INFORMATION SYSTEMS RENOVATION

 BUILDING 37VAMC Project No.: 528A5-12-517
G+A Project No.:
12-042
SPECIFICATIONS

Miller -Remick LLC
1010 Kings Highway South
Building One $-1^{\text {st }}$ Floor
Cherry Hill, NJ 08034
TEL (856)-429-4000 FAX (856)429-5002

Architect

40 Wildbriar Road
Rochester, NY 14623
TEL (585) 321-1210 FAX (585) 321-1213

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS
 tABLE OF CONTENTS Section 000110

VOLUME II

	DIVISION 21- FIRE SUPPRESSION	
$21 \quad 1313$	Wet-Pipe Sprinkler Systems	05-08
	DIVISION 22 - PLUMBING	
$\begin{array}{llll}22 & 05 & 11\end{array}$	Common Work Results for Plumbing	04-11
$\begin{array}{llll}22 & 05 & 23\end{array}$	General-Duty Valves for Plumbing Piping	12-09
$\begin{array}{llll}22 & 07 & 11\end{array}$	Plumbing Insulation	05-11
221100	Facility Water Distribution	05-11
$\begin{array}{llll}22 & 13 & 00\end{array}$	Facility Sanitary and Vent Piping	12-09
$\begin{array}{llll}22 & 33 & 00\end{array}$	Electric Domestic Water Heaters	02-10
224000	Plumbing Fixtures	03-11
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
230511	Common Work Results for HVAC	11-10
$23 \quad 0512$	General Motor Requirements for HVAC and Steam Generation Equipment	11-10
230541	Noise and Vibration Control for HVAC Piping and Equipment	11-10
$\begin{array}{llll}23 & 05 & 93\end{array}$	Testing, Adjusting, and Balancing for HVAC	05-11
$\begin{array}{llll}23 & 07 & 11\end{array}$	HVAC and Boiler Plant Insulation	05-11
230800	Commissioning of HVAC	07-10
$\begin{array}{llll}23 & 09 & 23\end{array}$	Direct-Digital Control System for HVAC	09-11
$\begin{array}{llll}23 & 21 & 13\end{array}$	Hydronic Piping	09-12
$\begin{array}{llll}23 & 21 & 23\end{array}$	Hydronic Pumps	02-10
$\begin{array}{llll}23 & 22 & 13\end{array}$	Steam and Condensate Heating Piping	03-10
$\begin{array}{llll}23 & 22 & 23\end{array}$	Steam Condensate Pumps	02-10
$\begin{array}{llll}23 & 23 & 00\end{array}$	Refrigerant Piping	02-10
$\begin{array}{llll}23 & 25 & 00\end{array}$	HVAC Water Treatment	02-10
$\begin{array}{lllll}23 & 31 & 00\end{array}$	HVAC Ducts and Casings	03-13
$\begin{array}{llll}23 & 34 & 00\end{array}$	HVAC Fans	11-09
$\begin{array}{llll}23 & 36 & 00\end{array}$	Air Terminal Units	03-10
$\begin{array}{llll}23 & 37 & 00\end{array}$	Air Outlets and Inlets	11-09
234000	HVAC Air Cleaning Devices	02-12
$\begin{array}{llll}23 & 74 & 13\end{array}$	Packaged, Outdoor, Central-Station Air-Handling Units	04-11
$\begin{array}{llll}23 & 81 & 23\end{array}$	Computer-Room Air-Conditioners	04-11
238216	Air Coils	04-11
	DIVISION 26 - ELECTRICAL	
$\begin{array}{llll}26 & 0511\end{array}$	Requirements for Electrical Installations	12-12
$\begin{array}{llll}26 & 05 & 19\end{array}$	Low-Voltage Electrical Power Conductors and Cables	12-12
260526	Grounding and Bonding for Electrical Systems	12-12
260533	Raceway and Boxes for Electrical Systems	09-10
260541	Underground Electrical Construction	12-12

$\begin{array}{llll}26 & 09 & 23\end{array}$	Lighting Controls	09-10
262416	Panelboards	12-12
$\begin{array}{llll}26 & 27 & 26\end{array}$	Wiring Devices	12-12
262911	Motor Controllers	12-12
262921	Enclosed Switches and Circuit Breakers	12-12
263623	Transfer Switches	12-12
265100	Interior Lighting	12-12
	DIVISION 27 - COMMUNICATIONS	
$\begin{array}{llll}27 & 05 & 11\end{array}$	Requirements for Communications Installations	11-09
$\begin{array}{llll}27 & 05 & 26\end{array}$	Grounding and Bonding for Communications Systems	10-06
$\begin{array}{llll}27 & 05 & 33\end{array}$	Raceways and Boxes for Communications Systems	12-05
$\begin{array}{llll}27 & 08 & 00\end{array}$	Commissioning of Communications Systems	07-10
$\begin{array}{llll}27 & 10 & 00\end{array}$	Structured Cabling	12-05
$\begin{array}{llll}27 & 11 & 00\end{array}$	Communications Equipment Room Fittings	10-06
$\begin{array}{llll}27 & 15 & 00\end{array}$	Communications Horizontal Cabling	10-06
273131	Voice Communications Switching and Routing Equipment Extension	10-06
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
$\begin{array}{llll}28 & 05 & 00\end{array}$	Common Work Results for Electronic Safety and Security	09-11
280513	Conductors and Cables for Electronic Safety and Security	09-11
280526	Grounding and Bonding for Electronic Safety and Security	09-11
$\begin{array}{llll}28 & 05 & 28.33\end{array}$	Conduits \& Back Boxes for Electronic Safety \& Security	09-11
283100	Fire Detection and Alarm	10-11
	DIVISION 31-EARTHWORK	
$\begin{array}{lll}31 & 20 & 00\end{array}$	Earth Moving	10-12
	DIVISION 32 - EXTERIOR IMPROVEMENTS	
$\begin{array}{llll}32 & 05 & 23\end{array}$	Cement and Concrete for Exterior Improvements	04-10
$\begin{array}{llll}32 & 31 & 13\end{array}$	Chain Link Fences and Gates	02-10

SECTION 211313 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. Design, installation and testing shall be in accordance with NFPA 13 except for specified exceptions.
B. Modification of the existing sprinkler system in Building 37 at the Canandaigua Veterans Affairs Medical Center as indicated on the drawings and as further required by these specifications. Work includes modifications to the existing sprinkler zone on the ground floor to accommodate architectural renovations.

1.2 RELATED WORK

A. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Section 078400 , FIRESTOPPING, Treatment of penetrations through rated enclosures.
C. Section 099100 , PAINTING.
D. Section 283100 , FIRE DETECTION AND ALARM, Connection of new valve supervisory switches to existing fire alarm system.

1.3 QUALITY ASSURANCE

A. Installer Reliability: The installer shall possess a valid State of New York fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL and approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA.
C. Submittals: Submit as one package in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering. As Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and
provide index referencing the appropriate specification section.
Submittals shall include, but not be limited to, the following:

1. Qualifications:
a. Provide a copy of the installing contractor's fire sprinkler and state contractor's license.
b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering.
2. Drawings: Submit detailed $1 / 8$ inch scale (minimum) working drawings conforming to NFPA 13. Include a site plan showing the piping to the water supply test location.
3. Manufacturers Data Sheets:
a. Provide for materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheet describes items in addition to that item being submitted, clearly identify proposed item on the sheet.
4. Calculation Sheets: Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of NFPA 13.
5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submittals shall include, but not be limited to, the following:
a. One complete set of reproducible as-built drawings showing all modification to the existing system.
b. Complete, simple, understandable, step-by-step, testing instructions giving recommended and required testing frequency of all new equipment, methods for testing all new equipment, and a complete trouble shooting manual. Provide maintenance instructions on replacing any new components of the system including internal parts, periodic cleaning and adjustment of the new equipment and components with information as to the address and telephone number of both the manufacturer and the local supplier of each item.
c. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13.
D. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system
in accordance with the requirements of NFPA 13. Recommendations in appendices shall be treated as requirements.
6. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
7. Sprinkler Protection: To determine spacing and sizing, apply the following coverage classifications:
a. Light Hazard Occupancies: Offices, corridors, and restrooms.
b. Ordinary Hazard Group 1 Occupancies: Mechanical rooms, electrical rooms, and storage rooms.
c. Request clarification from the Government for any hazard classification not identified.
8. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve, including required hose streams.
9. Water Supply: Campus water supply based on the hydrant flow test performed by the Canandaigua VA Fire/Rescue on the existing underground water distribution loop.
a. Location: Hydrant 23 near the front entrance to Building 37
b. Static pressure: 54 psi
c. Residual pressure: 46 psi
d. Flow: 1,061 gpm
e. Date: July 12, 2012

1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. National Fire Protection Association (NFPA):

13-2013................Installation of Sprinkler Systems
101-2012............... Life Safety Code ${ }^{\circledR}$
170-2012...............Fire Safety Symbols
C. Underwriters Laboratories, Inc. (UL):

Fire Protection Equipment Directory - 2012
D. Factory Mutual (FM) Global:

Approval Guide - 2012
E. International Building Code (IBC) - 2012
F. Foundation for Cross-Connection Control and Hydraulic Research - 2005
G. VA Fire Protection Design Manual (VAFPDM) $6^{\text {th }}$ Edition - September 2011

PART 2 PRODUCTS

2.1 PIPING \& FITTINGS

A. Fittings in accordance with Section 6.4 and 6.5 of NFPA 13.
B. All new piping shall be labeled every 10 ft including direction of flow.
C. New exposed piping shall be painted red.

2.2 VALVES

A. Valves in accordance with Section 6.7 of NFPA 13.
D. Do not use quarter turn ball valves for 2 inch or larger drain valves.
C. The control valve shall be a listed indicating type valve. Control valve shall be UL Listed and FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI. No Substitutions Allowed.
D. Automatic Ball Drips: Cast brass $3 / 4$ inch in-line automatic ball drip with both ends threaded with iron pipe threads.

2.3 SPRINKLERS

A. All sprinklers shall be FM approved. Provide quick response sprinklers in all areas, except where specifically prohibited by their approval.
B. Temperature Ratings: Ordinary temperature, to match existing in accordance with NFPA 13.
C. Existing sprinklers are manufactured by Viking and have a Sprinkler Identification Number (SIN) of VK302.
D. Sprinklers installed in rooms with a suspended ceiling grid shall be white to match the ceiling finish, where applicable.
E. Sprinklers installed in areas with exposed ceilings shall be brass.

2.4 SPRINKLER CABINET

Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed in accordance with NFPA 13, and a sprinkler wrench for each system. Locate adjacent to the existing riser. Sprinkler heads shall be installed in center of tile.

2.5 SWITCHES:

A. Contain in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, $1 / 2$ inch conduit entrance
and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
B. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.6 PIPE HANGERS AND SUPPORTS

Supports, hangers, etc., of an approved pattern placement to conform to NFPA 13. System piping shall be substantially supported to the building structure. The installation of hangers and supports shall adhere to the requirements set forth in NFPA 13. Materials used in the installation or construction of hangers and supports shall be listed and approved for such application. Hangers or supports not specifically listed for service shall be designed and bear the seal of a professional engineer.

2.7 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates for exposed piping passing though walls, floors or ceilings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Install concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. To prevent an obstruction to egress, provide piping clearances in accordance with NFPA 101.
C. Welding: Conform to the requirements and recommendations of NFPA 13.
D. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
E. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in
accordance with Section 078400 , FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 078400 , FIRESTOPPING.
F. Firestopping shall comply with Section 078400 , FIRESTOPPING.
G. Securely attach identification signs to control valves, drain valves, and test valves.
H. Repairs: Repair damage to the building or equipment resulting from the modifications of the existing sprinkler system by the installer at no additional expense to the Government.
I. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officers Technical Representative (COTR). Contractor shall develop an interim fire protection program where interruptions involve in occupied spaces. Request in writing at least 15 days prior to the planned interruption.

3.2 INSPECTION AND TEST

A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the COTR or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COTR to schedule a final inspection and test. Connection of new valve tamper switches to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COTR.

$$
21 \quad 1313-6
$$

SECTION 220511

 COMMON WORK RESULTS FOR PLUMBING
PART 1 - GENERAL

1.1 DESCRIPTION

A. The requirements of this Section shall apply to all sections of Division 22.
B. Definitions:

1. Exposed: Piping and equipment exposed to view in finished rooms.
2. Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

A. Section 0100 00, GENERAL REQUIREMENTS.
B. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
C. Section 0550 00, METAL FABRICATIONS.
D. Section 078400 , FIRESTOPPING.
E. Section 0760 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
F. Section 079200 , JOINT SEALANTS.
G. Section 099100 , PAINTING.
H. Section 2207 11, PLUMBING INSULATION.
I. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

A. Products Criteria:

1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names,
mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officer's Representative (COR).
5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
8. Asbestos products or equipment or materials containing asbestos shall not be used.
B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
9. Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
10. Comply with provisions of ASME B31 series "Code for Pressure Piping".
11. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
12. All welds shall be stamped according to the provisions of the American Welding Society.
C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
D. Execution (Installation, Construction) Quality:
13. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the COR for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the COR at least two weeks prior to commencing installation of any item.
14. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved.
E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
F. Plumbing Systems: IPC, International Plumbing Code.

1.4 SUBMITTALS

A. Submittals shall be submitted in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 2205 11, COMNON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and
associated systems, including accessibility, are equivalent to that required by the contract.
E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.

1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
2. Equipment and materials identification.
3. Fire stopping materials.
4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
5. Wall, floor, and ceiling plates.
H. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
6. Mechanical equipment rooms.
7. Piping basement space.
8. Hangers, inserts, supports, and bracing.
9. Pipe sleeves.
10. Equipment penetrations of floors, walls, ceilings, or roofs.
I. Maintenance Data and Operating Instructions:
11. Maintenance and operating manuals in accordance with Section 0100 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
12. Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided.
13. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost to the Government.
3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the contractor and shall be protected as required for new work.
B. Cleanliness of Piping and Equipment Systems:
5. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
6. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
7. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing

Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Mechanical Engineers (ASME):

Boiler and Pressure Vessel Code (BPVC):
SEC IX-2007.............Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications.
C. American Society for Testing and Materials (ASTM) :

A36/A36M-2008...........Standard Specification for Carbon Structural Steel

A575-96 (R 2007)........Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002)

E84-2005................Standard Test Method for Surface Burning Characteristics of Building Materials

E119-2008a \qquad Standard Test Methods for Fire Tests of Building Construction and Materials
D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:

SP-58-02................Pipe Hangers and Supports-Materials, Design and Manufacture

SP 69-2003 (R 2004).....Pipe Hangers and Supports-Selection and Application
E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007...Motors and Generators
C. International Code Council, (ICC):

IBC-06, (R 2009)........International Building Code
IPC-06, (R 2009)........International Plumbing Code

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements.
B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.

1. All components of an assembled unit need not be products of same manufacturer.
2. Constituent parts that are alike shall be products of a single manufacturer.
3. Components shall be compatible with each other and with the total assembly for intended service.
4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
D. Major items of equipment, which serve the same function, shall be the same make and model

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Identification for piping is specified in Section 099100 , PAINTING.
B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 099100 , PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified.
C. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
D. Valve Tags and Lists:

1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
2. Valve tags: Engraved black filled numbers and letters not less than $13 \mathrm{~mm}(1 / 2$-inch) high for number designation, and not less than 6.4
mm(1/4-inch) for service designation on 19 gage, $38 \mathrm{~mm}(1-1 / 2$
inches) round brass disc, attached with brass "S" hook or brass chain.
3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized $216 \mathrm{~mm}(8-1 / 2$ inches) by 280 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.
4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling.

2.4 FIRE STOPPING

A. Section 078400 , FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 2307 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for pipe insulation.

2.5 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.6 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC), latest edition, and SECTION 1305 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Submittals based on the International Building Code (IBC), latest edition, SECTION 130541 requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in a state where the project is located. The Support system of suspended equipment over $227 \mathrm{~kg}(500$ pounds) shall be submitted for approval of the Resident Engineer in all cases. See these specifications for lateral force design requirements.
B. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 0550 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
C. For Attachment to Concrete Construction:

1. Concrete insert: Type 18, MSS SP-58.
2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition.
D. For Attachment to Steel Construction: MSS SP-58.
4. Welded attachment: Type 22.
5. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8-inch) outside diameter.
E. For Attachment to Wood Construction: Wood screws or lag bolts.
F. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
G. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by $1-5 / 8$ inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping.
6. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
7. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
H. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 2207 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
8. General Types (MSS SP-58):
a. Standard clevis hanger: Type 1; provide locknut.
b. Riser clamps: Type 8.
c. Wall brackets: Types 31,32 or 33.
d. Roller supports: Type 41, 43, 44 and 46.
e. Saddle support: Type 36,37 or 38 .
f. Turnbuckle: Types 13 or 15.
g. U-bolt clamp: Type 24.
h. Copper Tube:
1) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis.
2) For vertical runs use epoxy painted or plastic coated riser clamps.
3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
i. Supports for plastic: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.:
5) Movement up to 20 mm (3/4-inch) : Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
6) Movement more than 20 mm (3/4-inch) : Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
2. Plumbing Piping (Other Than General Types):
a. Horizontal piping: Type 1, 5, 7, 9, and 10.
b. Chrome plated piping: Chrome plated supports.
c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.

2.7 PIPE PENETRATIONS

A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration.
C. To prevent accidental liquid spills from passing to a lower level, provide the following:

1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
D. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
E. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
F. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel Sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
G. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
I. Sealant and Adhesives: Shall be as specified in Section 079200 , JOINT SEALANTS.

2.7 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
B. Thickness: Not less than $2.4 \mathrm{~mm}(3 / 32$-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 -inch) for up to 80 mm (3 inch) pipe, $0.89 \mathrm{~mm}(0.035$-inch) for larger pipe.
C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.8 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
E. Cutting Holes:

1. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
3. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
H. Protection and Cleaning:
4. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.
5. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 033000 , CAST-IN-PLACE CONCRETE. shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due
regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
J. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
K. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and section 230923 DIRECT DIGITAL CONTROLS FOR HVAC
L. Work in Existing Building:
6. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 0100 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
7. As specified in Section 010000 , GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
M. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.
N. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints.
O. Inaccessible Equipment:
8. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
9. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 RIGGING

A. Openings in building structures shall be planned to accommodate design scheme.
B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.3 PIPE AND EQUIPMENT SUPPORTS

A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the Resident Engineer.
B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided.
D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications.
E. Overhead Supports:

1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
3. Tubing and capillary systems shall be supported in channel troughs.
F. Floor Supports:
4. Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
5. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting. 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.4 PLUMBING SYSTEMS DEMOLITION

A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities
shall be available at all times. All work shall be performed in accordance with recognized fire protection standards. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the $R E$ or COR with regard to rigging, safety, fire safety, and maintenance of operations.
C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.5 CLEANING AND PAINTING

A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 099100 , PAINTING.
B. In addition, the following special conditions apply:

1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
2. The following Material And Equipment shall NOT be painted:: a. Motors, controllers, control switches, and safety switches. b. Control and interlock devices.
c. Regulators.
d. Pressure reducing valves.
e. Control valves and thermostatic elements.
f. Lubrication devices and grease fittings.
g. Copper, brass, aluminum, stainless steel and bronze surfaces.
h. Valve stems and rotating shafts.
i. Pressure gages and thermometers.
j. Glass.
k. Name plates.
3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint obtained from manufacturer or computer matched.
4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this.

3.6 IDENTIFICATION SIGNS

A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment.
C. Pipe Identification: Refer to Section 099100 , PAINTING.

3.7 STARTUP AND TEMPORARY OPERATION

A. Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 010000 , GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.8 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, all required tests shall be performed as specified in Section 010000 , GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer.
B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work.

3.9 OPERATION AND MAINTENANCE MANUALS

A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to COR not less than 30 days prior to completion of a phase or final inspection.
B. All new and temporary equipment and all elements of each assembly shall be included.
C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
F. Set points of all interlock devices shall be listed.
G. Trouble-shooting guide for the control system troubleshooting guide shall be inserted into the Operations and Maintenance Manual.
H. Emergency procedures.

3.10 INSTRUCTIONS TO VA PERSONNEL

Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 010000 , GENERAL REQUIREMENTS.

SECTION 220523 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section describes the requirements for general-duty valves for domestic water and sewer systems.

1.2 RELATED WORK

A. Section 2205 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Valves.
2. Backflow Preventers.
3. Pressure Reducing Valves.
4. Backwater Valves
5. All items listed in Part 2 - Products.

1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society for Testing and Materials (ASTM):A536-84 (R 2004)

Standard Specification for Ductile Iron Castings
C. American Society of Sanitary Engineering (ASSE)

ASSE 1003-01 (R 2003)...Performance Requirements for Water Pressure Reducing Valves
ASSE 1012-02.............Backflow Preventer with Intermediate Atmospheric Vent

ASSE 1013-05............ Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers
D. International Code Council (ICC)

IPC-06 (R 2009).........International Plumbing Code
E. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS):

SP-25-98...............Standard Marking System for Valves, Fittings, Flanges and UnionsSP-67-02a (R 2004) Butterfly Valve of the Single flange Type (Lug Wafer)

SP-70-06................Cast Iron Gate Valves, Flanged and Threaded Ends.

SP-72-99..................Ball Valves With Flanged or Butt Welding For General Purpose

SP-80-03................ Bronze Gate, Globe, Angle and Check Valves. SP-110-96................Ball Valve Threaded, Socket Welding, Solder Joint, Grooved and Flared Ends

1.5 DELIVERY, STORAGE, AND HANDLING

A. Valves shall be prepared for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set angle, gate, and globe valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.
B. Valves shall be prepared for storage as follows:
7. Maintain valve end protection.
8. Store valves indoors and maintain at higher than ambient dew point temperature.
C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES

A. Asbestos packing and gaskets are prohibited.
B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 meters (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
E. Ball valves, pressure regulating valves, gate valves, globe valves, and plug valves used to supply potable water shall meet the requirements of NSF 61.
F. Shut-off:

1. Cold, Hot and Re-circulating Hot Water:
a. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-72, SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 $\mathrm{kPa}(150 \mathrm{psig})$ and a CWP rating of $4140 \mathrm{kPa}(600 \mathrm{psig})$. The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be solder,
b. Less than 100 mm DN100 (4 inches) : Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A 536, ductile iron.
C. Balancing:
2. Hot Water Re-circulating, 80 mm or DN80 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT ($1 / 4^{\prime \prime}$ NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
D. Check:
3. Check valves less than 80 mm or $\operatorname{DN80}$ (3 inches) and smaller) shall be class 125, bronze swing check valves with non metallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The
check valve shall have a CWP rating of $1380 \mathrm{kPa}(200 \mathrm{psig})$. The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B 62, solder joints, and PTFE or TFE disc.
E. Globe:
4. 80 mm or DN80 (3 inches) or smaller: Class 150, bronze globe valve with non metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 2070 kPa (300 psig). The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B 62 with solder ends, copper-silicon bronze stem, TPFE or TFE disc, malleable iron hand wheel.

