts.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room, exposed to weather.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Seismic Reinforcing: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- C. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Duct Insulation: Section 23 07 11, HVAC, and BOILER PLANT INSULATION
- F. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- G. Duct Mounted Coils: Section 23 82 16, AIR COILS.
- H. Supply Air Fans: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- I. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- J. Air Filters and Filters' Efficiencies: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- K. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Sealants and gaskets.
 - c. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Sealants and gaskets.
 - c. Access sections.
 - d. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - 7. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
 - 9. Instrument test fittings.
 - 10 Details and design analysis of alternate or optional duct systems.
 - 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- C. American Society for Testing and Materials (ASTM): A167-99(2009).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A653-09.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-09a....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-
 - Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength B209-07.....and Aluminum-Alloy Sheet and Plate
 - E84-09a.....Standard Test Method for Surface Burning Characteristics of Building Materials

D. National Fire Protection Association (NFPA):

90A-09..... Standard for the Installation of Air Conditioning and Ventilating Systems

- 96-08..... Control and Fire Protection of Commercial Cooking Operations
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

```
2nd Edition - 2005.....HVAC Duct Construction Standards, Metal and Flexible
```

1st Edition - 1985.....HVAC Air Duct Leakage Test Manual

F. Underwriters Laboratories, Inc. (UL):

181-08.....Factory-Made Air Ducts and Air Connectors
555-06Standard for Fire Dampers
555S-06Standard for Smoke Dampers

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Wet Air Exhaust Ducts and Accessories (and where the appropriate hatching for stainless steel duct is indicated on drawings): Ducts for cart washers, manual cart washers, and steam sterilizer hoods shall be 1.3 mm (18 gage) stainless steel made liquid tight with continuous external weld for all seams and joints. Provide neoprene gaskets at flanged connections. Where ducts are not self draining back to the

equipment, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access door in side of duct at drain pockets.

- E. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - 3. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- F. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- G. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- H. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- I. Ductwork in excess of 620 cm² (96 square inches) shall be protected unless the duct has one dimension less than 150 mm (6 inches)if it passes through the areas listed below. Refer to the Mission Critical Physical Design Manual for VA Facilities. This applies to the following:
 - 1. Agent cashier spaces
 - 2. Perimeter partitions of caches

- 3. Perimeter partitions of computer rooms
- 4. Perimeter of a COOP sites
- 5. Perimeter partitions of Entrances
- 6. Security control centers (SCC)

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream,
 - in the following locations:
 - 1. Each duct mounted coil.
 - Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.5 SMOKE DAMPERS

A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450 m/min (1500 fpm). Maximum static pressure loss: 32 Pa (0.13 inch W.G.).

- B. Maximum air leakage, closed damper: 0.32 cubic meters /min/square meter (4.0 CFM per square foot) at 750 Pa (3 inch W.G.) differential pressure.
- C. Minimum requirements for dampers:
 - 1. Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - 2. Frame: Galvanized steel channel with side, top and bottom stops or seals.
 - 3. Blades: Galvanized steel, parallel type preferably, 300 mm (12 inch) maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
 - 4. Shafts: Galvanized steel.
 - 5. Bearings: Nylon, bronze sleeve or ball type.
 - 6. Hardware: Zinc plated.
 - 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.6 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.7 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 71 degrees C (160 degrees F) fusible link, 3 hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.8 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter

shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.

- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.9 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

2.10 SOUND ATTENUATING UNITS

A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.

- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.11 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.12 SEISMIC RESTRAINT FOR DUCTWORK

Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.13 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.14 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.15 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi:

- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - 2. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.

- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- J. Section 23 82 16, AIR COILS.
- K. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point

- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - b. Industrial fans.
 - c. Utility fans and vent sets.
 - 3. Power roof and wall ventilators.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Belt guards.
- F. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- G. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA):

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Final Documents: 8/17/2012 Renovations to Upgrade HVAC in SPD 99-86.....Standards Handbook 210-06...... Fans for Aerodynamic Performance Rating 261-09.....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-08.....Reverberant Room Method for Sound Testing of Fans C. American Society for Testing and Materials (ASTM): B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-08..... Standard Test Methods for Measuring Adhesion by Tape Test G152-06.....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-04..... Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA): NFPA 96-08.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations F. Underwriters Laboratories, Inc. (UL): 181-2005..... Air Connectors Made Air Ducts and Air Connectors 1.6 EXTRA MATERIALS A. Provide one additional set of belts for all belt-driven fans. PART 2 - PRODUCTS 2.1 FAN SECTION (CABINET FAN) Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS. 2.2 CENTRIFUGAL FANS A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.

- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWSl fans: Arrangement 10.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.

- Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
- 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
- 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
- 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
- 5. Belts: Oil resistant, non-sparking and non-static.
- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for controller/motor combination requirements.
- D. Industrial Fans: Use where scheduled or in lieu of centrifugal fans for low volume high static service. Construction specifications paragraphs A and C for centrifugal fans shall apply. Provide material handling flat blade type fan wheel.
- E. Utility Fans, Vent Sets and Small Capacity Fans: Class 1 design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300 mm (12 inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron.

H. Spark Resistant/Explosion Proof Fans: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), provide AMCA construction option: A, B or C as indicated. Drive set shall be comprised of non-static belts for use in an explosive atmosphere. Motor shall be explosion proof type if located in air stream.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades.
- C. Construction: Steel or aluminum, completely weatherproof, for rail mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.

C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise requirements.
- D. Section 23 31 00, HVAC DUCTS AND CASINGS: Ducts and flexible connectors.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: Flow rates adjusting and balancing.
- G. Section 23 82 16, AIR COILS: Heating Coil pressure ratings.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-08..... Air Terminals Addendum to ARI 888-98 incorporated into standard posted 15th December 2002 C. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems D. Underwriters Laboratories, Inc. (UL): 181-08..... Standard for Factory-Made Air Ducts and Air Connectors E. American Society for Testing and Materials (ASTM): C 665-06..... Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - 1. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.

- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 (HVAC DUCTS AND CASINGS).

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 1,180 Liters/second (2,500 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all

edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.

- 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
- Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.

- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

- - - E N D - - -

Page intentionally left blank

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Seismic Reinforcing: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- B. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- C. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- D. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE): ASCE7-05.....Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012A167-99 (2004).....Standard Specification for Stainless and

Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

B209-07.....Standard Specification for Aluminum and

Aluminum-Alloy Sheet and Plate

- E. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems
- F. Underwriters Laboratories, Inc. (UL): 181-08.....UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 AIR OUTLETS AND INLETS

A. Materials:

- Steel or aluminum Exhaust air registers located in combination toilets and shower stalls shall be constructed from aluminum. Provide manufacturer's standard gasket.
- Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.
 - c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face diffusers for

VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.

- 2. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- 3. Supply Grilles: Same as registers but without the opposed blade damper.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
 - 5. Door Grilles: Are furnished with the doors.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.
- E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

2.4 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION

- - - E N D - - -

SECTION 23 40 00

HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Resident Engineer, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
 - 2. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously

submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.

- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, UL classification, and file number.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 52.2-2007......Method of Testing General Ventilation Air-

Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J

C. American Society of Mechanical Engineers (ASME):

NQA-1-2008.....Quality Assurance Requirements for Nuclear Facilities Applications

D. Underwriters Laboratories, Inc. (UL): 900;Revision 15 July 2009 Test Performance of Air Filter Units Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

- A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of spare filters to the Resident Engineer.
- B. The Resident Engineer will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.

HVAC Filter Types Table 2.2C								
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type				
7	7-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway				
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway				
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge				
13	13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge				
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge				

C. HVAC Filter Types

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.

B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

- A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels format are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with

coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter

C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

2.5 FILTER HOUSINGS/SUPPORT FRAMES

A. Side Servicing Housings (HVAC Grade)

- Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
- 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall

accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swingopen type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of highefficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.

- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
- 4. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

2.6 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range. Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.7 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install supports, filters and gages in accordance with manufacturer's instructions.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Install or deliver replacement filter units as directed by the Resident Engineer.

- - E N D - - -

Page intentionally left blank

SECTION 23 72 00 AIR-TO-AIR ENERGY RECOVERY EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

This Section specifies run-around heat recovery systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
- B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 07 11, HVAC and BOILER PLANT INSULATION: Requirements for piping insulation.
- F. Section 23 21 13, HYDRONIC PIPING: Requirements for piping for expansion tanks.
- G. Section 23 82 16, AIR COILS: Requirements for run-around system coils.
- H. Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for sheet metal ducts and fittings.
- I. Section 23 40 00, HVAC AIR CLEANING DEVICES: Requirements for filters used before heat recovery coils.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
- K. Section 23 05 93, TESTING, ADJUSTING and BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 01 00 00, GENERAL REQUIREMENTS for performance tests and instructions to VA personnel.
- C. Refer to paragraph QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Performance Criteria: Heat recovery equipment shall be provided by a manufacturer who has been manufacturing such equipment and the equipment has a good track record for at least 3 years.
- E. Performance Test: In accordance with PART 3.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- B. Manufacturer's Literature and Data:
 - 1. Run-Around Energy Recovery System
- C. Certificate: Submit, simultaneously with shop drawings, an evidence of satisfactory service of the equipment on three similar installations.
- D. Submit type, size, arrangement and performance details. Present application ratings in the form of tables, charts or curves.
- E. Provide installation, operating and maintenance instructions, in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (AHRI) AHRI 1060-2005.....Performance Rating of Air-to-Air Heat Exchangers for Energy Recovery Ventilation Equipment
- C. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE):
 - 15-10.....Safety Standard for Refrigeration Systems (ANSI) 52.1-92....Gravimetric and Dust-Spot Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter
 - 52.2-07.....Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size
 - 84-08..... Method of Testing Air-to-Air Heat/Energy Exchangers
- D. American Society for Testing and materials (ASTM)

D635-10.....Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position

- E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials
- E. American Society of Civil Engineers (ASCE) ASCE 7-10.....Minimum Design Loads for Buildings and Other Structures
- F. Underwriters Laboratories, Inc (UL) 1812-2009.....Standard for Ducted Heat Recovery Ventilators 1815-2009.....Standard for Nonducted Heat Recovery Ventilators

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

Project No. 642-11-150 Final Documents: 8/17/2012

PART 2 - PRODUCTS

2.4 RUN-AROUND ENERGY RECOVERY SYSTEM

- A. System shall be field fabricated, as shown, containing coils, piping and 40 percent glycol, insulation, and accessories.
- B. Automatic Temperature Controls and Sequence of Operations: As shown on drawings and as specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. In areas with climates where the outdoor design temperature is below freezing, the sequence shall include a defrost cycle to modulate glycol flow to the outdoor air coil as required to maintain the exhaust air temperature above freezing.
- C. Components shall comply with requirements in the following specification sections:
 - 1. Insulation: Section 23 07 11, HVAC AND BOILER PLANT INSULATION
 - 2. Pipes, Fittings, and Specialties: Section 23 21 13, HYDRONIC PIPING
 - 3. Coils: Section 23 82 16, AIR COILS
 - 4. Controls: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

2.5 AIR FILTERS

Air Filters: Disposable air filters, with a MERV rating of 7, shall be provided upstream of outdoor air and exhaust run-around loop air coils and as indicated on the drawings. Comply with requirements in specification Section 23 40 00, HVAC AIR CLEANING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow the equipment manufacturer's instructions for handling and installation, and setting up of ductwork for makeup and exhaust air steamers for maximum efficiency.
- B.Seal ductwork tightly to avoid air leakage.
- C. Install units with adequate spacing and access for cleaning and maintenance of heat recovery coils as well as filters.
- D. Brace heat recovery equipment installed in projects in the Seismic area according to specification Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.2 FIELD QUALITY CONTROL

- A. Operational Test: Perform tests as per manufacturer's written instructions for proper and safe operation of the heat recovery system.
 - 1. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Adjust seals and purge.
 - 3. Test and adjust controls and safeties.

- B. Replace damaged and malfunctioning controls and equipment.
- C. Set initial temperature and humidity set points. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- D. Prepare test and inspection reports to the Senior Resident Engineer in accordance with specification Section 01 00 00, GENERAL REQUIREMENTS.

3.3 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of heat recovery equipment.

3.4 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer. Provide a minimum of 7 days prior notice.

3.5 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

- - - E N D - - -

SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of housed-centrifugal fan with V-belt drive coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Seismic restraints for equipment: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- C. Sound and vibration requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- D. Piping and duct insulation: Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- E. Piping and valves: Section 23 21 13 / 23 22 13, HYDRONIC PIPING / STEAM AND CONDENSATE HEATING PIPING.
- F. Heating and cooling coils and pressure requirements: Section 23 82 16, AIR COILS.
- G. Return and exhaust fans: Section 23 34 00, HVAC FANS.
- H. Requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining, and air leakage: Section 23 31 00, HVAC DUCTS and CASINGS.
- I. Air filters and filters' efficiency: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- J. HVAC controls: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Testing, adjusting and balancing of air and water flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- L. Types of motors: Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- M. Types of motor starters: Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Air Handling Units Certification
 - Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - Submittals for AHUS shall include fans, drives, motors, coils, humidifiers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, diffusion plates, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit

support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).

- 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as

required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.

- 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-01.....Standard for Forced-Circulation Air-Heating and Air-Cooling Coils

430-09..... Central Station Air Handling Units

- C. Air Movement and Control Association International, Inc. (AMCA): 210-07.....Laboratory Methods of Testing Fans for Rating
- D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):

170-2008.....Ventilation of Health Care Facilities

E. American Society for Testing and Materials (ASTM):

ASTM B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus

ASTM D1654-08.....Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments

ASTM D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus

- ASTM D3359-08.....Standard Test Methods for Measuring Adhesion by Tape Test
- F. Military Specifications (Mil. Spec.): MIL-P-21035B-2003.....Paint, High Zinc Dust Content, Galvanizing Repair (Metric)

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- G. National Fire Protection Association (NFPA): NFPA 90A..... Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

A. General:

- 1. AHUs shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units, subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.
- 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 3. AHUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
- 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to

assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative cannot be provided, the manufacturer shall provide a factory representative.

- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher.
- B. Base:
 - Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.
 - AHUs shall be completely self supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.
 - 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.

2. Casing Construction:

Table 2.1.C.2

Outer Panel	0.8 mm (22 Gage) Minimum		
Inner Panel	0.8 mm (22 Gage) Minimum		
Insulation	Foam		
Thickness	50 mm (2 inch) Minimum		
Density	48 kg/m ³ (3.0 lb/ft ³) Minimum		
Total R Value	2.3 m ² .K/W (13.0 ft ² . ^o F.hr/Btu)		
	Minimum		

3. Casing Construction (Contractor's Option):

Outer Panel	1.3 mm (18 Gage) Minimum		
Inner Panel	1.0 mm (20 Gage) Minimum		
Insulation	Fiberglass		
Thickness	50 mm (2 inch) Minimum		
Density	24 kg/m ³ (1.5 lb/ft ³) Minimum		
Total R Value	1.4 m ² .K/W (8.0 ft ² . ⁰ F.hr/Btu)		
	Minimum		

Table 2.1.C.3

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 6. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier, and coil sections shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air

space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.

- a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door.
- b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).
- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- D. Floor:
 - 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
 - 2. Where indicated, furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of

drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.

- An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
- Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
- Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Housed Centrifugal Fan Sections:
 - Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B (10) life of not less than 50,000 hours and an L (50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
 - 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements.
 - 3. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be

demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- H. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.
 - Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. Diffuser Section: Furnish a diffuser segment with perforated diffuser plate immediately downstream of supply fan to assure uniform distribution of leaving air across the face of the downstream afterfilters to create uniform velocity profiles across the entire opening.

Bolt or weld diffuser plate to a sturdy steel support frame so that it remains rigid. Manufacturer shall include any diffuser section pressure loss in excess of diffuser plate and this value shall be included in unspecified internal losses when selecting fan.

- J. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils and glycol-water exhaust heat recovery coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings and Section 23 82 16, AIR COILS for additional coil requirements.
- K. Humidifier: When included in design, coordinate the humidification requirements with section 23 22 13 Steam and Condensate Heating Piping. Provide air-handling unit-mounted humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.
- L. Sound Attenuators: Refer to Drawings, Specification Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, and Section 23 31 00, HVAC DUCTS AND CASINGS, for additional unit mounted sound attenuator requirements. AHU sound attenuators shall be factory installed as an integral part of AHU.
- M. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- N. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.

- 3. Provide a convenience duplex receptacle next to the light switch.
- 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.
- C. Install seismic restraints for roof top units. Refer to specification Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- E. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

- - - E N D - - -

SECTION 23 74 13

PACKAGED, OUTDOOR, CENTRAL-STATION AIR HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof top air handling units including integral components specified herein.
- B. Definitions: Roof Top Air Handling Unit(Roof Top Units, RTU): A factory fabricated assembly consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for equipment.
 - B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
 - C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Sound and vibration requirements.
 - D. Section 23 07 11, HVAC and BOILER PLANT INSULATION: Piping and duct insulation.
 - E. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Piping and valves.
 - F. Section 23 82 16, AIR COILS: Heating and cooling coils and pressure requirements.
 - G. Section 23 34 00, HVAC FANS: Return and exhaust fans.
 - H. Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
 - I. Section 23 40 00, HVAC AIR CLEANING DEVICES: Air filters and filters' efficiency.
 - J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: HVAC controls.
 - K. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing, adjusting and balancing of air and water flows.
 - L. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT: Types of motors.
 - M. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Types of motor starters.
 - N. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS:

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Air Handling Units Certification
 - 1. Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4 SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish a complete submission for all roof top units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for RTUs shall include fans, drives, motors, coils, mixing box with return air dampers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc) and rigging points.

- 2. Submittal drawings of section or component only, will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details; if the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for fan and at entrance and discharge of RTUs at scheduled conditions. Include sound attenuator capacities and itemized internal component attenuation. Internal lining of supply air ductwork with sound absorbing material is not permitted. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute) and 110 percent of design static pressure.
- 5. Submit total fan static pressure, external static pressure, for RTU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for

replacement through available access without adversely affecting other sections.

- 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 260-01.....Sound Rating of Ducted Air Moving and Conditioning Equipment 410-01....Standard for Forced-Circulation Air-Heating and Air-Cooling Coils 430-09....Standard for Central Station Air Handling Units

AHRI-DCAACP.....Directory of Certified Applied Air Conditioning Products

- C. Air Moving and Conditioning Association (AMCA): 210-07.....Laboratory Methods of Testing Fans for Rating
- D. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA): 9-90 (R2008).....Load Ratings and Fatigue life for Ball Bearings
- E. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE):

51-2007.....Laboratory Methods of Testing Fans for Rating F. American Society for Testing and Materials (ASTM):

A653/653M-02.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

B117-07a.....Salt Spray (Fog) Testing

C1071-05e1.....Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material) Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Final Documents: 8/17/2012 Renovations to Upgrade HVAC in SPD D1654-08..... Standard Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments D1735-08.....Water Resistance of Coatings Using Water Fog Apparatus D3359-08..... Standard Test Methods for Measuring Adhesion by Tape Test E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials G. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA): 9-90.....load Ratings and Fatigue life for Ball Bearings H. Military Specifications (Mil. Spec.): DOD-P-21035A-2003.....Paint, High Zinc Dust Content, Galvanizing Repair I. National Fire Protection Association (NFPA): NFPA 90A..... Standard for Installation of Air Conditioning and Ventilating Systems, 2009 J. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 ROOF TOP AIR HANDLING UNITS

- A. General:
 - Roof top units (RTU) shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing is specified in paragraph 2.1.C. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
 - 2. The contractor and the RTU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
 - 3. RTUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and

casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.

- 4. The RTU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 Pa (8 inches water gage) or higher.
- B. Base:
 - Provide a heavy duty steel base for supporting all major RTU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability.
 - 2. RTUs shall be completely self supporting for installation on roof curb.
 - 3. The RTU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- 1. General: RTU casing shall be entirely double wall insulated panels, integral of or attached to a structural frame. Construction shall be such that removal of any panel shall not affect the structural integrity of the unit. Casing finished shall meet salt-spray test as specified in paragraph 2.1.C.10. All casing and panel sections shall be tightly butted and gasketed. No gaps of double wall construction will be allowed where panels bolt to air handling unit structural member. Structural members, not covered by the double wall panels, shall have equivalent insulated double wall construction.
- 2. Double wall galvanized steel panels, minimum 51 mm (2 inches) thick, constructed of minimum 1.3 mm (18 gauge) outer skin and 1.0 mm (20 gauge) solid or perforated inner skin to limit wall, roof and floor deflection to not exceed an L/240 ratio when the unit casing is pressurized to (±1245 Pa (±5 in. w.g.). Deflection shall be measured at the midpoint of the panel height. Total housing leakage shall not exceed 1% of rated cfm when the unit casing is pressurized to ±5 in. w.g. (±1245 Pa). The outer (skin) and inner panels shall be solid.
- 3. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 4. Insulation: Insulation shall be injected CFC free polyurethane foam encased in double-wall casing between exterior and interior panels such that no insulation can erode to the air stream. Insulation shall be 50 mm (2 inch) thick, and 48 kg/m³ (3.0 lb/ft³) density with a total thermal resistance (R-value) of approximately 2.3 m.K/W (13.0 hr-ft^{2 °}F/BTU). Units with less than 50 mm (2 inch) of insulation in any part of the walls, floor, roof or drain pan shall not be acceptable. The insulation shall comply with NFPA 90-A for the flame and smoke generation requirements. Also, refer to specification Section 23 07 11, HVAC and BOILER PLANT INSULATION.

Outer Panel	0.8 mm (22 Gage) Minimum		
Inner Panel	0.8 mm (22 Gage) Minimum		
Insulation	Foam		
Thickness	50 mm (2 inch) Minimum		
Density	48 kg/m ³ (3.0 lb/ft ³) Minimum		
Total R Value	2.3 m ² .K/W (13.0 ft ² . ^o F.hr/Btu)		
	Minimum		

Table 2.1.C.4

- 5. The thickness of insulation, mode of application, and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU.
- 6. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inches) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 pound) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inches water gage).
 - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect

switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.

- 9. Roof of the unit shall be sloped to have a minimum pitch of 1/4 inch per foot. The roof shall overhang the side panels by a minimum of three inches to prevent precipitation drainage from streaming down the unit side panels.
- 10. Casing finished shall meet ASTM B117, 500-hour salt spray test, using 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no sign of blistering, wrinkling, or cracking, no loss of adhesion, and the specimen shall show no sign of rust creepage beyond 1/8-inch on either side of scratch mark.
- D. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 pounds per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of air coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double wall construction, Type 304 stainless steel and have a minimum of 50 mm (2 inch) insulation, and shall be sloped to drain. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - 1. An intermediate condensate drip pan shall be provided on stacked air coils and shall be constructed of type 304 stainless steel with copper downspouts factory piped to main condensate pan. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.