2.2 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

A. 80 mm or DN80 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The bronze bell housing and access cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly shall be accessible for maintenance without having to remove the body from the line.
B. The regulator shall have a tap for pressure gauge.
C. The regulator shall have a temperature rating of $100^{\circ} \mathrm{C}\left(210^{\circ} \mathrm{F}\right)$ for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9-kPa (+/- 1 psig).
D. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
E. Connections Valves and Strainers: shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gage shall be installed on the low pressure side of the line.

2.3 BACKFLOW PREVENTERS

A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be ASSE 1013 listed and certified.
B. Reduced pressure backflow preventers shall be installed in the following applications.

1. Water make up to heating systems, cooling tower, chilled water system, generators, and similar equipment consuming water.
2. Atmospheric Vacuum Breaker: ASSE 1001
a. Hose bibs and sinks w/threaded outlets.
b. Showers (telephone type).
C. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS\&Y gate valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated duct iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be Noryl (NSF listed). The stem shall be stainless steel conforming to ASTM A276. The seat disc elastomer shall be EPDM. The checks and the relief valve shall be accessible for maintenance without removing the device from the line. An epoxy coated wye type strainer with flanged connections shall be installed on the inlet.
D. The atmospheric vacuum breaker shall be ASSE listed 1001 . The main body shall be either cast bronze. All internal polymers shall be NSF listed. The seat disc elastomer shall be silicone. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable.
E. The double check detector backflow prevention assembly shall be ASSE listed 1048 and supply with full port $O S \& Y$ gate valves. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade. The seat ring and check valve shall be Noryl (NSF listed). The stem shall be stainless steel conforming to ASTM A 276. The seat disc elastomers shall be EPDM. The first and second check valve shall be accessible for maintenance without removing the device from the line.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
C. Threads on valve and mating pipe shall be examined for form and cleanliness.
D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
C. Valves shall be installed in horizontal piping with stem at or above center of pipe
D. Valves shall be installed in a position to allow full stem movement.
E. Check valves shall be installed for proper direction of flow and as follows:

1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves shall be replaced if persistent leaking occurs.

```
- - E N D - - -
```


SECTION 220711 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

A. Field applied insulation for thermal efficiency and condensation control for

1. Plumbing piping and equipment.
B. Definitions
2. ASJ: All service jacket, white finish facing or jacket.
3. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
4. Cold: Equipment or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
5. Concealed: Piping above ceilings and in chases, and pipe spaces.
6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
7. FSK: Foil-scrim-kraft facing.
8. Hot: Plumbing equipment or piping handling media above 41 degrees C (105 degrees F).
9. Density: kg/m ${ }^{3}$ - kilograms per cubic meter (Pcf - pounds per cubic foot).
10. Thermal conductance: Heat flow rate through materials.
a. Flat surface: Watts per square meter (BTU per hour per square foot).
b. Pipe or Cylinder: Watts per square meter (BTU per hour per linear foot).
11. Thermal Conductivity (k) : Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
13. R: Pump recirculation.
14. CW: Cold water.
15. HW: Hot water.
16. PVC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

A. Section 078400 , FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
B. Section 2205 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
C. Section 2205 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 QUALITY ASSURANCE

A. Refer to article QUALITY ASSURANCE, in Section 2205 11, COMMON WORK RESULTS FOR PLUMBING.
B. Criteria:

1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
4.3.3.1 Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, unless otherwise provided for in 4.3.3.1.12 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
4.3.3.3 Pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for HotSurface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
4.3.3.3.1 In no case shall the test temperature be below $121^{\circ} \mathrm{C}$ ($250^{\circ} \mathrm{F}$).
4.3.10.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of $1.5 \mathrm{~m}(5 \mathrm{ft})$ or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.
4.3.10.2.6.7 Smoke detectors shall not be required to meet the provisions of this section.
2. Test methods: ASTM E84, UL 723, or NFPA 255.
3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state. C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA.
B. Shop Drawings:

1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
a. Insulation materials: Specify each type used and state surface burning characteristics.
b. Insulation facings and jackets: Each type used.
c. Insulation accessory materials: Each type used.
d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
B. Federal Specifications (Fed. Spec.):

L-P-535E (2)-91.........Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride Vinyl Acetate), Rigid.
C. Military Specifications (Mil. Spec.) :

MIL-A-3316C (2)-90......Adhesives, Fire-Resistant, Thermal Insulation
MIL-A-24179A (1)-87.....Adhesive, Flexible Unicellular-Plastic Thermal Insulation

MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-87.........Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass
D. American Society for Testing and Materials (ASTM):

C411-05.................Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation

C449-07.................Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement

C533-09.................Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

C534-08Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C547-07Standard Specification for Mineral Fiber pipe Insulation

C552-07Standard Specification for Cellular Glass Thermal Insulation

C553-08Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications

C585-09.................Standard Practice for Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System) R (1998)

```
    C612-10 ..............Standard Specification for Mineral Fiber Block
                and Board Thermal Insulation
    C1126-10..............Standard Specification for Faced or Unfaced
        Rigid Cellular Phenolic Thermal Insulation
    C1136-10 ..............Standard Specification for Flexible, Low
        Permeance Vapor Retarders for Thermal
        Insulation
    D1668-97a (2006)........Standard Specification for Glass Fabrics (Woven
        and Treated) for Roofing and Waterproofing
    E84-10 ...............Standard Test Method for Surface Burning
        Characteristics of Building
        Materials
    E119-09C..............Standard Test Method for Fire Tests of Building
        Construction and Materials
    E136-09 b..............Standard Test Methods for Behavior of Materials
        in a Vertical Tube Furnace at 750 degrees C
        (1380 F)
E. National Fire Protection Association (NFPA):
    101-09 ................Life Safety Code
    251-06.................Standard methods of Tests of Fire Endurance of
        Building Construction Materials
    255-06.................Standard Method of tests of Surface Burning
        Characteristics of Building Materials
    F. Underwriters Laboratories, Inc (UL):
    723..................UL Standard for Safety Test for Surface Burning
        Characteristics of Building Materials with
        Revision of 08/03
    G. Manufacturer's Standardization Society of the Valve and Fitting
    Industry (MSS):
    SP58-2002..............Pipe Hangers and Supports Materials, Design,
    and Manufacture
```


PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, $k=0.037$ (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F)with an all service
vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = $0.021(0.15)$ at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
B. Equipment Insulation, ASTM C 1126, type II, grade 1, $k=0.021$ (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

A. Comply with Standard ASTM C177, C518, density $120 \mathrm{~kg} / \mathrm{m}^{3}$ (7.5 pcf) nominal, $k=0.033$ (0.29) at 24θ degrees $C(75$ degrees $F)$.
B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, $k=0.039$ (0.27) at 24 degrees $C(75$ degrees $F)$, flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.6 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance $=0.02$ or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
B. ASJ jacket shall be white kraft bonded to $0.025 \mathrm{~mm}(1 \mathrm{mil})$ thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
D. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), $2000 \mathrm{kPa}(300 \mathrm{psig})$ bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
E. Factory composite materials may be used provided
F. Pipe fitting insulation covering (jackets) : Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.7 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of $48 \mathrm{~kg} / \mathrm{m}^{3}$ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)

Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)
Up through 125 (5)	$150(6)$ long
$150(6)$	$150(6)$ long
$200(8), 250(10), 300(12)$	$225(9)$ long
$350(14), 400(16)$	$300(12)$ long
450 through $600(18$ through 24)	$350(14)$ long

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of $48 \mathrm{~kg} / \mathrm{m}^{3}(3.0 \mathrm{pcf})$.

2.8 ADHESIVE, MASTIC, CEMENT

A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
D. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
E. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
F. Other: Insulation manufacturers' published recommendations.

2.9 REINFORCEMENT AND FINISHES

A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
E. Corner beads: $50 \mathrm{~mm}(2$ inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, $25 \mathrm{~mm}(1$ inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.10 FIRESTOPPING MATERIAL

Other than pipe insulation, refer to Section 078400 FIRESTOPPING.

2.11 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative for application of insulation. Surface shall be clean
and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
B. Except for specific exceptions, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
E. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
H. Plumbing work not to be insulated:

1. Piping and valves of fire protection system.
2. Chromium plated brass piping.
3. Water piping in contact with earth.
4. Small horizontal cold water branch runs in partitions to individual fixtures may be without insulation for maximum distance of 900 mm (3 feet).
I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights.

Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
K. Firestop Pipe insulation:

1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 078400 , FIRESTOPPING.
2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
a. Pipe risers through floors
b. Pipe chase walls and floors
c. Smoke partitions
d. Fire partitions
N. Provide vapor barrier jackets over insulation as follows:
3. All piping exposed to outdoor weather.

3.2 INSULATION INSTALLATION

A. Molded Mineral Fiber Pipe and Tubing Covering:

1. Fit insulation to pipe, aligning longitudinal joints. Seal
longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
2. Contractor's options for fitting, flange and valve insulation:
a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a
d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
C. Rigid Cellular Phenolic Foam:
4. Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
5. Note the NFPA 90A burning characteristics requirements of $25 / 50$ in paragraph 1.3.B
6. Provide secure attachment facilities such as welding pins.
7. Apply insulation with joints tightly drawn together
8. Apply adhesives, coverings, neatly finished at fittings, and valves.
9. Final installation shall be smooth, tight, neatly finished at all edges.
10. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
11. Condensation control insulation: Minimum $25 \mathrm{~mm}(1.0$ inch) thick for all pipe sizes.
a. Plumbing piping as follows:
1) Body of roof and overflow drains horizontal runs and offsets (including elbows) of interior downspout piping in all areas above pipe basement.
2) Waste piping from electric water coolers and icemakers to drainage system.
3) Waste piping located above basement floor from ice making and film developing equipment and air handing units, from equipment(including trap) to main vertical waste pipe.
4) MRI quench vent piping.
5) Bedpan sanitizer atmospheric vent
6) Reagent grade water piping.
7) Cold water piping.
D. Cellular Glass Insulation:
1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
2. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal Pipe Size Millimeters (Inches)			
```Operating Temperature Range/Service```	Insulation Material	Less   than $25 \text { (1) }$	$\begin{aligned} & 25-32 \\ &\left(1-1 \frac{114}{4}\right) \end{aligned}$	$\begin{aligned} & 38-75 \\ & \left(1 \frac{1}{2}-3\right) \end{aligned}$	$\begin{aligned} & 100 \text { (4) } \\ & \text { and Above } \end{aligned}$
38-60 degrees C   (100-140 degrees F)   (Domestic Hot Water Supply and Return)	Mineral Fiber   (Above ground piping only)	$\begin{aligned} & 38 \\ & (1.5) \end{aligned}$	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C   (100-140 degrees F)   (Domestic Hot Water Supply and Return)	Rigid Cellular Phenolic Foam (Above ground piping only)	$\begin{aligned} & 38 \\ & (1.5) \end{aligned}$	38 (1.5)	50 (2.0)	50 (2.0)
$\begin{aligned} & \hline 4-16 \text { degrees } C \\ & (40-60 \text { degrees } F) \\ & \text { Ice water piping } \end{aligned}$	Rigid Cellular Phenolic Foam (Above ground piping only)	$\begin{aligned} & 25 \\ & (1.0) \end{aligned}$	25 (1.0)	25 (1.0)	25 (1.0)

# SECTION 221100 FACILITY WATER DISTRIBUTION 

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.

### 1.2 RELATED WORK

A. Section 078400 , FIRESTOPPING: Penetrations in rated enclosures
B. Section 099100 , PAINTING: Preparation and finish painting and identification of piping systems.
C. Section 2205 11, COMMON WORK RESULTS FOR PLUMBING.
D. Section 2207 11, PLUMBING PIPE INSULATION.

### 1.3 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Manufacturer's Literature and Data:

1. All items listed in Part 2 - Products.

### 1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American National Standards Institute (ANSI):

American Society of Mechanical Engineers (ASME): (Copyrighted Society) A13.1-2007.............Scheme for Identification of Piping Systems B16.3-2006..............Malleable Iron Threaded Fittings Classes 150 and 300

B16.9-2007............ Gray Iron Threaded Fittings Classes 125 and 250
B16.9-2007.............Factory-Made Wrought Butt Welding Fittings ANSI/ASME

B16.11-2009.............Forged Fittings, Socket-Welding and Threaded ANSI/ASME

B16.12-2009 ............Cast Iron Threaded Drainage Fittings ANSI/ASME B16.15-2006 ............Cast Bronze Threaded Fittings Classes 125 and 250 ANSI/ASME

B16.18-01 (R2005).......Cast Copper Alloy Solder-Joint Pressure Fittings ANSI/ASME

```
 B16.22-01 (R2005).......Wrought Copper and Copper Alloy Solder Joint
 Pressure Fittings ANSI/ASME Element ANSI/ASME
 NSF/ANSI 61............Drinking Water System Components - Health
 Effects
C. American Society for Testing and Materials (ASTM):
 A47/A47M-99(2009).......Ferritic Malleable Iron Castings Revision 1989
 A53/A53M-07............Pipe, Steel, Black And Hot-Dipped, Zinc-coated
 Welded and Seamless
 A183-03(2009)..........Carbon Steel Track Bolts and Nuts
 A269-10................Standard Specification for Seamless and Welded
 Austenitic Stainless Steel Tubing for General
 Service
 A312/A312M-09..........Seamless, Welded, and Heavily Cold Worked
 Austenitic Stainless Steel Pipes
 A403/A403M-10a.........Standard Specification for Wrought Austenitic
 Stainless Steel Piping Fittings
 A536-84(2009)..........Ductile Iron Castings
 A733-03(2009)..........Welded and Seamless Carbon Steel and Austenitic
 Stainless Steel Pipe Nipples
 B32-08................Solder Metal
 B61-08................Steam or Bronze Castings
 B62-09.................Composition Bronze or Ounce Metal Castings
 B75-02................Seamless Copper Tube
 B88-09................Seamless Copper Water Tube
 B300-10...............AWWA Standard for Hypochlorites
 B301-10...............AWWA Standard for Liquid Chlorine
 B584-09a..............Copper Alloy Sand Castings for General
 Applications Revision A
 B687-99(2005) e1........Brass, Copper, and Chromium-Plated Pipe Nipples
 D2000-08...............Rubber Products in Automotive Applications
 D4101-09...............Propylene Plastic Injection and Extrusion
 Materials
 D4101-09...............Propylene Plastic Injection and Extrusion
 Materials
 E1120-08..............Standard Specification For Liquid Chlorine
 E1229-08...............Standard Specification For Calcium Hypochlorite
D. American Welding Society (AWS):
```

A5.8/A5.8M:2004.........Filler Metals for Brazing
E. International Plumbing Code

International Plumbing Code - 2009
F. American Society of Sanitary Engineers (ASSE):

ANSI/ASSE (Plumbing)
1001-2008..............Pipe Applied Atmospheric Type Vacuum Breakers
ANSI/ASSE 1010-2004.....Water Hammer Arresters
ANSI/ASSE 1018-2001.....Performance for trap seal primer valves -
potable water supplied.
ANSI/ASSE (Plumbing)
1020-2004...............Pressure Vacuum Breaker Assembly
G. Plumbing and Drainage Institute (PDI):

PDI WH-201 2007.........Water Hammer Arrestor

### 1.5 QUALITY ASSURANCE

A. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and more than one year old.
B. For mechanical pressed sealed fittings, only tools of fitting manufacture shall be used.
C. Mechanical pressed fittings shall be installed by factory trained workers.
D. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
E. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

### 1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.
PART 2 - PRODUCTS

### 2.1 ABOVE GROUND (INTERIOR) WATER PIPING

A. Pipe: Copper tube, ASTM B88, Type $K$ or L, drawn. For pipe 150 mm (6 inches) and larger, stainless, steel ASTM A312, schedule 10 may be used.
B. Fittings for Copper Tube:

1. Wrought copper or bronze castings conforming to ANSI B16.18 and B16.22. Unions shall be bronze, MSS SP72 \& SP 110, Solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75 C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, CDA 844. Mechanical grooved couplings, ductile iron, ASTM A536 (Grade 65-45-12), or malleable iron, ASTM A47 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
3. Mechanical press sealed fittings, $65 \mathrm{~mm}\left(2-1 / 2^{\prime \prime}\right)$ in size and smaller. Fittings shall be double pressed type NSF/ANSI 61 approved and utilize EPDM (Ethylene Propylene Diene Monomer) non toxic synthetic rubber sealing elements.
4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
C. Fittings for Stainless Steel:
5. Stainless steel butt-welded fittings, Type 316, Schedule 10, conforming to ANSI B16.9.
6. Grooved fittings, stainless steel, Type 316, Schedule 10, conforming to ASTM A403. Segmentally fabricated fittings are not allowed. Mechanical grooved couplings, ductile iron, ASTM A536 (Grade 65-4512), or Malleable iron, ASTM A47 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
D. Adapters: Provide adapters for joining screwed pipe to copper tubing.
E. Solder: ASTM B32 Composition Sb5 HA or HB. Provide non-corrosive flux.
F. Brazing alloy: AWS A5.8, Classification BCuP.

### 2.2 EXPOSED WATER PIPING

A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment
and reagent racks when not concealed by apron including those furnished
by the Government or specified in other sections.

1. Pipe: Fed. Spec. WW-P-351, standard weight.
2. Fittings: ANSI B16.15 cast bronze threaded fittings with chrome finish, (125 and 250).
3. Nipples: ASTM B 687, Chromium-plated.
4. Unions: Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

### 2.3 TRAP PRIMER WATER PIPING:

A. Pipe: Copper tube, ASTM B88, type $K$, hard drawn.
B. Fittings: Bronze castings conforming to ANSI B16.18 Solder joints.
C. Solder: ASTM B32 composition Sb5. Provide non-corrosive flux.

### 2.4 STRAINERS

A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
C. Body: Smaller than 80 mm (3 inches), brass or bronze; 80 mm (3 inches) and larger, cast iron or semi-steel.

### 2.5 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between ferrous and non-ferrous pipe.

### 2.6 STERILIZATION CHEMICALS

A. Hypochlorites ANSI/AWWA B300-10
B. Liquid Chlorine ANSI/AWWA B301-10

### 2.7 WATER HAMMER ARRESTER:

A. Closed copper tube chamber with permanently sealed $410 \mathrm{kPa}(60 \mathrm{psig})$ air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010 for sealed wall installations without an access panel. Size and install in accordance
with Plumbing and Drainage Institute requirements (PDI WH 201). Provide water hammer arrestors at:

1. All solenoid valves.
2. All groups of two or more flush valves.
3. All quick opening or closing valves.
4. All medical washing equipment.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. General: Comply with the International Plumbing Code and the following:

1. Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to full size after cutting.
3. All pipe runs shall be laid out to avoid interference with other work.
4. Install union and shut-off valve on pressure piping at connections to equipment.
5. Pipe Hangers, Supports and Accessories:
a. All piping shall be supported per the International Plumbing Code, Chapter No. 3.
b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with red lead or zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
c. Floor, Wall and Ceiling Plates, Supports, Hangers:
1) Solid or split unplated cast iron.
2) All plates shall be provided with set screws.
3) Pipe Hangers: Height adjustable clevis type.
4) Adjustable Floor Rests and Base Flanges: Steel.
5) Concrete Inserts: "Universal" or continuous slotted type.
6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
7) Riser Clamps: Malleable iron or steel.
8) Rollers: Cast iron.
9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gauge steel. The shield shall be sized for the insulation.
11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints.
6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
7. Penetrations:
a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 078400 , FIRESTOPPING.

Completely fill and seal clearances between raceways and openings with the fire stopping materials.
b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 079200 , JOINT SEALANTS.
B. Piping shall conform to the following:

1. Domestic Water:
a. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
b. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

### 3.2 TESTS

A. General: Test system either in its entirety or in sections.
B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 690 kPa (100 psi) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested.
C. All Other Piping Tests: Test new installed piping under 1 1/2 times actual operating conditions and prove tight.

### 3.3 STERILIZATION

A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
B. Use liquid chlorine or hypochlorites for sterilization.

# SECTION 221300 

## FACILITY SANITARY AND VENT PIPING

## PART 1 - GENERAL

### 1.1 DESCRIPTION

This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.

### 1.2 RELATED WORK

A. Section 078400 , FIRESTOPPING: Penetrations in rated enclosures.
B. Section 099100 , PAINTING: Preparation and finish painting and identification of piping systems.
C. Section 2205 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
D. Section 2207 11, PLUMBING INSULATION: Pipe Insulation.
E. Section 079200 Joint Sealants: Sealant products.

### 1.3 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Piping.
2. Floor Drains.
3. Cleanouts.
4. All items listed in Part 2 - Products.
C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

### 1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Mechanical Engineers (ASME): (Copyrighted Society) A112.6.3-01 (R 2007)....Standard for Floor and Trench Drains A13.1-07................ Scheme for Identification of Piping Systems B16.3-06................ Malleable Iron Threaded Fittings, Classes 150 and 300 .

B16.4-06................Standard for Grey Iron Threaded Fittings Classes 125 and 250

B16.12-98 (R 2006)......Cast Iron Threaded Drainage Fittings

```
 B16.15-06.............Cast Bronze Threaded Fittings, Classes 125 and
 250
C. American Society for Testing and Materials (ASTM):
 A47/A47M-99 (R 2004)....Standard Specification for Steel Sheet,
 Aluminum Coated, by the Hot Dip Process
 A53/A53M-07............Standard Specification for Pipe, Steel, Black
 And Hot-Dipped, Zinc-coated, Welded and
 Seamless
 A74-06.................Standard Specification for Cast Iron Soil Pipe
 and Fittings
 A183-03...............Standard Specification for Carbon Steel Track
 Bolts and Nuts
 A536-84(R 2004).........Standard Specification for Ductile Iron
 Castings
 B32-08................Standard Specification for Solder Metal
 B75-02................Standard Specification for Seamless Copper Tube
 B306-02...............Standard Specification for Copper Drainage Tube
 (DWV)
 B584-06a..............Standard Specification for Copper Alloy Sand
 Castings for General Applications
 C564-03a..............Standard Specification for Rubber Gaskets for
 Cast Iron Soil Pipe and Fittings
 D2000-08..............Standard Classification System for Rubber
 Products in Automotive Applications
 D2564-04E1.............Standard Specification for Solvent Cements for
 Poly (Vinyl Chloride) (PVC) Plastic Pipe and
 Fittings
 D2665-08..............Standard Specification for Poly (Vinyl
 Chloride) (PVC) Plastic Drain, Waste, and Vent
 Pipe and Fittings
D. International Code Council:
 IPC-09................International Plumbing Code
E. Cast Iron Soil Pipe Institute (CISPI):
 301-05.....................ubless Cast Iron Soil Pipe and Fittings for
 Sanitary and Storm Drain, Waste, and Vent
 Piping Applications
 310-04................Coupling for Use in Connection with Hubless
 Cast Iron Soil Pipe and Fittings for Sanitary
```

F. American Society of Sanitary Engineers (ASSE):

1018-01.................Trap Seal Primer Valves - Potable, Water Supplied
G. Plumbing and Drainage Institute (PDI):

PDI WH-201..............Water Hammer Arrestor
PART 2 - PRODUCTS

### 2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

A. Cast iron waste, drain, and vent pipe and fittings

1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
a. pipe buried in or in contact with earth
b. interior waste and vent piping above grade.
2. Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74.
4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of $A S T M$ Standard $C-564$ or be installed with lead and oakum.
B. Copper Tube, (DWV):
5. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
6. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
7. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
8. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.
C. Polyvinyl Chloride (PVC)
9. Polyvinyl chloride (PVC) pipe and fittings are permitted where the waste temperature is below $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
10. PVC piping and fittings shall NOT be used for the following applications:
a. Waste collected from steam condensate drains
b. spaces such as mechanical equipment rooms, kitchens, SPD, and sterilizer areas.
b. Vertical waste and soil stacks serving more than two floors
c. Exposed in mechanical equipment rooms.
d. Exposed inside of ceiling return plenums
11. Polyvinyl chloride sanitary waste, drain, and vent pipe and fittings shall be schedule 40 solid core sewer piping conforming to ASTM D 1785 and ASTM D2665, sewer and drain series with ends for solvent cemented joints.
12. Fittings:
a. PVC fittings shall be solvent welded socket type using solvent cement conforming to ASTM D2564.

### 2.2 EXPOSED WASTE PIPING

A. Full iron pipe size chrome plated brass piping shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.

1. The Pipe shall meet Fed. Spec. WW-P-351, standard weight.
2. The Fittings shall conform to ANSI B16.15, cast bronze threaded fittings with chrome finish, (125 and 250).
3. Nipples shall conform to ASTM B 687, Chromium-plated.
4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
B. In unfinished Rooms such as mechanical Rooms, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 099100 , PAINTING.

### 2.3 SPECIALTY PIPE FITTINGS

A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or
transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:

1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
2. For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F 477 or ASTM D5926.
3. For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of $860 \mathrm{kPa}(125 \mathrm{psig})$ at a minimum temperature of $82^{\circ} \mathrm{C}\left(180^{\circ} \mathrm{F}\right)$. The end connection shall be solder joint copper alloy and threaded ferrous.
C. Dielectric flange insulating kits shall be of non conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F 1545 with a pressure ratings of 2070 kPa (300 psig) at $107^{\circ} \mathrm{C}\left(225^{\circ} \mathrm{F}\right)$. The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

### 2.4 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall
consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.
C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm ( 6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

### 2.5 FLOOR DRAINS

A. Type B (FD-B) floor drain shall comply with ANSI A112.6.3. The type B floor drain shall be constructed of galvanized cast iron with medium duty nickel bronze grate, double drainage pattern, clamping device, without sediment bucket but with secondary strainer in bottom. The grate shall be 175 mm (7 inches) minimum.
B. Type C (FD-C) floor drain shall comply with ANSI A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty square or round nickel bronze adjustable strainer and grate with vandal proof screws. The grate shall be square, 150 mm (6 inches) minimum.

### 2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall
be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as pipe connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

### 2.7 TRAP SEAL PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS

A. Trap Primer (TP-2): The trap seal primer valve shall be hydraulic, supply type with a pressure rating of $5.98 \mathrm{kPa}(125 \mathrm{psig})$ and conforming to standard ASSE 1018.

1. The inlet and outlet connections shall be 15 mm or DN15 (NPS $1 / 2$ inch)
2. The trap seal primer valve shall be fully automatic with an all brass or bronze body.
3. The trap seal primer valve shall be activated by a drop in building water pressure, no adjustment required.
4. The trap seal primer valve shall include a manifold when serving two, three, or four traps.
5. The manifold shall be omitted when serving only one trap.

### 2.9 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.
B. Walls: See detail shown on drawings.

## PART 3 - EXECUTION

### 3.1 PIPE INSTALLATION

A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
D. All pipe runs shall be laid out to avoid interference with other work.
E. The piping shall be installed above accessible ceilings where possible.
F. The piping shall be installed to permit valve servicing or operation.
G. Unless specifically indicated on the drawings, the minimum slope shall be $2 \%$ slope for $2-1 / 2$ inch and smaller piping and $1 \%$ for 3 inch and larger piping.
H. The piping shall be installed free of sags and bends.
I. Seismic restraint shall be installed where required by code.
J. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
K. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
L. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
M. Aboveground copper tubing shall be installed according to CDA's "Copper Tube Handbook".
N. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321.

### 3.2 JOINT CONSTRUCTION

A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.
F. For PVC piping, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendixes.

### 3.3 SPECIALTY PIPE FITTINGS

A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

### 3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES:

A. All piping shall be supported according to the International Plumbing Code (IPC), Section 2205 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 220511 , the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:

1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
2. 80 mm or DN 80 (NPS 3 inch): 1500 mm (60 inches) with $13 \mathrm{~mm}(1 / 2$ inch) rod.
3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 to NPS 5): 1500 mm (60 inches) with $16 \mathrm{~mm}(5 / 8$ inch) rod.
4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm ( 60 inches) with 19 mm ( $3 / 4$ inch) rod.
5. 250 mm or DN250 to 300 mm or DN 300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 22 mm (7/8 inch) rod.
E. The maximum spacing for plastic pipe shall be 1.22 m (4 feet).
F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.57 m (15 feet).
G. In addition to the requirements in Section 2205 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
6. Solid or split unplated cast iron.
7. All plates shall be provided with set screws.
8. Height adjustable clevis type pipe hangers.
9. Adjustable floor rests and base flanges shall be steel.
10. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
11. Riser clamps shall be malleable iron or steel.
12. Rollers shall be cast iron.
13. See Section 2205 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
J. Penetrations:
14. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 078400 , FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
15. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 079200 , JOINT SEALANTS.
K. Piping shall conform to the following:
16. Waste and Vent Drain to main stacks:

Pipe Size	Minimum Pitch
80 mm or DN $80(2-1 / 2$   inches $)$ and smaller	$2 \%$
100 mm or DN $100(4$   inches $)$ and larger	$1 \%$

2. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

### 3.5 TESTS

A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.

1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most $3 \mathrm{~m}(10$ feet) of system has been submitted to
a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
2. For an air test, an air pressure of 35 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
4. Final Tests: Either one of the following tests may be used.
a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1.3 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
b. Peppermint Test: Introduce (2 ounces) of peppermint into each line or stack.

-     -         - E N D - - -


## SECTION 223300

## ELECTRIC DOMESTIC WATER HEATERS

## PART 1 - GENERAL

### 1.1 DESCRIPTION:

This section describes the requirements for installing a complete electric domestic water heater system ready for operation including the water heaters, thermometers, and all necessary accessories, connections, and equipment.

### 1.2 RELATED WORK:

A. Section 2205 11, COMMON WORK RESULTS FOR PLUMBING.
B. Section 2307 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Heater Insulation.
C. Section 2205 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING, and 2211 00, FACILITY WATER DISTRIBUTION: Piping, Fittings, Valves and Gages.

### 1.3 QUALITY ASSURANCE:

A. Comply with American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) for efficiency performance: 1. ASHRAE 90.1, Energy Efficient Design of New Buildings except LowRise Residential Buildings,"for commercial water heaters."
B. Electrical components, devices and accessories shall be listed and labeled B as defined in NFPA 70 by a qualified testing agency, and marked for intended location and application.
C. Fabricate and label equipment components that will be in contract with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects"

### 1.4 SUBMITTALS:

A. Submit manufacturer's literature and data pertaining to the water heater in properly bound package, in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Include the following as a minimum:

1. Water Heaters.
2. Thermometers.
3. Pressure Gages.
B. For each electric domestic hot water heater type and size, the following characteristics shall be submitted:
4. Rated Capacities.
5. Operating characteristics.
6. Electrical characteristics.
7. Furnished specialties and accessories.
C. Shop drawings shall include wiring diagrams for power, signal and control functions.
D. The domestic water heater shall be certified and labeled by a testing agency.

### 1.5 APPLICABLE PUBLICATIONS:

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Mechanical Engineers (ASME) : B1.20.1-83(R 2006)......Pipe Threads, General Purpose (Inch)
C. National Fire Protection Association (NFPA)

70-06....................National Electrical Code
D. Underwriters Laboratories, Inc. (UL):

499-05..................Standard for Safety Electric Heating Appliances

### 1.6 AS-BUILT DOCUMENTATION

A. The electronic documentation and copies of the Operations and Maintenance Manual, approved submittals, shop drawings, and other closeout documentation shall be prepared by a computer software program complying with Section 508 of the Rehabilitation Act of 1973, as amended (29 U.S.C 794d). The manufacturer or vendor of the software used to prepare the electronic documentation shall have a Voluntary Product Accessibility Template made available for review and included as part of the Operations and Maintenance Manual or closeout documentation. All available accessibility functions listed in the Voluntary Accessibility Template shall be enabled in the prepared electronic files. As Adobe Acrobat is a common industry format for such documentation, following the document, "Creating Accessible Adobe PDF files, A Guide for Document Authors" that is maintained and made available by Adobe free of charge is recommended."
B. Four sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
C. Four sets of operation and maintenance data updated to include submittal review comments shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including


#### Abstract

piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.


## PART 2 - PRODUCTS

### 2.1 ELECTRIC, TANKLESS, DOMESTIC WATER HEATER

A. Electric, Tankless, domestic water heaters shall be constructed with copper piping or tubing complying with NSF 61 barrier materials for potable water without storage capacity.
B. The pressure rating shall be 1035 kPa (150 psig).
C. The heating element shall be resistance heating system type.
D. Temperature control shall be made with flow control fittings.
E. The safety control shall be a high temperature limit cutoff device or system.
F. The heater shall have a bracket for wall mounting and have an aluminum or steel with enameled jacket.

## PART 3 - EXECUTION

### 3.1 INSTALLATION:

A. The water heaters shall be installed level and plumb and securely anchored.
B. The water heaters shall be installed and connected in accordance with manufacturer's written instructions.
C. The thermostatic control shall be set for a maximum setting of 54 degrees C (130 degrees F).
D. Shutoff valves shall be installed on the domestic water supply piping to the water heater and on the domestic hot water outlet piping.
H. All manufacturers's required clearances shall be maintained.

### 3.2 LEAKAGE TEST:

Before piping connections are made, water heaters shall be tested with hydrostatic pressure of $1375 \mathrm{kPa}(200 \mathrm{psi})$ and $1654 \mathrm{kPa}(240 \mathrm{psi})$ for a unit with a MAWP of 1103 kPa (160 psi). Any domestic water heater
leaking water shall be replaced with a new unit at no additional cost to the VA.

### 3.3 PERFORMANCE TEST:

All of the remote water outlets shall have a minimum of $49^{\circ} \mathrm{C}\left(120^{\circ} \mathrm{F}\right)$ and a maximum of $54^{\circ} \mathrm{C}\left(130^{\circ} \mathrm{F}\right)$ water flow at all times. If necessary, make all corrections to balance the return water system or reset the thermostat to make the system comply with design requirements.

## SECTION 224000 PLUMBING FIXTURES

## PART 1 - GENERAL

### 1.1 DESCRIPTION

Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.

### 1.2 RELATED WORK

A. Sealing between fixtures and other finish surfaces: Section 079200 , JOINT SEALANTS.
B. Flush panel access doors: Section 0831 13, ACCESS DOORS AND FRAMES.
C. Through bolts: Section 1021 13, TOILET COMPARTMENTS.
D. Section 2205 11, COMMON WORK RESULTS FOR PLUMBING.

### 1.3 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Submit plumbing fixture information in an assembled brochure, showing cuts and full detailed description of each fixture.

### 1.4 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American National Standard Institute (ANSI):

The American Society of Mechanical Engineers (ASME) :
A112.6.1M-02(R2008).....Floor Affixed Supports for Off-the-Floor Plumbing Fixtures for Public Use

A112.19.1M-08 .........Enameled Cast Iron Plumbing Fixtures
A112.19.2M-03...........Vitreous China Plumbing Fixtures
A112.19.3-2001(R2008)...Stainless Steel Plumbing Fixtures (Designed for Residential Use)
C. American Society for Testing and Materials (ASTM) :

A276-2010 ..............Stainless and Heat-Resisting Steel Bars and Shapes

WW-P-541-E/GEN .........Plumbing Fixtures with Amendment 1
D. National Association of Architectural Metal Manufacturers (NAAMM): NAAMM

AMP 500-505
Metal Finishes Manual (1988)