- 2. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
- Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Housed Centrifugal Fan Sections:
 - Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B(10) life of not less than 40,000 hours and an L(50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
 - 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK

RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

- 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- 3. Fan Accessories
 - a. Fan Isolation: Provide an actuator-controlled damper to isolate the fan not in operation due to failure.
 - b. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/- 5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- 4. Fan Motor, Drive and Mounting Assembly: Fan Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS
- H. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the RTU. The RTU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The RTU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for RTU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the RTU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or

removable panels. Each coil shall be removable without disturbing adjacent coil. Glycol-water exhaust heat recovery coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings and Section 23 82 16, AIR COILS, for additional coil requirements.

1. Water Coils, Including Glycol-Water.

- Q. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- R. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, and any section over 300mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.
 - 3. Provide a convenience duplex weatherproof receptacle next to the light switch.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof top unit in conformance with ARI 435.
- B. Assemble roof top unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035A. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air-handling units clean prior to operation.
- C. Install seismic restraints for roof top units. Refer to specification Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Leakage and test requirements for roof top units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the

design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.

- E. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Seal and/or fill all openings between the casing and RTU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

- - - E N D - - -

Page intentionally left blank

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK

- A. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS AND CASINGS
- D. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-01.....Forced-Circulation Air-Cooling and Air-Heating Coils
- C. American Society for Testing and Materials (ASTM): B75/75M-02.....Standard Specifications for Seamless Copper Tube
- D. National Fire Protection Association (NFPA):

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012

70-11..... National Electric Code

E. National Electric Manufacturers Association (NEMA):

250-11..... Enclosures for Electrical Equipment (1,000 Volts Maximum)

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing. C. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- D. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- E. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- F. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- G. Pressures kPa (PSIG):

Pressure	Water Coil	Steam Coil	Refrigerant Coil
Test	2070 (300)	1725 (250)	2070 (300)
Working	1380 (200)	520 (75)	1725 (250)

- H. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- I. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- J. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 REHEAT COILS, DUCT MOUNTED

The coils shall be continuous circuit booster type for steam or hot water as shown on drawings. Use the same coil material as listed in Paragraphs 2.1.

2.3 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
 - 1. Cooling, all types.
 - 2. Heating or preheat.

 Runaround energy recovery. ARI certification of capacity adjustment is waived. See Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

- - - E N D - - -

Page intentionally left blank
SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the utility's system shall conform to the utility's requirements. Coordinate fuses, circuit breakers and relays with the utility's system, and obtain utility approval for sizes and settings of these devices.
- D. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012NEMA, or ANSI. Evidence of compliance shall include certified testreports and definitive shop drawings.

- B. Definitions:
 - 1. Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified; equipment or product which:
 - a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory.
 - c. Bears a label, tag, or other record of certification.
 - Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.7 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with Section 00 72 00, GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to switchgear, switchboards, panelboards, transformers, motor control centers, motor controllers, uninterruptible power systems, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories.
 - During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart K in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished

in this manner for the required work, the following requirements are mandatory:

- Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
- 2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E.
- 3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used and exit pathways.
- 4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer.
- D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interferences.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working spaces shall not be less than specified in the NEC for all voltages specified.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers (starters), fused and unfused safety switches, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 1/2 inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm²), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:

- a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
- b. A control sequence describing start-up, operation, and shutdown.
- c. Description of the function of each principal item of equipment.
- d. Installation instructions.
- e. Safety precautions for operation and maintenance.
- f. Diagrams and illustrations.
- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers and replacement frequencies.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

The contractor shall furnish the instruments, materials and labor for field tests.

1.15 TRAINING

- A. Training shall be provided in accordance with Article 1.25, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

- - - E N D - - -

Page intentionally left blank

SECTION 26 05 21

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW)

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of the low voltage power and lighting wiring.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

Low voltage cables shall be thoroughly tested at the factory per NEMA WC-70 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- 1. Manufacturer's Literature and Data: Showing each cable type and rating.
- 2. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only. Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Final Documents: 8/17/2012 Renovations to Upgrade HVAC in SPD B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Fire Protection Association (NFPA): D. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy E. Underwriters Laboratories, Inc. (UL): 44-05..... Thermoset-Insulated Wires and Cables 83-08..... Thermoplastic-Insulated Wires and Cables 467-071.....Electrical Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05.....Sealed Wire Connector Systems 486E-94..... Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Conduit, Tubing, and Cable Fittings 1479-03.....Fire Tests of Through-Penetration Fire Stops PART 2 - PRODUCTS 2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA WC-70 and as specified herein.
- B. Single Conductor:
 - 1. Shall be annealed copper.
 - Shall be stranded for sizes No. 8 AWG and larger, solid for sizes No.
 10 AWG and smaller.
 - 3. Shall be minimum size No. 12 AWG, except where smaller sizes are allowed herein.
- C. Insulation:
 - 1. XHHW-2 or THHN-THWN shall be in accordance with NEMA WC-70, UL 44, and UL 83.
- D. Color Code:
 - Secondary service feeder and branch circuit conductors shall be color-coded as follows:

208/120 volt	Phase	480/277 volt
Black	А	Brown
Red	В	Orange
Blue	C	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

- a. Lighting circuit "switch legs" and 3-way switch "traveling wires" shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Resident Engineer.
- Use solid color insulation or solid color coating for No. 12 AWG and No. 10 AWG branch circuit phase, neutral, and ground conductors.
- 3. Conductors No. 8 AWG and larger shall be color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified above.
 - c. Color as specified using 0.75 in [19 mm] wide tape. Apply tape in half-overlapping turns for a minimum of 3 in [75 mm] for terminal points, and in junction boxes, pull-boxes, troughs, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

2.2 SPLICES AND JOINTS

- A. In accordance with UL 486A, C, D, E, and NEC.
- B. Aboveground Circuits (No. 10 AWG and smaller):
 - Connectors: Solderless, screw-on, reusable pressure cable type, rated 600 V, 220° F [105° C], with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped wires.
 - 3. The number, size, and combination of conductors, as listed on the manufacturer's packaging, shall be strictly followed.

- C. Aboveground Circuits (No. 8 AWG and larger):
 - Connectors shall be indent, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Field-installed compression connectors for cable sizes 250 kcmil and larger shall have not fewer than two clamping elements or compression indents per wire.
 - 3. Insulate splices and joints with materials approved for the particular use, location, voltage, and temperature. Splice and joint insulation level shall be not less than the insulation level of the conductors being joined.
 - 4. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified for power and lighting wiring, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.4 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install in accordance with the NEC, and as specified.
- B. Install all wiring in raceway systems.
- C. Splice cables and wires only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Wires of different systems (e.g., 120 V, 277 V) shall not be installed in the same conduit or junction box system.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. For panel boards, cabinets, wireways, switches, and equipment assemblies, neatly form, train, and tie the cables in individual circuits.
- G. Seal cable and wire entering a building from underground between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.

- H. Wire Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables. Use lubricants approved for the cable.
 - 2. Use nonmetallic ropes for pulling feeders.
 - Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer.
 - 4. All cables in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- No more than three single-phase branch circuits shall be installed in any one conduit.

3.2 SPLICE INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure.
- B. Tighten electrical connectors and terminals according to manufacturer's published torque values.
- C. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

3.3 FEEDER IDENTIFICATION

A. In each interior pull-box and junction box, install metal tags on all circuit cables and wires to clearly designate their circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties.

3.4 EXISTING WIRING

Unless specifically indicated on the plans, existing wiring shall not be reused for a new installation.

3.5 CONTROL AND SIGNAL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to

supply such systems and have suitable spare circuit breakers or space for installation.

3.6 CONTROL AND SIGNAL SYSTEM WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Feeders and branch circuits shall have their insulation tested after installation and before connection to utilization devices, such as fixtures, motors, or appliances. Test each conductor with respect to adjacent conductors and to ground. Existing conductors to be reused shall also be tested.
- B. Applied voltage shall be 500VDC for 300-volt rated cable, and 1000VDC for 600-volt rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300-volt rated cable and 100 megohms for 600-volt rated cable.
- C. Perform phase rotation test on all three-phase circuits.
- D. The contractor shall furnish the instruments, materials, and labor for all tests.

- - - E N D - - -

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the general grounding and bonding requirements for electrical equipment and operations to provide a low impedance path for possible ground fault currents.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low Voltage power and lighting wiring.
- C. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low voltage transformers.
- D. Section 26 24 16, PANELBOARDS: Low voltage panelboards.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
 - Certification that the materials and installation are in accordance with the drawings and specifications.

26 05 26 - 1

2. Certification by the contractor that the complete installation has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

A. American Society for Testing and Materials (ASTM):

B1-07.....Standard Specification for Hard-Drawn Copper Wire

- B3-07.....for Soft or Annealed Copper Wire
- B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- B. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System

C2-07.....National Electrical Safety Code

C. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

- 99-2005.....Health Care Facilities
- D. Underwriters Laboratories, Inc. (UL):

44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 44 or UL 83 insulated stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG [25 mm²] and larger shall be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be ASTM B1 solid bare copper wire.

C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.

2.2 GROUND CONNECTIONS

- B. Above Grade:
 - 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

A. Panelboards:

- 1. Connect the various feeder equipment grounding conductors to the ground bus in the enclosure with suitable pressure connectors.
- 2. Provide ground bars, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
- 3. Connect metallic conduits that terminate without mechanical connection to the housing, by grounding bushings and grounding conductor to the equipment ground bus.
- E. Transformers:
 - 1. Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.
 - 2. Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.3 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a bare grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - 1. Bond the metallic structures of wireway to provide 100% electrical continuity throughout the wireway system, by connecting a No. 6 AWG [16 mm²] bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - 2. Install insulated No. 6 AWG [16 mm²] bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 50 ft [16 M].
 - 3. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.

- 4. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 49 ft [15 M].
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.4 CORROSION INHIBITORS

When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

- - - E N D - - -

Page intentionally left blank

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- B. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull-boxes.
 - 3. Layout of required conduit penetrations through structural elements.
- C. Certifications:
 - 1. Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:

- a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
- b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05....Steel Electrical Metal Tubing C80.6-05....Electrical Intermediate Metal Conduit
- C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - 1-05..... Conduit
 - 5-04.....Surface Metal Raceway and Fittings
 - 6-07.....Electrical Rigid Metal Conduit Steel
 - 50-95..... Enclosures for Electrical Equipment
 - 360-093.....Liquid-Tight Flexible Steel Conduit
 - 467-07.....Grounding and Bonding Equipment
 - 514A-04.....Metallic Outlet Boxes
 - 514B-04.....Conduit, Tubing, and Cable Fittings
 - 514C-96.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers
 - 651-05.....Schedule 40 and 80 Rigid PVC Conduit and Fittings
 - 651A-00.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing
 - 1242-06.....Electrical Intermediate Metal Conduit Steel
- E. National Electrical Manufacturers Association (NEMA):
 - TC-2-03.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit
 - TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing
 - FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
 - 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
 - 4. Flexible galvanized steel conduit: Shall conform to UL 1.
 - 5. Liquid-tight flexible metal conduit: Shall conform to UL 360.
 - Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
 - 7. Surface metal raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank

cover plates having the same finishes as that of other electrical plates in the room.

- 2. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew couplings and connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct burial plastic conduit fittings:

Fittings shall meet the requirements of UL 514C and NEMA TC3.

- 6. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.

- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the Resident Engineer as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors,

install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
 - Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - 4. Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Conduit for conductors 600 V and below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.

- Align and run conduit parallel or perpendicular to the building lines.
- 4. Connect recessed lighting fixtures to conduit runs with maximum 6 ft [1.8 M] of flexible metal conduit extending from a junction box to the fixture.
- 5. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, rigid aluminum, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

3.5 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel or IMC.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

3.6 MOTORS AND VIBRATING EQUIPMENT

A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.

26 05 33 - 8

B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.
- C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- G. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting control, submit the following information.
 - 1. Manufacturer's catalog data.
 - 2. Wiring schematic and connection diagram.
 - 3. Installation details.
- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer.
- D. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer:

a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Green Seal (GS):
 GC-12.....Occupancy Sensors
- C. Illuminating Engineering Society of North America (IESNA): IESNA LM-48Guide for Calibration of Photoelectric Control

Devices

- D. National Electrical Manufacturer's Association (NEMA)
 - C136.10.....American National Standard for Roadway Lighting Equipment-Locking-Type Photocontrol Devices and Mating Receptacles - Physical and Electrical Interchangeability and Testing
 - ICS-1.....Standard for Industrial Control and Systems General Requirements
 - ICS-2....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment
 - ICS-6.....Standard for Industrial Controls and Systems Enclosures
- E. Underwriters Laboratories, Inc. (UL): 20.....Standard for General-Use Snap Switches 773ANonindustrial Photoelectric Switches for Lighting Control

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.

- 3. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
- 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc [21.5 to 2152 lx]; keep lighting off when selected lighting level is present.
- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch [150mm] minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. [232 sq. cm], and detect a person of average size and weight moving not less than 12 inches [305 mm] in either a horizontal or a vertical manner at an approximate speed of 12 inches/s [305 mm/s].
 - 3. Detection Coverage: as scheduled on drawings.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 10 minutes.
- E. Locate light level sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the scheduled light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations.

- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function.

- - - E N D - - -
SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of dry-type general-purpose transformers.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include electrical ratings, impedance, dimensions, weight, mounting details, decibel rating, terminations, temperature rise, no load and full load losses, and connection diagrams.
 - 3. Complete nameplate data, including manufacturer's name and catalog number.
- C. Manuals:
 - When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.
 - 2. If changes have been made to the maintenance and operating manuals originally submitted, then submit four copies of the updated maintenance and operating manuals to the Resident Engineer two weeks prior to final inspection.

 $26\ 22\ 00\ -\ 1$

- D. Certifications: Two weeks prior to the final inspection, submit four copies of the following to the Resident Engineer:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the equipment has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC)
- C. National Electrical Manufacturers Association (NEMA): ST20-92.....Dry-Type Transformers for General Applications TP1-02....Guide for Determining Energy Efficiency for Distribution Transformers

TR1-00..... Transformers, Regulators, and Reactors

PART 2 - PRODUCTS

2.1 GENERAL PURPOSE DRY-TYPE TRANSFORMERS

- A. Unless otherwise specified, dry-type transformers shall be in accordance with NEMA, NEC, and as shown on the drawings. Transformers shall be ULlisted and labeled.
- B. Dry-type transformers shall have the following features:
 - 1. Transformers shall be self-cooled by natural convection, isolating windings, indoor dry-type. Autotransformers will not be accepted.
 - 2. Rating and winding connections shall be as shown on the drawings.
 - 3. Transformers shall have copper windings.
 - 4. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
 - 5. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220° C system with an average maximum rise by resistance of 150° C in a maximum ambient of 40° C.
 - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 ° C system with an average maximum rise by resistance of 115 ° C in a maximum ambient of 40 ° C.
 - 6. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.

- b. Cores shall be grain-oriented, non-aging, and silicon steel.
- c. Coils shall be continuous windings without splices except for taps.
- d. Coil loss and core loss shall be minimized for efficient operation.
- e. Primary and secondary tap connections shall be brazed or pressure type.
- f. Coil windings shall have end filters or tie-downs for maximum strength.
- 7. Certified sound levels determined in accordance with NEMA, shall not exceed the following:

Transformer Rating	Sound Level Rating
0 – 9 KVA	40 dB
10 - 50 KVA	45 dB
51 - 150 KVA	50 dB
151 - 300 KVA	55 dB
301 - 500 KVA	60 dB

- If not shown on drawings, nominal impedance shall be as permitted by NEMA.
- 9. Single phase transformers rated 15 kVA through 25 kVA shall have two 5% full capacity taps below normal rated primary voltage. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage.
- 10. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.
- 11. Enclosures:
 - a. Comprised of not less than code gauge steel.
 - b. Outdoor enclosures shall be NEMA 3R.
 - c. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service.
 - d. Ventilation openings shall prevent accidental access to live components.
 - e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.

- 12. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated on it.
- 13. Dimensions and configurations shall conform to the spaces designated for their installations.
- 14. Transformers shall meet the minimum energy efficiency values per NEMA TP1 as listed below:

kVA Rating	Output efficiency (%)
15	97
30	97.5
45	97.7
75	98
112.5	98.2
150	98.3
225	98.5
300	98.6
500	98.7
750	98.8

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.
- B. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 6 in [150 mm].
- C. Install transformers on vibration pads designed to suppress transformer noise and vibrations.
- D. Use flexible metal conduit to enclose the conductors from the transformer to the raceway systems.

3.2 ACCEPTANCE CHECKS AND TESTS

Perform tests in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections.

- 1. Compare equipment nameplate data with specifications and approved shop drawings.
- 2. Inspect physical and mechanical condition.

- Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
- 4. Perform specific inspections and mechanical tests as recommended by manufacturer.
- 5. Verify correct equipment grounding.
- 6. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

- - - E N D - - -

Page intentionally left blank

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Identification and painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.
- F. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.

1.3 QUALITY ASSURANCE

A Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, shall be clearly presented to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting details, materials, wiring diagrams, accessories, and weights of equipment. Complete nameplate data, including manufacturer's name and catalog number.
- C. Manuals:
 - When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.

- 2. If changes have been made to the maintenance and operating manuals that were originally submitted, then submit four copies of updated maintenance and operating manuals to the Resident Engineer two weeks prior to final inspection.
- D. Certification: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA):

```
PB-1-06.....Panelboards
```

AB-1.....Bolded-Case Circuit Breakers, Molded Case Switches, and Circuit-Breaker Enclosures

250-08..... Enclosures for Electrical Equipment (1000V Maximum)

C. National Fire Protection Association (NFPA):

70-2005National Electrical Code (NEC)

70E-2004.....Standard for Electrical Life Safety in the Workplace

D. Underwriters Laboratories, Inc. (UL): 50-95.....Enclosures for Electrical Equipment 67-09.....Panelboards 489-09.....Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 PANELBOARDS

- A. Panelboards shall be in accordance with UL, NEMA, NEC, and as shown on the drawings.
- B. Panelboards shall be standard manufactured products.
- C. All panelboards shall be hinged "door in door" type with:

- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- Outer hinged door shall be securely mounted to the panelboard box with factory bolts, screws, clips, or other fasteners, requiring a tool for entry. Hand-operated latches are not acceptable.
- 3. Push inner and outer doors shall open left to right.
- D. All panelboards shall be completely factory-assembled with molded case circuit breakers and as scheduled on the drawings or specified herein. Include one-piece removable, inner dead front cover, independent of the panelboard cover.
- E. Panelboards shall have main breaker or main lugs, bus size, voltage, phase, top or bottom feed, and flush or surface mounting as scheduled on the drawings.
- F. Panelboards shall conform to NEMA PB-1, NEMA AB-1, and UL 67 and have the following features:
 - Non-reduced size copper bus bars with current ratings as shown on the panel schedules, rigidly supported on molded insulators.
 - Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
 - Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys of sizes suitable for the conductors to which they will be connected.
 - 4. Neutral bus shall be 100% rated, mounted on insulated supports.
 - 5. Grounding bus bar shall be equipped with screws or lugs for the connection of grounding wires.
 - 6. Buses shall be braced for the available short-circuit current. Bracing shall not be less than 22,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
 - 7. Branch circuit panelboards shall have buses fabricated for bolt-on type circuit breakers.
 - Protective devices shall be designed so that they can easily be replaced.
 - Where designated on panel schedule "spaces," include all necessary bussing, device support, and connections. Provide blank cover for each space.

- 10. In two section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have cable connections to the second section. Panelboard sections with tapped bus or crossover bus are not acceptable.
- 11. Series-rated panelboards are not permitted.

2.2 CABINETS AND TRIMS

Cabinets:

- Provide galvanized steel cabinets to house panelboards. Cabinets for outdoor panelboards shall be factory primed and suitably treated with a corrosion-resisting paint finish meeting UL 50 and UL 67.
- 2. Cabinet enclosure shall not have ventilating openings.
- Cabinets for panelboards may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.

2.3 MOLDED CASE CIRCUIT BREAKERS FOR PANELBOARDS

- A. Circuit breakers shall be per UL 489, in accordance with the NEC, as shown on the drawings, and as specified.
- B. Circuit breakers in panelboards shall be bolt-on type.
- C. Molded case circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 22,000 A symmetrical.
 - 2. 120/240 V Panelboard: 22,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Molded case circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for 100 A frame or lower. Magnetic trip shall be adjustable from 3x to 10x for breakers with 600 A frames and higher.
- E. Breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.

- 7. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.
- 8. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where indicated.
- 9. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SEPARATELY ENCLOSED MOLDED CASE CIRCUIT BREAKERS

- A. Where separately enclosed molded case circuit breakers are shown on the drawings, provide circuit breakers in accordance with the applicable requirements of those specified for panelboards.
- B. Enclosures are to be of the NEMA types shown on the drawings. Where the types are not shown, they are to be the NEMA type most suitable for the environmental conditions where the circuit breakers are being installed.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Resident Engineer. Schedules shall be printed on the panelboard directory cards, installed in the appropriate panelboards, and incorporate all applicable contract changes. Information shall indicate outlets, lights, devices, or other equipment controlled by each circuit, and the final room numbers served by each circuit.
- D. Mount the fully-aligned panelboard such that the maximum height of the top circuit breaker above the finished floor shall not exceed 78 in [1980 mm]. Mount panelboards that are too high such that the bottom of the cabinets will not be less than 6 in [150 mm] above the finished floor.
- E. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims, doors, and boxes with finishes to match surrounding surfaces after the panelboards have been installed.

F. Rust and scale shall be removed from the inside of existing backboxes where new panelboards are to be installed. Paint inside of backboxes with rust-preventive paint before the new panelboard interior is installed. Provide new trim and doors for these panelboards. Covers shall fit tight to the box with no gaps between the cover and the box.

3.2 ACCEPTANCE CHECKS AND TESTS

Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:

- 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Clean panelboard.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlets boxes.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Include electrical ratings, dimensions, mounting details, construction materials, grade and termination information.
- C. Manuals: Two weeks prior to final inspection, deliver four copies of the following to the Resident Engineer: Technical data sheets and information for ordering replacement units.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer: Certification by the Contractor that the devices comply with the drawings and specifications, and have been properly installed, aligned, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent

referenced. Publications are referenced in the text by basic designation only.

- B. National Fire Protection Association (NFPA):
 - 70......Code (NEC)
- C. National Electrical Manufacturers Association (NEMA):
 - WD 1.....General Color Requirements for Wiring Devices
 - WD 6 Wiring Devices Dimensional Requirements
- D. Underwriter's Laboratories, Inc. (UL):

5.....Surface Metal Raceways and Fittings 20.....General-Use Snap Switches 231.....Power Outlets 467....Grounding and Bonding Equipment 498....Attachment Plugs and Receptacles

943.....Ground-Fault Circuit-Interrupters

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall be listed by Underwriters Laboratories, Inc., and conform to NEMA WD 6.
 - Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four min.) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, and conform to the NEMA 5-20R configuration in NEMA WD
 6. The duplex type shall have break-off feature for two-circuit operation. The ungrounded pole of each receptacle shall be provided with a separate terminal.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The remaining receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box.
 - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to

ground leakage current of five milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliamp) on the load side of the device. Device shall have a minimum nominal tripping time of 1/30th of a second.