```
E. American Society of Sanitary Engineers (ASSE):
 1016-05

 Performance Requirements for Individual
 Thermostatic, Pressure Balancing and Combination
 Pressure Balancing and Thermostatic Control
 Valves for Individual Fixture Fittings
F. National Sanitation Foundation (NSF)/American National Standards
 Institute (ANSI):
 61-2009Drinking Water System Components-Health Effects
G. American with Disabilities Act (A.D.A) Section 4-19.4 Exposed Pipes and
 Surfaces
H. Environmental Protection Agency EPA PL 93-523 1974; A 1999) Safe
 Drinking Water Act.
I. International Building Code, ICC IPBC 2009.
```


## PART 2 - PRODUCTS

### 2.1 STAINLESS STEEL

A. Corrosion-resistant Steel (CRS):

1. Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
B. Die-cast zinc alloy products are prohibited.

### 2.2 STOPS

A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
B. Furnish keys for lock shield stops to Contracting Officer's Representative.
C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.

### 2.3 ESCUTCHEONS

Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

### 2.4 LAMINAR FLOW CONTROL DEVICE

A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing.
B. Flow Control Restrictor:

1. Capable of restricting flow from $95 \mathrm{ml} / \mathrm{s}$ to $110 \mathrm{ml} / \mathrm{s}(1.5 \mathrm{gpm}$ to 1.7 gpm) for lavatories; $125 \mathrm{ml} / \mathrm{s}$ to $140 \mathrm{ml} / \mathrm{s}(2.0 \mathrm{gpm}$ to 2.2 gpm ) for sinks $\mathrm{P}-505$ through $\mathrm{P}-520, \mathrm{P}-524$ and $\mathrm{P}-528$.
2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and $550 \mathrm{kPa}(25 \mathrm{psi}$ and 80 psi).
3. Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

### 2.5 CARRIERS

A. ASME/ANSI A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
B. ASME/ANSI A112.6.1M, lavatory, chair carrier for thin wall construction. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.
C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.

### 2.6 WATER CLOSETS

A. (P-114) Bariatric Floor Mounted Water Closet ANSI 112.19.2M, Wall or floor outlet, Fully enclosed floor mounted with integral seat , siphon jet, 14 gage type 304 stainless steel construction with white enviroglaze coating and hinged seat with cover, flush valve operated, top of rim 457 mm (18 inches) above floor. Rated for bariatric use.

1. Fittings and Accessories: Gaskets-neoprene, bolts with chromium plated cap nuts and washers.
2. Flush Valve: exposed chrome plated diaphragm type with low force ADA compliant dual flush oscillating bio-guard handle, 1.1 gallon/1.6 gallon per flush, seat bumper, integral screwdriver stop and vacuum breaker, escutcheon.

### 2.7 LAVATORIES

A. Dimensions for lavatories are specified, Length by width (distance from wall) and depth.
B. Brass components in contact with water shall contain no more than 3 percent lead content by dry weight.
C. (P-4A) Lavatory (Single bowl integral with solid surface countertop): 1. Basis of Design: Bradley Frequency FL-1H
2. Countertop/Bowl: Solid surface material composed of polyester resin, chemical, stain, burn and impact resistant. Certified to meet ANSI Z124.3, Z124.6 and ANSI/ICPA SS-1.
3. Faucet: Solid cast brass construction, chrome plated spout, single center hole mounting, battery controlled electronic sensor operated, motor driven valve with in-line filter. Provide laminar flow control device.
4. Mixing Valve: Thermostatic mixing valve body shall be copper alloy. Internal parts shall be copper, nickel alloy, CRS or thermostatic material. Valve inlet and outlet shall be 13 mm (1/2 inch) IPS. Provide external screwdriver checkstops and temperature limit stop. Set stops for a maximum temperature of 35 degrees C ( 95 degrees F).
5. Drain: Cast or wrought brass with flat grid strainer and offset tailpiece, chrome plated finish.
6. Stops: Angle type. See paragraph 2.2. Stops
7. Trap: Cast copper alloy, 38 mm by $32 \mathrm{~mm}(11 / 2$ inches by $1 / 4$ inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extension to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall.
8. Provide cover for electrical connections, stops and trap per A.D.A 419.4.
B. ( $\mathrm{P}-4 \mathrm{~B}$ ) Lavatory (Double bowl integral with solid surface countertop):

1. Basis of Design: Bradley Frequency FL-2H
2. Countertop/Bowl: Solid surface material composed of polyester resin, chemical, stain, burn and impact resistant. Certified to meet ANSI Z124.3, Z124.6 and ANSI/ICPA SS-1.
3. Faucet: Solid cast brass construction, chrome plated spout, single center hole mounting, battery controlled electronic sensor operated, motor driven valve with in-line filter. Provide laminar flow control device. Provide on faucet for each bowl.
4. Mixing Valve: Thermostatic mixing valve body shall be copper alloy. Internal parts shall be copper, nickel alloy, CRS or thermostatic
material. Valve inlet and outlet shall be 13 mm (1/2 inch) IPS. Provide external screwdriver checkstops and temperature limit stop. Set stops for a maximum temperature of 35 degrees C (95 degrees F).
5. Drain: Cast or wrought brass with flat grid strainer and offset tailpiece, chrome plated finish.
6. Stops: Angle type. See paragraph 2.2. Stops
7. Trap: Cast copper alloy, 38 mm by $32 \mathrm{~mm}(11 / 2$ inches by $1 / 4$ inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extension to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall.
8. Provide one cover for each bowl for electrical connections, stops and trap per A.D.A 4-19.4.

## 2. 8 SINKS

A. Dimensions for sinks are specified, length by width (distance from wall) and depth.
B. (P-502) Service Sink (Corner, Floor Mounted) stain resistant terrazzo, 711 mm by 711 mm by 305 mm (28 inches by 28 inches by 12 inches) with 152 mm (6 inches) drop front. Terrazzo, composed of marble chips and white Portland cement, shall develop compressive strength of 20684 kPa (3000 psi) seven days after casting. Provide extruded aluminum cap on front side.

1. Faucet: Solid brass construction, combination faucet with replaceable monel seat, removable replacement unit containing all parts subject to wear, integral stops, mounted on wall above sink. Spout shall have a pail hook, 19 mm (3/4 inch) hose coupling threads, vacuum breaker, and top or bottom brace to wall. Four-arm handles on faucets shall be cast, formed, or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Provide $914 \mathrm{~mm}(36$ inches) hose with wall hook. Centerline of rough in is 1219 mm (48 inches) above finished floor.
2. Drain: Seventy six millimeter (3 inches) cast brass drain with nickel bronze strainer.
3. Trap: P-trap, drain through floor.
C. (P-528) Sink (CRS, Single Compartment, Counter Top ASME/ANSI A112.19.2M, Kitchen Sinks, Figure 5) self rimming, back faucet ledge, approximately 381 mm by 432 mm (15 inches by 17 inches) with single compartment inside dimensions approximately 330 mm by 305 mm by 191 mm (13 inches by 12
inches by $71 / 2$ inches) deep. Shall be minimum of 1.3 mm thick (18 gauge) CRS. Corners and edges shall be well rounded:
4. Faucet: Solid brass construction, deck mounted combination faucet with monel or ceramic seats, removable replacement unit containing all parts subject to ware, swivel gooseneck spout with approximately 152 mm (6 inches) reach with spout outlet 152 mm ( 6 inches above deck and single lever handle. Faucet shall be polished chrome plated.
5. Drain: Drain plug with cup strainer, stainless steel.
6. Trap: Cast copper alloy $38 \mathrm{~mm}(11 / 2$ inches) $P$-trap with cleanout plug. Provide wall connection and escutcheon.
7. Provide cover for drain, stops and trap per A.D.A 4-19.4.

### 2.9 HYDRANT, HOSE BIBB AND MISCELLANEOUS DEVICES

A. (P-804) Hose Bibb (Single Faucet, Wall Mounted to Concealed Supply Pipe): Cast or wrought copper alloy, single faucet with replaceable monel seat, removable replacement unit containing all parts subject to wear, mounted on wall $914 \mathrm{~mm}(36$ inches) above floor to concealed supply pipe. Provide faucet with $19 \mathrm{~mm}(3 / 4$ inch) hose coupling thread on spout and vacuum breaker. Four-arm handle on faucet shall be cast, formed or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a bright finish.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 079200 , JOINT SEALANTS.
B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
C. Through Bolts: For free standing marble and metal stud partitions refer to Section 1021 13, TOILET COMPARTMENTS.
D. Toggle Bolts: For hollow masonry units, finished or unfinished.
E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be $6 \mathrm{~mm}(1 / 4$ inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.
F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 $1 / 4$ inches) into wall.
G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
H. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
I. Do not use aerators on lavatories and sinks.

### 3.2 CLEANING

At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

\author{

-     - E N D - - -
}


# SECTION 230511 COMMON WORK RESULTS FOR HVAC 

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. The requirements of this Section apply to all sections of Division 23.
B. Definitions:

1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
2. Option or optional: Contractor's choice of an alternate material or method.
3. COR: Contracting Officer's Representative.

### 1.2 RELATED WORK

A. Section 010000 , GENERAL REQUIREMENTS
B. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
C. Section 0330 53, (Short Form) CAST-IN-PLACE CONCRETE: Concrete and Grout
D. Section 078400 , FIRESTOPPING
E. Section 0792 00, JOINT SEALANTS
F. Section 099100 , PAINTING
G. Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
H. Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
I. Section 2305 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
J. Section 2307 11, HVAC, PLUMBING, and Boiler Plant Insulation
K. Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
L. Section 2321 13, HYDRONIC PIPING
M. Section 2321 23, HYDRONIC PUMPS
N. Section 2322 13, STEAM and CONDENSATE HEATING PIPING
O. Section 2322 23, STEAM CONDENSATE PUMPS
P. Section 232300 , REFRIGERANT PIPING
Q. Section 232500 , HVAC WATER TREATMENT
R. Section 233100 , HVAC DUCTS and CASINGS
S. Section 2334 00, HVAC FANS
T. Section 233600 , AIR TERMINAL UNITS
U. Section 233700 , AIR OUTLETS and INLETS
V. Section 2340 00, HVAC AIR CLEANING DEVICES
W. Section 2374 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS
X. Section 238100 , DECENTRALIZED UNITARY HVAC EQUIPMENT
Y. Section 2381 23, COMPUTER-ROOM AIR-CONDITIONERS
Z. Section 238200 , CONVECTION HEATING and COOLING UNITS

AA. Section 2382 16, AIR COILS
BB. Section 238400 , HUMIDITY CONTROL EQUIPMENT
CC. Section 2308 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training

DD. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
EE. Section 2629 11, LOW-VOLTAGE MOTOR STARTERS

### 1.3 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
B. Flow Rate Tolerance for HVAC Equipment: Section 2305 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
C. Equipment Vibration Tolerance:

1. Refer to Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
D. Products Criteria:
3. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory
service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
4. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
5. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the COR.
6. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
7. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
8. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
9. Asbestos products or equipment or materials containing asbestos shall not be used.
E. Equipment Service Organizations:
10. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
11. Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
12. Comply with provisions of ASME B31 series "Code for Pressure Piping".
13. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
G. Execution (Installation, Construction) Quality:
14. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the COR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the COR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
15. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
F. Layout Drawings:

1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
4. In addition, for HVAC systems, provide details of the following:
a. Mechanical equipment rooms.
b. Hangers, inserts, supports, and bracing.
c. Pipe sleeves.
d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
5. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
6. Submit electric motor data and variable speed drive data with the driven equipment.
7. Equipment and materials identification.
8. Fire-stopping materials.
9. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
10. Wall, floor, and ceiling plates.
H. HVAC Maintenance Data and Operating Instructions:
11. Maintenance and operating manuals in accordance with Section 0100 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
12. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air Conditioning, Heating and Refrigeration Institute (AHRI):

430-2009................Central Station Air-Handling Units
C. American National Standard Institute (ANSI):

B31.1-2007..............Power Piping
D. Rubber Manufacturers Association (ANSI/RMA):

IP-20-2007..............Specifications for Drives Using Classical V-Belts and Sheaves

IP-21-2009..............Specifications for Drives Using Double-V (Hexagonal) Belts

IP-22-2007..............Specifications for Drives Using Narrow V-Belts and Sheaves
E. Air Movement and Control Association (AMCA):

410-96..................Recommended Safety Practices for Air Moving Devices
F. American Society of Mechanical Engineers (ASME):

Boiler and Pressure Vessel Code (BPVC):
Section I-2007..........Power Boilers
Section IX-2007.........Welding and Brazing Qualifications
Code for Pressure Piping:
B31.1-2007..............Power Piping
G. American Society for Testing and Materials (ASTM):

A36/A36M-08............Standard Specification for Carbon Structural Steel

A575-96(2007)...........Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E84-10..................Standard Test Method for Surface Burning Characteristics of Building Materials
E119-09c.................Standard Test Methods for Fire Tests of Building Construction and Materials
H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:

SP-58-2009.............Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation

SP 69-2003..............Pipe Hangers and Supports-Selection and Application

SP 127-2001.............Bracing for Piping Systems, Seismic - Wind Dynamic, Design, Selection, Application
I. National Electrical Manufacturers Association (NEMA):

MG-1-2009...............Motors and Generators
J. National Fire Protection Association (NFPA):

31-06..................Standard for Installation of Oil-Burning Equipment
54-09....................National Fuel Gas Code
70-08....................National Electrical Code
85-07...................Boiler and Combustion Systems Hazards Code
90A-09..................Standard for the Installation of Air Conditioning and Ventilating Systems

101-09.
Life Safety Code

### 1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost to the Government.
3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
B. Cleanliness of Piping and Equipment Systems:
5. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
6. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
7. Clean interior of all tanks prior to delivery for beneficial use by the Government.
8. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
9. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

### 1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the COR.
D. Phasing of Work: Comply with all requirements shown on drawings or specified.
E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees $F$ ) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be
issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

## PART 2 - PRODUCTS

### 2.1 FACTORY-ASSEMBLED PRODUCTS

A. Provide maximum standardization of components to reduce spare part requirements.
B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.

1. All components of an assembled unit need not be products of same manufacturer.
2. Constituent parts that are alike shall be products of a single manufacturer.
3. Components shall be compatible with each other and with the total assembly for intended service.
4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

### 2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

### 2.3 BELT DRIVES

A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
D. Maximum Speed: $25 \mathrm{~m} / \mathrm{s}(5000$ feet per minute).
E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
H. Sheaves and Pulleys:

1. Material: Pressed steel, or close grained cast iron.
2. Bore: Fixed or bushing type for securing to shaft with keys.
3. Balanced: Statically and dynamically.
4. Groove spacing for driving and driven pulleys shall be the same.
I. Drive Types, Based on ARI 435:
5. Provide adjustable-pitch drive as follows:
a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller. b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
6. Provide fixed-pitch drives for drives larger than those listed above.
7. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

### 2.4 DRIVE GUARDS

A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

### 2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

### 2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 2629 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

### 2.7 VARIABLE SPEED MOTOR CONTROLLERS

A. Refer to Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 2629 11, MOTOR CONTROLLERS for specifications.
B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
E. Controller shall be provided with the following operating features and accessories:

1. Suitable for variable torque load.
2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 25,000 AIC. Provide AC input line reactors (3\% impedance) on incoming power line. Provide output line reactors on line between drive and motor for motors over 50 HP or where the distance between the breaker and motor exceeds 50 feet.

### 2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 099100 , PAINTING.
B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 099100 , PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
E. Valve Tags and Lists:

1. HVAC and Boiler Plant: Provide for all valves other than for equipment in Section 238200 , CONVECTION HEATING AND COOLING UNITS.
2. Valve tags: Engraved black filled numbers and letters not less than $13 \mathrm{~mm}(1 / 2$-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve
function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

### 2.9 FIRESTOPPING

Section 078400 , FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 2307 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

### 2.10 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

### 2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. Vibration Isolators: Refer to Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69.
C. Attachment to Concrete Building Construction:

1. Concrete insert: MSS SP-58, Type 18.
2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the COR for each job condition.
3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the COR for each job condition.
D. Attachment to existing structure: Support from existing floor/roof frame.
E. Attachment to Wood Construction: Wood screws or lag bolts.
F. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
G. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by $1-5 / 8$ inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
4. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
5. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
H. Supports for Piping Systems:
6. Select hangers sized to encircle insulation on insulated piping. Refer to Section 2307 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
7. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
a. Standard clevis hanger: Type 1; provide locknut.
b. Riser clamps: Type 8.
c. Wall brackets: Types 31, 32 or 33.
d. Roller supports: Type 41, 43, 44 and 46.
e. Saddle support: Type 36,37 or 38 .
f. Turnbuckle: Types 13 or 15. Preinsulate.
g. U-bolt clamp: Type 24.
h. Copper Tube:
1) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
2) For vertical runs use epoxy painted or plastic coated riser clamps.
3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
3. High and Medium Pressure Steam (MSS SP-58):
a. Provide eye rod or Type 17 eye nut near the upper attachment.
b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
c. Piping with Vertical Expansion and Contraction:
1) Movement up to 20 mm (3/4-inch) : Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
2) Movement more than 20 mm (3/4-inch) : Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.
I. Pre-insulated Calcium Silicate Shields:
5. Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
6. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
7. Shield thickness shall match the pipe insulation.
8. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
a. Shields for supporting chilled or cold water shall have
insulation that extends a minimum of 1 inch past the sheet metal.
Provide for an adequate vapor barrier in chilled lines.
b. The pre-insulated calcium silicate shield shall support the
maximum allowable water filled span as indicated in MSS-SP 69. To
support the load, the shields may have one or more of the
following features: structural inserts 4138 kPa (600 psi)
compressive strength, an extra bottom metal shield, or formed
structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
9. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

### 2.12 PIPE PENETRATIONS

A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
B. To prevent accidental liquid spills from passing to a lower level, provide the following:

1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
2. For blocked out floor openings: Provide $40 \mathrm{~mm}(1-1 / 2$ inch) angle set in silicone adhesive around opening.
3. For drilled penetrations: Provide $40 \mathrm{~mm}(1-1 / 2$ inch) angle ring or square set in silicone adhesive around penetration.
C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
J. Sealant and Adhesives: Shall be as specified in Section 079200 , JOINT SEALANTS .

### 2.13 DUCT PENETRATIONS

A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 078400 , FIRESTOPPING.

### 2.14 SPECIAL TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the COR.
E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

### 2.15 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
B. Thickness: Not less than $2.4 \mathrm{~mm}(3 / 32$-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm ( 0.025 -inch) for up to 80 mm (3-inch pipe), 0.89 mm ( 0.035 -inch) for larger pipe.
C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

### 2.16 ASBESTOS

Materials containing asbestos are not permitted.

## PART 3 - EXECUTION

### 3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
E. Cutting Holes:

1. Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
3. Do not penetrate membrane waterproofing.
F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
I. Protection and Cleaning:
4. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
5. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 0330 53, (Short Form) CAST-IN-PLACE CONCRETE.
K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
L. Install steam piping expansion joints as per manufacturer's recommendations.
M. Work in Existing Building:
6. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 0100 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
7. As specified in Section 010000 , GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service
piping at times that will least interfere with normal operation of the facility.
8. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COR's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
N. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
O. Inaccessible Equipment:
9. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
10. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

### 3.2 RIGGING

A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.
G. Restore building to original condition upon completion of rigging work.

### 3.3 PIPE AND EQUIPMENT SUPPORTS

A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of $15 \mathrm{~mm}(1 / 2$-inch) clearance between pipe or piping covering and adjacent work.
D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
E. HVAC Vertical Pipe Supports:

1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
F. Overhead Supports:
3. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
4. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
5. Tubing and capillary systems shall be supported in channel troughs.
G. Floor Supports:
6. Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
7. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
8. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

### 3.5 MECHANICAL DEMOLITION

A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit
debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be reused in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

### 3.6 CLEANING AND PAINTING

A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 099100 , PAINTING.
B. In addition, the following special conditions apply:

1. Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
2. Material And Equipment Not To Be Painted Includes:
a. Motors, controllers, control switches, and safety switches.
b. Control and interlock devices.
c. Regulators.
d. Pressure reducing valves.
e. Control valves and thermostatic elements.
f. Lubrication devices and grease fittings.
g. Copper, brass, aluminum, stainless steel and bronze surfaces.
h. Valve stems and rotating shafts.
i. Pressure gauges and thermometers.
j. Glass.
k. Name plates.
3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
6. Paint shall withstand the following temperatures without peeling or discoloration:
a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
b. Steam -- 52 degrees C (125 degrees $F$ ) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

### 3.7 IDENTIFICATION SIGNS

A. Provide laminated plastic signs, with engraved lettering not less than $5 \mathrm{~mm}(3 / 16$-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
C. Pipe Identification: Refer to Section 099100 , PAINTING.

### 3.8 MOTOR AND DRIVE ALIGNMENT

A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

### 3.9 LUBRICATION

A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

### 3.10 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

### 3.11 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 010000 , GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

### 3.12 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, perform required tests as specified in Section 010000 , GENERAL REQUIREMENTS and submit the test reports and records to the COR.
B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

### 3.13 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 010000 , GENERAL REQUIREMENTS.

\author{

-     -         - E N D - - -
}


## SECTION 230512

## GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

## PART 1 - GENERAL

### 1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

### 1.2 RELATED WORK:

A. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
B. Section 2629 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection for motors.
C. Section 2305 11, COMMON WORK RESULTS FOR HVAC.
D. Section 2321 23, HYDRONIC PUMPS.
E. Section 2322 23, STEAM CONDENSATE PUMPS.
F. Section 233400 , HVAC FANS.
G. Section 233600 , AIR TERMINAL UNITS.
H. Section 2374 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.
I. Section 238100 , DECENTRALIZED UNITARY HVAC EQUIPMENT.
J. Section 2381 23, COMPUTER-ROOM AIR-CONDITIONERS.
K. Section 2323 00, REFRIGERANT PIPING.
L. Section 238200 , CONVECTION HEATING and COOLING UNITS.
M. Section 230800 , COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

### 1.3 SUBMITTALS:

A. In accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
B. Shop Drawings:

1. Provide documentation to demonstrate compliance with drawings and specifications.
2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
C. Manuals:
3. Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Contracting Officer's Representative (COR):
4. Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.
E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 230800 COMMISSIONING OF HVAC SYSTEMS.

### 1.4 APPLICABLE PUBLICATIONS:

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. National Electrical Manufacturers Association (NEMA):

MG 1-2006 Rev. 12009 ..Motors and Generators
MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators
C. National Fire Protection Association (NFPA) : 70-2008.................National Electrical Code (NEC)
D. Institute of Electrical and Electronics Engineers (IEEE): 112-04..................Standard Test Procedure for Polyphase Induction Motors and Generators
E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
90.1-2007..............Energy Standard for Buildings Except Low-Rise Residential Buildings

## PART 2 - PRODUCTS

### 2.1 MOTORS:

A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
B. All material and equipment furnished and installation methods shall conform to the requirements of Section 2629 11, LOW-VOLTAGE MOTOR STARTERS; and Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.

1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
E. Voltage ratings shall be as follows:
2. Single phase:
a. Motors connected to 120 -volt systems: 115 volts.
b. Motors connected to 208-volt systems: 200 volts.
c. Motors connected to 240 volt or 480 volt systems: $230 / 460$ volts, dual connection.
3. Three phase:
a. Motors connected to 208-volt systems: 200 volts.
b. Motors, less than $74.6 \mathrm{~kW}(100 \mathrm{HP})$, connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
c. Motors, 74.6 kW (100 HP) or larger, connected to 240 -volt systems: 230 volts.
d. Motors, $74.6 \mathrm{~kW}(100 \mathrm{HP})$ or larger, connected to 480 -volt systems: 460 volts.
e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
F. Number of phases shall be as follows:
4. Motors, less than 373 W (1/2 HP): Single phase.
5. Motors, $373 \mathrm{~W}(1 / 2 \mathrm{HP})$ and larger: 3 phase.
6. Exceptions:
a. Hermetically sealed motors.
b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
G. Motors shall be designed for operating the connected loads continuously in a $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, the motors shall be rated for the actual ambient temperatures.
H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
I. Motor Enclosures:
7. Shall be the NEMA types as specified and/or shown on the drawings.
8. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the
environmental conditions where the motors are being installed.
Enclosure requirements for certain conditions are as follows:
a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
9. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
J. Special Requirements:
10. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
11. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
12. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
13. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
14. Motors utilized with variable frequency drives shall be rated
"inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
L. Energy-Efficient Motors (Motor Efficiencies) : All permanently wired polyphase motors of 746 Watts ( 1 HP ) or more shall meet the minimum
full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with openT drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum Premium Efficiencies Open Drip-Proof				Minimum Premium Efficiencies   Totally Enclosed Fan-Cooled			
$\begin{aligned} & \text { Rating } \\ & \text { kW (HP) } \end{aligned}$	$\begin{gathered} 1200 \\ \text { RPM } \end{gathered}$	$\begin{gathered} 1800 \\ \text { RPM } \end{gathered}$	$\begin{gathered} 3600 \\ \text { RPM } \end{gathered}$	$\begin{aligned} & \text { Rating } \\ & \text { kW (HP) } \end{aligned}$	$\begin{gathered} 1200 \\ \text { RPM } \end{gathered}$	$\begin{gathered} 1800 \\ \text { RPM } \end{gathered}$	$\begin{gathered} 3600 \\ \text { RPM } \end{gathered}$
0.746 (1)	82.5\%	85.5\%	77.0\%	0.746 (1)	82.5\%	85.5\%	77.0\%
1.12 (1.5)	86.5\%	86.5\%	84.0\%	1.12 (1.5)	87.5\%	86.5\%	84.0\%
1.49 (2)	87.5\%	86.5\%	85.5\%	1.49 (2)	88.5\%	86.5\%	85.5\%
2.24 (3)	88.5\%	89.5\%	85.5\%	2.24 (3)	89.5\%	89.5\%	86.5\%
3.73 (5)	89.5\%	89.5\%	86.5\%	3.73 (5)	89.5\%	89.5\%	88.5\%
5.60 (7.5)	90.2\%	91.0\%	88.5\%	5.60 (7.5)	91.0\%	91.7\%	89.5\%
7.46 (10)	91.7\%	91.7\%	89.5\%	7.46 (10)	91.0\%	91.7\%	90.2\%
11.2 (15)	91.7\%	93.0\%	90.2\%	11.2 (15)	91.7\%	92.4\%	91.0\%
14.9 (20)	92.4\%	93.0\%	91.0\%	14.9 (20)	91.7\%	93.0\%	91.0\%

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

## PART 3 - EXECUTION

### 3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

### 3.2 FIELD TESTS

A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

### 3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

### 3.4 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

### 3.5 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
B. Submit training plans and instructor qualifications in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS.

## SECTION 230541 <br> NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

### 1.1 DESCRIPTION

Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

### 1.2 RELATED WORK

A. Section 0330 53, (Short Form) CAST-IN-PLACE CONCRETE: Requirements for concrete inertia bases.
B. Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
C. Section 2322 13, STEAM and CONDENSATE HEATING PIPING: Requirements for flexible pipe connectors to reciprocating and rotating mechanical equipment.
D. Section 233100 , HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
E. SECTION 2305 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests.
F. SECTION 233700 , AIR OUTLETS and INLETS: noise requirements for $G-$ grilles.
G. SECTION 2321 23, HYDRONIC PUMPS: vibration isolation requirements for pumps.
H. SECTION 2334 00, HVAC FANS: sound and vibration isolation requirements for fans.
I. Section 230800 , COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

### 1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE in specification Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Noise Criteria:

1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35
Corridors (Public)	40


Lobbies, Waiting Areas	40
Offices, Large Open	40
Offices, Small Private	35
Shops	50

2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
3. An allowance, not to exceed 5 db , may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

### 1.4 SUBMITTALS

A. Submit in accordance with specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Vibration isolators:
a. Floor mountings
b. Hangers
c. Snubbers
d. Thrust restraints
2. Bases.
3. Acoustical enclosures.
C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) :

2009
.Fundamentals Handbook, Chapter 7, Sound and Vibration
C. American Society for Testing and Materials (ASTM):

A123/A123M-09...........Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b................Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength D2240-05(2010)..........Standard Test Method for Rubber Property Durometer Hardness
D. Manufacturers Standardization (MSS):

SP-58-2009..............Pipe Hangers and Supports-Materials, Design and Manufacture
E. Occupational Safety and Health Administration (OSHA):

29 CFR 1910.95..........Occupational Noise Exposure
F. American Society of Civil Engineers (ASCE):

ASCE 7-10 ...............Minimum Design Loads for Buildings and Other Structures.
G. American National Standards Institute / Sheet Metal and Air

Conditioning Contractor's National Association (ANSI/SMACNA):
001-2008................Seismic Restraint Manual: Guidelines for
Mechanical Systems, 3rd Edition.
H. International Code Council (ICC):

2009 IBC................International Building Code.
I. Department of Veterans Affairs (VA):

H-18-8 2010.............Seismic Design Requirements.

## PART 2 - PRODUCTS

### 2.1 GENERAL REQUIREMENTS

A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
E. Color code isolators by type and size for easy identification of capacity.

### 2.2 VIBRATION ISOLATORS

A. Floor Mountings:

1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
3. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. Isolators shall have a minimum seismic rating of one $G$.
4. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or
reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
5. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
6. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
7. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
8. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
9. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
C. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

### 2.3 BASES

A. Rails (Type R) : Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of $1 / 12$ of longest base
dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.

### 2.4 SOUND ATTENUATING UNITS

Refer to specification Section 233100 , HVAC DUCTS and CASINGS.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Vibration Isolation:

1. No metal-to-metal contact will be permitted between fixed and floating parts.
2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
4. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (l00 degrees F).
5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

### 3.2 ADJUSTING

A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
D. Adjust active height of spring isolators.
E. Adjust snubbers according to manufacturer's recommendations.
F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

### 3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN		
	$\begin{aligned} & \text { BASE } \\ & \text { TYPPE } \end{aligned}$	$\begin{aligned} & \hline \text { ISOL } \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \text { MIN } \\ \text { DEFL } \end{gathered}$	$\begin{aligned} & \text { BASE } \\ & \text { TYPPE } \end{aligned}$	$\begin{aligned} & \hline \text { ISOL } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { DEFL } \end{aligned}$	$\begin{aligned} & \text { BASE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { ISOL } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { DEFL } \end{aligned}$	$\begin{aligned} & \text { BASE } \\ & \text { TYPPE } \end{aligned}$	$\begin{aligned} & \text { ISOL } \\ & \text { TYPE } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { MIN } \\ \text { DEFL } \end{array}$	$\begin{aligned} & \text { BASE } \\ & \text { TYPPE } \end{aligned}$	$\begin{aligned} & \text { ISOL } \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \hline \text { MIN } \\ \text { DEFL } \end{gathered}$
PUMPS															
CLOSE UP TO   COUPLED $1-1 / 2$    HP	---	---	---	---	$\begin{aligned} & \hline \mathrm{D}, \mathrm{~L}, \\ & \mathrm{~W} \end{aligned}$	---	---	$\begin{aligned} & \hline \text { D, L, } \\ & \text { W } \end{aligned}$	---	---	$\begin{array}{\|l} \hline \text { D, L, } \\ \text { W } \end{array}$	---	---	$\begin{aligned} & \mathrm{D}, \mathrm{~L}, \\ & \mathrm{~W} \end{aligned}$	---
$\begin{aligned} & \hline 2 \text { HP } \\ & \& \\ & \text { OVER } \end{aligned}$	---	---	---	I	S	0.8	I	S	1.5	I	S	1.5	I	S	2.0
CENTRIFUGAL FANS															
UP TO 50 HP :															
UP TO 200 RPM	B	N	0.3	B	S	2.5	B	S	2.5	B	S	3.5	B	S	3.5
201 - 300 RPM	B	N	0.3	B	S	2.0	B	S	2.5	B	S	2.5	B	S	3.5
301 - 500 RPM	B	N	0.3	B	S	2.0	B	S	2.0	B	S	2.5	B	S	3.5
501 RPM \& OVER FLOOR MOUNTED:			0.3	B	S	2.0	B	S	2.0	B	S	2.0	B	S	2.5
UP THRU 5 HP	---	D	-	---	S	1.0									
7-1/2 HP \& OVER:															
UP TO 500 RPM	--	D	---	R	$\begin{aligned} & \text { S, } \\ & \text { THR } \end{aligned}$	1.5	R	$\begin{aligned} & \text { S, } \\ & \text { THR } \end{aligned}$	2.5	R	$\begin{aligned} & \mathrm{S}, \\ & \text { THR } \end{aligned}$	2.5	R	$\begin{aligned} & \mathrm{S}, \\ & \text { THR } \end{aligned}$	2.5


EQUIPMENT	ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN		
	BASE   TYPE	ISOL   TYPE	MIN DEFL	BASE   TYPE	ISOL   TYPE	MIN DEFL	BASE   TYPE	ISOL   TYPE	MIN DEFL	BASE   TYPE	ISOL   TYPE	MIN DEFL	BASE   TYPE	ISOL   TYPE	MIN DEFL
501 RPM \& OVER	---	D	---	---	$\begin{aligned} & S, \\ & \text { THR } \end{aligned}$	0.8	---	S, THR	0.8	R	S, THR	1.5	R	$\begin{aligned} & S, \\ & \text { THR } \end{aligned}$	2.0
CONDENSING UNITS															
ALL	---	SS	0.25	---	SS	0.75	---	SS	1.5	CB	SS	1.5	---	---	NA
IN-LINE CENTRIFUGAL AND VANE AXIAL FANS, FLOOR MOUNTED: (APR 9)															
UP THRU 50 HP:															
UP TO 300 RPM	---	D	---	R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM	---	D	---	R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - \& OVER	---	D	---	---	S	1.0	---	S	1.0	R	S	2.0	R	S	2.5

NOTES:
 position limit stops.

3. For separate chiller building on grade, pump isolators may be omitted.
4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
5. For projects in seismic areas, use only $S S$ \& $D S$ type isolators and snubbers.
6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
7. Suspended: Use "H" isolators of same deflection as floor mounted.

# SECTION 230593 <br> TESTING, ADJUSTING, AND BALANCING FOR HVAC 

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:

1. Planning systematic TAB procedures.
2. Design Review Report.
3. Systems Inspection report.
4. Duct Air Leakage test report.
5. Systems Readiness Report.
6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
7. Vibration and sound measurements.
8. Recording and reporting results.
B. Definitions:
9. Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
10. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
11. AABC: Associated Air Balance Council.
12. NEBB: National Environmental Balancing Bureau.
13. Hydronic Systems: Includes glycol-water systems.
14. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
15. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

### 1.2 RELATED WORK

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
B. Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
C. Section 2307 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Piping and Equipment Insulation.
D. Section 233600 , AIR TERMINAL UNITS: Terminal Units Performance.
E. Section 233100 , HVAC DUCTS AND CASINGS: Duct Leakage.
F. Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
G. Section 2382 16, AIR COILS
H. Section 238200 , CONVECTION HEATING AND COOLING UNITS
I. Section 2374 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS
J. Section 2334 00, HVAC FANS
K. Section 2321 23, HYDRONIC PUMPS
L. Section 2322 23, STEAM CONDENSATE PUMPS
M. Section 233700 , AIR OUTLETS AND INLETS
N. Section 2321 13, HYDRONIC PIPING
O. Section 230800 , COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training
P. Section 230512 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

### 1.3 QUALITY ASSURANCE

A. Refer to Articles, Quality Assurance and Submittals, in Section 2305 11, COMMON WORK RESULTS FOR HVAC, and Section 230800 , COMMISSIONING OF HVAC SYSTEMS.
B. Qualifications:

1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
2. The TAB agency shall be either a certified member of $A A B C$ or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Contracting Officer's Representative (COR) and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the $T A B$. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the $A A B C$ or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COR. The responsibilities would specifically include:
a. Shall directly supervise all TAB work.
b. Shall sign the $T A B$ reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the $T A B$ standard, $A A B C$ or NEBB.
c. Would follow all TAB work through its satisfactory completion.
d. Shall provide final markings of settings of all HVAC adjustment devices.
e. Permanently mark location of duct test ports.
5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by $A A B C$ or $N E B B$
C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
D. Tab Criteria:
6. One or more of the applicable $A A B C, ~ N E B B$ or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
7. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
b. Air terminal units (maximum values) : Minus 2 percent to plus 10 percent.
c. Minimum outside air: 0 percent to plus 10 percent.
d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
e. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
8. Systems shall be adjusted for energy efficient operation as described in PART 3.
9. Typical TAB procedures and results shall be demonstrated to the COR for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR) and one hydronic system (pumps and three coils) as follows:
a. When field TAB work begins.
b. During each partial final inspection and the final inspection for the project if requested by VA.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
C. For use by the COR staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
D. Submit Following for Review and Approval:

1. Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
2. Systems inspection report on equipment and installation for conformance with design.
3. Duct Air Leakage Test Report.
4. Systems Readiness Report.
5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

### 1.5 APPLICABLE PUBLICATIONS

A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE) :

2007 ...................HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter 47, Sound and Vibration Control
C. Associated Air Balance Council (AABC):
2002...................AABC National Standards for Total System Balance
D. National Environmental Balancing Bureau (NEBB):
$7^{\text {th }}$ Edition 2005 ........Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006 ........Procedural Standards for the Measurement of Sound and Vibration
$3^{\text {rd }}$ Edition 2009 ........Procedural Standards for Whole Building Systems Commissioning of New Construction
E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA) :
$3^{\text {rd }}$ Edition 2002 .........HVAC SYSTEMS Testing, Adjusting and Balancing

## PART 2 - PRODUCTS

### 2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

### 2.2 INSULATION REPAIR MATERIAL

See Section 2307 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

## PART 3 - EXECUTION

### 3.1 GENERAL

A. Refer to TAB Criteria in Article, Quality Assurance.
B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

### 3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the COR of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

### 3.3 SYSTEMS INSPECTION REPORT

A. Inspect equipment and installation for conformance with design.
B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for $T A B$ at the appropriate time.
C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

### 3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 233100 , HVAC DUCTS and CASINGS for TAB
agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

### 3.5 SYSTEM READINESS REPORT

A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to COR.
B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the COR.

### 3.6 TAB REPORTS

A. Submit an intermediate report for 25 percent of systems and equipment tested and balanced to establish satisfactory test results.
B. The TAB contractor shall provide raw data immediately in writing to the COR if there is a problem in achieving intended results before submitting a formal report.
C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the $T A B$ report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
D. Do not proceed with the remaining systems until intermediate report is approved by the COR.

### 3.7 TAB PROCEDURES

A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction air and water flow rate. Return existing areas outside the work area to pre constructed conditions.
D. Allow 14 days time in construction schedule for $T A B$ and submission of all reports for an organized and timely correction of deficiencies.
E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, and laboratory fume hoods and biological safety cabinets.

1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
2. Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 2305 11, COMMON WORK RESULTS FOR HVAC.
3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
4. Variable air volume (VAV) systems:
a. Coordinate TAB, including system volumetric controls, with Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
b. Section 233600 , AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).
c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
5. Record final measurements for air handling equipment performance data sheets.
F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
6. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
7. Primary-secondary (variable volume) systems: Coordinate TAB with Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
8. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

### 3.8 VIBRATION TESTING

A. Furnish instruments and perform vibration measurements as specified in Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 2305 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
B. Record initial measurements for each unit of equipment on test forms and submit a report to the COR. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The $T A B$ agency shall verify that the corrections are done and submit a final report to the COR.

### 3.9 SOUND TESTING

A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1. Take readings in rooms, approximately ten (10) percent of all rooms. The COR may designate the specific rooms to be tested.
B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by $A A B C$ or NEBB.
C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
D. Determine compliance with specifications as follows:
2. When sound pressure levels are specified, including the NC Criteria in Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
b. Measure octave band sound pressure levels with specified equipment "off."
c. Measure octave band sound pressure levels with specified equipment "on."
d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

| DIFFERENCE: | 0 | 1 | 2 | 3 | 4 | 5 to 9 | 10 or More |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FACTOR: | 10 | 7 | 4 | 3 | 2 | 1 | 0 |

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.
e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
2. When sound power levels are specified:
a. Perform steps 1.a. thru 1.d., as above.
b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 16 meters (50 feet) for sound level location.
3. Where sound pressure levels are specified in terms of $d B(A)$, measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the COR and the necessary sound tests shall be repeated.
F. Test readings for sound testing could go higher than 15 percent if determination is made by the COR based on the recorded sound data.

### 3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COR.

### 3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

### 3.12 PHASING

A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

### 3.13 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

-     - E N D - - -


## SECTION 230711

## HVAC AND BOILER PLANT INSULATION

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Field applied insulation for thermal efficiency and condensation control for

1. HVAC piping, ductwork and equipment.
2. Re-insulation of HVAC piping, ductwork and equipment, plumbing piping and equipment and boiler plant piping, breeching and stacks and equipment after asbestos abatement.

## B. Definitions

1. ASJ: All service jacket, white finish facing or jacket.
2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C ( 60 degrees $F$ ) or below.
4. Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, crawl spaces and pipe basements are not considered finished areas.
6. FSK: Foil-scrim-kraft facing.
7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handing media above 41 degrees C (105 degrees F).
8. Density: kg/m² kilograms per cubic meter (Pcf - pounds per cubic foot).
9. Runouts: Branch pipe connections up to $25-\mathrm{mm}$ (one-inch) nominal size to reheat coils for terminal units.
10. Thermal conductance: Heat flow rate through materials.
a. Flat surface: Watt per square meter (BTU per hour per square foot).
b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
11. Thermal Conductivity (k) : Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree $F$ temperature difference).
12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
13. HPS: High pressure steam (415 kPa [60 psig] and above).
14. HPR: High pressure steam condensate return.
15. MPS: Medium pressure steam (110 kPa [16 psig] thru $414 \mathrm{kPa}[59$ psig].
16. MPR: Medium pressure steam condensate return.
17. LPS: Low pressure steam (103 kPa [15 psig] and below).
18. LPR: Low pressure steam condensate gravity return.
19. PC: Pumped condensate.
20. GH: Hot glycol-water heating supply.
21. GHR: Hot glycol-water heating return.
22. R: Pump recirculation.
23. HW: Hot water.
24. RS: Refrigerant suction.
25. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

### 1.2 RELATED WORK

A. Section 0784 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
B. Section 2305 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
C. Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
D. Section 2321 23, HYDRONIC PUMPS
E. Section 2322 13, STEAM and CONDENSATE HEATING PIPING
F. Section 2322 23, STEAM CONDENSATE PUMPS
G. Section 232300 , REFRIGERANT PIPING: Requirements for refrigerant piping and fittings.
H. Section 2321 13, HYDRONIC PIPING and Section 2322 13, STEAM and CONDENSATE HEATING PIPING: Piping and equipment.
I. Section 2321 13, HYDRONIC PIPING: Glycol piping.
J. Section 233100 , HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.
K. Section 230800 , COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

### 1.3 QUALITY ASSURANCE

A. Refer to article QUALITY ASSURANCE, in Section 2305 11, COMMON WORK RESULTS FOR HVAC.
B. Criteria:

1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2., shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety FactoryMade Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
4.3.3.3.1 In no case shall the test temperature be below $121^{\circ} \mathrm{C}$ $\left(250^{\circ} \mathrm{F}\right)$.
4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of $1.5 \mathrm{~m}(5 \mathrm{ft})$ or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides
(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
2. Test methods: ASTM E84, UL 723, or NFPA 255.
3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and
condensation control insulation, no thickness adjustment need be made.
4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state. C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Shop Drawings:

1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
a. Insulation materials: Specify each type used and state surface burning characteristics.
b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
c. Insulation accessory materials: Each type used.
d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
e. Make reference to applicable specification paragraph numbers for coordination.
C. Samples:
2. Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
3. Each type of facing and jacket: Minimum size 100 mm (4 inches square).
4. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

### 1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed
instructions of manufacturers of adhesives, mastics and finishing cements.

### 1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
B. Federal Specifications (Fed. Spec.) :

L-P-535E (2)- 99........Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride Vinyl Acetate), Rigid.
C. Military Specifications (Mil. Spec.):

MIL-A-3316C (2)-90......Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation

MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier
MIL-C-20079H-87.........Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass
D. American Society for Testing and Materials (ASTM):

A167-99(2004)..........Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
B209-07................Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-05.................Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation

C449-07................Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement

C533-09................Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

C534-08................. Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C547-07.................Standard Specification for Mineral Fiber pipe Insulation