- b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the "hospital-grade" listing.
- 5. Safety Type Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - 2) Screws exposed while the wall plates are in place shall be the tamperproof type.
- 6. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the "hospital grade" listing and as follows.
 - a. Bodies shall be brown phenolic compound supported by a plated steel mounting strap having plaster ears.
- C. Receptacles; 20, 30 and 50 ampere, 250 volts: Shall be complete with appropriate cord grip plug. Devices shall meet UL 231.

2.2 TOGGLE SWITCHES

- A. Toggle Switches: Shall be totally enclosed tumbler type with bodies of phenolic compound. Toggle handles shall be ivory in color unless otherwise specified. The rocker type switch is not acceptable and will not be approved.
 - 1. Switches installed in hazardous areas shall be explosion proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Ratings:
 - a. 120 volt circuits: 20 amperes at 120-277 volts AC.
 - b. 277 volt circuits: 20 amperes at 120-277 volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be 302 stainless steel in the medical rooms and smooth nylon in the hallways and offices. Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
- C. Standard NEMA design, so that products of different manufacturers will be interchangeable. Dimensions for openings in wall plates shall be accordance with NEMA WD 6.
- D. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- E. In psychiatric areas, wall plates shall be 302 stainless steel, have tamperproof screws and beveled edges.
- F. Wall plates for data, telephone or other communication outlets shall be as specified in the associated specification.
- G. Duplex Receptacles on Emergency Circuit:
 - Bodies shall be red in color. Wall plates shall be red with the word "EMERGENCY" engraved in 6 mm, (1/4 inch) white letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Ground terminal of each receptacle shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the green equipment grounding conductor.
- C. Outlet boxes for light and dimmer switches shall be mounted on the strike side of doors.
- D. Provide barriers in multigang outlet boxes to separate systems of different voltages, Normal Power and Emergency Power systems, and in compliance with the NEC.
- E. Coordinate with other work, including painting, electrical boxes and wiring installations, as necessary to interface installation of wiring devices with other work. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- F. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the

above items with other trades. In addition, check for exact direction of door swings so that local switches are properly located on the strike side.

- G. Install wall switches 48 inches [1200mm] above floor, OFF position down.
- H. Install convenience receptacles 18 inches [450mm] above floor, and 6 inches [152mm] above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- I. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.
- J. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- K. Test GFCI devices for tripping values specified in UL 1436 and UL 943.

- - - E N D - - -

Page intentionally left blank

SECTION 26 29 11 MOTOR STARTERS

PART 1 - GENERAL

1.1 DESCRIPTION

All motor starters and variable speed motor controllers, including installation and connection (whether furnished with the equipment specified in other Divisions or otherwise), shall meet these specifications.

1.2 RELATED WORK

- A. Other sections which specify motor driven equipment, except elevator motor controllers.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, weights, mounting details, materials, running over current protection, size of enclosure, over current protection, wiring diagrams, starting characteristics, interlocking and accessories.
- C. Manuals:
 - Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, maintenance and operation.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.

- c. Elementary schematic diagrams shall be provided for clarity of operation.
- 2. Two weeks prior to the project final inspection, submit four copies of the final updated maintenance and operating manual to the Resident Engineer.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certifications to the Resident Engineer:
 - Certification that the equipment has been properly installed, adjusted, and tested.
 - 2. Certification by the manufacturer that medium voltage motor controller(s) conforms to the requirements of the drawings and specifications. This certification must be furnished to the Resident Engineer prior to shipping the controller(s) to the job site.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1.....Standard Surge Withstand Capability (SWC) Tests for Protective Relays and Relay Systems C. National Electrical Manufacturers Association (NEMA): ICS 1..... Industrial Control and Systems General Requirements ICS 1.1.....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2..... Industrial Control and Systems, Controllers, Contactors and Overload Relays Rated 600 Volts DC ICS 6.....Industrial Control and Systems Enclosures ICS 7.....Industrial Control and Systems Adjustable-Speed Drives Selection, Installation and Operation of Adjustable-Speed Drive Systems D. National Fire Protection Association (NFPA):

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

70.....National Electrical Code (NEC)

E. Underwriters Laboratories Inc. (UL):

508..... Equipment

PART 2 - PRODUCTS

2.1 MOTOR STARTERS, GENERAL

- A. Shall be in accordance with the requirements of the IEEE, NEC, NEMA (ICS 1, ICS 1.1, ICS 2, ICS 6, ICS 7 and ICS 7.1) and UL.
- B. Shall have the following features:
 - 1. Separately enclosed unless part of another assembly.
 - 2. Circuit breakers and safety switches within the motor controller enclosures shall have external operating handles with lock-open padlocking provisions and shall indicate the ON and OFF positions.
 - 3. Motor control circuits:
 - a. Shall operate at not more than 120 volts.
 - b. Shall be grounded except as follows:
 - 1) Where isolated control circuits are shown.
 - 2) Where manufacturers of equipment assemblies recommend that the control circuits be isolated.
 - c. Incorporate a separate, heavy duty, control transformer within each motor controller enclosure to provide the control voltage for each motor operating over 120 volts.
 - d. Incorporate over current protection for both primary and secondary windings of the control power transformers in accordance with the NEC.
 - 4. Overload current protective devices:
 - a. Overload relay thermal or induction type.
 - b. One for each pole.
 - c Manual reset on the door of each motor controller enclosure.
 - d. Correctly sized for the associated motor's rated full load current.
 - e. Check every motor controller after installation and verify that correct sizes of protective devices have been installed.
 - f. Deliver four copies of a summarized list to the Resident Engineer, which indicates and adequately identifies every motor controller installed. Include the catalog numbers for the correct sizes of protective devices for the motor controllers.
 - 5. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular starter. H-O-A switch is not required for manual motor starters.

- 6. Incorporate into each control circuit a 120-volt, solid state time delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time delay relay is not required where H-O-A switch is not required.
- 7. Unless noted otherwise, equip with not less than two normally open and two normally closed auxiliary contacts. Provide green run pilot lights and H-O-A control devices as indicated, operable at front of enclosure without opening enclosure. Push buttons, selector switches, pilot lights, etc., shall be interchangeable.
- 8. Enclosures:
 - a. Shall be the NEMA types shown on the drawings for the motor controllers and shall be the NEMA types which are the most suitable for the environmental conditions where the motor controllers are being installed.
 - b. Doors mechanically interlocked to prevent opening unless the breaker or switch within the enclosure is open. Provision for padlock must be provided.
 - c. Enclosures shall be primed and finish coated at the factory with the manufacturer's prime coat and standard finish.
- C. Motor controllers incorporated with equipment assemblies shall also be designed for the specific requirements of the assemblies.
- D. Additional requirements for specific motor controllers, as indicated in other sections, shall also apply.
- E. Provide a disconnecting means or safety switch near and within sight of each motor. Provide all wiring and conduit required to facilitate a complete installation.

2.2 MANUAL MOTOR STARTERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor starters.
 - Starters shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - 2. Units shall include overload and low voltage protection, red pilot light, and toggle operator.
- C. Fractional horsepower manual motor starters.
 - 1. Starters shall be general-purpose Class A, manually operated with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload protection, red pilot light and toggle operator.
- D. Motor starting switches.

- Switches shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
- 2. Units shall include thermal overload protection, red pilot light low voltage protection and toggle operator.

2.3 MAGNETIC MOTOR STARTERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Starters shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum size 0.
- C. Where combination motor starters are used, combine starter with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each starter, with contacts to deenergize the starter upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced voltage starters. Equip starters with 120V AC coils and individual control transformer unless otherwise noted. Locate "reset" button to be accessible without opening the enclosure.

2.2 VARIABLE-FREQUENCY CONTROLLERS

- A. The VFD package as specified herein shall be enclosed in a UL Listed Type enclosure, exceeding NEMA enclosure design criteria (enclosures with only NEMA ratings are not acceptable), completely assembled and tested by the manufacturer in an ISO9001 facility. The VFD tolerated voltage window shall allow the VFD to operate from a line of +30% nominal, and -35% nominal voltage as a minimum.
 - Environmental operating conditions: VFDs shall be capable of continuous operation at 0 to 50° C (32 to 122° F) ambient temperature as per VFD manufacturers documented/submittal data or VFD must be oversized to meet these temperature requirements. Not acceptable are VFD's that can only operate at 40° C intermittently (average during a 24 hour period) and therefore must be oversized. Altitude 0 to 3300 feet above sea level, less than 95% humidity, non-condensing. All circuit boards shall have conformal coating.
 - Enclosure shall be rated UL Type 1 and shall be UL listed as a plenum rated VFD. VFD's without these ratings are not acceptable. NEMA only type 1 enclosures are not acceptable (must be UL Type 1).
- B. All VFDs shall have the following standard features:
 - 1. All VFDs shall have the same customer interface, including digital display, and keypad, regardless of horsepower rating. The keypad

shall be removable, capable of remote mounting and allow for uploading and downloading of parameter settings as an aid for startup of multiple VFDs.

- 2. The keypad shall include Hand-Off-Auto selections and manual speed control. The drive shall incorporate "bumpless transfer" of speed reference when switching between "Hand" and "Auto" modes. There shall be fault reset and "Help" buttons on the keypad. The Help button shall include "on-line" assistance for programming and troubleshooting.
- 3. There shall be a built-in time clock in the VFD keypad. The clock shall have a battery back up with 10 years minimum life span. The clock shall be used to date and time stamp faults and record operating parameters at the time of fault. If the battery fails, the VFD shall automatically revert to hours of operation since initial power up. Capacitor back-up is not acceptable. The clock shall also be programmable to control start/stop functions, constant speeds, PID parameter sets and output Form-C relays. The VFD shall have a digital input that allows an override to the time clock (when in the off mode) for a programmable time frame. There shall be four (4) separate, independent timer functions that have both weekday and weekend settings.
- 4. The VFD's shall utilize pre-programmed application macro's specifically designed to facilitate start-up. The Application Macros shall provide one command to reprogram all parameters and customer interfaces for a particular application to reduce programming time. The VFD shall have two user macros to allow the end-user to create and save custom settings.
- 5. The VFD shall have cooling fans that are designed for easy replacement. The fans shall be designed for replacement without requiring removing the VFD from the wall or removal of circuit boards. The VFD cooling fans shall operate only when required. To extend the fan and bearing operating life, the VFD shall cycle the cooling fans on and off as required.
- 6. The VFD shall be capable of starting into a coasting load (forward or reverse) up to full speed and accelerate or decelerate to set point without tripping or component damage (flying start).
- 7. The VFD shall have the ability to automatically restart after an over-current, over-voltage, under-voltage, or loss of input signal protective trip. The number of restart attempts, trial time, and time between attempts shall be programmable.

- 8. The overload rating of the drive shall be 110% of its normal duty current rating for 1 minute every 10 minutes, 130% overload for 2 seconds. The minimum FLA rating shall meet or exceed the values in the NEC/UL table 430.250 for 4-pole motors.
- 9. The VFD shall have internal 5% impedance reactors to reduce the harmonics to the power line and to add protection from AC line transients. The 5% impedance may be from dual (positive and negative DC bus) reactors, or 5% AC line reactors. VFD's with only one DC reactor shall add an AC line reactor.
- 10. The input current rating of the VFD shall be no more than 3% greater than the output current rating. VFD's with higher input current ratings require the upstream wiring, protection devices, and source transformers to be oversized per NEC 430.120. Input and output current ratings must be shown on the VFD nameplate.
- 11. The VFD shall include a coordinated AC transient surge protection system consisting of 4-120 joule rated MOV's (phase to phase and phase to ground), a capacitor clamp, and 5% impedance reactors.
- 12. The VFD shall provide a programmable loss-of-load (broken belt / broken coupling) Form-C relay output. The drive shall be programmable to signal the loss-of-load condition via a keypad warning, Form-C relay output, and / or over the serial communications bus. The loss-of-load condition sensing algorithm shall include a programmable time delay that will allow for motor acceleration from zero speed without signaling a false loss-of-load condition.
- 13. The VFD shall have user programmable underload and overload curve functions to allow user defined indications of broken belt or mechanical failure / jam condition causing motor overload
- 14. The VFD shall include multiple "two zone" PID algorithms that allow the VFD to maintain PID control from two separate feedback signals (4-20mA, 0-10V, and / or serial communications). The two zone control PID algorithm will control motor speed based on a minimum, maximum, or average of the two feedback signals. All of the VFD PID controllers shall include the ability for "two zone" control.
- 15. If the input reference (4-20mA or 2-10V) is lost, the VFD shall give the user the option of either (1) stopping and displaying a fault, (2) running at a programmable preset speed, (3) hold the VFD speed based on the last good reference received, or (4) cause a warning to be issued, as selected by the user. The drive shall be programmable to signal this condition via a keypad warning, Form-C relay output and / or over the serial communication bus.

- 16. The VFD shall have programmable "Sleep" and "Wake up" functions to allow the drive to be started and stopped from the level of a process feedback signal.
- C. All VFDs to have the following adjustments:
 - Three (3) programmable critical frequency lockout ranges to prevent the VFD from operating the load continuously at an unstable speed. The lockout range must be fully adjustable, from 0 to full speed.
 - 2. Two (2) PID Set point controllers shall be standard in the drive, allowing pressure or flow signals to be connected to the VFD, using the microprocessor in the VFD for the closed-loop control. The VFD shall have 250 ma of 24 VDC auxiliary power and be capable of loop powering a transmitter supplied by others. The PID set point shall be adjustable from the VFD keypad, analog inputs, or over the communications bus. There shall be two independent parameter sets for the PID controller and the capability to switch between the parameter sets via a digital input, serial communications or from the keypad. The independent parameter sets are typically used for night setback, switching between summer and winter set points, etc.
 - 3. There shall be an independent, second PID loop that can utilize the second analog input and modulate one of the analog outputs to maintain the set point of an independent process (ie. valves, dampers, etc.). All set points, process variables, etc. to be accessible from the serial communication network.
 - 4. Two (2) programmable analog inputs shall accept current or voltage signals.
 - 5. Two (2) programmable analog outputs (0-20ma or 4-20 ma). The outputs may be programmed to output proportional to Frequency, Motor Speed, Output Voltage, Output Current, Motor Torque, Motor Power (kW), DC Bus voltage, Active Reference, Active Feedback, and other data.
 - 6. Six (6) programmable digital inputs for maximum flexibility in interfacing with external devices. All digital inputs shall be programmable to initiate upon an application or removal of 24VDC or 24VAC.
 - 7. Three (3) programmable, digital Form-C relay outputs. The relay outputs shall include programmable on and off delay times and adjustable hysteresis. The relays shall be rated for maximum switching current 8 amps at 24 VDC and 0.4 A at 250 VAC; Maximum voltage 300 VDC and 250 VAC; continuous current rating of 2 amps RMS. Outputs shall be true Form-C type contacts; open collector outputs are not acceptable.

- 8. Run permissive circuit There shall be a run permissive circuit for damper or valve control. Regardless of the source of a run command (keypad, input contact closure, time-clock control, or serial communications), the VFD shall provide a dry contact closure that will signal the damper to open (VFD motor does not operate). When the damper is fully open, a normally open dry contact (end-switch) shall close. The closed end-switch is wired to a VFD digital input and allows VFD motor operation. Two separate safety interlock inputs shall be provided. When either safety is opened, the motor shall be commanded to close. The keypad shall display "start enable 1 (or 2) missing". The safety input status shall also be transmitted over the serial communications bus.
- 9. The VFD control shall include a programmable time delay for VFD start and a keypad indication that this time delay is active. A Form C relay output provides a contact closure to signal the VAV boxes open. This will allow VAV boxes to be driven open before the motor operates. The time delay shall be field programmable from 0 - 120 seconds. Start delay shall be active regardless of the start command source (keypad command, input contact closure, time-clock control, or serial communications), and when switching from drive to bypass.
- 10. Seven (7) programmable preset speeds.
- Two independently adjustable accel and decel ramps with 1 1800 seconds adjustable time ramps.
- 12. The VFD shall include a motor flux optimization circuit that will automatically reduce applied motor voltage to the motor to optimize energy consumption and reduce audible motor noise. The VFD shall have selectable software for optimization of motor noise, energy consumption, and motor speed control.
- 13. The VFD shall include a carrier frequency control circuit that reduces the carrier frequency based on actual VFD temperature that allows higher carrier frequency settings without derating the VFD.
- 14. The VFD shall include password protection against parameter changes.
- D. The Keypad shall include a backlit LCD display. The display shall be in complete English words for programming and fault diagnostics (alphanumeric codes are not acceptable). All VFD faults shall be displayed in English words. The keypad shall include a minimum of 14 assistants including:
 - 1. Start-up assistant
 - 2. Parameter assistants

- a. PID assistant
- b. Reference assistant
- c. I/O assistant
- d. Serial communications assistant
- e. Option module assistant
- f. Panel display assistant
- g. Low noise set-up assistant
- 3. Maintenance assistant
- 4. Troubleshooting assistant
- 5. Drive optimizer assistants
- E. All applicable operating values shall be capable of being displayed in engineering (user) units. A minimum of three operating values from the list below shall be capable of being displayed at all times. The display shall be in complete English words (alpha-numeric codes are not acceptable):
 - 1. Output Frequency
 - 2. Motor Speed (RPM, %, or Engineering units)
 - 3. Motor Current
 - 4. Motor Torque
 - 5. Motor Power (kW)
 - 6. DC Bus Voltage
 - 7. Output Voltage
- F. The VFD shall include a fireman's override input. Upon receipt of a contact closure from the fire / smoke control station, the VFD shall operate in one of two modes: 1) Operate at a programmed predetermined fixed speed ranging from -500Hz (reverse) to 500Hz (forward). 2) Operate in a specific fireman's override PID algorithm that automatically adjusts motor speed based on override set point and feedback. The mode shall override all other inputs (analog/digital, serial communication, and all keypad commands), except customer defined safety run interlocks, and force the motor to run in one of the two modes above. "Override Mode" shall be displayed on the keypad. Upon removal of the override signal, the VFD shall resume normal operation, without the need to cycle the normal digital input run command.
- G. Serial Communications
 - The VFD shall have an EIA-485 port as standard. The standard protocols shall be Modbus, Johnson Controls N2, Siemens Building Technologies FLN, and BACnet. Each individual drive shall have the protocol in the base VFD. The use of third party gateways and multiplexers is not acceptable. All protocols shall be "certified"

by the governing authority (i.e. BTL Listing for BACnet). Use of non-certified protocols is not allowed.

- 2. The BACnet connection shall be an EIA-485, MS/TP interface operating at 9.6, 19.2, 38.4, or 76.8 Kbps. The connection shall be tested by the BACnet Testing Labs (BTL) and be BTL Listed. The BACnet interface shall conform to the BACnet standard device type of an Applications Specific Controller (B-ASC). The interface shall support all BIBBs defined by the BACnet standard profile for a B-ASC including, but not limited to:
 - a. Data Sharing Read Property B.
 - b. Data Sharing Write Property B.
 - c. Device Management Dynamic Device Binding (Who-Is; I-Am).
 - d. Device Management Dynamic Object Binding (Who-Has; I-Have).
 - e. Device Management Communication Control B.
- If additional hardware is required to obtain the BACnet interface, the VFD manufacturer shall supply one BACnet gateway per drive. Multiple VFDs sharing one gateway shall not be acceptable.
- 4. Serial communication capabilities shall include, but not be limited to; run-stop control, speed set adjustment, proportional/integral/derivative PID control adjustments, current limit, accel/decel time adjustments, and lock and unlock the keypad. The drive shall have the capability of allowing the DDC to monitor feedback such as process variable feedback, output speed / frequency, current (in amps), % torque, power (kW), kilowatt hours (resettable), operating hours (resettable), and drive temperature. The DDC shall also be capable of monitoring the VFD relay output status, digital input status, and all analog input and analog output values. All diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote VFD fault reset shall be possible.
- 5. Serial communication in bypass shall include, but not be limited to; bypass run-stop control, the ability to force the unit to bypass, and the ability to lock and unlock the keypad. The bypass shall have the capability of allowing the DDC to monitor feedback such as, current (in amps), kilowatt hours (resettable), operating hours (resettable), and bypass logic board temperature. The DDC shall also be capable of monitoring the bypass relay output status, and all digital input status. All bypass diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote bypass fault reset shall be possible.

- 6. The VFD / bypass shall allow the DDC to control the drive and bypass digital and analog outputs via the serial interface. This control shall be independent of any VFD function. The analog outputs may be used for modulating chilled water valves or cooling tower bypass valves. The drive and bypass' digital (Form-C relay) outputs may be used to actuate a damper, open a valve or control any other device that requires a maintained contact for operation. In addition, all of the drive and bypass' digital inputs shall be capable of being monitored by the DDC system. This allows for remote monitoring of which (of up to 4) safeties are open.
- 7. The VFD shall include an independent PID loop for customer use. The independent PID loop may be used for cooling tower bypass value control, chilled water value / hot water valve control, etc. Both the VFD PID control loop and the independent PID control loop shall continue functioning even if the serial communications connection is lost. As default, the VFD shall keep the last good set point command and last good DO & AO commands in memory in the event the serial communications connection is lost and continue controlling the process.
- H. EMI / RFI filters. All VFD's shall include EMI/RFI filters. The onboard filters shall allow the VFD assembly to be CE Marked and the VFD shall meet product standard EN 61800-3 for the First Environment restricted level with up to 100 feet of motor cable. No Exceptions. Certified test reports shall be provided with the submittals confirming compliance to EN 61800-3, First Environment.
- I. All VFD's through 75HP at 480 V shall be protected from input and output power mis-wiring. The VFD shall sense this condition and display an alarm on the keypad. The VFD shall not sustain damage from this power mis-wiring condition.
- J. BYPASS CONTROLLER:
 - A complete factory wired and tested bypass system consisting of a door interlocked, padlockable circuit breaker, output contactor, bypass contactor, and fast acting VFD input fuses are required. UL Listed motor overload protection shall be provided in both drive and bypass modes.
 - 2. The bypass enclosure door and VFD enclosure must be mechanically interlocked such that the disconnecting device must be in the "Off" position before either enclosure may be accessed.

- 3. The VFD and bypass package shall have a UL listed short circuit current rating (SCCR) of 100,000 amps and this rating shall be indicated on the UL data label.
- 4. The drive and bypass package shall be seismic certified and labeled to the IBC:
 - a. Seismic importance factor of 1.5 rating is required, and shall be based upon actual shake table test data as defined by ICC AC-156.
- 5. Drive Isolation Fuses To ensure maximum possible bypass operation, fast acting fuses, exclusive to the VFD, shall be provided to allow the VFD to disconnect from the line prior to clearing upstream branch circuit protection. This maintains bypass operation capability in the event of a VFD failure. Bypass designs which have no such fuses, or that incorporate fuses common to both the VFD and the bypass, will not be accepted.
- 6. The system (VFD and Bypass) tolerated voltage window shall allow the system to operate from a line of +30%, -35% nominal voltage range. The system shall incorporate circuitry that will allow the drive or bypass contactor to remain "sealed in" over this voltage tolerance at a minimum.
- 7. The bypass shall maintain positive contactor control through the voltage tolerance window of nominal voltage +30%, -35%. This feature is designed to avoid contactor coil failure during brown out / low line conditions and allow for input single phase operation when in the VFD mode. Designs that will not allow input single phase operation in the VFD mode are not acceptable.
- 8. Motor protection from single phase power conditions the bypass system must be able to detect a single phase input power condition while running in bypass, disengage the motor in a controlled fashion, and give a single phase input power indication. Bypass systems not incorporating single phase protection in bypass mode are not acceptable.
- 9. The bypass system shall NOT depend on the VFD for bypass operation. The bypass system shall be designed for stand alone operation and shall be completely functional in both Hand and Automatic modes even if the VFD has been removed from the system for repair / replacement. Serial communications shall remain functional even with the VFD removed.
- Serial communications the bypass shall be capable of being monitored and / or controlled via serial communications. On-board

communications protocols shall include ModBus; Johnson Controls N2; Siemens Building Technologies FLN (P1); and BACnet.

- 11. Serial communication capabilities shall include, but not be limited to; bypass run-stop control; the ability to force the unit to bypass; and the ability to lock and unlock the keypad. The bypass shall have the capability of allowing the DDC to monitor feedback such as, current (in amps), kilowatt hours (resettable), operating hours (resettable), and bypass logic board temperature. The DDC shall also be capable of monitoring the bypass relay output status, and all digital input status. All bypass diagnostic warning and fault information shall be transmitted over the serial communications bus. Remote bypass fault reset shall be possible. The following additional status indications and settings shall be transmitted over the serial communications bus and / or via a Form-C relay output keypad "Hand" or "Auto" selected, bypass selected, and broken belt indication. The DDC system shall also be able to monitor if the motor is running in the VFD mode or bypass mode over serial communications. A minimum of 50 field serial communications points shall be capable of being monitored in the bypass mode.
- 12. The bypass serial communications shall allow control of the bypass' digital outputs via the serial interface. This control shall be independent of any bypass function or operating state. The bypass' digital (relay) outputs may be used to actuate a damper, open a valve or control any other device that requires a maintained contact for operation. In addition, all of the bypass' digital inputs shall be capable of being monitored by the DDC system.
- 13. There shall be an adjustable motor current sensing circuit for the bypass and VFD modes to provide proof of flow (broken belt) indication. The condition shall be indicated on the keypad display, transmitted over the building automation protocol and / or via a Form-C relay output contact closure. The broken belt indication shall be programmable to be a system (drive and bypass) indication. The broken belt condition sensing algorithm shall be programmable to cause only a warning or a fault and / or system shutdown.
- 14. The digital inputs for the system shall accept 24VAC or 24VDC. The bypass shall incorporate an internally sourced power supply and not require an external control power source. The bypass power board shall supply 250 ma of 24 VDC for use by others to power external devices.

- 15. There shall be a run permissive circuit for damper or valve control. Regardless of the source of a run command (keypad command, time-clock control, digital input, or serial communications) the bypass shall provide a dry contact closure that will signal the damper to open (motor does not operate). When the damper is fully open, a normally open dry contact (end-switch) shall close. The closed end-switch is wired to a bypass system input and allows motor operation. Up to four separate safety interlock inputs shall be provided. When any safety is opened, the motor shall be commanded to coast to stop, and the damper shall be commanded to close. This feature will also operate in Fireman's override / smoke control mode.
- 16. The bypass control shall monitor the status of the VFD and bypass contactors and indicate when there is a welded contactor contact or open contactor coil. This failed contactor condition shall be indicated on the bypass LCD display, programmed to fire a Form-C relay output, and / or over the serial communications protocol.
- 17. The bypass control shall include a programmable time delay for bypass start and keypad indication that this time delay is in process. A Form C relay output provides a contact closure to signal the VAV boxes open. This will allow VAV boxes to be driven open before the motor operates at full speed in the bypass mode. The time delay shall be field programmable from 0 - 120 seconds.
- 18. There shall be a keypad adjustment to select manual or automatic transfer bypass. The user shall be able to select via keypad programming which drive faults will result in an automatic transfer to the bypass mode and which faults require a manual transfer to bypass. The user may select whether the system shall automatically transfer from drive to bypass mode on the following drive fault conditions:
 - a. Over current
 - b. Over voltage
 - c. Under voltage
 - d. Loss of analog input
- 19. The following operators shall be provided:
 - a. Bypass Hand-Off-Auto
 - b. Drive mode selector
 - c. Bypass mode selector
 - d. Bypass fault reset
- 20. The bypass shall include a two line, 20 character LCD display. The display shall allow the user to access and view:

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fi

Project No. 642-11-150 Final Documents: 8/17/2012

- a. Energy savings in US dollars
- b. Bypass motor amps
- c. Bypass input voltage- average and individual phase voltage
- d. Bypass power (kW)
- e. Bypass faults and fault logs
- f. Bypass warnings
- g. Bypass operating time (resettable)
- h. Bypass energy (kilowatt hours resettable)
- i. I/O status
- j. Parameter settings / programming
- k. Printed circuit board temperature
- 21. The following indicating lights (LED type) or keypad display
 - indications shall be provided. A test mode or push to test feature shall be provided.
 - a. Power-on (Ready)
 - b. Run enable
 - c. Drive mode selected
 - d. Bypass mode selected
 - e. Drive running
 - f. Bypass running
 - g. Drive fault
 - h. Bypass fault
 - i. Bypass H-O-A mode
 - j. Automatic transfer to bypass selected
 - k. Safety open
 - 1. Damper opening
 - m. Damper end-switch made
- 22. The Bypass controller shall have six programmable digital inputs, and five programmable Form-C relay outputs. This I/O allows for a total System (VFD and Bypass) I/O count of 24 points as standard. The bypass I/O shall be available to the BAS / DDC system even with the VFD removed.
- 23. The on-board Form-C relay outputs in the bypass shall programmable for any of the following indications.
 - a. System started
 - b. System running
 - c. Bypass override enabled
 - d. Drive fault
 - e. Bypass fault
 - f. Bypass H-O-A position

- g. Motor proof-of-flow (broken belt)
- h. Overload
- i. Bypass selected
- j. Bypass run
- k. System started (damper opening)
- 1. Bypass alarm
- m. Over temperature
- 24. The bypass shall provide a separate terminal strip for connection of freeze, fire, smoke contacts, and external start command. All external safety interlocks shall remain fully functional whether the system is in VFD or Bypass mode. The remote start/stop contact shall operate in VFD and bypass modes. The terminal strip shall allow for independent connection of up to four (4) unique safety inputs.
- 25. The bypass shall include a supervisory control mode. In this bypass mode, the bypass shall monitor the value of the VFD's analog input (feedback). This feedback value is used to control the bypass contactor on and off state. The supervisory mode shall allow the user to maintain hysteresis control over applications such as cooling towers and booster pumps even with the VFD out of service.
- 26. The user shall be able to select the text to be displayed on the keypad when an external safety opens. Example text display indications include "FireStat", "FreezStat", "Over pressure" and "Low suction". The user shall also be able to determine which of the four (4) safety contacts is open over the serial communications connection.
- 27. Smoke Control Override Mode (Override 1) The bypass shall include a dedicated digital input that will transfer the motor from VFD mode to Bypass mode upon receipt of a dry contact closure from the Fire / Smoke Control System. The Smoke Control Override Mode action is not programmable and will always function as described in the bypass User's Manual documentation. In this mode, the system will ignore low priority safeties and acknowledge high priority safeties as required by UL 864/UUKL. All keypad control, serial communications control, and normal customer start / stop control inputs will be disregarded. This Smoke Control Mode shall be designed to meet the intent of UL864/UUKL.
- 28. Fireman's Override Mode (Override 2) the bypass shall include a second, programmable override input which will allow the user to configure the unit to acknowledge some digital inputs, all digital inputs, ignore digital inputs or any combination of the above. This

programmability allows the user to program the bypass unit to react in whatever manner the local Authority Having Jurisdiction (AHJ) requires. The Override 2 action may be programmed for "Run-to-Destruction". The user may also force the unit into Override 2 via the serial communications link.

29. Class 20 motor overload protection shall be included.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor control equipment in accordance with manufacturer's recommendations, the NEC, NEMA and as shown on the drawings.
- B. Furnish and install heater elements in motor starters and to match the installed motor characteristics. Submit a list of all motors listing motor nameplate rating and heater element installed.
- C. Motor Data: Provide neatly-typed label inside each motor starter enclosure door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, voltage/phase rating and heater element installed.
- D. Connect hand-off auto selector switches so that automatic control only is by-passed in "manual" position and any safety controls are not by-passed.
- E. Install manual motor starters in flush enclosures in finished areas.
- F. Examine control diagrams indicated before ordering motor controllers. Should conflicting data exist in specifications, drawings and diagrams, request corrected data prior to placing orders.

3.2 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
- C. Adjust trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Resident Engineer before increasing settings.

3.3 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:
- 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Inspect contactors.
 - d. Clean motor starters and variable speed motor controllers.
 - e. Verify overload element ratings are correct for their applications.
 - f. If motor-running protection is provided by fuses, verify correct fuse rating.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
- 2. Variable speed motor controllers:
 - a. Final programming and connections to variable speed motor controllers shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.
 - b. Test all control and safety features of the variable frequency drive.

3.4 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor starters and variable speed motor controllers are in good operating condition and properly performing the intended functions.

3.5 SPARE PARTS

Two weeks prior to the final inspection, provide one complete set of spare fuses (including heater elements) for each starter/controller installed on this project.

- - - E N D - - -

Page intentionally left blank

SECTION 26 29 21 DISCONNECT SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of low voltage disconnect switches.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES 600 VOLTS AND BELOW: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.
- E. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Motor rated toggle switches.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting details, materials, enclosure types, and fuse types and classes.
 - 3. Show the specific switch and fuse proposed for each specific piece of equipment or circuit.
- C. Manuals:
 - Provide complete maintenance and operating manuals for disconnect switches, including technical data sheets, wiring diagrams, and information for ordering replacement parts. Deliver four copies to the Resident Engineer two weeks prior to final inspection.
 - 2. Terminals on wiring diagrams shall be identified to facilitate maintenance and operation.

- 3. Wiring diagrams shall indicate internal wiring and any interlocking.
- D. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
 - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA):

```
FU 1-07.....Low Voltage Cartridge Fuses
```

KS 1-06..... Distribution

Equipment Switches (600 Volts Maximum)

- C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - 98-04..... Enclosed and Dead-Front Switches
 - 248-00.....Low Voltage Fuses

977-94.....Fused Power-Circuit Devices

PART 2 - PRODUCTS

2.1 LOW VOLTAGE FUSIBLE SWITCHES RATED 600 AMPERES AND LESS

- A. In accordance with UL 98, NEMA KS1, and NEC.
- B. Shall have NEMA classification General Duty (GD) for 240 V switches and NEMA classification Heavy Duty (HD) for 480 V switches.
- C. Shall be HP rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the OFF position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate ON and OFF position and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the OFF position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7 Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:

- a. Shall be the NEMA types shown on the drawings for the switches.
- b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions. Unless otherwise indicated on the plans, all outdoor switches shall be NEMA 3R.
- c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel (for the type of enclosure required).

2.2 LOW VOLTAGE UNFUSED SWITCHES RATED 600 AMPERES AND LESS

Shall be the same as Low Voltage Fusible Switches Rated 600 Amperes and Less, but without provisions for fuses.

2.3 LOW VOLTAGE FUSIBLE SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES Shall be the same as Low Voltage Fusible Switches Rated 600 Amperes and Less, except for the minimum duty rating which shall be NEMA classification Heavy Duty (HD). These switches shall also be HP rated.

2.4 MOTOR RATED TOGGLE SWITCHES

Refer to Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

2.5 LOW VOLTAGE CARTRIDGE FUSES

- A. In accordance with NEMA FU1.
- B. Feeders: Class L, fast acting Class L, time delay Class RK1, fast acting Class RK1, time delay Class RK5, fast acting Class RK5, time delay Class J, fast acting Class J, time delay.
- C. Motor Branch Circuits: Class RK5, time delay.
- D. Other Branch Circuits: Class J, fast acting.
- E. Control Circuits: Class CC, fast acting.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install disconnect switches in accordance with the NEC and as shown on the drawings.
- B. Fusible disconnect switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuse.

3.2 SPARE PARTS

Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fusible disconnect switch installed on the project. Deliver the spare fuses to the Resident Engineer.

- - - E N D - - -

Page intentionally left blank

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of the interior lighting systems.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting fixture (luminaire) designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of fixture designation, submit the following information.
 - Material and construction details include information on housing, optics system and lens/diffuser.
 - 2. Physical dimensions and description.
 - 3. Wiring schematic and connection diagram.
 - 4. Installation details.
 - 5. Energy efficiency data.
 - Photometric data based on laboratory tests complying with IESNA Lighting Measurements, testing and calculation guides.
 - Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours) and color temperature (degrees Kelvin).
 - Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts and total harmonic distortion (THD).

- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer.
- D. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91.....Guide on the Surge Environment in Low Voltage

(1000V and less) AC Power Circuits

- C. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC)
 - 101....Life Safety Code
- D. National Electrical Manufacturer's Association (NEMA):
- C82.1-97.....Ballasts for Fluorescent Lamps Specifications C82.2-02.....Method of Measurement of Fluorescent Lamp

Ballasts

C82.4-02.....Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps

C82.11-02......High Frequency Fluorescent Lamp Ballasts

E. Underwriters Laboratories, Inc. (UL):

496-96.....Edison-Base Lampholders

542-99.....Lampholders, Starters, and Starter Holders for Fluorescent Lamps

844-95.....Electric Lighting Fixtures for Use in Hazardous (Classified) Locations

924-95..... Emergency Lighting and Power Equipment

935-01.....Fluorescent-Lamp Ballasts

1029-94......High-Intensity-Discharge Lamp Ballasts

1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts 1598-00.....Luminaires
1574-04....Standard for Track Lighting Systems
2108-04....Standard for Low-Voltage Lighting Systems
8750-08...Light Emitting Diode (LED) Light Sources for Use
in Lighting Products

F. Federal Communications Commission (FCC): Code of Federal Regulations (CFR), Title 47, Part 18

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES (LUMINAIRES)

- A. Shall be in accordance with NFPA 70 and UL 1598, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved) and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame and lens frame shall be free of light leaks; lens doors shall close in a light tight manner.
 - 4. Hinged door closure frames shall operate smoothly without binding when the fixture is in the installed position, latches shall function easily by finger action without the use of tools.
- C. Ballasts shall be serviceable while the fixture is in its normally installed position, and shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Lamp Sockets:
 - Fluorescent: Lampholder contacts shall be the biting edge type or phosphorous-bronze with silver flash contact surface type and shall conform to the applicable requirements of UL 542. Lamp holders for bi-pin lamps shall be of the telescoping compression type, or of the single slot entry type requiring a one-quarter turn of the lamp after insertion.
- E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive

screws, chains, captive hinges or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.

- G. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - Interior light reflecting finishes shall be white with not less than
 85 percent reflectances, except where otherwise shown on the drawing.
 - 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- I. Light Transmitting Components for Fluorescent Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - 2. Flat lens panels shall have not less than 1/8 inch [3.2mm] of average thickness. The average thickness shall be determined by adding the maximum thickness to the minimum unpenetrated thickness and dividing the sum by 2.
 - 3. Unless otherwise specified, lenses, diffusers and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction of the lens without distortion or cracking.
- J. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures (not the lamp). Fixtures shall be designed for lamps as specified.

2.2 BALLASTS

- A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 277V) electronic instant-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated; including the following features:
 - 1. Lamp end-of-life detection and shutdown circuit (T5 lamps only).
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.

- 4. Total Harmonic Distortion Rating: 10 percent or less.
- 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
- 6. Operating Frequency: 20 kHz or higher.
- 7. Lamp Current Crest Factor: 1.7 or less.
- 8. Ballast Factor: 0.87 or higher unless otherwise indicated.
- 9. Power Factor: 0.98 or higher.
- 10. Interference: Comply with 47 CFT 18, Ch.1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
- 11. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled.
- 12. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp.
- B. Compact Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bilevel control is indicated; including the following features:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion Rating: 10 percent or less.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. Ballast Factor: 0.95 or higher unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.

10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.

2.3 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch. Comply with UL 924.
 - Enclosure: Shall be cast aluminum, which will protect components from dust, moisture, and oxidizing fumes from the battery. Enclosure shall be suitable for the environmental conditions in which installed.
 - 2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
 - 3. Lamps: Shall be sealed-beam MR-16 halogen, rated not less than 12 watts at the specified DC voltage.
 - Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be 10 years.
 - 5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.
 - 6. Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.4 LAMPS

- A. Linear and U-shaped T5 and T8 Fluorescent Lamps:
 - 1. Rapid start fluorescent lamps shall comply with ANSI C78.1; and instant-start lamps shall comply with ANSI C78.3.
 - 2. Chromacity of fluorescent lamps shall comply with ANSI C78.376.
 - 3. Except as indicated below, lamps shall be low-mercury energy saving type, have a color temperature between 3500° and 4100°K, a Color Rendering Index (CRI) of greater than 70, average rated life of 20,000 hours, and be suitable for use with dimming ballasts, unless otherwise indicated. Low mercury lamps shall have passed the EPA Toxicity Characteristic Leachate Procedure (TCLP) for mercury by using the lamp sample preparation procedure described in NEMA LL 1
 - a. Over the beds in Intensive Care, Coronary Care, Recovery, Life Support, and Observation and Treatment areas; Electromyographic, Autopsy (Necropsy), Surgery, and certain dental rooms (Examination, Oral Hygiene, Oral Surgery, Recovery, Labs,

Treatment, and X-Ray) use color corrected lamps having a CRI of 85 or above and a correlated color temperature between 5000 and 6000° K.

b. Other areas as indicated on the drawings.

- B. Compact Fluorescent Lamps:
 - 1. T4, CRI 80 (minimum), color temperature 3500 K, and suitable for use with dimming ballasts, unless otherwise indicated.
- C. Long Twin-Tube Fluorescent Lamps:
 - T5, CRI 80 (minimum), color temperature between 3500° and 4100°K, 20,000 hours average rated life.

2.5 EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA 101 and UL 924.
- B. Housing and Canopy:
 - 1. Shall be made of die-cast aluminum.
 - 2. Optional steel housing shall be a minimum 20 gauge thick or equivalent strength aluminum.
 - Steel housing shall have baked enamel over corrosion resistant, matte black or ivory white primer.
- C. Door frame shall be cast or extruded aluminum, and hinged with latch.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - 1. Maximum fixture wattage shall be 1 watt or less.
 - 2. Inscription panels shall be cast or stamped aluminum a minimum of 0.090 inch [2.25mm] thick, stenciled with 6 inch [150mm] high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass. The LED shall be rated minimum 25 years life.
 - 3. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 4. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltages: Refer to Lighting Fixture Schedule.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Align, mount and level the lighting fixtures uniformly.
- C. Fluorescent bed light fixtures shall be attached to the studs in the walls. Attachment to gypsum board only is not acceptable.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed fluorescent fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
 - 5. Hardware for surface mounting fluorescent fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 1/4 inch [6mm] secured to channel members attached to and spanning the tops of the ceiling structural grid members. Non-turning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 1/4 inch

[6mm] studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 1/4 inch [6mm] toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.

- 6. Hardware for recessed lighting fixtures:
 - a. All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.
 - b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
 - c. In addition to the above, the following is required for fixtures exceeding 20 pounds [9kg] in weight.
 - Where fixtures mounted in ASTM Standard C635-69 "Intermediate" and "Heavy Duty" ceilings and weigh between 20 pounds and 56 pounds [9kg and 25kg] provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 56 pounds [25kg] they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
 - d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 7. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit.
 The bolts (or stud-clips) shall be minimum 1/4-20 [6mm] bolt,

secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 56 pounds [25kg] shall be supported directly from the building structure.

- b. Where ceiling cross runners are installed for support of lighting fixtures they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- c. Fixtures less than 15 pounds [6.8kg] in weight and occupying less than two square feet [600mm x 600mm] of ceiling area may, (when designed for the purpose) be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - The outlet box is supported vertically from the building structure.
- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 8. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box, mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 9. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. Furnish and install the specified lamps for all lighting fixtures installed and all existing lighting fixtures reinstalled under this project.
- F. Coordinate between the electrical and ceiling trades to ascertain that approved lighting fixtures are furnished in the proper sizes and

installed with the proper devices (hangers, clips, trim frames, flanges), to match the ceiling system being installed.

- G. Bond lighting fixtures and metal accessories to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. Exercise electronic dimming ballasts over full range of dimming capability by operating the control devices(s) in the presence of the Resident Engineer. Observe for visually detectable flicker over full dimming range.
- I. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless a lesser period is specifically recommended by lamp manufacturer. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage. Replace any lamps and ballasts which fail during burn-in.
- J. At completion of project, relampand reballast fixtures which have failed lampsand ballasts. Clean fixtures, lenses, diffusers and louvers that have accumulated dust/dirt/fingerprints during construction. Replace damaged lenses, diffusers and louvers with new.
- K. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.

- - - E N D - - -

Page intentionally left blank

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
- B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings.

1.2 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 MANUFACTURED PRODUCTS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.

- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.5 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.6 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.

- Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
- Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.7 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.9 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as

a standard catalog item, or where other method of identification is herein specified, are exceptions.

1.10 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the

technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.

- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
- 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation and maintenance instructions.
 - e. Safety precautions.
 - f. Diagrams and illustrations.
 - g. Testing methods.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Raceway and pathway hangers, clamps and supports.

4. Duct sealing compound.

I. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.11 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.12 TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies general grounding and bonding requirements of telecommunication installations for equipment operations.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

A. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 27.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Shop Drawings:
 - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
 - 1. Certification that the materials and installation is in accordance with the drawings and specifications.
 - 2. Certification, by the Contractor, that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

A. American Society for Testing and Materials (ASTM):

Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Renovations to Upgrade HVAC in SPD Final Documents: 8/17/2012 B1-2001.....Standard Specification for Hard-Drawn Copper Wire B8-2004..... Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983..... EEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C. National Fire Protection Association (NFPA): 70-2005.....National Electrical Code (NEC) D. Telecommunications Industry Association, (TIA) J-STO-607-A-2002......Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications E. Underwriters Laboratories, Inc. (UL): 83-2003 Thermoplastic-Insulated Wires and Cables 467-2004Grounding and Bonding Equipment 486A-486B-2003Wire Connectors PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.
- C. Isolated Power System: Type XHHW-2 insulation with a dielectric constant of 3.5 or less.
- D. Telecom System Grounding Riser Conductor: Telecommunications Grounding Riser shall be in accordance with J STO-607A. Use a minimum 50mm² (1/0 AWG) insulated stranded copper grounding conductor unless indicated otherwise.