```
 C552-07................Standard Specification for Cellular Glass
 Thermal Insulation
 C553-08...............Standard Specification for Mineral Fiber
 Blanket Thermal Insulation for Commercial and
 Industrial Applications
 C585-09...............Standard Practice for Inner and Outer Diameters
 of Rigid Thermal Insulation for Nominal Sizes
 of Pipe and Tubing (NPS System) R (1998)
 C612-10...............Standard Specification for Mineral Fiber Block
 and Board Thermal Insulation
 C1126-04...............Standard Specification for Faced or Unfaced
 Rigid Cellular Phenolic Thermal Insulation
 C1136-10...............Standard Specification for Flexible, Low
 Permeance Vapor Retarders for Thermal
 Insulation
 D1668-97a (2006)........Standard Specification for Glass Fabrics (Woven
 and Treated) for Roofing and Waterproofing
 E84-10................Standard Test Method for Surface Burning
 Characteristics of Building
 Materials
 E119-09c..............Standard Test Method for Fire Tests of Building
 Construction and Materials
 E136-09b...............Standard Test Methods for Behavior of Materials
 in a Vertical Tube Furnace at 750 degrees C
 (1380 F)
E. National Fire Protection Association (NFPA):
 90A-09.................Standard for the Installation of Air
 Conditioning and Ventilating Systems
 96-08..................Standards for Ventilation Control and Fire
 Protection of Commercial Cooking Operations
 101-09................Life Safety Code
 251-06................Standard methods of Tests of Fire Endurance of
 Building Construction Materials
 255-06................Standard Method of tests of Surface Burning
 Characteristics of Building Materials
F. Underwriters Laboratories, Inc (UL):
```

                            UL Standard for Safety Test for Surface Burning
                                    Characteristics of Building Materials with
                                    Revision of 09/08
    G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS) :

SP58-2009..............Pipe Hangers and Supports Materials, Design, and Manufacture

## PART 2 - PRODUCTS

### 2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C612 (Board, Block), Class 1 or 2, density $48 \mathrm{~kg} / \mathrm{m}^{3}$ (3 pcf), $\mathrm{k}=$ 0.037 ( 0.26 ) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density $32 \mathrm{~kg} / \mathrm{m}^{3}(2$ pcf), $k=0.04$ (0.27) // at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, $k=0.037$ ( 0.26 ) at 24 degrees $C(75$ degrees $F)$, for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

### 2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

### 2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, $k=0.039$ ( 0.27 ) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

### 2.4 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance $=0.02$ or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
B. ASJ jacket shall be white kraft bonded to $0.025 \mathrm{~mm}(1 \mathrm{mil})$ thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for
painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity areas conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be $35 \mathrm{~cm}-\mathrm{kg}$ (30 inch-pounds) for interior locations and $92 \mathrm{~cm}-\mathrm{kg}$ ( 80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
E. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
F. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness $0.7 \mathrm{~mm}(0.03$ inches). Provide color matching vapor retarder pressure sensitive tape.
G. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm ( 0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of $0.6 \mathrm{~mm}(0.024)$ inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm ( 0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

### 2.5 REMOVABLE INSULATION JACKETS

A. Insulation and Jacket:

1. Non-Asbestos Glass mat, type E needled fiber.
2. Temperature maximum of $450^{\circ} \mathrm{F}$, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
4. Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

### 2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of $48 \mathrm{~kg} / \mathrm{m}^{3}(3.0 \mathrm{pcf})$.

Nominal Pipe Size and Accessories Material (Insert Blocks)

Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)
Up through 125 (5)	150 (6) long
150 (6)	150 (6) long

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of $48 \mathrm{~kg} / \mathrm{m}^{3}(3.0 \mathrm{pcf})$.

### 2.7 ADHESIVE, MASTIC, CEMENT

A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
G. Other: Insulation manufacturers' published recommendations.

### 2.8 MECHANICAL FASTENERS

A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
B. Staples: Outward clinching galvanized steel.
C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

### 2.9 REINFORCEMENT AND FINISHES

A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
E. Corner beads: $50 \mathrm{~mm}(2$ inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees $C$ ( 40 degrees $F$ ) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

### 2.10 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 078400 FIRESTOPPING.

### 2.11 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

## PART 3 - EXECUTION

### 3.1 GENERAL REQUIREMENTS

A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Contracting Officer's

Representative for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm ( 6 inches).
D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
E. Construct insulation on parts of equipment such as convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
H. Insulate PRVs, flow meters, and steam traps.
I. HVAC work not to be insulated:

1. Internally insulated ductwork and air handling units.
2. Relief air ducts (Economizer cycle exhaust air).
3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
4. Equipment: Expansion tanks, flash tanks, hot water pumps, steam condensate pumps.
5. In hot piping: Unions, flexible connectors, control valves, PRVs, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
6. Specialties:
a. Pressure reducing valves
b. Control valves-water and steam
c. Strainers under $65 \mathrm{~mm}(2-1 / 2$ inch) pipe size
d. Expansion bellows
e. Flexible connectors
J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
L. Firestop Pipe and Duct insulation:
7. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 078400 , FIRESTOPPING.
8. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
a. Pipe risers through floors
b. Pipe or duct chase walls and floors
c. Smoke partitions
d. Fire partitions
M. Freeze protection of above grade outdoor piping (over heat tracing tape) : $26 \mathrm{~mm}(10$ inch) thick insulation, for all pipe sizes $75 \mathrm{~mm}(3$ inches) and smaller and $25 \mathrm{~mm}(1 i n c h)$ thick insulation for larger pipes. Provide metal jackets for all pipes.
N. Provide vapor barrier jackets over insulation as follows:
9. All piping and ductwork exposed to outdoor weather.
10. All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity areas.
O. Provide metal jackets over insulation as follows:
11. All piping and ducts exposed to outdoor weather.
12. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

### 3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
2. Plain board:
a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, $6 \mathrm{~mm}(1 / 4$ inch) thick, trowel led to a smooth finish.
c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter ( 60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter ( 12 to 15 square feet per gallon) over the entire fabric surface.
d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct unlined air handling units and afterfilter housing.
b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
c. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ. a. Convertors, air separators, steam condensate pump receivers. b. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
B. Flexible Mineral Fiber Blanket:
5. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
6. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
7. Concealed supply air ductwork.
a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
b. Above ceilings for other than roof level: $40 \mathrm{~mm}\left(1 \frac{1}{2}\right.$ inch) thick insulation faced with FSK.
C. Molded Mineral Fiber Pipe and Tubing Covering:
8. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
9. Contractor's options for fitting, flange and valve insulation:
a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees $F$ ) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
10. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
C. Cellular Glass Insulation:
11. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
12. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.
D. Flexible Elastomeric Cellular Thermal Insulation:
13. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
14. Pipe and tubing insulation:
a. Use proper size material. Do not stretch or strain insulation.
b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 2305 11, COMMON WORK RESULTS FOR HVAC.
c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.

### 3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

### 3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal Pipe Size Millimeters (Inches)			
Operating Temperature Range/Service	Insulation Material	Less   than $25 \text { (1) }$	$\begin{aligned} & 25-32 \\ &\left(1-1 \frac{1 / 4}{4}\right) \end{aligned}$	$\begin{aligned} & 38-75 \\ & \left(1 \frac{1}{2}-3\right) \end{aligned}$	$\begin{aligned} & 100 \quad(4) \\ & \text { and Above } \end{aligned}$
122-177 degrees C   (251-350 degrees F)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)


(HPS, MPS)					
100-121 degrees C   (212-250 degrees F)   (HPR, MPR, LPS, vent   piping from PRV   Safety Valves,   Condensate receivers and flash tanks)	Mineral Fiber   (Above ground piping only)	$\begin{aligned} & 62 \\ & (2.5) \end{aligned}$	62 (2.5)	75 (3.0)	75 (3.0)
38-94 degrees C   (100-200 degrees F)   (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	$\begin{aligned} & 38 \\ & (1.5) \end{aligned}$	38 (1.5)	50 (2.0)	50 (2.0)
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible   Elastomeric   Cellular   Thermal (Above ground piping only)	$\begin{aligned} & 38 \\ & (1.5) \end{aligned}$	38 (1.5)	38 (1.5)	38 (1.5)

## SECTION 230800

## COMMISSIONING OF HVAC SYSTEMS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. The requirements of this Section apply to all sections of Division 23.
B. This project will have selected building systems commissioned.

### 1.2 RELATED WORK

A. Section 010000 GENERAL REQUIREMENTS.
B. Section 013323 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

### 1.3 SUMMARY

A. This Section includes requirements for commissioning the HVAC systems, subsystems and equipment.
B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.

### 1.4 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in this Division is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
B. The following HVAC systems will be commissioned:

1. Air Handling Systems (including terminal units and energy recovery units)
2. Air Handling Systems (Fans, motors, Variable Speed Drives, cooling coils and control valves, heating coils and control valves, filters, dampers, safeties such as smoke detectors or freezestats and damper end switches, controls, gages, and vibration isolation).
3. Exhaust Fans (Fan, motor, Variable Speed Drives, controls and safeties).
4. Direct Digital Control System (BACnet or similar Local Area Network (LAN), Operator Work Station hardware and software, building controller hardware and software, terminal unit controller hardware and software, all sequences of operation, system accuracy and response time).
5. Computer Room Air Conditioning Systems (CRAC units - including fans, motors, Variable Speed Drives, cooling coils and control valves,
heating coils and control valves, humidifiers, compressors and liquid-cooled condensers, filters, safeties, controls, gages, vibration isolation, condensate pumps, water/leak detection system and alarms, and shunt trip shut down).

### 1.5 SUBMITTALS

A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 013323 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
B. The commissioning process requires Submittal review simultaneously with engineering review.

## PART 2 - PRODUCTS (NOT USED)

## PART 3 - EXECUTION

### 3.1 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission.

### 3.2 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 010000 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor
tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

### 3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Contracting Officer's Representative (COR). The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed.

### 3.4 TRAINING OF VA PERSONNEL

A. Training of the $V^{\prime}$ 's operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans.

# SECTION 230923 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC 

## PART 1 - GENERAL

### 1.1 DESCRIPTION

1. A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty. The direct-digital control system(s) shall consist of highspeed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance,

Warranty, specified services and items required for complete and fully functional Controls Systems.
4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
5. The control system shall tie into the existing system and its Engineering Control Center(s) and the control system shall accommodate the existing system web-based users, and the access to the system should be limited only by operator password.
B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:

1. Control valves.
2. Flow switches.
3. Flow meters.
4. Sensor wells and sockets in piping.
5. Terminal unit controllers.
C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
6. Refrigerant leak detection system.
7. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in
writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
8. Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
9. Unitary HVAC equipment, split systems controls. These include:
a. Discharge temperature control.
b. Economizer control.
c. Flowrate control.
d. Setpoint reset.
e. Time of day indexing.
f. Status alarm.
10. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
11. The following systems have limited control (as individually noted below) from the ECC:
a. Constant temperature rooms: temperature out of acceptable range and status alarms.
E. Responsibility Table:

Work/Item/System	Furnish	Install	LOW Voltage Wiring	Line Power
Control system low voltage and communication wiring	230923	230923	230923	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	230923	23	230923	16
LAN conduits and raceway	230923	230923	N/A	N/A
Automatic dampers (not furnished with equipment)	230923	23	N/A	N/A
Automatic damper actuators	230923	230923	230923	230923
Manual valves	23	23	N/A	N/A
Automatic valves	230923	23	230923	230923
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	230923	23	N/A	N/A


Work/Item/System	Furnish	Install	LOW Voltage Wiring	Line Power
Current Switches	230923	230923	230923	N/A
Control Relays	230923	230923	230923	N/A
Power distribution system monitoring interfaces	230923	230923	230923	26
All control system nodes, equipment, housings, enclosures and panels.	230923	230923	230923	26
Smoke detectors	283100	283100	283100	283100
Fire Dampers	23	23	N/A	N/A
Water treatment system	23	23	23	26
VFDs	230923	26	230923	26
Computer Room A/C Unit field-mounted controls	23	23	16	26
Control system interface with CRU A/C controls	230923	230923	230923	26
CRU A/C unit controls interface with control system	23	230923	230923	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	230923	28
Starters, HOA switches	23	23	N/A	26

F. This facility's existing direct-digital control system is manufactured by automated logic. The existing system's top-end communications is via. The existing system's ECC and top-end controllers were installed in. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/
verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.

1. The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
4. Responsibility Table:

Item/Task	Section   23 09 23   contactor	Control   system   integrator	VA
ECC expansion		X	
ECC programming		X	
Devices, controllers, control panels \& equipment	X		
Point addressing: all hardware \& software points   including setpoint, calculated point, data   point(analog/ binary), and reset schedule point	X		
Point mapping	X		
Network Programming	X	X	
ECC Graphics	X		
Controller programming and sequences	X		
Integrity of LAN communications	X	X	
Electrical wiring		X	
Operator system training		X	
LAN connections to devices	X		
LAN connections to ECC		X	
IP addresses			
Overall system verification			
Controller and LAN system verification			

H. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

### 1.2 RELATED WORK

A. Section 2321 13, Hydronic Piping.
B. Section 2322 13, Steam and Condensate Heating Piping.
C. Section 233100 , HVAC Ducts and Casings.
D. Section 233600 , Air Terminal Units.
E. Section 2374 13, Packaged, Outdoor, Central-Station Air-Handling Units.
F. Section 2381 23, Computer-Room Air-Conditioners.
G. Section 2605 11, Requirements for Electrical Installations.
H. Section 2605 19, Low-Voltage Electrical Power Conductors and Cables.
I. Section 2605 26, Grounding and Bonding for Electrical Systems.
J. Section 2605 33, Raceway and Boxes for Electrical Systems.
K. Section 2627 26, Wiring Devices.
L. Section 2629 11, Motor Starters.
M. Section 283100 , Fire Detection and Alarm.

### 1.2 DEFINITION

A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
B. ARCNET: ANSI/ATA 878.1 - Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
E. BACnet/IP: Annex $J$ of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
J. BACnet Interoperability Building Blocks (BIBBs): BACnet

Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate $=78,000 \mathrm{Baud} / \mathrm{sec}$ is $78,000 \mathrm{bits} / \mathrm{sec}$, if one signal change = 1 bit).
M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (BOWS), BACnet Building Controllers ( $B-B C$ ), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.

AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
BB. Engineering Control Center (ECC) : The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.

DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.

EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.

FF. GIF: Abbreviation of Graphic interchange format.
GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.

KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.

LL. Local Area Network (LAN) : A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.

NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twistedpair wiring for relatively low speed and low cost communication.

OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.

PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.

QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.

SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.

TT. Operating system (OS): Software, which controls the execution of computer application programs.

UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.

VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.

WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.

YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.

ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.

AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.

BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
CCC. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

### 1.4 QUALITY ASSURANCE

A. Criteria:

1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five
(5) years, and necessary test and diagnostic equipment to support the control systems.
5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
B. Codes and Standards:
7. All work shall conform to the applicable Codes and Standards.
8. Electronic equipment shall conform to the requirements of $F C C$ Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

### 1.5 PERFORMANCE

A. The system shall conform to the following:

1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two seconds.
4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	$\pm 0.5^{\circ} \mathrm{C}\left( \pm 1^{\circ} \mathrm{F}\right)$
Ducted air temperature	$\pm 0.5^{\circ} \mathrm{C} \quad\left[ \pm 1^{\circ} \mathrm{F}\right]$
Outdoor air temperature	$\pm 1.0^{\circ} \mathrm{C} \quad\left[ \pm 2^{\circ} \mathrm{F}\right]$
Water temperature	$\pm 0.5^{\circ} \mathrm{C} \quad\left[ \pm 1^{\circ} \mathrm{F}\right]$
Air flow (terminal)	$\pm 10 \%$ of reading
Air flow (measuring stations)	$\pm 5 \%$ of reading
Air pressure (ducts)	$\pm 25$ Pa [ $\left.\pm 0.1^{\circ} \mathrm{w} . \mathrm{C}.\right]$
Water pressure	$\pm 2 \%$ of full scale *Note 1
Electrical Power	$\pm 0.5 \%$ of reading

Note 1: for both absolute and differential pressure
10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	$\pm 50 \mathrm{~Pa}$ ( $\pm 0.2$ in. w.g.)	$0-1.5 \mathrm{kPa}$ ( $0-6 \mathrm{in} . \mathrm{w} . \mathrm{g}$.
Air Pressure	$\pm 3 \mathrm{~Pa}( \pm 0.01$ in. w.g.)	$\begin{gathered} -25 \text { to } 25 \mathrm{~Pa} \\ (-0.1 \text { to } 0.1 \text { in. w.g.) } \end{gathered}$
Airflow	$\pm 10 \%$ of full scale	
Space Temperature	$\pm 1.0^{\circ} \mathrm{C} \quad\left( \pm 2.0^{\circ} \mathrm{F}\right)$	
Duct Temperature	$\pm 1.5^{\circ} \mathrm{C} \quad\left( \pm 3^{\circ} \mathrm{F}\right)$	
Humidity	$\pm 5 \% \mathrm{RH}$	
Fluid Pressure	$\pm 10 \mathrm{kPa}( \pm 1.5 \mathrm{psi})$	$0-1 \mathrm{MPa}$ (1-150 psi)
Fluid Pressure	$\pm 250 \mathrm{~Pa}$ ( $\pm 1.0$ in. w.g.)	$\begin{gathered} 0-12.5 \mathrm{kPa} \\ (0-50 \text { in. w.g.) } \\ \text { differential } \end{gathered}$

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

### 1.6 WARRANTY

A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

### 1.7 SUBMITTALS

A. Submit shop drawings in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Manufacturer's literature and data for all components including the following:

1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
3. Control dampers and control valves schedule, including the size and pressure drop.
4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
6. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
7. Color prints of proposed graphics with a list of points for display.
8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
11. Riser diagrams of wiring between central control unit and all control panels.
12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
E. As Built Control Drawings:
15. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
16. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
17. Furnish one (1) CD-ROM in CAD DWG and/or. DXF format for the drawings noted in subparagraphs above.
F. Operation and Maintenance (O/M) Manuals):
18. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 010000 , GENERAL REQUIREMENTS.
19. Include the following documentation:
a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
d. Complete troubleshooting procedures and guidelines for all systems.
e. Complete operating instructions for all systems.
f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
G. Submit Performance Report to COR prior to final inspection.

### 1.8 INSTRUCTIONS

A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 010000 , GENERAL REQUIREMENTS, and as noted below.

1. First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test
period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
4. Training shall be given by direct employees of the controls system subcontractor.

### 1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to $35^{\circ} \mathrm{C}\left(65\right.$ to $\left.90^{\circ} \mathrm{F}\right)$ at a relative humidity of 20 to $80 \%$ non-condensing.
B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.150^{\circ} \mathrm{F}\right)$.
C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

### 1.10 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

Standard 135-10.........BACNET Building Automation and Control Networks
C. American Society of Mechanical Engineers (ASME):

B16.18-01..............Cast Copper Alloy Solder Joint Pressure Fittings.
B16.22-01...............Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
D. American Society of Testing Materials (ASTM): B32-08..................Standard Specification for Solder Metal B88-09.................Standard Specifications for Seamless Copper Water Tube