2.2 SPLICES AND TERMINATION COMPONENTS

Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.3 GROUND CONNECTIONS

- A. Above Grade:
 - 1. Bonding Jumpers: compression type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Ground Busbars: Two-hole compression type lugs using tin-plated copper or copper alloy bolts and nuts.
 - 3. Rack and Cabinet Ground Bars: one-hole compression-type lugs using zinc-plated or copper alloy fasteners.

B. Cable Shields: Make ground connections to multipair communications cables with metallic shields using shield bonding connectors with screw stud connection.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
 - 3. Isolation transformers and isolated power systems shall not be system grounded.
- C. Equipment Grounding: Metallic structures (including ductwork and building steel), enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits shall be bonded and grounded.

3.2 SECONDARY EQUIPMENT AND CIRCUITS

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems shall contain an equipment grounding conductor, except that non-metallic feeder conduits which carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment need not contain an equipment grounding conductor.

- 3. Conduit containing only a grounding conductor, and which is provided for mechanical protection of the conductor, shall be bonded to that conductor at the entrance and exit from the conduit.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
 - 3. Provide ground bars in panelboards, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
- D. Receptacles shall not be grounded through their mounting screws. Ground with a jumper from the receptacle green ground terminal to the device box ground screw and the branch circuit equipment grounding conductor.

3.3 CORROSION INHIBITORS

When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 TELECOMMUNICATIONS SYSTEM

- A. Bond telecommunications system grounding equipment to the electrical grounding electrode system.
- B. Furnish and install all wire and hardware required to properly ground, bond and connect communications raceway, cable tray, metallic cable shields, and equipment to a ground source.
- C. Ground bonding jumpers shall be continuous with no splices. Use the shortest length of bonding jumper possible.
- D. Provide ground paths that are permanent and continuous with a resistance of 1 ohm or less from raceway, cable tray, and equipment connections to the building grounding electrode. The resistance across individual bonding connections shall be 10 milli ohms or less.
- E. Above-Grade Grounding Connections: When making bolted or screwed connections to attach bonding jumpers, remove paint to expose the entire contact surface by grinding where necessary; thoroughly clean all connector, plate and other contact surfaces; and apply an appropriate corrosion inhibitor to all surfaces before joining.

- F. Bonding Jumpers:
 - 1. Use insulated ground wire of the size and type shown on the Drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire.
 - 2. Assemble bonding jumpers using insulated ground wire terminated with compression connectors.
 - 3. Use compression connectors of proper size for conductors specified. Use connector manufacturer's compression tool.
- G. Bonding Jumper Fasteners:
 - 1. Conduit: Fasten bonding jumpers using screw lugs on grounding bushings or conduit strut clamps, or the clamp pads on push-type conduit fasteners. When screw lug connection to a conduit strut clamp is not possible, fasten the plain end of a bonding jumper wire by slipping the plain end under the conduit strut clamp pad; tighten the clamp screw firmly. Where appropriate, use zinc-plated external tooth lockwashers.
 - 2. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers, and nuts. Install protective cover, e.g., zinc-plated acorn nuts on any bolts extending into wireway or cable tray to prevent cable damage.
 - 3. Ground Plates and Busbars: Fasten bonding jumpers using two-hole compression lugs. Use tin-plated copper or copper alloy bolts, external tooth lockwashers, and nuts.
 - 4. Unistrut and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and external tooth lockwashers.

3.5 COMMUNICATIONS CABLE GROUNDING

- A. Bond all metallic cable sheaths in multipair communications cables together at each splicing and/or terminating location to provide 100 percent metallic sheath continuity throughout the communications distribution system.
 - 1. At terminal points, install a cable shield bonding connector provide a screw stud connection for ground wire. Use a bonding jumper to connect the cable shield connector to an appropriate ground source like the rack or cabinet ground bar.
 - 2. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or the splice case grounding and bonding accessories provided by the splice case manufacturer. When an external ground connection is provided as part of splice

closure, connect to an approved ground source and all other metallic components and equipment at that location.

3.6 COMMUNCIATIONS RACEWAY GROUNDING

- A. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to ground metallic conduit at each end and to bond at all intermediate metallic enclosures.
- B. Wireway: use insulated 16 mm^2 (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and across all section junctions.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- C. General electrical requirements and items that is common to more than one section of Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

- A. Shop Drawings:
 - 1. Size and location of panels and pull boxes
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Certification: Prior to final inspection, deliver to the Resident Engineer four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

70-05.....National Electrical Code (NEC) C. Underwriters Laboratories, Inc. (UL): 1-03.....Flexible Metal Conduit 5-01.....Surface Metal Raceway and Fittings 6-03.....Rigid Metal Conduit 50-03..... Enclosures for Electrical Equipment 360-03.....Liquid-Tight Flexible Steel Conduit 467-01.....Grounding and Bonding Equipment 514A-01.....Metallic Outlet Boxes 514B-02.....Fittings for Cable and Conduit 514C-05.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-02..... Schedule 40 and 80 Rigid PVC Conduit 651A-03..... Type EB and A Rigid PVC Conduit and HDPE Conduit 797-03.....Electrical Metallic Tubing 1242-00.....Intermediate Metal Conduit D. National Electrical Manufacturers Association (NEMA): TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-03.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable ANSI C80.1.....American National Standard for Rigid Steel Conduit - Zinc Coated (GRC)

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (1/2 inch) unless otherwise shown. Where permitted by the NEC, 13 mm (1/2 inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
 - 2. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
 - 3. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
 - Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.

- 5. Flexible galvanized steel conduit: Shall Conform to UL 1.
- 6. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - a. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - b. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - c. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - d. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - e. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Rigid aluminum conduit fittings:
 - a. Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - c. Set screw fittings: Not permitted for use with aluminum conduit.
 - 3. Electrical metallic tubing fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring

compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.

- d. Indent type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp type, with insulated throat.
- 5. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.

- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.

- 5. Mechanically continuous.
- 6. Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
- Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Do not use aluminum conduits in wet locations.
- 12. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer.

3.3 CONCEALED WORK INSTALLATION

- A. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
- 4. Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (six feet) of flexible metal conduit extending from a junction box to the fixture.
- 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for conductors above 600 volts:
 - 1. Rigid steel or rigid aluminum.
 - 2. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
- C. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- G. Surface metal raceways: Use only where shown.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.

C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

A. Boxes for Concealed Conduits:

- 1. Flush mounted.
- 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

3.11 COMMUNICATION SYSTEM CONDUIT

- A. Install the communication raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Were drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends	
Trade Size	mm, Inches	
3/4	150 (6)	
1	230 (9)	
1-1/4	350 (14)	
1-1/2	430 (17)	
2	525 (21)	
2-1/2	635 (25)	
3	775 (31)	
3-1/2	900 (36)	
4	1125 (45)	

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - E N D - - -

SECTION 27 11 00 COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic, and analog radio frequency (RF) systems coaxial distribution cables, connectors, "patch" cables, and/or "break out" devices. These systems shall include fire alarm detection system, security system, public address system, and tele/data systems.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- D. The Voice and Digital and Analog Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care

Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

- E. The VA Project Manager (PM) and/or if delegated, Resident Engineer (RE) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the RE before proceeding with the change.
- F. System Performance:
 - At a minimum, the System shall be able to support the following voice and data and analog RF operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities:
 - 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN measured at 128 kbps:
 - 1) Narrow Band BRI:
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.
 - c) H Channel: 1,920 kBps, minimum.
 - 3) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
 - c. ATM (Asynchronous Transfer Mode)operation and interface shall be measured at 155 mBps.
 - d. Frame Relay: All stated compliance's measured at 12 Mbps.
 - e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at a speed determined by the system supplied.

- f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at speed determined by the system supplied.
- g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at speed determined by the system supplied and shall be Synchronous Optical Network [SONET] compliant.
- h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data and possible analog RF locations.
- 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX (Electronic Private Branch Exchange) connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 dB.
 - 5) System data error: 10 to the -10 Bps, minimum.
 - 6) Loss: Measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of <u>+</u> 10 deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data:
 - (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- a) Isolation (outlet-outlet): 24 dB.
- b) Impedance: 600 Ohms, balanced (BAL).
- c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
- d) System speed: 100 mBps, minimum.
- e) System data error: 10 to the -6 Bps, minimum.
- 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
- 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.
 - c) System speed: 540 mBps, minimum.
 - d) System data error: 10 to the -6 bps, minimum.
- Analog RF Service: 4)
 - a) Broadcast or "off air" RF (or television) analog service is considered to be at RF (below 900 mHz in frequency bandwidth). Usually a RF television circuits require a single coaxial cable plant from the headend to each TC location.
 - b) Isolation (outlet-outlet): 14 dB.
 - c) Impedance: 75 Ohms, Unbalanced (UNBAL).
 - d) Signal Level: 10 dBmV + 5.0 dBmV.
 - e) Bandwidth: 6.0 mHz per channel, fully loaded.

5) Closed Circuit Analog Video Service: Analog video service is considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum operating parameters shall be capable over each installed analog video circuit:

Impedance	75 Ohm, unbalanced
Output Level	1.0 V peak to peak (P-P), for 87.5% depth of Modulation (Mod)
Diff Gain	±1 dB at 87.5% Mod
Diff Phase	±1.5 at 87.5% Mod
Signal to Noise	44 dB, minimum

(S/N) ratio	
Hum Modulation	-55 dB
Return Loss	-14 dB (or 1.5 Voltage Standing Wave Ratio [VSWR]), maximum
Isolation (outlet- outlet)	24 DB, MINIMUM
Bandwidth	6.0 mHz per channel, fully loaded, minimum

6) Closed Circuit Analog Audio Service: Analog audio service is considered to be at baseband (below 10 mHz in frequency bandwidth). Usually an analog audio circuit requires separate audio connectors and video connectors even though both are considered baseband signals. However, since each TCO has multiple 600 (or 120) Ohm BAL line pairs, the analog audio circuit may be designated to one of the provided pairs of UTP or STP for each TCO and as shown on the drawings, in lieu of providing a separate baseband audio run to the TCO. The following minimum operating parameters shall be capable over each installed analog audio circuit:

Impedance	600 Ohm, BAL
Input Level	59 mV Root Mean Squared (RMS), minimum
Output Level	0 dBm
S/N ratio	55 dB, minimum
Hum Modulation	-50 dB, minimum
Return Loss	-14 dB (or 1.5 VSWR), maximum
Isolation (outlet-outlet)	24 DB, MINIMUM
Frequency Bandwidth	100 Hz – 10K Hz, minimum

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Specification Section 27 10 00, STRUCTURED CABLING.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- E. Specification Section 26 27 26, WIRING DEVICES.
- F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- G. Specification Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- н. Specification Section 27 32 41, TWO-WAY RADIO EQUIPMENT.
- Specification Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND I. ROUTING EQUIPMENT. J. Specification Section 27 31 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION. L. Specification Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.
- М. Specification Section 27 41 31, MASTER ANTENNA TV EQUIPMENT AND SYSTEMS. N. H-088-C3, VA HANDBOOK DESIGN FOR TELEPHONE SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
- B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)		
75	Protection of Electronic Computer/Data Processing Equipment		
77	Recommended Practice on Static Electricity		
	Standard for Health Care Facilities		
101	Life Safety Code		
1221	Emergency Services Communication Systems		

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS

D. ANSI/EIA/TIA Publications:

568B	Commercial Building Telecommunications Wiring Standard	
569B	Commercial Building Standard for Telecommunications Pathways and Spaces	
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS	
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings	
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings	

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fir

- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.

1.5 SUBMITTALS

- A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The RE shall retain one copy for review and approval.
 - If the submittal is approved the RE shall retain one copy for Official Records and return three (3) copies to the Contractor.
 - 2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The RE shall retain one copy for Official Records.
- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.

- 5. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
- Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
- 7. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
- Conduit size requirement (between main TC, computer, and console rooms).
- 9. Main trunk line and riser pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.
 - b. Contractor's name, address, and telephone (including FAX)
 numbers.
 - c. Date of Submittal.
 - d. VA Project No.
 - 2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 - a. Installation Location and Name.
 - b. Owner's or User's name, address, and telephone (including FAX) numbers.
 - c. Date of Project Start and Date of Final Acceptance by Owner.
 - d. System Project Number.
 - e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
 - 3. Narrative Description of the system.
 - 4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system and edit. Delete equipment items that are not required add additional items required, and renumber section as per system design. The following is the minimum equipment required by the system:

QUANTITY	UNIT
As required	Cabinet Assembly(s)
As required	Environmental Cabinet
As required	Distribution/Interface Cabinet
As required	Equipment (Radio Relay) Rack
As required	Cross Connection (CCS) Systems
As required	Audio Alarm Panel
As required	TROUBLE ANNUNCIATOR PANEL
As required	Lightning Protection System
As required	Wire Management System/Equipment
As required	Telecommunications Outlets (TCO)
As Required	Distribution Cables
As required	TCO Connection Cables
As required	System Connectors
As required	Terminators
As required	Distribution Frames
As required	Telecommunications Closets (TC)
As required	Environmental Requirements
1 ea.	Installation Kit
As-required	Separate List Containing Each Equipment Spare(s)

- 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin, fiberoptic, and coaxial cable jack.
- 8. List of test equipment as per paragraph 1.5.D. below.
- 9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- 10. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:

- 1. The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
- 2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
 - e. Bit Error Test Set (BERT).
 - f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
 - g. Video Waveform Monitor.
 - h. Video Vector Scope.
 - i. Color Video Monitor with audio capability.
 - j. 100 mHz Oscilloscope with video adapters
- E. Samples: A sample of each of the following items shall be furnished to the RE for approval prior to installation.
 - 1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 - a. One each telephone (or voice) rj45 jack installed.
 - b. Two each multi pin data rj45 jacks installed.
 - c. Cover Plate installed.
 - d. Fiber optic ST jack(s) installed.
 - 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
 - 3. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
 - 4. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
 - 5. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.

- 6. 610 mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- 610 mm (2 ft.) section of each analog RF, video coaxial and audio 7. cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- 8. Analog video CCS patch panel or breakout box with cable management equipment and "BNC" connectors installed.
- 9. Analog audio CCS patch panel or breakout box with cable management equipment and "XL" connectors installed.
 - Analog RF patch panel or breakout box with cable management 10. equipment and "F" connectors installed.

F. Certifications:

- 1. Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
- 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
- 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the RE. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
- H. Record Wiring Diagrams:
 - 1. Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the RE. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified

according to the markers installed on the interconnecting cables, Equipment and room/area locations.

- 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The RE shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.
- I. Surveys Required As A Part Of The Technical Submittal: The Contractor shall provide the following surveys that depict various system features and capacities are required in addition to the on site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal survey requirements), as a minimum:
 - 1. The required EPBX connections (each CSU shall be compatible with) shall be determined by and compatible with the system supplied. The following charts shall be filled out and given to the RE at the end of the project as proof that the system works.
 - a. Initially connect:

EQUIPPED ITEM	CAPACITY	WIREDCAPACITY
Main Station Lines		
Single Line		
Multi Line (Equipped for direct input dial [DID])		
Central Office (CO) Trunks		
TWO WAY		
DID		
Two-way DRTL		
Foreign Exchange (FX)		
Conference		
Radio Paging Access		
Audio Paging Access		
Off-Premise Extensions		
CO Trunk By-pass		
CRT w/keyboard		

Printers	
Attendant Consoles	
T-1 Access/Equipment	
Maintenance console	

b. Projected Maximum Growth: The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.1.a. as a part of the technical submittal. For this purpose, the following definitions and sample connections are provided to detail the system's capability:

EQUIPPED ITEM	CAPACITY	WIRED CAPACITY
Servers		
PC's		
Projected Maximum Growth		

The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.2.a. as a part of the technical submittal.

2. Cable Distribution System Design Plan: A design plan for the entire cable distribution systems requirements shall be provided with this document. A specific cable count shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems entire cable requirements and engineer a distribution system requirement plan using the format of the following paragraph(s), at a minimum:

Column	Explanation
FROM BUILDING	Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from
BUILDING	Identifies the building by number, title, or location cabling is to be provided in
TO BUILDING IMC	Identifies building main terminal signal closet, by room number or location, to which cabling is provided too, in, and from
FLOOR	Identifies the floor by number (i.e. 1st,

a. UTP (and/or STP) Requirements/Column Explanation:

	2nd, etc.) cabling and TCOs are to be provided	
TC ROOM NUMBER	Identifies the floor signal closet room, by room number, which cabling shall be provided	
ROOM NUMBER	Identifies the room, by number, from which cabling and TCOs shall be provided	
NUMBER OF CABLE PAIR	Identifies the number of cable pair required to be provided on each floor designated OR the number of cable pair (VA Owned) to be retained	
NUMBER OF STRANDS USED/SPARE	Identifies the number of strands provided in each run	

b. Fiber Optic Cabling Requirements/Column Explanation:

Column	Explanation	
FROM BUILDING	Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from	
TO BUILDING IMC	Identifies building, by number, title, or location, to which cabling is provided	
FLOOR	Identifies the floor by number (i.e. 1st, 2nd, etc.)	
TC ROOM NUMBER	Identifies the room, by number, from which cabling shall be installed	
NUMBER OF STRANDS	Identifies the number of strands in each run of fiber optic cable	
INSTALLED METHOD	Identifies the method of installation in accordance with as designated herein	
NOTES	Identifies a note number for a special feature or equipment	
BUILDING MTC	Identifies the building by number or title	

c. Analog RF Cabling Requirements/Column Explanation:

Column	Explanation	
FLOOR	Identifies the floor by number (i.e. 1st, 2nd, etc.)	
TC ROOM NUMBER	Identifies the room, by number, from which cabling shall be installed	
TO FLOOR TC	Identifies building, by number or location, to which cabling is installed	

NUMBER OF STRANDS	Identifies the number of strands in each run of RF cable
INSTALLED METHOD	Identifies the method of installation in accordance with as designated herein
NOTES	Identifies a note number for a special feature or equipment
BUILDING MTC	Identifies the building by number or title

d. Analog Video Cabling Requirements/Column Explanation:

Column	Explanation	
FROM BUILDING	Identifies building, by number or location, from which cabling is installed	
TC ROOM NUMBER	Identifies the room, by number, from which cabling shall be installed	
TO BUILDING IMC	Identifies building, by number or location, to which cabling is installed	
TC ROOM NUMBER	Identifies the room, by number, to which cabling shall be installed	
NUMBER OF STRANDS	Identifies the number of strands in each run of fiber optic cable	
INSTALLED METHOD	Identifies the method of installation in accordance with as designated herein	
NOTES	Identifies a note number for a special feature or equipment	
BUILDING MTC	Identifies the building by number or title	

3. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. System Requirements:
 - 1. The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data, , and analog RF service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the

Facilities operation in specific designated locations. The System shall:

- a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
- b. Be a voice and data cable distribution system that is based on a physical "Star", and/or "Ring", and/or "Bus" Topology. An Analog RF coaxial cable distribution system shall be provided in a "home run" configuration from each associated riser TC to identified locations and as shown on the drawings.
- c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.
- d. Where the System connects to an existing or future telephone system, refer to specification Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT OR specification Section 27 31 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION for specific telephone equipment and system operational performance standards.

- 2. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional voice and digital and analog RF telecommunications cabling system: "Main" (MTC), "intermediate" (IMTC), and "riser" (RTC) TC's; "vertical" (or "riser") trunk cabling system; vertical cross-connection (VCC) cabling systems, and TCO's with a minimum of three (3) RJ-45 jacks for the appropriate telephone, Data connections, and additional jacks, connectors, drop and patch cords, terminators, and adapters provided.
 - a. Telecommunication Closet (TC):
 - 1) There shall be a minimum of one TC for the MTC, each building IMTC, and each RTC per building floor location. However, in large building(s), where the horizontal distance to the farthest voice and digital work area may exceed 90 Meters (M) (or 295 feet [ft]), additional TC's shall be provided as described herein. The maximum DC resistance per cable pair shall be no more than 28.6 Ohms per 305 M (1,000 feet). Each TC shall be centrally located to cover the maximum amount of local floor space. The TC's house in cabinets or enclosures, on relay racks, and/or on backboards, various telecommunication data equipment, controllers, multiplexers, bridges, routers, LAN hub(s), telephone cross-connecting, active and passive equipment.
 - 2) Additionally, the TC's may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all vertical copper and fiber optic and analog RF coaxial cables shall be terminated on appropriate crossconnection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.
 - a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with grounded receptacles facing up with a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government

Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every 800M² (or 8,000 ft²) of useable floor space. Additional outlets shall be equally spaced along the wall.

- b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications. The RE and/or Facility Chief Engineering Officer are responsible for informing the Contractor regarding the minimum climate control requirements. In identified hostile TC locations where it has been determined (by the RE or Facility Chief Engineer) that proper TC climate or external signal radiation cannot be properly maintained or controlled, the Contractor may, at his/her option, provide a minimum of two individual and properly sized self contained climate controlled equipment cabinet enclosures; one designated for voice, and one designated for data, and one additional cabinet designated for analog RF service, in each TC location identified on the drawings, in lieu of providing additional required TC air handling capability.
- B. System Performance:
 - 1. At a minimum, the System shall be able to support the following voice and data and analog RF operations for Category 6 Certified Telecommunication Service:
 - a. Provide the following interchange (or interface) capabilities: 1) Basic Rate (BRI).
 - 2) Primary Rate (PRI).
 - b. ISDN measurement shall determined by the system supplied:
 - 1) Narrow Band BRI.
 - a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 - b) D Channel: 16 kBps, minimum.
 - c) H Channel: 384 kBps, minimum.
 - 2) Narrow Band PRI:
 - a) B Channel: 64 kBps, minimum.
 - b) D Channel: 64 kBps, minimum.

- c) H Channel: 1,920 kBps, minimum.
- 3) Wide (or Broad) Band:
 - a) All channels: 140 mega (m)-Bps, minimum, capable to 565 mBps at "T" reference.
- c. ATM operation and interface: ATM 155 mBps measurement shall determined by the system supplied
- d. Frame Relay: All stated compliance's measured shall be determined by the system supplied.
- e.Integrated Data Communications Utility (IDCU) operation and interface: measurement shall determined by the system supplied.
- f. Government Open Systems Interconnection Profile (GOSSIP) compliant: measurement shall determined by the system supplied.
- g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measurement shall be determined by the system supplied and shall be Synchronous Optical Network [Sonet] compliant.
- h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data and analog RF locations.
- 2. At a minimum the System shall support the following operating parameters:
 - a. EPBX connection:
 - 1) System speed: 1.0 gBps per second, minimum.
 - 2) Impedance: 600 Ohms.
 - 3) Cross Modulation: -60 deci-Bel (dB).
 - 4) Hum Modulation: -55 Db.
 - 5) System data error: 10 to the -10 Bps, minimum loss measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 - a) Trunk to station: 1.5 dB, maximum.
 - b) Station to station: 3.0 dB, maximum.
 - c) Internal switch crosstalk: -60 dB when a signal of + 10 $\,$ deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 - d) Idle channel noise: 25 dBm "C" or 3.0 dBm "O" above reference (terminated) ground noise, whichever is greater.
 - e) Traffic Grade of Service for Voice and Data: (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic

27 11 00 - 20

overload in the data circuits will not interfere with, or degrade, the voice service.

(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

- b. Telecommunications Outlet (TCO):
 - 1) Voice:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, balanced (BAL).
 - c) Signal Level: 0 deciBel per mili-Volt (dBmV) + 0.1 dBmV.
 - d) System speed: 100 mBps, minimum.
 - e) System data error: 10 to the -6 Bps, minimum.
 - 2) Data:
 - a) Isolation (outlet-outlet): 24 dB.
 - b) Impedance: 600 Ohms, BAL.
 - c) Signal Level: 0 dBmV + 0.1 dBmV.
 - d) System speed: 120 mBps, minimum.
 - e) System data error: 10 to the -8 Bps, minimum.
 - 3) Fiber optic:
 - a) Isolation (outlet-outlet): 36 dB.
 - b) Signal Level: 0 dBmV + 0.1 dBmV.
 - c) System speed: 540 mBps, minimum.
 - d) System data error: 10 to the -6 BPS, minimum.
 - Analog RF Service: Broadcast or "off air" RF (or television) 4) analog service is considered to be at RF (below 900 mHz in frequency bandwidth). Usually a RF television circuits require a single coaxial cable plant from the headend to each TC location.
 - a) Isolation (outlet-outlet): 14 dB.
 - b) Impedance: 75 Ohms, Unbalanced (UNBAL).
 - c) Signal Level: 10 dBmV + 5.0 dBmV.
 - d) Bandwidth: 6.0 mHz per channel, fully loaded
 - Closed Circuit Analog Video Service: Analog video service is 5) considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum

operating parameters shall be capable over each installed analog video circuit:

- a) Impedance: 75 Ohm, unbalanced.
- b) Output Level: 1.0 V peak to peak (P-P), for 87.5% depth of Modulation (Mod).
- c) Diff Gain: ±1 dB at 87.5% Mod.
- d) Diff Phase: ±1.5 at 87.5% Mod.
- e) Signal to Noise (S/N) ratio: 44 dB, minimum.
- f) Hum Modulation: -55 dB.
- g) Return Loss: -14 dB (or 1.5 Voltage Standing Wave Ratio [VSWR]), maximum.
- h) Isolation (outlet-outlet): 24 dB, minimum.
- i) Bandwidth: 6.0 mHz per channel, fully loaded, minimum.
- Closed Circuit Analog Audio Service: Analog audio service is 6) considered to be at baseband (below 10 mHz in frequency bandwidth). Usually an analog audio circuit requires separate audio connectors and video connectors even though both are considered baseband signals. However, since each TCO has multiple 600 (or 120) Ohm BAL line pairs, the analog audio circuit may be designated to one of the provided pairs of UTP or STP for each TCO and as shown on the drawings, in lieu of providing a separate baseband audio run to the TCO. The following minimum operating parameters shall be capable over each installed analog audio circuit:
 - a) Audio (NOT TELEPHONE VOICE):
 - (1) Impedance: 600 Ohm, BAL.
 - (2) Input Level: 59 mV Root Mean Squared (RMS), minimum.
 - (3) Output Level: 0 dBm.
 - (4) S/N ratio: 55 dB, minimum.
 - (5) Hum Modulation: -50 dB, minimum.
 - (6) Return Loss: -14 dB (or 1.5 VSWR), maximum.
 - (7) Isolation (outlet-outlet): 24 dB, minimum.
 - (8) Frequency Bandwidth: 100 Hz 10K Hz, minimum.
- C. General:
 - 1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is

the manufacture for sale of the items of equipment supplied and which:

- a. Maintains a stock of replacement parts for the item submitted.
- b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
- c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
- 2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
- 3. The Contractor shall provide written verification, in writing to the RE at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
- The Telephone Contractor is responsible for providing interfacing cable connections for the telephone, PA, Radio Paging with the System.
- 5. The telephone equipment and PA interface equipment shall be the interface points for connection of the PA Radio interface cabling from the telephone switch via the system telephone interface unit.
- Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone equipment, systems, and service.
- 7. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
- 8. All interconnecting twisted pair, fiber-optic or coaxial cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave

27 11 00 - 23

unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.

- 9. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 27 10 00, STRUCTURED CABLING and Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
- 10. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 11. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.
- 12. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
- 13. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.

Underground warning tape shall be standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with

black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

D. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
POWER LINE FREQUENCY	60 HZ ±2.0 HZ
Operating Temperature	O to 50 degrees (°) Centigrade (C)
Humidity	80 percent (%) minimum rating

- E. Equipment Standards and Testing:
 - 1. The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - 2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.
 - 3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
 - 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 EQUIPMENT ITEMS

A. Cabinet with Internal Equipment Mounting Rack:

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD Fin

- 1. The provided equipment cabinet shall be lockable, fabricated of heavy 16 gauge (ga) steel, and have fully adjustable internal equipment mounting racks or rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief. It shall be floor or wall mounted with knock-out holes for cable entrance and conduit connection, contain ventilation ports and a quiet fan with non disposable air filter for equipment cooling. Two keys shall be provided to the RE for each lock when the VA accepts the System.
- 2. A minimum of one cabinet shall be provided with blank rack space, for additional equipment. Blank panels shall be installed to cover any open or unused rack space. In addition, provide two 120 VAC power strips connected to surge protectors, a ventilation fan with non-disposable air filter, and a conduit or cable duct interfaced to adjacent cabinet(s), as part of this cabinet.
- 3. Blank panels shall be color matched to the cabinet, 3.175 mm (1/8in.) aluminum with vertical dimensions in increments of one rack unit 45 mm (or 1.75in.) with mounting holes spaced to correspond to EIA 480 mm (or 19in.) rack dimensions. Single standard size blank panels shall be used to fill unused panel or rack spaces in lieu of numerous 45 mm (1.75in.) types. One blank 45 mm (1.75in.) high blank panel shall be installed between each item of equipment.
- 4. Technical Characteristics:

Overall Height	2180 mm (85 7/8in.), maximum
Overall Depth	650 mm (25 1/2in.), maximum
Overall Width	535 mm (21 1/16in.), maximum
Front Panel Opening Width	480 mm (19in.), EIA horizontal
Hole Spacing	per EIA and Industry Standards

- 5. Internal Cabinet Components (minimum required):
 - a. AC power outlet strip(s):
 - Power outlet strip(s) shall be provided as directed by the RE or the IRM. The additional equipment cabinet with no installed items in the cabinet, shall contain strip(s) with a minimum of 12 ea. AC power outlets. Each strip shall be mounted inside and at the rear of the cabinet. It shall contain "U" grounded

AC outlets for distributing AC power to the installed electronic equipment. The strip shall be self-contained in a metal enclosure and may be provided with a 2 M (6 ft.) long (maximum) connecting cord with three prong plug.

- 2) Technical Characteristics:
 - a) Power capacity20 Ampere (AMP), 120 VAC continuous duty.
 - b) Wire gauge: Three conductor, #12 AWG copper.
- b. Cabinet AC Power Line Surge Protector and Filter:
 - 1) Each cabinet shall be equipped with a AC Surge Protector and Filter. The Protector and Filter shall be housed in one single enclosure. The Protector and Filter shall perform instantaneous regulation of the AC input voltage and isolate and filter any noise present on the AC input line. The unit shall be equipped with AC voltage and current surge protectors to prevent damage to the electronic equipment from power line induced voltage spikes, surges, lightning, etc. It shall be cabinet mounted and the cabinet AC power strip (maximum of two strips) may be connected to it as long as the system design is met.

Input Voltage range	120 VAC <u>+</u> 15%
Power capacity	20 AMP, 120 VAC
Voltage output regulation	<u>+</u> 3.0%
Circuit breaker	15 AMP, may be self contain
Noise filtering	Greater than -45 dB
AC outlets	Four duplex grounded types, minimum
Response time	5.0 ns
Surge suppression	10,000 AMPS
Noise suppression	
Common	-40 dB
Differential	-45 dB

2) Technical Characteristics:

3) Specific requirements for current and surge protection shall include:

a) Voltage protection threshold, line to neutral, starts at no more than 220 Volts peak. The transient voltage shall not exceed 300 volts peak. The Contractor shall furnish documentation on peak clamping voltage as a function of transient AMP.

b) Peak power dissipation minimum 35 Joules per phase, as measured for 1.0 mS at sub branch panels, 100 Joules per phase at branch panels and 300 Joules per phase at service entrance panels. The Contractor shall furnish an explanation of how the ratings were measured or empirically derived.

c) Surge protector must not short circuit the AC power line at any time.

 The primary surge protection components must be silicon semiconductors. Secondary stages, if used, may include other types of devices.

(2) Surge protectors shall incorporate a visual device which indicates whether the surge suppression component(s) is(are) functioning.

- (3) Surge protection devices shall be UL listed.
- (4) Voltage and current surge protectors shall be provided on all ancillary equipment provided by the Contractor.
- d) Power dissipation 12,000 Watts (W) for 1.0 mS (or 12 Joules).
- e) Voltage protection threshold starts at not more than 100 VAC.
- B. Environmental Cabinet (if selected):
 - 1. The Contractor shall provide this enclosure in lieu of a standard equipment cabinet identified in Paragraph 2.3.A to meet system design in hostile TC locations as identified on the drawings. The enclosure shall fully sustain the installed, including electronic, equipment in the same manner as the standard cabinet identified in Paragraph 2.3.A. Additionally, the enclosure shall fully support all installed equipment as if they were in a stand alone air handling area regardless of the local area's air handling capabilities. The enclosure shall be a OEM's fully assembled unit. If more than two enclosures are required in any system location, those enclosures shall be OEM assembled for consolidating or combining two or more

enclosures in a single unit to meet system space and equipment handling designs.

2. Technical Characteristics:

Environmental control	Automatic, heating and/or cooling, as required	
Temperature conditions (: generation):	rated at 1,300 W of install equipment heat	
Internal Range	Maintains 80° to 105° of internal heat conditions, maximum	
External Range	100° <u>+</u> 25°, maximum	
Forced air unit	Required with non disposable air filter unobstructed and uninterruptible	
Air conditioning	As required, fully internal mounted	
Heater	As required, fully internal mounted	
Uninterruptible power supply	As required, fully internal mounted	
Front door	Full length, see through, EMI resistant, and lockable	
Rear door	Full length, non-see through, EMI resistant, and lockable	
Conduit wiring entrance	TOP AND/OR BOTTOM, FULLY SEALED	
Input power	2 ea. minimum 120 VAC @ 20A, maximum, independent circuit, conduit for fixed or armored cable for moveable installations	
Dimensions:		
Height	1980 mm (78in.), maximum	
Width	635 mm (25in.), maximum	
Depth	965 mm (38in.), maximum	
Front panel opening	480 mm (19in.), w/ EIA mounting hole spacing	

- C. Distribution or System Interface Cabinet:
 - 1. The cabinet shall be constructed of heavy 16 gauge cold rolled steel, have top and side panels and hinged front and rear (front door only if wall mounted) doors. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the RE, contain integral and adjustable predrilled rack mounting rails or frame that allows front panel equipment mounting and access. When all

equipment, doors and panels are installed, snap-in-place chrome trim strip covers are required to be installed that will cover all front panel screw fasteners. It shall be equipped the same as the equipment cabinet.

2. Technical Characteristics:

Overall height	2180 mm (85 7/8in.), maximum
Overall depth	650 mm (25 1/2in.), maximum
Overall width	535 mm (21 1/16in.), maximum
Equipment vertical mounting space	1960 mm (77 1/8in.), maximum
Front panel horizontal	484 mm (19 1/16in.), maximum width

- D. Stand Alone Equipment (or sometimes called Radio Relay) Rack:
 - The rack shall be constructed of heavy 16 gauge cold rolled steel and have fully adjustable equipment front mounting rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the RE. It shall be floor or wall mounted or mounted on casters as directed by the RE.
 - 2. Technical Characteristics:

Overall Height	2180 mm (85 7/8in.), maximum
Overall Depth	650 mm (25 1/2in.), maximum
Overall Width	535 mm (21 1/16in.), maximum
Front Panel Opening	480 mm (19in.), EIA horizontal width
Hole Spacing	per EIA and Industry Standards

- E. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - 1. The connector panel(s) shall be made of flat smooth 3.175 mm (1/8 in.) thick solid aluminum, custom designed, fitted and installed in the cabinet. Bulkhead equipment connectors shall be mounted on the panel to enable all cabinet equipment's signal, control, and coaxial cables to be connected through the panel. Each panel shall be color matched to the cabinet installed.
 - a. Voice (or Telephone):
 - The CSS for voice or telephone service shall be Industry Standard type 110 (minimum) punch blocks for voice or telephone, and control wiring in lieu of patch panels, each

being certified for category six service. IDC punch blocks (with internal RJ45 jacks) are acceptable for use in all CCS and shall be specifically designed for category six telecommunications service and the size and type of UTP cable used as described herein. As a minimum, punch block strips shall be secured to an OEM designed physical anchoring unit on a wall location in the MTC, IMTC, RTC, and TC. However, console, cabinet, rail, panel, etc. mounting is allowed at the OEM recommendation and as approved by the RE. Punch blocks shall not be used for Class II or 120 VAC power wiring.

2) Technical Characteristics:

Number of horizontal rows	100, MINIMUM
Number of terminals per row	4, minimum
Terminal protector	required for each used or unused terminal
Insulation splicing	required between each row of terminals

- b. Digital or High Speed Data:
 - 1) The CSS for digital or high-speed data service shall be a patch panel with modular female RJ45 jacks installed in rows. Patch panels and RJ45 jacks shall be specifically designed for category six telecommunications service and the size and type of UTP or STP cable used. Each panel shall be 480 mm (19in.) horizontal EIA rack mountable dimensions with EIA standard spaced vertical mounting holes.
 - 2) Technical Characteristics:

Number of horizontal rows	2, minimum
Number of jacks per row	24, MINIMUM
Type of jacks	RJ45
Terminal protector	required for each used or unused jack
Insulation	required between each row of jacks

c. Fiber optic, and Analog Audio:

- Product reference of a Government Approved (US State Department) type is Telewire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel may be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with the proper connectors. This panel is not allowed to be used for 120 VAC power connections.
- 2) Technical Characteristics:

Height	Two rack units (RUs), 88 mm (3.5in.) minimum
Width	484 mm (19 1/16in.), EIA minimum
Number of connections	12 pairs, minimum
Connectors	
Audio Service	Use RCA 6.35 mm (1/4in.) Phono, XL or Barrier Strips, surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and RE approved)
Control Signal Service	Barrier strips surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and RE approved)
Low voltage power (class II)	Barrier strips with spade lugs and clear full length plastic cover, surfaced mounted
Fiber optic	"ST" Stainless steel, female

- d. Mounting Strips and Blocks:
 - 1) Barrier Strips: Barrier strips are approved for AC power, data, voice, and control cable or wires. Barrier strips shall accommodate the size and type of audio spade (or fork type) lugs used with insulating and separating strips between the terminals for securing separate wires in a neat and orderly fashion. Each cable or wire end shall be provided with an audio spade lug, which is connected to an individual screw terminal on the barrier strip. The barrier strips shall be surface secured to a console, cabinet, rail, panel, etc. 120
VAC power wires shall not be connected to signal barrier strips.

2) Technical Characteristics:

Terminal size	6-32, minimum
Terminal Count	ANY COMBINATION
Wire size	20 AWG, minimum
Voltage handling	100 V, minimum
Protective connector cover	Required for Class II and 120 VAC power connections

- Solderless Connectors: The connectors (or fork connectors) shall be crimp-on insulated lug to fit a 6-32 minimum screw terminal. The fork connector shall be installed using a standard lug-crimping tool.
- 3. Punch Blocks: As a minimum, Industry Standard 110 type punch blocks are approved for data, voice, and control wiring. Punch blocks shall be specifically designed for the size and type of wire used. Punch block strips shall be secured to a console, cabinet, rail, panel, etc. Punch blocks shall not be used for Class II or 120 VAC power wiring.
- 4. Wire Wrap Strips: Industry Standard wire wrap strips (16.5 mm (0.065in.) wire wrap minimum) are approved for data, voice and control wiring. Wire wrap strips shall be secured to a cabinet, rail, panel, etc. Wire wrap strips shall not be used for Class II or 120 VAC power wiring.
- F. Wire Management System and Equipment:
 - 1. Wire Management System: The system(s) shall be provided as the management center of the respective cable system, CCS, and TC it is incorporated. It shall perform as a platform to house peripheral equipment in a standard relay rack or equipment cabinet. It shall be arranged in a manner as to provide convenient access to all installed management and other equipment. All cables and connections shall be at the rear of each system interface to IDC and/or patch panels, punch blocks, wire wrap strips, and/or barrier strip.
 - 2. Wire Management Equipment: The wire management equipment shall be the focal point of each wire management system. It shall provide an orderly interface between outside and inside wires and cables (where

used), distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide a uniform connection media for all system fire retardant wires and cables and other subsystems. It shall be fully compatible and interface to each cable tray, duct, wireway, or conduit used in the system. All interconnection or distribution wires and cables shall enter the system at the top (or from a wireway in the floor) via a overhead protection system and be uniformly routed down either side (or both at the same time) of the frames side protection system then laterally via a anchoring or routing shelf for termination on the rear of each respective terminating assembly. Each system shall be custom configured to meet the System design and user needs.

2.3 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

- A. Floor loading for batteries and cabinets.
- B. Minimum floor space and ceiling heights.
- C. Minimum size of doors for equipment passage.
- D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
- E. Air conditioning, heating, and humidity requirements. The bidder shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
- F. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
- G. Proposed floor plan based on the expanded system configuration of the bidder's proposed EPBX for this Facility.
- H. Conduit size requirement (between equipment room and console room).

2.4 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

- A. System Grounding:
 - The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields.
 - b. Control Cable Shields.
 - c. Data Cable Shields.
 - d. Equipment Racks.
 - e. Equipment Cabinets.
 - f. Conduits.
 - g. Duct.
 - h. Cable Trays.
 - i. Power Panels.
 - j. Connector Panels.
 - k. Grounding Blocks.
- B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.

- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
 - Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the RE and PM.
 - 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
 - 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data, and lightwave, and analog signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor

shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.

- 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
- 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
- 7. All vertical copper and fiber optic, and coaxial cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
- 8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair, and coaxial, and lightwave cables carrying telephone and data, and analog signals in telephone and data, and analog video, and lightwave systems.
- 9. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the RE if requested.) Conduits shall be provided in accordance with Section 27 05 33,

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.

- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- g. Ensure that Critical Care, Nurse Call, and PA, and Radio Paging Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and

be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.

- F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
 - 1. Wires:
 - a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
 - b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
 - 2. Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
 - 3. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
 - a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
 - b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or 1/8" phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
 - c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.
 - 4. Speaker Line Audio:
 - a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM's approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.

- b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.
- G. AC Power: AC power wiring shall be run separately from signal cable.
- H. Grounding:
 - 1. General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
 - a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
 - b. Gas protection devices shall be provided on all circuits and cable pairs serving building distribution frames located in buildings other than the building in which the ground is located or in any area served by an unprotected distribution system (manhole, aerial, etc.). The Contractor shall install the gas protection devices at the nearest point of entrance in buildings where protection is required and on the same circuits on the MDF in the telephone switch room.
 - c. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
 - d. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
 - 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection

from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.

- 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
- 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
- I. Equipment Assembly:
 - 1. Cabinets:
 - a. Each enclosure shall be: floor or wall mounted with standard knockout holes for conduit connections or cable entrance; provide for ventilation of the equipment; have front and rear locking doors (except wall mounted cabinets that require only a front locking door); power outlet strip(s), and connector or patch panel(s).
 - b. Rack (including freestanding radio relay) mounted equipment shall be installed in the enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustment(s) can be conveniently made. Heavy equipment shall be mounted with rack slides or rails allowing servicing from the front of the enclosure. Heavy equipment shall not depend only upon front panel mounting screws for support. Equipment shall be provided with sufficient cable slack to permit servicing by removal of the installed equipment from the front of the enclosure. A color matched blank panel (spacer) of 44 mm (1.75 in.) high, shall be installed between each piece of equipment (active or passive) to insure adequate air circulation. The enclosure shall be designed for efficient equipment cooling and air ventilation. Each console or cabinet shall be equipped with a quiet fan and nondisposable air filter.

- c. Enclosures and racks shall be installed plumb and square. Each shall be permanently attached to the building structure and held firmly in place. Fifteen inches of front vertical space opening shall be provided for additional equipment.
- d. Signal connector, patch, and bulkhead panels (i.e.: audio, data, control, analog video, etc.) shall be connected so that outputs from each source, device or system component shall enter the panel at the top row of jacks, beginning left to right as viewed from the front, which will be called "inputs". Each connection to a load, device or system component shall exit the panel at the bottom row of jacks, beginning left to right as viewed from the front, which will be called "outputs".
 - 1) Equipment located indoors shall be installed in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
 - 2) Cables shall enter the equipment racks or enclosures in such a manner that allows all doors or access panels to open and close without disturbing or damaging the cables.
 - 3) All distribution hardware shall be securely mounted in a manner that allows access to the connections for testing and provides sufficient room for the doors or access panels to open and close without disturbing the cables.
- J. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
 - 1. Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
 - 2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Interim Inspection:
 - 1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
 - Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
 - 3. The Contractor shall notify the RE, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
 - 4. Results of the interim inspection shall be provided to the RE and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
 - 5. The RE and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.
- B. Pretesting:

- 1. Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
- 2. Pretesting Procedure:
 - a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.
 - 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- C. Acceptance Test:
 - 1. After the System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

- D. Verification Tests:
 - 1. Test the UTP (Unshielded Twisted Pair) STP (Shielded Twisted Pair) copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
 - 2. Multimode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-14A using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
 - 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-7 using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
 - E. Performance Testing:
 - 1. Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
 - F. Total System Acceptance Test: The Contractor shall perform verification tests for the UTP (Unshielded Twisted Pair) STP (Shielded Twisted Pair) copper cabling system(s) and the multimode and single mode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
 - 1. Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.
 - 2. Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM

personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.