```
 B88M-09...............Standard Specification for Seamless Copper
 Water Tube (Metric)
 B280-08...............Standard Specification for Seamless Copper Tube
 for Air-Conditioning and Refrigeration Field
 Service
 D2737-03...............Standard Specification for Polyethylene (PE)
 Plastic Tubing
E. Federal Communication Commission (FCC):
 Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency
 Devices.
F. Institute of Electrical and Electronic Engineers (IEEE):
 802.3-11..............Information Technology-Telecommunications and
 Information Exchange between Systems-Local and
 Metropolitan Area Networks- Specific
 Requirements-Part 3: Carrier Sense Multiple
 Access with Collision Detection (CSMA/CD)
 Access method and Physical Layer Specifications
G. National Fire Protection Association (NFPA):
 70-11...................National Electric Code
 90A-09................Standard for Installation of Air-Conditioning
 and Ventilation Systems
H. Underwriter Laboratories Inc (UL):
94-10.................Tests for Flammability of Plastic Materials for
 Parts and Devices and Appliances
294-10................Access Control System Units
486A/486B-10...........Wire Connectors
555S-11................Standard for Smoke Dampers
916-10.................Energy Management Equipment
1076-10................Proprietary Burglar Alarm Units and Systems
```


## PART 2 - PRODUCTS

### 2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

### 2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major
manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
3. The networks shall, at minimum, comprise, as necessary, the following:
a. A fixed ECC and a portable operator's terminal.
b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
e. Addressable elements, sensors, transducers and end devices.
f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
g. Other components required for a complete and working Control Systems as specified.
B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
C. Network Architecture
4. The Controls communication network shall utilize BACnet
communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of $100 \mathrm{Mb} / \mathrm{sec}$.
5. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
6. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
D. Third Party Interfaces:
7. The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
8. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware,
software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
E. Servers:
9. Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
10. Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
11. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
12. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

### 2.3 COMMUNICATION

A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.

1. The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
B. Each controller shall have a communication port for connection to an operator interface.
C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
2. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
3. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

### 2.4 ENGINEERING CONTROL CENTER (ECC)

A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.

1. ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive.
a. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store:
1) All required operator workstation software
2) A DDC database at least twice the size of the delivered system database
3) One year of trend data based on the points specified to be trended at their specified trend intervals.
b. Real-time clock:
4) Accuracy: Plus or minus 1 minute per month.
5) Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
6) Clock shall function for one year without power.
7) Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
d. Parallel port: Enhanced.
e. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.
f. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm .
g. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
h. Mouse: Standard, compatible with installed software.
i. Removable disk storage: Include the following, each with appropriate controller:
8) Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
j. Network interface card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100 Base-FX Ethernet NIC with an SC/ST connector.
2. Cable modem: 42.88 MBit/s, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS $1.1 / 1.0$ standards. Provide Ethernet or USB connectivity.
3. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
4. Auto-dial modem: 56,600 bps, full duplex for asynchronous
communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v. 42 Appendix VI for error correction, and ITU-T v. 42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.
5. Audible Alarm: Manufacturer's standard.
6. Printers:
a. Provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the ECC through a USB interface.
1) If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
2) RAM: 512 MB , minimum.
3) Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white).
4) Paper Handling: Automatic sheet feeder with 250 -sheet x 8.5 inch x 11 inch paper cassette and with automatic feed.
b. Provide a dedicated black/white tractor-feed dot matrix printer for status/alarm message printing, minimum 10 characters per inch, minimum 160 characters per second, connected to the ECC through a USB interface.
5) Paper: One box of 2000 sheets of $8-1 / 2 \times 11$ multi-fold type printer paper.
7. RS-232 ASCII Interface
a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
1) NFPA 70, Type CMP.
2) Flame Resistance: NFPA 262, Flame Test.
8. Self-contained uninterruptible power supply (UPS):
a. Size: Provide a minimum of six hours of operation of ECC equipment, including two hours of alarm printer operation.
b. Batteries: Sealed, valve regulated, recombinant, lead calcium.
c. Accessories:
1) Transient voltage suppression.
2) Input-harmonics reduction.
3) Rectifier/charger.
4) Battery disconnect device.
5) Static bypass transfer switch.
6) Internal maintenance bypass/isolation switch.
7) External maintenance bypass/isolation switch.
8) Output isolation transformer.
9) Remote UPS monitoring.
10) Battery monitoring.
11) Remote battery monitoring.

## D. ECC Software:

1. Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows XP, Windows System 7, Linux, and UNIX.
5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.
6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics
generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
9. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and other Windows based software programs, while concurrently on-line system alarms and monitoring information.
11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a
project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
a. Point database editing, storage and downloading of controller databases.
b. Scheduling and override of building environmental control systems.
c. Collection and analysis of historical data.
d. Alarm reporting, routing, messaging, and acknowledgement.
e. Definition and construction of dynamic color graphic displays.
f. Real-time graphical viewing and control of environment.
g. Scheduling trend reports.
h. Program editing.
i. Operating activity log and system security.
j. Transfer data to third party software.
14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
a. Dynamic color graphics and graphic control.
b. Alarm management.
c. Event scheduling.
d. Dynamic trend definition and presentation.
e. Program and database editing.
f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.
15. Graphic Displays:
a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall
permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.
16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
a. A general list of all selected points in the network.
b. List of all points in the alarm.
c. List of all points in the override status.
d. List of all disabled points.
e. List of all points currently locked out.
f. List of user accounts and password access levels.
g. List of weekly schedules.
h. List of holiday programming.
i. List of limits and dead bands.
j. Custom reports.
k. System diagnostic reports, including, list of digital controllers on the network.
l. List of programs.
17. ASHRAE Standard 147 Report: Provide a daily report that shows the operating condition of each chiller as recommended by ASHRAE

Standard 147. At a minimum, this report shall include:
a. Chilled water (or other secondary coolant) inlet and outlet temperature
b. Chilled water (or other secondary coolant) flow
c. Chilled water (or other secondary coolant) inlet and outlet pressures
d. Evaporator refrigerant pressure and temperature
e. Condenser refrigerant pressure and liquid temperature
f. Condenser water inlet and outlet temperatures
g. Condenser water flow
h. Refrigerant levels
i. Oil pressure and temperature
j. Oil level
k. Compressor refrigerant discharge temperature
l. Compressor refrigerant suction temperature
m. Addition of refrigerant
n. Addition of oil
o. Vibration levels or observation that vibration is not excessive
p. Motor amperes per phase
q. Motor volts per phase
r. PPM refrigerant monitor level
s. Purge exhaust time or discharge count
t. Ambient temperature (dry-bulb and wet-bulb)
u. Date and time logged
18. Electrical, Gas, and Weather Reports
a. Electrical Meter Report: Provide a monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each building meter.
b. Provide an annual (12-month) summary report showing the monthly electrical consumption and peak demand with time and date stamp for each meter.
c. Gas Meter Report: Provide a monthly report showing the daily natural gas consumption for each meter. Provide an annual (12month) report that shows the monthly consumption for each meter.
d. Weather Data Report: Provide a monthly report showing the daily minimum, maximum, and average outdoor air temperature, as well as the number of heating and cooling degree-days for each day. Provide an annual (12-month) report showing the minimum, maximum, and average outdoor air temperature for the month, as well as the number of heating and cooling degree-days for the month.
19. Scheduling and Override:
a. Provide override access through menu selection from the graphical interface and through a function key.
b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:

1) Weekly schedules.
2) Zone schedules, minimum of 100 zones.
3) Scheduling up to 365 days in advance.
4) Scheduled reports to print at workstation.
20. Collection and Analysis of Historical Data:
a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.
21. Alarm Management:
a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
22. Remote Communications: The system shall have the ability to dial out in the event of an alarm. Receivers shall include operator workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself.
23. System Configuration:
a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all other network devices to allow the development of global control strategies.
b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.

### 2.5 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

### 2.6 NETWORK AND DEVICE NAMING CONVENTION

A. Network Numbers

1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
2. The network numbers are thus formed as follows: "Net \#" = "FFFNN" where:
a. FFF = Facility code (see below)
b. NN $=$ 00-99 This allows up to 100 networks per facility or
building
B. Device Instances
3. BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev \#" = "FFFNNDD" where
a. FFF and $N$ are as above and
b. DD $=00-99$, this allows up to 100 devices per network.
4. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number $N$ and the device number D exceed 4 digits.
5. Facility code assignments:
6. 000-400 Building/facility number
7. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
C. Device Names
8. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building \#123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

### 2.7 BACNET DEVICES

A. All BACnet Devices - controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device

Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.

1. BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

### 2.8 CONTROLLERS

A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.

1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
4. Controllers that perform scheduling shall have a real-time clock.
5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
a. assume a predetermined failure mode, and
b. generate an alarm notification.
6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
7. Communication.
a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
11. The controller shall be able to operate at $90 \%$ to $110 \%$ of nominal voltage rating and shall perform an orderly shutdown below 80\% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
12. Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
13. Each B-ASC will contain sufficient I/O capacity to control the target system.
14. Communication.
a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
15. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
16. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
17. Immunity to power and noise. Controllers shall be able to operate at $90 \%$ to $110 \%$ of nominal voltage rating and shall perform an orderly shutdown below 80\%. Operation shall be protected against electrical noise of $5-120 \mathrm{~Hz}$ and from keyed radios up to 5 W at 1 m ( 3 ft ).
18. Transformer. Power supply for the ASC must be rated at a minimum of $125 \%$ of ASC power consumption and shall be of the fused or current limiting type.
C. Direct Digital Controller Software
19. The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
20. All points shall be identified by up to 30 -character point name and 16-character point descriptor. The same names shall be used at the ECC.
21. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
22. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
23. All DDC control loops shall be able to utilize any of the following control modes:
a. Two position (on-off, slow-fast) control.
b. Proportional control.
c. Proportional plus integral (PI) control.
d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program. e. Automatic tuning of control loops.
24. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
25. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
a. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler
relief, return, and outdoors dampers. If the outdoor air dry bulb temperature falls below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
c. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
d. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
1) Time, day.
2) Commands such as on, off, auto.
3) Time delays between successive commands.
4) Manual overriding of each schedule.
5) Allow operator intervention.
f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
h. Maintenance Management (PM) : The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

### 2.9 SENSORS (AIR, WATER AND STEAM)

A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.

1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
d. Wire: Twisted, shielded-pair cable.
e. Output Signal: 4-20 ma.
C. Static Pressure Sensors: Non-directional, temperature compensated.
2. 4-20 ma output signal.
3. 0 to 5 inches $w g$ for duct static pressure range.
4. 0 to 0.25 inch $w g$ for Building static pressure range.
D. Water flow sensors:
5. Performance characteristics:
a. Ambient conditions: $-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$, 5 to $100 \%$ humidity.
b. Operating conditions: $850 \mathrm{kPa}(125 \mathrm{psig}), 0^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right.$ to $\left.250^{\circ} \mathrm{F}\right), 0.15$ to 12 m per second ( 0.5 to 40 feet per second) velocity.
c. Nominal range (turn down ratio): 10 to 1.
d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier.
e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
f. Ambient temperature effects, less than 0.005 percent calibrated span per ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ temperature change.
g. RFI effect - flow meter shall not be affected by RFI.
h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
E. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

### 2.10 CONTROL CABLES

A. General:

1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 270526 and 260526.
2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
3. Minimize the radiation of $R F$ noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less. B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 260521.
C. Copper digital communication cable between the ECC and the B-BC and BAAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not
less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 271500.
7. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, $62.5 / 125$ micron for multimode or $10 / 125$ micron for singlemode micron with $S C$ or $S T$ connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 271500. Fiber-optic cable shall be suitable for use with the $100 \mathrm{Base}-\mathrm{FX}$ or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

### 2.11 THERMOSTATS AND HUMIDISTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have polished or brushed aluminum finish, setpoint range and temperature display and external adjustment:

1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
d. Battery replacement without program loss.
B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

### 2.12 FINAL CONTROL ELEMENTS AND OPERATORS

A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.

1. Leakage: maximum leakage in closed position shall not exceed $7 \mathrm{~L} / \mathrm{S}$ (15 CFMs) differential pressure for outside air and exhaust dampers and $200 \mathrm{~L} / \mathrm{S} /$ square meter ( $40 \mathrm{CFM} / \mathrm{sq}$. ft.) at 50 mm (2 inches) differential pressure for other dampers.
2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
4. Bearing shall be nylon, bronze sleeve or ball type.
5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
6. Maximum air velocity and pressure drop through free area the dampers:
a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
b. Duct mounted damper: 600 meter per minute (2000 fpm).
c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 233100 , HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
E. Control Valves:
7. Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
8. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
9. Valves 60 mm (2 $1 / 2$ inches) and larger shall be bronze or iron body with flanged connections.
10. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees $F$ ), which shall have stainless steel seats.
11. Flow characteristics:
a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
c. Two-way 2-position valves shall be ball, gate or butterfly type.
12. Maximum pressure drop:
a. Two position steam control: 20 percent of inlet gauge pressure.
b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
13. Two position water valves shall be line size.
F. Damper and Valve Operators and Relays:
14. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque
to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
15. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque. a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
16. See drawings for required control operation.

### 2.13 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
B. Air Flow Measuring Station -- Electronic Thermal Type:

1. Air Flow Sensor Probe:
a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area
segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
2. Air Flow Sensor Grid Array:
a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
3. Electronics Panel:
a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
b. Electronics Panel shall be A/C powered 120 VAC and shall have the capability to transmit signals of $0-5 \mathrm{VDC}, 0-10$ VCD or $4-20 \mathrm{ma}$ for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees $F$. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output
signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
d. Electronics Panel shall have the following:
1) Minimum of $12-$ bit $A / D$ conversion.
2) Field adjustable digital primary output offset and gain.
3) Airflow analog output scaling of 100 to 10,000 FPM.
4) Temperature analog output scaling from $-45^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-50^{\circ} \mathrm{F}\right.$ to $\left.160^{\circ} \mathrm{F}\right)$.
5) Analog output resolution (full scale output) of $0.025 \%$.
e. All readings shall be in I.P. units.
4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density	
Area (sq.ft.)	Qty. Sensors
$<=1$	2
$>1$ to $<4$	4
4 to $<8$	6
8 to $<12$	8
12 to $<16$	12
$>=16$	16

a. Complete installation shall not exhibit more than $\pm 2.0 \%$ error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within $\pm 0.25 \%$.
C. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:

1. Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional,
and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
D. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.
E. Airflow Synchronization:
5. Systems shall consist of an air flow measuring station for each supply and return duct, the $C U$ and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of $\pm 10 \%$. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the $C U$ such that the resultant signal is a true representation of total flow.
6. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. General:

1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to for resolution before proceeding for installation.
2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
3. Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
7. Install equipment level and plum.
B. Electrical Wiring Installation:
8. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 2605 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
9. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
10. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical
specifications. Where low voltage (less than 50 volt) power is
required, provide suitable Class B transformers.
11. Install all system components in accordance with local Building Code and National Electric Code.
a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
12. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
13. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
14. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
C. Install Sensors and Controls:
15. Temperature Sensors:
a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
b. Calibrate sensors to accuracy specified, if not factory calibrated.
c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter ( 5.0 feet) above the finished floor.
e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
g. All pipe mounted temperature sensors shall be installed in wells.
$h$. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
16. Pressure Sensors:
a. Install duct static pressure sensor tips facing directly downstream of airflow.
b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
c. Install snubbers and isolation valves on steam pressure sensing devices.
17. Actuators:
a. Mount and link damper and valve actuators according to manufacturer's written instructions.
b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
18. Flow Switches:
a. Install flow switch according to manufacturer's written instructions.
b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
c. Assure correct flow direction and alignment.
d. Mount in horizontal piping-flow switch on top of the pipe.
D. Installation of network:
19. Ethernet:
a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the $B-B C$ and the $B-A A C$ controllers.
20. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
E. Installation of digital controllers and programming:
21. Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
22. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
23. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
24. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
25. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

### 3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
B. Validation

1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
C. Demonstration
3. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
4. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
5. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
6. The following witnessed demonstrations of field control equipment shall be included:
a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
c. Demonstrate the software ability to edit the control program offline.
d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
7. Witnessed demonstration of ECC functions shall consist of:
a. Running each specified report.
b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
d. Execute digital and analog commands in graphic mode.
e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
f. Demonstrate EMS performance via trend logs and command trace.
g. Demonstrate scan, update, and alarm responsiveness.
h. Demonstrate spreadsheet/curve plot software, and its integration with database.
i. Demonstrate on-line user guide, and help function and mail facility.
j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
l. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

## SECTION 232113 HYDRONIC PIPING

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Water piping to connect HVAC equipment, including the following:

1. Heating hot water and drain piping.
2. Extension of domestic water make-up piping.
3. Glycol-water piping.

### 1.2 RELATED WORK

A. Section 010000 , GENERAL REQUIREMENTS.
B. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
C. Section 0330 53, CAST-IN-PLACE CONCRETE.
D. Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
E. Section 2321 23, HYDRONIC PUMPS: Pumps.
F. Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Piping insulation.
G. Section 2323 00, REFRIGERANT PIPING: Refrigerant piping and refrigerants.
H. Section 238200 , CONVECTION HEATING AND COOLING UNITS: VAV and CV units.
I. Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

### 1.3 QUALITY ASSURANCE

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.

1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Pipe and equipment supports.
2. Pipe and tubing, with specification, class or type, and schedule.
3. Pipe fittings, including miscellaneous adapters and special fittings.
4. Flanges, gaskets and bolting.
5. Grooved joint couplings and fittings.
6. Valves of all types.
7. Strainers.
8. Flexible connectors for water service.
9. Pipe alignment guides.
10. Expansion joints.
11. Expansion compensators.
12. All specified hydronic system components.
13. Water flow measuring devices.
14. Gages.
15. Thermometers and test wells.
16. Electric heat tracing systems.
C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
17. Heat Exchangers (Water to Water)
18. Air separators.
19. Expansion tanks.
D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
F. As-Built Piping Diagrams: Provide drawing as follows for heating hot water system and other piping systems and equipment.
20. One complete set of reproducible drawings.
21. One complete set of drawings in electronic Autocad and pdf format.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.