B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 GUARANTEE PERIOD OF SERVICE

- A. Contractor's Responsibilities:
 - 1. The Contractor shall guarantee that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
 - 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year guarantee period:
 - a. Response Time:
 - The RE (or facility Contracting Officer if the facility has taken possession of the building[s]) are the Contractor's reporting and contact officials for the System trouble calls, during the guarantee period.
 - A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
 - 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which

causes a system outlet, station, or patch cord to be inoperable.

- b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
- 4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 - a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
 - b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the RE or Facility Director. The RE or Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
- b. Required on-site visits during the one year guarantee period
 - 1) The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.
 - a) The Contractor shall arrange all Facility visits with the RE or Facility Contracting Officer prior to performing the required maintenance visits.
 - b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the RE or Facility Contracting Officer and the Contractor.

- c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE or Facility Contracting Officer.
- 2) The Contractor shall provide the RE or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
 - a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to RE or Facilities Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
 - b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 3) The RE or Facility Contracting Officer shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The RE or Facility Contracting Officer shall ensure copies of these reports are entered into the System's official acquisition documents.
 - b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
- B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is

not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

Page intentionally left blank

SECTION 27 15 00 COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the System"), and associated equipment and hardware to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
- B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- D. The Voice and Digital and Analog Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care

Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

E. The VA Project Manager (PM) and/or if delegated, Resident Engineer (RE) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the RE before proceeding with the change.

1.2 RELATED WORK

- A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Specification Section 26 27 26, WIRING DEVICES.
- F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
- B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)	
75	Protection of Electronic Computer/Data Processing Equipment	
77	Recommended Practice on Static Electricity	
	Standard for Health Care Facilities	
101	Life Safety Code	

1221 Emergency Services Communication Systems

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96A	INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
497/497A/497B	PROTECTORS FOR PAIRED CONDUCTORS/ COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

455-30	Frequency Domain Measurement of Multimode Optical Fiber Information Transmission Capacity
455-53-A	Attenuation by Substitution Measurement for Multimode Graded-Index Optical Fibers of Fiber Assemblies Used in Long Length Communications Systems
568B	Commercial Building Telecommunications Wiring Standard
569В	Commercial Building Standard for Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for Telecommunications in Commercial Buildings

- E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
- F. International Telecommunication Union Telecommunication Standardization Sector (ITU-T).
- G. Federal Information Processing Standards (FIPS) Publications.
- H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
- I. United States Air Force: Technical Order 33K-1-100 Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.

- J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
- K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

1.4 QUALITY ASSURANCE

- A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
- B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
- C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
- D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
- E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.

1.5 SUBMITTALS

A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The RE shall retain one copy for review and approval.

- If the submittal is approved the RE shall retain one copy for Official Records and return three (3) copies to the Contractor.
- 2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The RE shall retain one copy for Official Records.
- B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling heights.
 - 3. Minimum size of doors for equipment passage.
 - 4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
 - Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
 - Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
 - 7. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
 - Conduit size requirement (between main TC, computer, and console rooms).
 - 9. Main backbone, trunk line, riser, and horizontal cable pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
- C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
 - 1. Title page to include:
 - a. VA Medical Center.
 - b. Contractor's name, address, and telephone (including FAX)
 numbers.
 - c. Date of Submittal.
 - d. VA Project No.
 - 2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:

- a. Installation Location and Name.
- b. Owner's or User's name, address, and telephone (including FAX) numbers.
- c. Date of Project Start and Date of Final Acceptance by Owner.
- d. System Project Number.
- e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
- 3. Narrative Description of the system.
- 4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. The following is the minimum equipment required by the system:

QUANTITY	UNIT
As required	Telecommunications Outlets (TCO)
As Required	Distribution Cables
As required	TCO Connection Cables
As required	Terminators

- 5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
- 6. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- 7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipinjack.
- 8. List of test equipment as per paragraph 1.5.D. below.
- 9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
- 10. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
- D. Test Equipment List:
 - 1. The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.

- 2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
 - e. Bit Error Test Set (BERT).
 - f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
- E. Samples: A sample of each of the following items shall be furnished to the RE for approval prior to installation.
 - 1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 - a. One each telephone (or voice) rj45 jack installed.
 - b. Two each multi pin data rj45 jacks installed.
 - c. Cover Plate installed.
 - 2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
 - 3. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
 - 4. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
 - 5. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
 - 610 mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
- F. Certifications:
 - Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.

- 2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
- 3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
- G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the RE. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
- H. Record Wiring Diagrams:
 - Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the RE. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
 - 2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The RE shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. System Requirements:
 - The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data, service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:

- a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
- b. Be a voice and data cable distribution system that is based on a physical "Star", and/or "Ring, and/or "Bus" Topology.
- c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.
- d. Where the System connects to an existing or future telephone system, refer to specification Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT OR specification Section 27 31 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION for specific telephone equipment and system operational performance standards.
- 2. Cable Systems Twisted Pair and Fiber optic, and Analog RF Coaxial: a. General:
 - The Contractor shall be responsible for providing a new system conforming to current and accepted telephone and digital, and analog RF industrial/commercial cable distribution standards. The distribution cable installation shall be fully coordinated

with the Facility, the PM, the RE and the Contractor prior to the start of installation.

- 2) The Contractor is responsible for complete knowledge of the space and cable pathways (i.e. equipment rooms, TCs, conduits, wireways, etc.) of the Facility. The Contractor shall at a minimum design and install the System using the Pathway Design Handbook H-088C3, TIA/EIA Telecommunications Building Wiring Standards, and Facility Chief of Information Resource Management's (IRM) instructions, as approved in writing by the PM and/or RE.
- 3) The System cables shall be fully protected by cable duct, trays, wireways, conduit (rigid, thin wall, or flex), and when specifically approved, flexible innerduct. It is the responsibility of the Contractor to confirm all contract drawings and the Facility's physical layout to determine the necessary cable protective devices to be provided. If flexible innerduct is used, it shall be installed in the same manner as conduit.
- 4) Cable provided in the system (i.e. backbone, outside plant, inside plant, and station cabling) shall conform to accepted industry and OEM standards with regards to size, color code, and insulation. The pair twists of any pair shall not be exactly the same as any other pair within any unit or sub-unit of cables that are bundled in twenty-five (25) pairs or less. The absence of specifications regarding details shall imply that best general industry practices shall prevail and that first quality material and workmanship shall be provided. Certification Standards, (i.e., EIA, CCITT, FIPPS, and NFPA) shall prevail.
- 5) Some areas of this Facility may be considered "plenum". All wire and cable used in support of the installation in those areas (if any) shall be in compliance with national and local codes pertaining to plenum environments. It is the responsibility of the Contractor to review the VA's cable and wire requirements with the RE and the IRM prior to installation to confirm the type of environment present at each location.

- 6) The Contractor shall provide outside and inside plant cables that furnishes the number of cable pairs required in accordance with the System requirements described herein. The Contractor shall fully coordinate and obtain approval of the design with the OEM, RE and the IRM prior to installation.
- 7) All metallic cable sheaths, etc. shall be grounded by the Contractor (i.e.: risers, underground, station wiring, etc.) as described herein.
- 8) If temporary cable and wire pairs are used, they shall be installed so as to not present a pedestrian safety hazard and the Contractor shall be responsible for all work associated with the temporary installation and for their removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the RE and the IRM prior to installation.
- 9) Conductors shall be cabled to provide protection against induction in voice and data, and analog RF circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 10) Measures shall be employed by the Contractor to minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 11) The System's cables shall be labeled on each end and been fully tested and certified in writing by the Contractor to the RE before proof of performance testing can be conducted. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The tests required for data cable must be made to guarantee the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. All cable installation and test records shall be

made available at acceptance testing by the RE or Contractor and thereafter maintained in the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 12) The Contractor shall coordinate with the LEC to install the telephone entrance cable to the nearest point of entry into the Facility and as shown on the drawings. The Contractor shall coordinate with the RE and the LEC to provide all cable pairs/circuits from the Facility point of entry to the Telephone Switch Room all telephone, FTS, DHCP, ATM, Frame Relay, data, pay stations, patient phones, and any low voltage circuits as described herein.
- 13) The Contractor shall coordinate with the RE and the IRM to install the computer interface cable to the Facility Telephone Switch Room from the Facility's Computer Room for all data, DHCP, FTS, ATM, Frame Relay, and telephone circuits and as shown on the drawings.
- 14) The Contractor shall coordinate with the RE and the IRM to provide all cable pairs/circuits from the Facility Telephone Switch Room and establish circuits throughout the Facility for all voice, data, computer alarm (except fire alarm), private maintenance line, Radio Paging, PA, LAN, DHCP, and any low voltage circuits as described herein.
- 15) The Contractor shall provide proper test equipment to guarantee that cable pairs and analog RF coaxial cable meet each OEM's standard transmission requirements, and quarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
- b. Telecommunications Closets (TC): In TC's that are served with both a UTP and STP backbone cable and a fiber optic backbone cable, the UTP and STP cable shall be terminated on separate RJ-45, 8-pin connectors with 110A or equivalent type punch down blocks located on the back or front of a 48-port modular patch panel dedicated to data applications. Only the UTP and STP backbone cable pairs, identified as being connected to the fiber optic backbone, shall be extended to the fiber optic interface device. All connecting cables required to extend these cables (i.e. patch cords, twenty-five pair connectors, etc.), to the

fiber optic interface device, in the TC's shall also be provided by the Contractor to insure a complete and operational fiber optic distribution system:

- 1) In TC's, which are only served by a UTP and STP backbone cable, the cable shall be terminated on separate modular connecting devices (110A or equivalent) that are dedicated to data applications. In order to provide full service to all data cable pairs as identified in each TC/cabinet including spare capacity noted herein, the size of all vertical (riser) cables and/or outside cables serving these TC's shall be increased as required.
- c. Backbone and Trunk Cables:
 - 1) The Contractor shall identify, in the technical submittal, the voice and data (analog RF coaxial cable shall not be provided in main trunk or backbone lines) connecting arrangements required by the LEC for interconnection of the System to the commercial telephone and FTS networks. The Contractor shall provide all required voice and data connecting arrangements.
 - 2) The Contractor shall be responsible for compatibility of the proposed TCs (to be compliant with the EPBX and CSU equipment) numbering scheme with the numbering plan for the FTS, DID, local stations, and the North American Numbering Plan. The Contractor shall consult with the VA and the LEC regarding the FTS and North American Numbering plan to be implemented for the Facility to ensure system compatibility.
 - 3) All submitted equipment shall meet or exceed standards, rules, and regulations of the Federal Communications Commission (FCC) and shall be capable of operating without outboard or "extra" devices. The Contractor shall identify the FCC registration number of the System equipment, EPBX, and proposed CSU (if known) in the technical submittal.
 - 4) A minimum of one (1) 400 shielded twisted pair (STP) cable shall be installed from the Telephone Switch Room cross connecting system (CCS) to the Main Computer Room MDF. This cable shall support the transmission of data information over twisted pair cable. The cable shall be tested and terminated on a Contractor provided cable management frame, RJ-45 modular jacks with eight (8) pin connectors, and 48 port modular patch

panels located in the Main Computer Room and Telephone Switch Room. The cable shall be labeled, terminated, and separated from the other cables on the MDF and Telephone Switch Room CCS. This requirement shall be fully coordinated and approved by the Facility Chief, IRM and the RE prior to installation. The cabling requirements of this paragraph are in addition to the requirements specified in the System Design Plan identified herein.

- d. Riser Cable:
 - 1) All communication riser cables shall be listed as being suitable for the purpose and marked accordingly per Articles 517, 700, and 800 of the NEC.
 - 2) All voice and data communication (analog RF coaxial cable is not to be provided in riser systems) riser cables shall be STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors. They shall be enclosed with a thermoplastic outer jacket.
 - 3) The Contractor shall provide and install inside riser cables to insure full service to all voice cable pairs identified in each TC terminating enclosure plus not less than 50% additional spare capacity.
 - 4) The complete riser cabling system shall be labeled and tested as described herein.
- e. Horizontal and Station Cable:
 - 1) A Four (4) UTP 24 AWG station wiring cable shall be installed from the top TCO jack to the TC and shall be of a type designed to support Category 6 communications (250 mega-Hertz [mHz] or above). At the jack location, terminate all four pair on the RJ-45/11 jack. At the signal closet, all four pair shall be terminated on the modular punch down blocks dedicated to telephone applications.
 - 2) A Four (4) UTP 24 AWG (in thermoplastic jacket unless otherwise specified by RE) station wiring cable shall be installed from each of the two (2) bottom TCO RJ-45 jacks (shall conform to EIA/TIA 568 Standard "T568A" and NFPA) to the TC and shall be of a type designed to support Category 6 communications (250 mHz or above).

- f. Telecommunication Outlets (TCO), Jacks: All TCO's shall have a minimum of three (3) RJ-45 type jacks. The top jack shall be an eight pin RJ-45/11 compatible jack, labeled, and designated for telephone applications only. The bottom two jacks shall be eight pin RJ-45 type unkeyed (sometimes called center keyed) jacks, labeled, and designated for data.
- q. Patient Bedside Prefabricated Units (PBPU): Where PBPU's exist in the Facility, the Contractor shall identify the single gang "box" location on the PBPU designated for installation of the telephone jack. This location shall here-in-after be identified as the PBTCO. The Contractor shall be responsible for obtaining written approval and specific instructions from the PBPU OEM regarding the necessary disassembly and reassembly of each PBPU to the extent necessary to pull wire from above the ceiling junction box to the PBPU box reserved for the PBTCO. A Contractor provided stainless steel cover plate approved for use by the PBPU OEM and Facility IRM Chief shall finish out the jack installation. Under no circumstances shall the Contractor proceed with the PBPU installations without the written approval of the PBPU OEM and the specific instructions regarding the attachment to or modifying of the PBPU. The RE shall be available to assist the Contractor in obtaining these approvals and instructions in a timely manner as related to the project's time constraints. It is the responsibility of the Contractor to maintain the UL integrity of each PBPU. If the Contractor violates that integrity, it shall be the responsibility of the Contractor to obtain on site UL recertification of the violated PBPU at the direction of the RE and at the Contractor's expense.

h. Fiber Optics:

1) A complete fiber optic cable distribution system shall be provided as a part of the System. The Contractor shall provide a fiber optic cable that meets the minimum bandwidth requirements for FDDI, ATM, and Frame Relay services. This fiber optic cable shall be a 62.5/125 micron multi-mode, containing a minimum of 18 strands of fiber, unless otherwise specified, and shall not exceed a distance of 2,000 Meters (M), or 6,560 feet (ft.) in a single run. Loose tube cable, which separates the individual fibers from the environment,

shall be installed for all outdoor runs or for any area which includes an outdoor run. Tight buffered fiber cable shall be used for indoor runs. The multimode fibers shall be terminated and secured at both ends in "ST" type female stainless steel connectors installed in an appropriate patch or breakout panel with a cable management system. A 610 mm (2 ft.) cable loop (minimum) shall be provided at each end to allow for future movement.

- 2) In addition, a 12 strand (minimum), 8.3 mm single mode fiber optic cable shall be provided. Single mode fibers shall be terminated and secured at both ends with "ST" type female stainless steel connectors installed in an appropriate patch or breakout panel. The panel shall be provided with a cable management system. A 610 mm (2 ft.) cable loop (minimum) shall be provided at each end to allow for future movement.
- 3) The fiber optic backbone shall use a conventional hierarchical "star" design where each TC is wired to the primary hub (main cross-connect system) or a secondary hub (intermediate crossconnect system) and then to the primary hub. There shall be no more than two hierarchical levels of cross-connects in the backbone wiring. Each primary hub shall be connected and terminated to a CCS in the Telephone Switch Room. Additionally, a parallel separate fiber optic interconnection shall be provided between the Telephone Switch Room CCS and the MDF in the Main Computer Room.
- 4) In the TC's, Telephone Switch Room, and Main Computer Room, all fiber optic cables shall be installed in a CCS and/or MDF rack mounted fiber optic cable distribution component/splice case (Contractor provided and installed rack), patch, or breakout panel in accordance with industry standards. Female "ST" connectors shall be provided and installed on the appropriate panel for termination of each strand.
- 5) The Contractor shall test each fiber optic strand. Cable transmission performance specifications shall be in accordance with EIA/TIA standards. Attenuation shall be measured in accordance with EIA fiber optic test procedures EIA/TIA-455-53-A and NFPA. Information transmission capacity shall be measured in accordance with EIA/TIA-455-51 or -30 and NFPA.

The written results shall be provided to the RE for review and approval.

2.2 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet (TCO):
 - The TCO shall consist of one telephone multipin jack and two data multipin jacks mounted in a steel outlet box. A separate 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled stainless steel faceplate will be used. A second 100mm (4in.) x 100mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled faceplate shall be provided as required adjacent to the first box to ensure system connections and expandability requirements are met.
 - All telephone multipin connections shall be RJ-45/11 compatible female types. All data multipin connections shall be RJ-45 female types.
 - 3. The TCO shall be fed from the appropriate CCS located in the respective RTC in a manner to provide a uniform and balanced distribution system.
 - 4. Interface of the data multipin jacks to appropriate patch panels (or approved "punch down" blocks) in the associated RTC, is the responsibility of the Contractor. The Contractor shall not extend data cables from the RTCs to data terminal equipment or install data terminal equipment.
 - 5. The wall outlet shall be provided with a stainless steel or approve alternate cover plate to fit the telephone multipin jack, data multi- pin jacks and the outlet box provided (100mm (4in.) x 100mm (4in.) for single and 100mm (4in.) x 200mm (8in.) for dual outlet box applications). For PBPU installations, the cover plate shall be stainless steel.
- B. Distribution Cables: Each cable shall meet or exceed the following specifications for the specific type of cable. Each cable reel shall be sweep tested and certified by the OEM by tags affixed to each reel. The Contractor shall turn over all sweep tags to the RE or PM. Additionally, the Contractor shall provide a 610 mm (2 ft.) sample of each provided cable, to the RE and receive approval before installation. Cables installed in any outside location (i.e. above ground, under ground in conduit, ducts, pathways, etc.) shall be filled with a waterproofing compound between outside jacket (not immediately

touching any provided armor) and inter conductors to seal punctures in the jacket and protect the conductors from moisture.

- 1. Remote Control:
 - a. The remote control cable shall be multi-conductor with stranded (solid is permissible) conductors. The cable shall be able to handle the power and voltage necessary to control specified system equipment from a remote location. The cable shall be UL listed and pass the FR-1 vertical flame test, at a minimum. Each conductor shall be color-coded. Combined multi-conductor and coaxial cables are acceptable for this installation, as long as all system performance standards are met.
 - b. Technical Characteristics:

Length	As required, in 1K (3,000 ft.) reels minimum
Connectors	As required by system design
Size	18 AWG, minimum, Outside
	20 AWG, minimum, Inside
Color coding	Required, EIA industry standard
Bend radius	10X the cable outside diameter
Impedance	As required
Shield coverage	As required by OEM specification
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

- 2. Telephone:
 - a. The System cable shall be provided by the Contractor to meet the minimum system requirements of Category Six service. The cable
shall interconnect each part of the system. The cable shall be completely survivable in areas where it is installed.

b. Technical Characteristics:

Length	As required, in 1K (3,000 ft.) reels minimum
Cable	Voice grade category six
Connectors	As required by system design
Size	22 AWG, minimum, Outside
	24 AWG, minimum, Inside
Color coding	Required, telephone industry standard
Bend radius	10X the cable outside diameter
Impedance	120 Ohms <u>+</u> 15%, BAL
Shield coverage	As required by OEM specification
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
62.0	52.0
100.0	68.0

- 3. Data Multi-Conductor:
 - a. The cable shall be multi-conductor, shielded or unshielded cable with stranded conductors. The cable shall be able to handle the power and voltage used over the distance required. It shall meet Category Six service at a minimum.
 - b. Technical Characteristics:

Wire size	22 AWG, minimum
Working shield	350 V
Bend radius	10X the cable outside diameter

Impedance	100 Ohms <u>+</u> 15%, BAL
Bandwidth	100 mHz, minimum
DC RESISTANCE	10.0 Ohms/100M, maximum
Shield coverage	
Overall Outside (if OEM specified)	100%
Individual Pairs (if OEM specified)	100%
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
62.0	52.0
100.0	68.0

4. Fiber Optic:

- a. Multimode Fiber:
 - 1) The general purpose multimode fiber optic cable shall be a dual window type installed in conduit for all system locations. A load-bearing support braid shall surround the inner tube for strength during cable installation.
 - 2) Technical Characteristics:

Bend radius	6.0", minimum
	Outer jacket, As required
FIBER DIAMETER	62.5 MICRONS
Cladding	125 microns
Attenuation	
850 nM	4.0 dB per kM, maximum
1,300 nM	2.0 dB per kM, maximum
Bandwidth	

850 nM	160 mHz, minimum
1,300 nM	500 mHz, minimum
Connectors	Stainless steel

b. Single mode Fiber:

- The general purpose single mode fiber optic cable shall be a dual window type installed in conduit for all system locations. A load-bearing support braid shall surround the inner tube for strength during cable installation.
- 2) Technical Characteristics:

Bend radius	100 mm (4 in.) minimum
Outer jacket	PVC
Fiber diameter	8.7 microns
Cladding	125 microns
Attenuation at 850 nM	1.0 dBm per km
Connectors	Stainless Steel

- 5. AC Power Cable: AC power cable(s) shall be 3-conductor, no. 12 AWG minimum, and rated for 13A-125V and 1,625W. Master AC power, installation specification and requirements, are given in the NEC and herein.
- 6. Public Address and/or General Purpose Audio:
 - a. The audio cable shall be two-conductor, STP cable with stranded conductors. The cable shall be able to handle the power used for the load impedance over the distance required, with not more than 5% power loss. This cable is to be provided in local PA areas only and is not to be used as a part of the telephone system.
 - b. Technical Characteristics:

Impedance	70.7VRMS audio signal
Wire size	20 AWG, minimum
Working shield	350 V
Color coding	Required, EIA audio industry standard
Connectors	As required
Bend radius	10X the cable outside diameter
Impedance	100 Ohms <u>+</u> 15%, BAL

Bandwidth	20 mHz, minimum
DC resistance	10.0 Ohms/100M (330 ft.), maximum
Shield coverage	
Overall Outside (if OEM specified)	100%
Individual Pairs (if OEM specified)	100%
Attenuation	
Frequency in mHz	dB per 305 M (1,000ft.), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0

- C. Outlet Connection Cables:
 - 1. Telephone:
 - a. The Contractor shall provide a connection cable for each TCO telephone jack in the System with 10% spares. The telephone connection cable shall connect the telephone instrument to the TCO telephone jack. The Contractor shall not provide telephone instrument(s) or equipment.
 - b. Technical Characteristics:

Length	1.8M (6ft.), minimum
Cable	Voice Grade
Connector	RJ-11/45 compatible male on each end
Size	24 AWG, minimum
Color coding	Required, telephone industry standard

- 2. Data:
 - a. The Contractor shall provide a connection cable for each TCO data jack in the system with 10% spares. The data connection cable

shall connect a data instrument to the TCO data jack. The Contractor shall not provide data terminal(s)/equipment.

b. Technical Characteristics:

Length	1.8M (6 ft.), minimum
Cable	Data grade Category Six
Connector	RJ-45 male on each end
Color coding	Required, data industry standard
Size	24 AWG, minimum

- 3. Analog Audio:
 - a. The Contractor shall provide a connection cable for each TCO analog audio jack in the System with 10% spares. The analog audio connection cable shall connect a analog audio instrument to the TCO analog audio jack. The Contractor shall not provide analog audio instrument(s)/equipment.
 - b. Technical Characteristics:

Length	1.8M (6 ft.), minimum
Cable	Flexible 22 AWG, STP, minimum
Connector	"XL" male on each end

- D. System Connectors:
 - 1. Solderless (Forked Connector):
 - a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector barrel shall be insulated and color-coded.
 - b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V

- 2. Multipin:
 - a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The

connector housing shall be fully enclosed and shielded. It shall be secured to the cable group by screw type compression sleeves.

b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V
Number of pins	As requires, usually 25 pairs minimum

- 3. Modular (RJ-45/11 and RJ-45): The connectors shall be commercial types for voice and high speed data transmission applications. he connector shall be compatible with telephone instruments, computer terminals, and other type devices requiring linking through the modular telecommunications outlet to the System. The connector shall be compatible with UTP and STP cables.
 - a. Technical Characteristics:

Туре	Number of Pins
RJ-11/45	Compatible with RJ45
RJ-45	Eight
Dielectric	Surge
Voltage	1,000V RMS, 60 Hz @ one minute, minimum
Current	2.2A RMS @ 30 Minutes or 7.0A RMS @ 5.0 seconds
Leakage	100 μA, maximum
Connectability	
Initial contact resistance	20 mili-Ohms, maximum
Insulation displacement	10 mili-Ohms, maximum
Interface	Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs shall provide connection when used in RJ-45 jacks.
Durability	200 insertions/withdrawals, minimum

4. Fiber Optic: The connectors shall be commercial types for voice and high speed data transmission applications. The connector shall be compatible with telephone instruments, computer terminals, and other type devices requiring linking through the modular telecommunications outlet to the system. The connector shall be compatible with UTP and STP cables.

- E. Terminators:
 - 1. Coaxial:
 - a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on type that has low VSWR when installed and the proper impedance to terminate the required system unit or coaxial cable.
 - b. Technical Characteristics:

Frequency	0-1 GHz
Power blocking	As required
Return loss	25 dB
Connectors	"F", "BNC", minimum
Impedance	50 or 75 Ohms, UNBAL

- 2. Audio:
 - a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on audio spade lug, twin plug, XL types that has low VSWR when installed and the proper impedance to terminate the required system unit or coaxial cable.
 - b. Technical Characteristics:

Frequency	20-20 kHz, minimum
Power blocking	As required
Return loss	15 dB
Connectors	"Audio spade lug", "1/4", "1/8", "XL" or "RCA"
Impedance	
Bal	100 Ohms, minimum
Unbal	75 Ohm, minimum

- 3. Fiber Optic:
 - a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on type that

has low VSWR when installed and the proper impedance to terminate the required system unit or fiber optic cable.

b. Technical Characteristics:

Frequency	Lightwave
Power blocking	As required
Return loss	25 dB
Connectors	"ST", minimum
Construction	Stainless steel
Impedance	As required

F. Distribution Frames:

- A new stand-alone (i.e., self supporting, free standing) MDF shall be provided to interconnect the EPBX and computer room. The MDF shall be modular and equipped with modular terminating mini blocks (i.e. Ericsson, 3M, etc.), and patch panels that are as small as possible and provide all the requirements of this specifications as described herein.
- 2. All cable distribution closets and MDFs shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The MDF/telephone closet riser cable shall be sized to satisfy all voice requirements plus not less than 50% spare (growth) capacity in each telephone closet which includes a fiber optic backbone. The MDF/telephone closet riser cable shall be sized to satisfy all voice and data requirements plus not less than 50% spare (growth) capacity in each telephone closet which does not include a fiber optic backbone.
- 3. The MDF and all intermediate distribution frames shall be connected to the EPBX system ground.

Telephone	
IDC type unit	As described in Part 2
Contact wires	50 micron of Gold over Nickel
Contact pressure	100 Grams, MIN
110A Punch blocks	Acceptable alternate to IDC
Data	110A blocks as described in Part 2

4. Technical Characteristics:

Fiber optic	Patch panel as described in Part 2
Analog Video	Patch panel as described in Part 2

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
 - 2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- B. System Installation:
 - After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the RE and PM.
 - 2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
 - 3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data, and lightwave, and analog signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
 - 4. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.

- 5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
- 7. All vertical and horizontal copper and fiber optic cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
- C. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the RE if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 - c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
 - e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the

wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.

- f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.
- D. Distribution System Signal Wires and Cables:
 - 1. Wires and cables shall be provided in the same manner and use like construction practices as Fire Protective and other Emergency Systems that are identified and outlined in NFPA 101, Life Safety Code, Chapters 7, 12, and/or 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions. The wires and cables shall be able to withstand adverse environmental conditions in their respective location without deterioration. Wires and cables shall enter each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of the cables.
 - a. Each wire and cable shall terminate on an item of equipment by direct connection. Spare or unused wire and cable shall be provided with appropriate connectors (female types) that are installed in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.

- b. Fiber optic cables that are spare, unused or dark shall be provided with Industry Standard "ST" type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
- c. Coaxial cables that are spare, unused or dark shall be provided with the cable OEM specified type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
- d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible.
- 2. Routing and Interconnection:
 - a. Wires or cables between consoles, cabinets, racks and other equipment shall be in an approved conduit, signal duct, cable duct, or cable tray that is secured to building structure.
 - b. Wires and cables shall be insulated to prevent contact with signal or current carrying conductors. Wires or cables used in assembling consoles, panels, equipment cabinets and racks shall be formed into harnesses that are bundled and tied. Harnessed wires or cables shall be combed straight, formed and dressed in either a vertical or horizontal relationship to equipment, controls, components or terminations.
 - c. Harnesses with intertwined members are not acceptable. Each wire or cable that breaks out from a harness for connection or termination shall have been tied off at that harness or bundle point, and be provided with a neatly formed service loop.
 - d. Wires and cables shall be grouped according to service (i.e.: AC, grounds, signal, DC, control, etc.). DC, control and signal cables may be included with any group. Wires and cables shall be neatly formed and shall not change position in the group throughout the conduit run. Wires and cables in approved signal duct, conduit, cable ducts, or cable trays shall be neatly formed, bundled, tied off in 600 mm to 900 mm (24 in. to 36 in.) lengths and shall not change position in the group throughout the run. Concealed splices are not allowed.

- e. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right. This installation shall be accomplished with ties and/or fasteners that will not damage or distort the wires or cables. Limit spacing between tied off points to a maximum of 150 mm (6 inches).
- f. Do not pull wire or cable through any box, fitting or enclosure where change of cable tray or signal or cable duct alignment or direction occurs. Ensure the proper bend radius is maintained for each wire or cable as specified by it's OEM.
- g. Employ temporary guides, sheaves, rollers, and other necessary items to protect the wire or cable from excess tension or damage from bending during installation. Abrasion to wire or cable jackets is not acceptable and will not be allowed. Replace all cables whose jacket has been abraded. The discovery of any abraded and/or damaged cables during the proof of performance test shall be grounds for declaring the entire system unacceptable and the termination of the proof of performance test. Completely cover edges of wire or cable passing through holes in chassis, cabinets or racks, enclosures, pull or junction boxes, conduit, etc., with plastic or nylon grommeting.
- h. Cable runs shall be splice free between conduit junction and interface boxes and equipment locations.
- Cables shall be installed and fastened without causing sharp bends or rubbing of the cables against sharp edges. Cables shall be fastened with hardware that will not damage or distort them.
- j. Cables shall be labeled with permanent markers at the terminals of the electronic and passive equipment and at each junction point in the System. The lettering on the cables shall correspond with the lettering on the record diagrams.
- k. Completely test all of the cables after installation and replace any defective cables.
- 1. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically

approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.

- m. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.
 - Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - 3) Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - 4) Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in <u>air plenum</u> areas.
- n. Wires or cables installed in underground conduit, duct, etc.
 - 1) Wires or cables installed in underground installations shall be waterproofed by the inclusion of a water protective barrier (i.e. gel, magma, etc.) or flooding compound between the outside jacket and first shield. Each underground connection shall be accessible in a manhole, recessed ground level junction box, above ground pedestal, etc., and shall be provided with appropriate waterproof connectors to match the cable being installed. Once the System has been tested and

found to meet the System performance standards and accepted by VA, the Contractor shall provide waterproof shrink tubing or approved mastic to fully encompass each wire or cable connection and overlay at least 150 mm (6 inches) above each wire or cable jacket trim point.

- 2) It is not acceptable to connect waterproofed cable directly to an inside CCS punch block or directly to an equipment connection port. When an under ground cable enters a building, it shall be routed directly to the closest TC that has been designated as the building's IMTC. The Contractor shall provide a "transition" splice in this TC where the "water proofed" cable enters on one side and "dry" cable exits on the other side. The "transition" splice shall be fully waterproof and be capable of reentry for system servicing. Additionally, the transition splice shall not allow the waterproofing compound to migrate from the water proof cable to the dry cable.
- Warning tape shall be continuously placed 300 mm (12 inches) above buried conduit, cable, etc.
- E. Outlet Boxes, Back Boxes, and Faceplates:
 - Outlet Boxes: Signal, power, interface, connection, distribution, and junction boxes shall be provided as required by the system design, on-site inspection, and review of the contract drawings.
 - Back Boxes: Back boxes shall be provided as directed by the OEM as required by the approved system design, on-site inspection, and review of the contract drawings.
 - 3. Face Plates (or Cover Plates): Faceplates shall be of a standard type, stainless steel, anodized aluminum or UL approved cycolac plastic construction and provided by the Contractor for each identified system outlet location. Connectors and jacks appearing on the faceplate shall be clearly and permanently marked.
- F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
 - 1. Wires:
 - a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.

 $27 \ 15 \ 00 \ - \ 33$

- b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
- Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
- 3. Speaker Line Audio:
 - a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM's approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.
 - b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.

G. AC Power: AC power wiring shall be run separately from signal cable.

- H. Grounding:
 - General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
 - a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
 - b. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
 - c. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally

generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.

- 2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
- 3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
- 4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
- I. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters

(10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

3.2 TESTS

- A. Interim Inspection:
 - 1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B T568A pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
 - Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
 - 3. The Contractor shall notify the RE, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
 - 4. Results of the interim inspection shall be provided to the RE and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
 - 5. The RE and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.

- B. Pretesting:
 - 1. Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
 - 2. Pretesting Procedure:
 - a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 - 1) Local Telephone Company Interfaces or Inputs.
 - 2) EPBX interfaces or inputs and outputs.
 - 3) MDF interfaces or inputs and outputs.
 - 4) EPBX output S/NR for each telephone and data channel.
 - 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
 - 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.

Philadelphia VA Medical Center, Philadelphia, PA Renovations to Upgrade HVAC in SPD

C. Acceptance Test: After the System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

D. Verification Tests:

- Test the UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
- Multimode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B.3 and ANSI/EIA/TIA-526-14A using Method A, Optical Power Meter and Light Source.Perform verification acceptance test.
- E. Performance Testing:
 - Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
- F. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) and the multimode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
 - Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.

 Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING

- A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
- B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 GUARANTEE PERIOD OF SERVICE

- A. Contractor's Responsibilities:
 - 1. The Contractor shall guarantee that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
 - 3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year guarantee period:
 - a. Response Time:
 - The RE (or facility Contracting Officer if the facility has taken possession of the building[s]) are the Contractor's reporting and contact officials for the System trouble calls, during the guarantee period.

- 2) A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
- 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
- 4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 - a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
 - b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the RE or Facility Director. The RE or Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
- b. Required on-site visits during the one year guarantee period
 - 1) The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.

- a) The Contractor shall arrange all Facility visits with the RE or Facility Contracting Officer prior to performing the required maintenance visits.
- b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the RE or Facility Contracting Officer and the Contractor.
- c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE or Facility Contracting Officer.
- 2) The Contractor shall provide the RE or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
 - a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to RE or Facilities Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
 - b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 3) The RE or Facility Contracting Officer shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.

- a) The RE or Facility Contracting Officer shall ensure copies of these reports are entered into the System's official acquisition documents.
- b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
- B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render findings concerning any Contractor's responsibility.

- - - E N D - - -

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Resident Engineer or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.

1.2 SCOPE

A. A fully addressable fire alarm system as an extension of an existing addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 2. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
 - 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 08 71 00 DOOR HARDWARE. For combination Closer-Holders.
- D. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.

- E. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 14 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all

circuits. Provide diagrams both on a per building and campus wide basis.

- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.

- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major

equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.

- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

A. All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.

- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA Resident Engineer or his authorized representative.
- G. Emergency Service:
 - 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the Resident Engineer or his authorized representative.
 - 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
 - 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
 - 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency call-

back hours is based on actual time spent on site and does not include travel time.

H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):

NFPA 13Standard for the Installation of Sprinkler Systems, 2010 edition NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2010 edition NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition NFPA 70.....National Electrical Code (NEC), 2010 edition NFPA 72.....National Fire Alarm Code, 2010 edition NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters

Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduits shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - 2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
 - 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
 - 4. Batteries shall be sealed, gel cell type.
 - 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.
- B. Batteries: The existing batteries shall be verified that they are capable of supplying power to the new devices. In the event that the the batteries are not capable of providing power in accordance with NFPA 72 requirements, additional batteries, or new batteries shall be provided.
 - 1. Battery shall be of the sealed, maintenance free type, 24-volt nominal.
 - 2. Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
 - 3. Battery racks shall be steel with an alkali-resistant finish. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.

2.4 ALARM NOTIFICATION APPLIANCES

- A. Speakers:
 - 1. Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.

- 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- B. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - 4. Strobes may be combined with the audible notification appliances specified herein.

2.5 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.
 - Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
 - 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.

- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.
- C. Water Flow and Pressure Switches:
 - Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
 - 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 12 00, FIRE-SUPPRESSION STANDPIPES and Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
 - 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

2.6 SUPERVISORY DEVICES

- A. Sprinkler and Standpipe System Supervisory Switches:
 - Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Transfe WAC in SPDFinal Documents: 8/17/2012

- 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings. 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
- 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.

2.7 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.8 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Heat detectors 1 of each type
 - 2. Fire alarm strobes 1
 - 3. Fire alarm speakers 1
 - 74. Smoke detectors 1
 - 5. 2.5 oz containers aerosol smoke 1
- B. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- C. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system on site. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

Philadelphia VA Medical Center, Philadelphia, PAProject No. 642-11-150Renovations to Upgrade HVAC in SPDFinal Documents: 8/17/2012

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- Ε. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
 - F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
 - G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
 - H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
 - I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.

- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building.
 - 3. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 4. Unlock the electrically locked exit doors within the zone of alarm.
- B. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- C. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make

repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.

- 1. Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
- 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
- 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - 1. Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.

- Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
- 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - END - -

Page intentionally left blank

SECTION 31 20 00 EARTH MOVING

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

- A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
 - 1. Site preparation.
 - 2. Excavation.
 - 3. Underpinning.
 - 4. Filling and backfilling.
 - 5. Grading.
 - 6. Soil Disposal.
 - 7. Clean Up.

1.2 DEFINITIONS:

- A. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings.
- B. Trench Earthwork: Trenchwork required for utility lines.
- C. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D2922.
- D. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
- E. Backfill: Soil materials or controlled low strength material used to fill an excavation.
- F. Unauthorized excavation: Removal of materials beyond indicated sub-grade elevations or indicated lines and dimensions without written authorization by the Resident Engineer. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
- G. Authorized additional excavation: Removal of additional material authorized by the Resident Engineer based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable

material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.

- H. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
- I. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- J. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- K. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- L. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe.
- M. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk.
- N. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.
- O. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.
- P. Contaminated soils: Soil that contains contaminates as defined and determined by the Resident Engineer or the Government's testing agency.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.
- E. Site preparation: Section 02 41 00, DEMOLITION.

1.4 CLASSIFICATION OF EXCAVATION:

A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed;

31 20 00 - 2

together with any type of materials regardless of character of material and obstructions encountered.

- B. Rock Excavation:
 - 1. Trenches and Pits: Removal and disposal of solid, homogenous, interlocking crystalline material with firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be excavated with a late-model, track-mounted hydraulic excavator; equipped with a 1050 mm (42 inch) wide, short-tip-radius rock bucket; rated at not less than 103 kW (138 hp) flywheel power with bucket-curling force of not less than 125 kN (28,090 lbf) and stick-crowd force of not less than 84.5 kN (19,000 lbf); measured according to SAE J-1179. Trenches in excess of 3000 mm (10 feet) wide and pits in excess of 9000 mm (30 feet) in either length or width are classified as open excavation.
 - 2. Open Excavation: Removal and disposal of solid, homogenous, interlocking crystalline material firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be dislodged and excavated with a late-model, track-mounted loader; rated at not less than 157 kW (210 hp) flywheel power and developing a minimum of 216 kN (48,510 lbf) breakout force; measured according to SAE J-732.
 - 3. Other types of materials classified as rock are unstratified masses, conglomerated deposits and boulders of rock material exceeding 0.76 m3 (1 cubic yard) for open excavation, or 0.57 m3 (3/4 cubic yard) for footing and trench excavation that cannot be removed by rock excavating equipment equivalent to the above in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted.
 - 4. Blasting: Removal and disposal of solid, homogenous, interlocking crystalline material firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be removed with conventional methods may not be performed by blasting.
 - 5. Definitions of rock and guidelines for equipment are presented for general information purposes only. The Contractor is expected to use the information presented in the Geotechnical Engineering Report to evaluate the extent and competency of the rock and to determine both quantity estimations and removal equipment and efforts.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.

- 2. Excavation method.
- 3. Labor.
- 4. Equipment.
- 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
- 6. Plot plan showing elevation.
- C. Furnish to Resident Engineer:
 - Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size.
 - 2. Soil samples.
 - a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - b. Laboratory compaction curve in accordance with ASTM D 698 for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - c. Test reports for compliance with ASTM D 2940 requirements for subbase material.
 - d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations.
 - e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Association of State Highway and Transportation Officials
 (AASHTO):

T99-01(2004).....Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-01(2004)....Moisture-Density Relations of Soils using a 4.54 kg (10 lb) Rammer and a 457 mm (18 inch) Drop

C. American Society for Testing and Materials (ASTM): D448-03a.....Standard Classification for Sizes of Aggregate for Road and Bridge Construction Philadelphia VA Medical Center, Philadelphia, PA Project No. 642-11-150 Final Documents: 8/17/2012 Renovations to Upgrade HVAC in SPD D698-00ae1......Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort $(12,400 \text{ ft. } lbf/ft^3 (600 \text{ kN m/m}^3))$ D1556-00.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method D1557-02e1.....Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN m/m³)) D2167-94 (2001).....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method D2487-06.....Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System) D2922-05.....Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) D2940-03.....Standard Specifications for Graded Aggregate Material for Bases or Subbases for Highways or Airports D. Society of Automotive Engineers (SAE):

D. Society of Automotive Engineers (SAE): J732-92.....Specification Definitions - Loaders J1179-02.....Hydraulic Excavator and Backhoe Digging Forces

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
- B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
- C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2inch) sieve and not more than 12 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;.
- D. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940; except

with 100 percent passing a 25 mm (1 inch) sieve and not more than 8 percent passing a 75- μ m (No. 200) sieve.

- E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.
- F. Granular Fill:
 - Under concrete slab, crushed stone or gravel graded from 25 mm (1 inch) to 4.75 mm (No. 4), per ASTM D 2940.
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No 4), per ASTM D 2940.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center.
- B. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center ELines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades.
 - Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
 - 2. Locations of existing and proposed elevations indicated on plans are approximate. Contractor is responsible to notify Resident Engineer of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify

Resident Engineer of any differences between existing or constructed grades, as compared to those shown on the plans.

- 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans.
- 4. Finish grading is specified in Section 32 90 00, PLANTING.
- C. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the Resident Engineer, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
 - Design of the temporary support of excavation system is the responsibility of the Contractor.
 - Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the Resident Engineer.
 - 3. Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.
 - 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall underpin the existing foundation, per Section 3.3 provide a concrete fill support in compliance with specifications Section 31 23 23.33, FLOWABLE FILL, under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade

for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the Resident Engineer.

- C. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft materials to a solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings.
 - 5. Do not tamp earth for backfilling in footing bottoms, except as specified.
 - 6. Slope grades to direct water away from excavations and to prevent ponding.

3.3 UNDERPINNING:

- A. Design of the underpinning system is the responsibility of the Contractor and is subject to review and approval by the Resident Engineer. Underpinning of existing building foundations, as indicated on structural drawings, or where excavation undermines existing foundations, shall be accomplished in the following manner:
 - Make general excavation for new construction, where new foundations are to be below existing foundations, to elevation of new foundations (or sized stone subbase), maintaining a 45 degree sloped berm.
 - For underpinning pits, underpin existing wall foundations by excavating 1200 mm (4 feet) wide pits to depth shown on drawings skipping 3 sections at any one time so as to maintain support for wall at all times.
 - 3. Underpin intervening sections one at a time; no adjacent sections shall be underpinned until concrete in adjacent sections shall have reached 20 MPa (2500 psi) strength and have been dry packed with nonshrink grout to obtain positive bearing. Sheet and brace underpinning pits if soil will not stand on a vertical cut during this operation, or as required for safety of workmen. Repack any voids behind sheeting to prevent sloughing which could cause settlement of existing foundations. Contractor performing this portion of work shall have been prequalified by Resident Engineer as having previously performed successfully this type of work or will demonstrate his capability for successfully performing this work. It shall be sole responsibility of the Contractor to guard against

objectionable movement or settlement and to preserve integrity of existing structures.

- The tip elevation of the underpinning pits shall be a minimum of 900 mm (3 feet) below the adjacent excavation elevation.
- 5. Subgrades at the tip of the underpinning pit shall be clean, dry, and free of debris and shall be observed by the Resident Engineer prior to concrete placement.
- 6. Concrete shall not be free fall greater than 3000 mm (10 feet) into the pit.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet).
- D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean.
- E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
- F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.
- G. Finish subgrade in a condition acceptable to Resident Engineer at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather.
- H. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.
- 3.5 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:
 - A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.

- C. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- D. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- E. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.6 CLEAN UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center.

---- E N D -----