```
B. American Society of Mechanical Engineers/American National Standards
 Institute, Inc. (ASME/ANSI):
 B1.20.1-83(R2006).......Pipe Threads, General Purpose (Inch)
 B16.4-06...............Gray Iron Threaded FittingsB16.18-01 Cast
 Copper Alloy Solder joint Pressure fittings
 B16.23-02.............Cast Copper Alloy Solder joint Drainage
 fittings
B40.100-05.............Pressure Gauges and Gauge Attachments
C. American National Standards Institute, Inc./Fluid Controls Institute
 (ANSI/FCI):
 70-2-2006..............Control Valve Seat Leakage
D. American Society of Mechanical Engineers (ASME):
 B16.1-98..............Cast Iron Pipe Flanges and Flanged Fittings
 B16.3-2006.............Malleable Iron Threaded Fittings: Class 150 and
 300
 B16.4-2006.............Gray Iron Threaded Fittings: (Class 125 and
 250)
 B16.5-2003.............Pipe Flanges and Flanged Fittings: NPS 1/2
 through NPS 24 Metric/Inch Standard
 B16.9-07................Factory Made Wrought Butt Welding Fittings
 B16.11-05..............Forged Fittings, Socket Welding and Threaded
 B16.18-01.............Cast Copper Alloy Solder Joint Pressure
 Fittings
 B16.22-01.............Wrought Copper and Bronze Solder Joint Pressure
 Fittings.
 B16.24-06..............Cast Copper Alloy Pipe Flanges and Flanged
 Fittings
 B16.39-06..............Malleable Iron Threaded Pipe Unions
 B16.42-06..............Ductile Iron Pipe Flanges and Flanged Fittings
 B31.1-08...............Power Piping
E. American Society for Testing and Materials (ASTM):
A47/A47M-99 (2004)......Ferritic Malleable Iron Castings
A53/A53M-07............Standard Specification for Pipe, Steel, Black
 and Hot-Dipped, Zinc-Coated, Welded and
 Seamless
A106/A106M-08..........Standard Specification for Seamless Carbon
Steel Pipe for High-Temperature Service
```

	for Valves, Flanges, and Pipe Fittings
A183-03	Standard Specification for Carbon Steel Track Bolts and Nuts
A216/A216M-08	Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service
A234/A234M-07	Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
A307-07	Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength
A536-84 (2004)	Standard Specification for Ductile Iron Castings
A615/A615M-08	Deformed and Plain Carbon Steel Bars for Concrete Reinforcement
A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or ZincIron Alloy Coated (Galvannealed) By the Hot-Dip Process
B32-08	Standard Specification for Solder Metal
B62-02	Standard Specification for Composition Bronze or Ounce Metal Castings
B88-03	Standard Specification for Seamless Copper Water Tube
B209-07	Aluminum and Aluminum Alloy Sheet and Plate
C177-04	Standard Test Method for Steady State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus
C478-09	Precast Reinforced Concrete Manhole Sections
C533-07	Calcium Silicate Block and Pipe Thermal Insulation
C552-07	Cellular Glass Thermal Insulation
D3350-08	Polyethylene Plastics Pipe and Fittings Materials
C591-08	Unfaced Preformed Rigid Cellular   Polyisocyanurate Thermal Insulation
D1784-08	Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compound

```
 D1785-06 Poly (Vinyl Chloride0 (PVC) Plastic Pipe,
 Schedules 40, 80 and 120
 D2241-05 Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe
 (SDR Series)
 F439-06 Standard Specification for Chlorinated Poly
 (Vinyl Chloride) (CPVC) Plastic Pipe Fittings,
 Schedule 80
 F441/F441M-02 Standard Specification for Chlorinated Poly
 (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules
 40 and 80
 F477-08 Elastomeric Seals Gaskets) for Joining Plastic
 Pipe
F. American Water Works Association (AWWA):
 C110-08...............Ductile Iron and Grey Iron Fittings for Water
 C203-02...............Coal Tar Protective Coatings and Linings for
 Steel Water Pipe Lines Enamel and Tape Hot
 Applied
G. American Welding Society (AWS):
 B2.1-02...............Standard Welding Procedure Specification
H. Copper Development Association, Inc. (CDA):
 CDA A4015-06...........Copper Tube Handbook
I. Expansion Joint Manufacturer's Association, Inc. (EJMA):
 EMJA-2003.............Expansion Joint Manufacturer's Association
 Standards, Ninth Edition
J. Manufacturers Standardization Society (MSS) of the Valve and Fitting
 Industry, Inc.:
 SP-67-02a.................Butterfly Valves
 SP-70-06..............Gray Iron Gate Valves, Flanged and Threaded
 Ends
SP-71-05..............Gray Iron Swing Check Valves, Flanged and
 Threaded Ends
SP-80-08...............Bronze Gate, Globe, Angle and Check Valves
SP-85-02...............Cast Iron Globe and Angle Valves, Flanged and
 Threaded Ends
SP-110-96.................Ball Valves Threaded, Socket-Welding, Solder
 Joint, Grooved and Flared Ends
SP-125-00.............Gray Iron and Ductile Iron In-line, Spring
 Loaded, Center-Guided Check Valves
```

K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI) :

14-06...................Plastic Piping System Components and Related Materials

50-2009a $\qquad$ Equipment for Swimming Pools, Spas, Hot Tubs and other Recreational Water Facilities Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities

61-2008 Drinking Water System Components - Health Effects
L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

PART 2 - PRODUCTS

### 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

### 2.2 PIPE AND TUBING

A. Heating Hot Water and Vent Piping:

1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
2. Copper water tube option: ASTM B88, Type $K$ or L, hard drawn.
B. Extension of Domestic Water Make-up Piping: ASTM B88, Type $K$ or L, hard drawn copper tubing.
C. Cooling Coil Condensate Drain Piping:
3. From air handling units: Galvanized steel only.
D. Pipe supports, including insulation shields, for above ground piping:

Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

### 2.3 FITTINGS FOR STEEL PIPE

A. $50 \mathrm{~mm}(2$ inches) and Smaller: Screwed or welded joints.

1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
2. Forged steel, socket welding or threaded: ASME B16.11.
3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
4. Unions: ASME B16.39.
5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
B. $65 \mathrm{~mm}(2-1 / 2$ inches) and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional.
6. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
7. Welding flanges and bolting: ASME B16.5:
a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
C. Welded Branch and Tap Connections: Forged steel weldolets, or
branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

### 2.4 FITTINGS FOR COPPER TUBING

A. Joints:

1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
B. Bronze Flanges and Flanged Fittings: ASME B16.24.
C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

### 2.5 FITTINGS FOR PLASTIC PIPING

A. Schedule 40, socket type for solvent welding.
B. Schedule 40 PVC drain piping: Drainage pattern.
C. Chemical feed piping for condenser water treatment: Chlorinated polyvinyl chloride (CPVC), Schedule 80, ASTM F439.

### 2.6 DIELECTRIC FITTINGS

A. Provide where copper tubing and ferrous metal pipe are joined.
B. $50 \mathrm{~mm}(2$ inches) and Smaller: Threaded dielectric union, ASME B16.39.
C. 65 mm (2 $1 / 2$ inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
D. Temperature Rating, 99 degrees C (210 degrees F).
E. Contractor's option: On pipe sizes $2^{\prime \prime}$ and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

### 2.7 SCREWED JOINTS

A. Pipe Thread: ANSI B1. 20.
B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

### 2.8 VALVES

A. Asbestos packing is not acceptable.
B. All valves of the same type shall be products of a single manufacturer.
C. Provide chain operators for valves 150 mm ( 6 inches) and larger when the centerline is located 2400 mm ( 8 feet) or more above the floor or operating platform.
D. Shut-Off Valves

1. Ball Valves (Pipe sizes $2^{\prime \prime}$ and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at $2760 \mathrm{kPa}(400$ psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
2. Butterfly Valves (Pipe Sizes 2-1/2" and larger) : Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
1) Valves 150 mm ( 6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
3) 3. Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves) :
a) 50 mm (2 inches) and smaller: MSS-SP 80, Bronze, 1034 kPa (150 psig), wedge disc, rising stem, union bonnet.
b) $65 \mathrm{~mm}(21 / 2$ inches) and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, $861 \mathrm{kPa}(125$ psig) wedge disc.
E. Globe and Angle Valves
1. Globe Valves
a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
b. $65 \mathrm{~mm}(21 / 2$ inches) and larger: $861 \mathrm{kPa}(125 \mathrm{psig}), \mathrm{flanged}$, iron body, bronze trim, MSS-SP-85 for globe valves.
2. Angle Valves:
a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, $1034 \mathrm{kPa}(150$ lb.) Angle valves shall be union bonnet with metal plug type disc.
b. $65 \mathrm{~mm}(2 \mathrm{l} / 2$ inches) and larger: $861 \mathrm{kPa}(125 \mathrm{psig})$, flanged, iron body, bronze trim, MSS-SP-85 for angle.
F. Check Valves
3. Swing Check Valves:
a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.), 45 degree swing disc.
b. $65 \mathrm{~mm}(2 \mathrm{l} / 2$ inches) and larger: $861 \mathrm{kPa}(125 \mathrm{psig}), f l a n g e d$, iron body, bronze trim, MSS-SP-71 for check valves.
4. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
5. Ball style valve with characterizing disk.
6. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
7. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
8. Gray iron (ASTM A126) or brass body rated 1205 kPa (175 psig) at 93 degrees C (200 degrees $F$ ), with stainless steel piston and spring.
9. Brass or ferrous body designed for 2067 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
10. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
11. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.
I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

### 2.9 STRAINERS

A. Basket or Y Type.

1. Screens: Bronze, monel metal or $18-8$ stainless steel, free area not less than $2-1 / 2$ times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm ( 0.125 inch) diameter perforations.
B. Suction Diffusers: Specified in Section 2321 23, HYDRONIC PUMPS.

### 2.10 FLEXIBLE CONNECTORS FOR WATER SERVICE

A. Flanged Spool Connector:

1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
2. Working pressures and temperatures shall be as follows:
a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
3. Provide ductile iron retaining rings and control units.
B. Mechanical Pipe Couplings:

See other fittings specified under Part 2, PRODUCTS.

### 2.11 HYDRONIC SYSTEM COMPONENTS

A. Tangential Air Separator: ASME Pressure Vessel Code construction for $861 \mathrm{kPa}(125 \mathrm{psig})$ working pressure, flanged tangential inlet and outlet connection, internal perforated stainless steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the cross-sectional area of connecting piping.
B. Closed Expansion (Compression) Tank: ASME Pressure Vessel Code construction for $861 \mathrm{kPa}(125 \mathrm{psig})$ working pressure, steel, rust-proof coated. Provide gage glass, with protection guard, and angle valves
with tapped openings for drain (bottom) and plugged vent (top). Provide Form No. U-1.

1. Horizontal tank: Provide cradle supports and following accessories:
a. Air control tank fittings: Provide in each expansion tank to facilitate air transfer from air separator, or purger, into tank while restricting gravity circulation. Fitting shall include an integral or separate air vent tube, cut to length of about $2 / 3$ of tank diameter, to allow venting air from the tank when establishing the initial water level in the tank.
b. Tank drainer-air charger: Shall incorporate a vent tube, cut to above 2/3 of tank diameter, and drain valve with hose connection draining and recharging with air.
2. Vertical floor-mounted expansion tank: Provide gage glass, system or drain connection (bottom) and air charging (top) tappings. Provide gate valve and necessary adapters for charging system. Tank support shall consist of floor mounted base ring with drain access opening or four angle iron legs with base plates.
C. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 1034 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and $6 \mathrm{~mm}(1 / 4$ inch) air outlet. Air outlet shall be piped to the nearest floor drain.

### 2.12 WATER FILTERS AND POT CHEMICAL FEEDERS

See section 232500 , HVAC WATER TREATMENT, Article 2.2, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

### 2.13 GAGES, PRESSURE AND COMPOUND

A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, $6 \mathrm{~mm}(1 / 4$ inch) $N P T$ bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.

1. For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

### 2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: $6 \mathrm{~mm}(1 / 4$ inch) MPT by $75 \mathrm{~mm}(3$ inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
B. Provide one each of the following test items to the Contracting Officer's Representative (COR):

1. $6 \mathrm{~mm}(1 / 4$ inch) FPT by $3 \mathrm{~mm}(1 / 8$ inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
2. $90 \mathrm{~mm}(3-1 / 2$ inch) diameter, one percent accuracy, compound gage, $100 \mathrm{kPa}(30$ inches) Hg to $700 \mathrm{kPa}(100 \mathrm{psig})$ range.
3. 0 - 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

### 2.15 THERMOMETERS

A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
B. Case: Chrome plated brass or aluminum with enamel finish.
C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
E. Scale ranges:

1. Hot Water and Glycol-Water: -1 - 116 degrees C (30-240 degrees F).

### 2.16 FIRESTOPPING MATERIAL

Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

### 2.17 ELECTRICAL HEAT TRACING SYSTEMS

A. Systems shall meet requirements of the National Electrical Code (NEC), Section 427.
B. Provide tracing for outdoor piping subject to freezing temperatures (Below 38 degrees $F$ ) as follows:
C. Heat tracing shall be provided to the extent shown on the drawings (Floor plans and Elevations). Heat tracing shall extend below grade to below the defined frost line.
D. Heating Cable: Flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conductive inner core material between two parallel copper bus wires, designed for cut-to-length at the job site and for wrapping around valves and complex fittings. Selfregulation shall prevent overheating and burnouts even where the cable overlaps itself.

1. Provide end seals at ends of circuits. Wire at the ends of the circuits is not to be tied together.
2. Provide sufficient cable, as recommended by the manufacturer, to keep the pipe surface at 2.2 degrees C (36 degrees F) minimum during winter outdoor design temperature, but not less than the following: a. 75 mm (3 inch) pipe and smaller with 25 mm (1 inch) thick insulation: 4 watts per foot of pipe.
b. 100 mm (4 inch) pipe and larger 38 mm (1-1/2 inch) thick insulation: 8 watts per feet of pipe.
E. Electrical Heating Tracing Accessories:
3. Power supply connection fitting and stainless steel mounting brackets. Provide stainless steel worm gear clamp to fasten bracket to pipe.
4. $13 \mathrm{~mm}(1 / 2$ inch) wide fiberglass reinforced pressure sensitive cloth tape to fasten cable to pipe at 300 mm (12 inch) intervals.
5. Pipe surface temperature control thermostat: Cast aluminum, NEMA 4 (watertight) enclosure, 13 mm (1/2 inch) NPT conduit hub, SPST switch rated 20 amps at 480 volts AC, with capillary and copper bulb sensor. Set thermostat to maintain pipe surface temperature at not less than 1.1 degrees $C(34$ degrees $F)$.
6. Signs: Manufacturer's standard (NEC Code), stamped "ELECTRIC TRACED" located on the insulation jacket at 3000 mm (10 feet) intervals along the pipe on alternating sides.

## PART 3 - EXECUTION

### 3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to
connect pipes to equipment, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
C. Support piping securely. Refer to PART 3, Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
I. Connect piping to equipment as shown on the drawings. Install
components furnished by others such as:

1. Water treatment pot feeders and condenser water treatment systems.
2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
L. Where copper piping is connected to steel piping, provide dielectric connections.

### 3.2 PIPE JOINTS

A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
E. Solvent Welded Joints: As recommended by the manufacturer.

### 3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional
engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

### 3.4 LEAK TESTING ABOVEGROUND PIPING

A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
B. An operating test at design pressure, and for hot systems, design maximum temperature.
C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

### 3.5 FLUSHING AND CLEANING PIPING SYSTEMS

A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 232500 , HVAC WATER TREATMENT.

1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of
$1.8 \mathrm{~m} / \mathrm{S}(6$ feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.
2. Cleaning: Using products supplied in Section 232500 , HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than $1.8 \mathrm{~m} / \mathrm{S}$ (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

### 3.6 WATER TREATMENT

A. Install water treatment equipment and provide water treatment system piping.
B. Close and fill system as soon as possible after final flushing to minimize corrosion.
C. Charge systems with chemicals specified in Section 232500 , HVAC WATER TREATMENT.
D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

### 3.7 ELECTRIC HEAT TRACING

A. Install tracing as recommended by the manufacturer.
B. Coordinate electrical connections.

### 3.8 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

A. Refer to PART 3, Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Adjust red set hand on pressure gages to normal working pressure. - - - E N D - - -

## SECTION 232123 HYDRONIC PUMPS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Hydronic pumps for Heating, Ventilating and Air Conditioning.

### 1.2 RELATED WORK

A. Section 010000 , GENERAL REQUIREMENTS.
B. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
C. Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
D. Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
E. Section 2321 13, HYDRONIC PIPING.
F. Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
G. Section 2629 11, LOW-VOLTAGE MOTOR STARTERS.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALITY ASSURANCE, in Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Design Criteria:

1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
8. After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
C. Allowable Vibration Tolerance for Pump Units: Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Pumps and accessories.
2. Motors and drives.
3. Variable speed motor controllers.
C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
B. American Iron and Steel Institute (AISI):

AISI 1045...............Cold Drawn Carbon Steel Bar, Type 1045

AISI 416................Type 416 Stainless Steel
C. American National Standards Institute (ANSI):

ANSI B15.1-00(R2008)...... Safety Standard for Mechanical Power Transmission Apparatus

ANSI B16.1-05...........Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800
D. American Society for Testing and Materials (ASTM):

A48-03 (2008)...........Standard Specification for Gray Iron Castings B62-2009...............Standard Specification for Composition Bronze or Ounce Metal Castings
E. Maintenance and Operating Manuals in accordance with Section 010000 , General Requirements.

### 1.6 DEFINITIONS

A. Capacity: Liters per second (L/s) (Gallons per minute (GPM) of the fluid pumped.
B. Head: Total dynamic head in $k P a$ (feet) of the fluid pumped.
C. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.

### 1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the Contracting Officer's Representative.

## PART 2 - PRODUCTS

### 2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

A. General:

1. Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
2. Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at $1 \frac{1}{2}$ times the designed pressure.
3. Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
4. General Construction Requirements
a. Balance: Rotating parts, statically and dynamically.
b. Construction: To permit servicing without breaking piping or motor connections.
c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 2305 12, GENERAL MOTOR REQUIREMNTS FOR HVAC and STEAM GENERATION EQUIPMENT. Motors shall be Open Drip Proof and operate at 1750 rpm unless noted otherwise.
d. Heating pumps shall be suitable for handling water to $225^{\circ} \mathrm{F}$.
e. Provide coupling guards that meet ANSI B15.1, Section 8 and OSHA requirements.
f. Pump Connections: Flanged.
g. Pump shall be factory tested.
h. Performance: As scheduled on the Contract Drawings.
5. Variable Speed Pumps:
a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip-proof motor.
b. Variable Speed Motor Controllers: Refer to Section 2629 11, LOWVOLTAGE MOTOR STARTERS and to Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION paragraph, Variable Speed Motor Controllers. Furnish controllers with pumps and motors.
c. Pump operation and speed control shall be as shown on the drawings.
B. In-Line Type, Base Mounted End Suction or Double Suction Type:
6. Casing and Bearing Housing: Close-grained cast iron, ASTM A48.
7. Casing Wear Rings: Bronze.
8. Suction and Discharge: Plain face flange, $850 \mathrm{kPa}(125 \mathrm{psig})$, ANSI B16.1.
9. Casing Vent: Manual brass cock at high point.
10. Casing Drain and Gage Taps: 15 mm (1/2-inch) plugged connections minimum size.
11. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
12. Shaft: Steel, AISI Type 1045 or stainless steel.
13. Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
14. Shaft Sleeve: Bronze or stainless steel.
15. Motor: Furnish with pump. Refer to Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
16. Base Mounted Pumps:
a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
b. Impeller Wear Rings: Bronze.
c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, ANSI B15.1, bolted to the baseplate.
d. Bearings (Double-Suction pumps): Regreaseable ball or roller type.

Provide lip seal and slinger outboard of each bearing.
e. Base: Cast iron or fabricated steel for common mounting to a concrete base.
12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:
a. Body: Cast iron with steel inlet vanes and combination diffuser-strainer-orifice cylinder with 5 mm (3/16-inch) diameter openings for pump protection. Provide taps for strainer blowdown and gage connections.
b. Provide adjustable foot support for suction piping.
c. Strainer free area: Not less than five times the suction piping.
d. Provide disposable start-up strainer.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
B. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
C. Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

### 3.2 START-UP

A. Verify that the piping system has been flushed, cleaned and filled.
B. Lubricate pumps before start-up.
C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
F. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
G. After several days of operation, replace the disposable start-up strainer with a regular strainer in the suction diffuser.

# SECTION 232213 <br> STEAM AND CONDENSATE HEATING PIPING 

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings.

### 1.2 RELATED WORK

A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
B. Pumps: Section 2322 23, STEAM CONDENSATE PUMPS.
C. Piping insulation: Section 2307 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
D. Water treatment for open and closed systems: Section 232500 , HVAC WATER TREATMENT.
E. Heating Coils and Humidifiers: SECTION 233100 , HVAC DUCTS AND CASING.
F. Heating and cooling radiant panels: Section 238200 , CONVECTION HEATING AND COOLING UNITS.
G. Heating coils: Section 2382 16, AIR COILS.
H. Temperature and pressure sensors and valve operators: Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

### 1.3 QUALITY ASSURANCE

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 013323 , SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Pipe and equipment supports.
2. Pipe and tubing, with specification, class or type, and schedule.
3. Pipe fittings, including miscellaneous adapters and special fittings.
4. Flanges, gaskets and bolting.
5. Valves of all types.
6. Strainers.
7. Pipe alignment guides.
8. Expansion joints.
9. Expansion compensators.
10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
11. All specified steam system components.
12. Gages.
13. Thermometers and test wells.
14. Electric heat tracing systems.
C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
15. Heat Exchangers (Steam-to-Hot Water).
16. Flash tanks.
D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
17. One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
18. One set of reproducible drawings.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI):
B1.20.1-83(R2006).......Pipe Threads, General Purpose (Inch)
B16.4-2006..............Gray Iron Threaded Fittings
C. American Society of Mechanical Engineers (ASME) :

B16.1-2005..............Gray Iron Pipe Flanges and Flanged Fittings
B16.3-2006..............Malleable Iron Threaded Fittings
B16.9-2007..............Factory-Made Wrought Buttwelding Fittings
B16.11-2005..............Forged Fittings, Socket-Welding and Threaded
B16.14-91...............Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads
B16.22-2001.............Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings
B16.23-2002.............Cast Copper Alloy Solder Joint Drainage Fittings B16.24-2006.............Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500
B16.39-98................Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300
B31.1-2007.............. Power Piping
B31.9-2008..............Building Services Piping
B40.100-2005............Pressure Gauges and Gauge Attachments

Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1
D. American Society for Testing and Materials (ASTM) :

A47-99..................Ferritic Malleable Iron Castings
A53-2007...............Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
A106-2008..............Seamless Carbon Steel Pipe for High-Temperature Service

A126-2004...............Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings

A181-2006..............Carbon Steel Forgings, for General-Purpose Piping
A183-2003 ............. Carbon Steel Track Bolts and Nuts
A216-2008 .............. Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service
A285-01 ................ Pressure Vessel Plates, Carbon Steel, Low-and-Intermediate-Tensile Strength
A307-2007 ............. Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength
A516-2006 .............. Pressure Vessel Plates, Carbon Steel, for Moderate-and- Lower Temperature Service
A536-84(2004)e1 ........ Standard Specification for Ductile Iron Castings
B32-2008 ............... Solder Metal
B61-2008 ............... Steam or Valve Bronze Castings
B62-2009 ............... Composition Bronze or Ounce Metal Castings
B88-2003 ............... Seamless Copper Water Tube
F439-06............... Socket-Type Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80
F441-02(2008) .......... Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
E. American Welding Society (AWS):

A5.8-2004................Filler Metals for Brazing and Braze Welding
B2.1-00.................Welding Procedure and Performance Qualifications
F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.:

SP-67-95................ Butterfly Valves
SP-70-98................Cast Iron Gate Valves, Flanged and Threaded Ends
SP-71-97................Gray Iron Swing Check Valves, Flanged and Threaded Ends

G. Military Specifications (Mil. Spec.):

MIL-S-901D-1989........Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems
H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000

## PART 2 - PRODUCTS

### 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

### 2.2 PIPE AND TUBING

A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
B. Steam Condensate and Pumped Condensate Piping:

1. Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
2. All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

### 2.3 FITTINGS FOR STEEL PIPE

A. 50 mm (2 inches) and Smaller: Screwed or welded.

1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
2. Forged steel, socket welding or threaded: ASME B16.11.
3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
4. Unions: ASME B16.39.
5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for $15 \mathrm{~mm}(1 / 2$ inch) $I D$ hose. No integral shut-off is required.
B. $65 \mathrm{~mm}(2-1 / 2$ inches) and Larger: Welded or flanged joints.
6. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
7. Welding flanges and bolting: ASME B16.5:
a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees $F$ and 1500 psi.
b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

### 2.4 FITTINGS FOR COPPER TUBING

A. Solder Joint:

1. Joints shall be made up in accordance with recommended practices of the materials applied. Apply $95 / 5$ tin and antimony on all copper piping.
B. Bronze Flanges and Flanged Fittings: ASME B16.24.
C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

### 2.5 DIELECTRIC FITTINGS

A. Provide where copper tubing and ferrous metal pipe are joined.
B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
C. 65 mm (2 $1 / 2$ inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
E. Contractor's option: On pipe sizes $2^{\prime \prime}$ and smaller, screwed end brass gate valves or dielectric nipples may be used in lieu of dielectric unions.

### 2.6 SCREWED JOINTS

A. Pipe Thread: ANSI B1. 20.
B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

### 2.7 VALVES

A. Asbestos packing is not acceptable.
B. All valves of the same type shall be products of a single manufacturer.
C. Provide chain operators for valves 150 mm ( 6 inches) and larger when the centerline is located 2100 mm ( 7 feet ) or more above the floor or operating platform.
D. Globe and Angle Valves:

1. Globe Valves:
a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lib.) Globe valves shall be union bonnet with metal plug type disc.
b. 65 mm (2 $1 / 2$ inches) and larger:
1) Globe valves for high pressure steam $413 \mathrm{kPa}(60 \mathrm{psig})$ and above nominal MPS system) : Cast steel body, ASTM A216 grade WCB, flanged, OS\&Y, $1034 \mathrm{kPa}(150 \mathrm{psig})$ at 260 degrees C (500 degrees $F$ ), $11-1 / 2$ to 13 percent chrome stainless steel disc and renewable seat rings.
2) All other services: $861 \mathrm{kPa}(125 \mathrm{psig})$, flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
2. Angle Valves
a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc. b. 65 mm (2 $1 / 2$ inches) and larger:
1) Angle valves for high pressure steam $413 \mathrm{kPa}(60 \mathrm{psig})$ and above nominal MPS system) : Cast steel body, ASTM A216 grade WCB, flanged, OS\&Y, $1034 \mathrm{kPa}(150 \mathrm{psig})$ at 260 degrees C (500 degrees $F$ ), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
2) All other services: $861 \mathrm{kPa}(125 \mathrm{psig})$, flanged, iron body, bronze trim, MSS-SP-85 for angle valves.
E. Swing Check Valves
1. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, $1034 \mathrm{kPa}(150 \mathrm{psig})$,

45 degree swing disc.
2. $65 \mathrm{~mm}(2-1 / 2$ inches) and Larger:
a Check valves for high pressure steam $413 \mathrm{kPa}(60 \mathrm{psig})$ and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS\&Y, $1034 \mathrm{kPa}(150 \mathrm{psig})$ at 260 degrees $C$ ( 500 degrees F ), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
b. All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.

### 2.8 STRAINERS

A. Basket or $Y$ Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.

1. 50 mm (2 inches) and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).
2. $65 \mathrm{~mm}(2-1 / 2$ inches) and larger: Flanged cast steel or $1723 \mathrm{kPa}(250$ psig) cast iron.
C. All Other Services: Rated $861 \mathrm{kPa}(125 \mathrm{psig})$ saturated steam.
3. 50 mm (2 inches) and smaller: Cast iron or bronze.
4. $65 \mathrm{~mm}(2-1 / 2$ inches) and larger: Flanged, iron body.
D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
5. 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm ( 0.045 inch) diameter perforations for liquids.
6. $100 \mathrm{~mm}(4$ inches) and larger: $1.1 \mathrm{~mm}(0.045)$ inch diameter perforations for steam and 3.2 mm ( 0.125 inch) diameter perforations for liquids.

### 2.9 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

### 2.10 STEAM SYSTEM COMPONENTS

A. Heat Exchanger (Steam to Hot Water) : Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.

1. Maximum tube velocity: $2.3 \mathrm{~m} / \mathrm{s}$ ( 7.5 feet per second).
2. Tube fouling factor: TEMA Standards, but not less than $0.00018 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ (0.001 ft ${ }^{2} \mathrm{hrF} /$ Btu) .
3. Materials:
a. Shell: Steel.
b. Tube sheet and tube supports: Steel or brass.
c. Tubes: 20 mm (3/4 inch) OD copper.
d. Head or bonnet: Cast iron or steel.
4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
B. Steam Pressure Reducing Valves in PRV Stations:
5. Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
6. Service: Provide controlled reduced pressure to steam piping systems.
7. Pressure control shall be smooth and continuous with maximum drop of 10 percent. Maximum flow capability of each valve shall not exceed capacity of downstream safety valve(s).
8. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, monel, or similar durable material.
a. Pressure rating for high pressure steam: Not less than 1034 kPa (150 psig) saturated steam.
b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.
9. Select pressure reducing valves to develop less than 85 dbA at 1500 mm ( 5 feet) elevation above adjacent floor, and 1500 mm ( 5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing valves shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.
C. Safety Valves and Accessories: Comply with ASME Boiler and Pressure

Vessel Code, Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown.
D. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516 or ASTM A285, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53 Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80. Corrosion allowance of 1.6 mm ( $1 / 16$ inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
E. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.

1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
a. For equipment with modulating control valve: $1.7 \mathrm{kPa}(1 / 4 \mathrm{psig})$, based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be: Brass, stainless steel or corrosion resistant alloy, rated for the pressure upstream of the PRV supplying the system.
3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
4. Valves and seats: Suitable hardened corrosion resistant alloy.
5. Floats: Stainless steel.
6. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
F. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, $20 \mathrm{~mm}(3 / 4$ inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
G. Steam Humidifiers:
7. Steam separator type that discharges steam into the air stream through a steam jacketed distribution manifold or dispersion tube. Humidifiers shall be complete with Y-type steam supply strainer; modulating, normally closed steam control valve; normally closed condensate temperature switch; and manufacturer's standard steam trap.
8. Steam separator: Stainless steel or cast iron.
9. Distribution manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
a. Duct section height exceeds 900 mm (36 inches).
b. Duct air velocity exceeds $5.1 \mathrm{~m} / \mathrm{s}(1000$ feet per minute).
b. If within 900 mm ( 3 feet) upstream of fan, damper or pre-filter.
d. If within 3000 mm (10 feet) upstream of after-filter.

### 2.11 GAGES, PRESSURE AND COMPOUND

A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, $115 \mathrm{~mm}(4-1 / 2$ inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass
or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam   condensate to $103 \mathrm{kPa}(15$ psig)	0 to $207 \mathrm{kPa}(30 \mathrm{psig})$.
Medium pressure steam and steam   condensate nominal $413 \mathrm{kPa}(60 \mathrm{psig})$	0 to $689 \mathrm{kPa}(100 \mathrm{psig})$.
High pressure steam and steam   condensate nominal 620 kPa to 861   $\mathrm{kPa}(90$ to 125 psig$)$	0 to $1378 \mathrm{kPa}(200 \mathrm{psig})$.
Pumped condensate, steam condensate,   gravity or vacuum   $(30 \prime$ HG to 30 psig)	0 to $415 \mathrm{kPa}(60 \mathrm{psig})$

### 2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Provide one each of the following test items to the Contracting Officer's Representative:

1. $6 \mathrm{~mm}(1 / 4$ inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range.
3. 0 - 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

### 2.13 FIRESTOPPING MATERIAL

A. Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

## PART 3 - EXECUTION

### 3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by
contractor where necessary to avoid interferences and clearance difficulties.
B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
C. Support piping securely. Refer to PART 3, Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:

1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
J. Where copper piping is connected to steel piping, provide dielectric connections.
K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual
vent areas. Slope vent piping one inch in 40 feet ( 0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M ( 8 feet) above grade with down turned elbow.

### 3.2 PIPE JOINTS

A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION .
B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

### 3.3 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over $11 \mathrm{~kg}(25$ pounds) independently of connecting piping.

### 3.4 LEAK TESTING

A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
B. An operating test at design pressure, and for hot systems, design maximum temperature.
C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

### 3.5 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

### 3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

A. Refer to PART 3, Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Adjust red set hand on pressure gages to normal working pressure.

```
- - - E N D - - -
```


## SECTION 232223 STEAM CONDENSATE PUMPS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Steam condensate pumps for Heating, Ventilating and Air Conditioning.

### 1.2 RELATED WORK

A. Section 010000 , GENERAL REQUIREMENTS.
B. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
C. Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
D. Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
E. Section 2322 13, STEAM AND CONDENSATE HEATING PIPING.
F. Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALITY ASSURANCE in Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Design Criteria:

1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
3. Select pumps so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve including one pump operation in a parallel or series pumping installation.
5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
8. After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
9. Furnish one spare seal and casing gasket for each pump to the Contracting Officer's Representative.
C. Allowable Vibration Tolerance for Pump Units: Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Pumps and accessories.
2. Motors and drives.
C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
B. American Iron and Steel Institute (AISI):

AISI 1045................Cold Drawn Carbon Steel Bar, Type 1045
AISI 416.................Type 416 Stainless Steel
C. American National Standards Institute (ANSI):

ANSI B15.1-00(R2008)....Safety Standard for Mechanical Power Transmission Apparatus

ANSI B16.1-05...........Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800
D. American Society for Testing and Materials (ASTM):

A48-03(2008)...........Standard Specification for Gray Iron Castings B62-09.................Standard Specification for Composition Bronze or Ounce Metal Castings
E. Maintenance and Operating Manuals in accordance with Section 010000 , GENERAL REQUIREMENTS.

### 1.6 DEFINITIONS

A. Capacity: Liters per second (L/s) (Gallons per minute (GPM)) of the fluid pumped.
B. Head: Total dynamic head in kPa (feet) of the fluid pumped.

## PART 2 - PRODUCTS

### 2.1 CONDENSATE PUMP, PAD-MOUNTED

A. General: Factory assembled unit consisting of vented receiver tank, motor-driven pumps, interconnecting piping and wiring, motor controls (including starters, if necessary) and accessories, designed to receive, store, and pump steam condensate.
B. Receiver Tank: Cast iron with threaded openings for connection of piping and accessories and facilities for mounting float switches. Receivers for simplex pumps shall include all facilities for future mounting of additional pump and controls.
C. Furnish seals for condensate pump with a minimum temperature rating of 121 degrees C (250 degrees F).
D. Centrifugal Pumps: Bronze fitted with mechanical shaft seals.

1. Designed to allow removal of rotating elements without disturbing connecting piping or pump casing mounting.
2. Shafts: Stainless steel, AISI Type 416 or alloy steel with bronze shaft sleeves.
3. Bearings: Regreaseable ball or roller type.
4. Casing wearing rings: Bronze.
E. Motors: Refer to Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
F. Pump Operation:
5. Float Switches: NEMA 1, mounted on receiver tank, to start and stop pumps in response to changes in the water level in the receiver and adjustable to permit the controlled water levels to be changed. Floats and connecting rods shall be copper, bronze or stainless steel.
6. Alternator: Provide for duplex units to automatically start the second pump when the first pump fails in keeping the receiver water level from rising and to alternate the order of starting the pumps. For units 0.25 kW ( $1 / 3$ horsepower) and smaller, the alternator may be the mechanical type for use in lieu of float switches.
G. Control Cabinet for 3 Phase ( $0.37 \mathrm{~kW}(1 / 2 \mathrm{hp})$ and larger) Units: NEMA

1, UL approved, factory wired, enclosing all controls, with indicating
lights, manual switches and resets mounted on the outside of the panel. Attach cabinet to the pump set with rigid steel framework, unless remote mounting is noted on the pump schedule.

1. Motor starters: Magnetic contact types with circuit breakers or combination fusible disconnect switches. Provide low voltage control circuits (120 volt maximum) and "hand-off-automatic" (H-O-A) switches for each pump.
2. Indicating lights for each pump: Green to show that power is on, red to show that the pump is running.
H. Electric Wiring: Suitable for 93 degrees C (200 degrees F) service; enclosed in liquid-tight flexible metal conduit where located outside of control cabinet.
I. Receiver Accessories:
3. Thermometer: 34-216 degrees C (100-420 degrees F), mounted below minimum water level.
4. Water level gage glass: Brass with gage cocks which automatically stop the flow of water when the glass is broken. Provide drain on the lower gage cock and protection rods for the glass.

### 2.2 PRESSURE POWERED CONDENSATE PUMP

A. Pressure-Powered Pump Packages:

1. Pump packages shall be furnished and installed as a packaged assembly of the types, sizes, capacities, and characteristics as shown on the drawings. Pump package shall be rated for 185 degrees C (365 degrees F), maximum condensate temperatures.
2. Pump package(s) shall come completely piped and mounted on a steel skid including (1) receiver/reservoir, two positive displacement pressure-powered pumps as scheduled, interconnecting piping and valves, and all accessories as hereafter specified below:
a. The receiver shall be of a steel elevated design, warranted for 1 year against defects in material and workmanship. Receiver shall be 150 PSIG ASME labeled and coded. Receiver shall be sized for the required condensate storage volume and flash steam capacity. Receiver shall be horizontally mounted and have openings of the appropriate size and number including: (2) inlets, (1) vent opening, (1) NPT drain with pipe plug, (1) NPT anode opening with anode, and gauge glass openings with gauge glass set consisting of (2) brass isolation valves and guard rods, and red-line tubular glass. Replaceable magnesium anode, which retards the
corrosive action of most waters and adds to the service life of the tanks, shall be furnished with each receiver for corrosion protection.
b. Pressure-powered pumps shall be non-electric as shown on the drawings. Units shall be constructed of $1034 \mathrm{kPa}(150 \mathrm{psig})$ ASME labeled and coded fabricated steel body, shall be float operated, and contain a condensate inlet baffle. Each unit shall have (1) inlet check valve, (1) outlet check valve, and gauge glass set with isolation valves.
c. The float operating mechanism shall have all moving components constructed of stainless steel and be of a snap acting design with no external seals or packing. The float mechanism shall contain a reinforced stainless steel float, (2) 300 series stainless steel open coil design springs, and spring calibration pins.
d. Pressure-powered pumps shall be of a non-cavitating design capable of operation on systems up to the maximum working pressure of the tank rating using steam, compressed air, or other compatible inert gas as the supply (motive) pressure. Units shall be capable of operating at temperatures up to 365 F when pumping from a 'closed' system using a compatible motive gas. Balance and fine tune motive pressure to be $138 \mathrm{kPa}(20 \mathrm{psig})$ higher than the static backpressure.
e. Package shall include interconnecting piping between receiver/reservoir and the positive displacement pressure-powered pump(s). Interconnecting suction (fill) line shall be provided to each unit and each suction (fill) line shall include a gate valve for isolation.
f. Manufacturer shall provide the following for field installation on each pressure-powered pump:
1) Cycle counter
2) Removable insulation jacket
3) Pressure gauge
4) Drain piping
g. Provide the following components for each pump:
5) Motive pressure reducing valve
6) Safety relief valve(s)
7) Motive pressure inlet strainer
8) Pressure gauge with pigtail, as required
9) Motive pressure drip trap(s)
10) Motive pressure line check valve(s)
3. The package shall be factory tested as a complete unit using steam as the motive pressure. The pump manufacturer shall furnish appropriate assembly and parts drawings, and installation and operation manuals. The package shall be shipped completely assembled, or with connection match marks if package must be shipped as sub-assemblies.
B. Removable Insulation Jacket:
4. The insulation jacket should be of sewn construction with Velcro fasteners and have openings for inlet, outlet, drain, and gauge glass.
5. Materials:
a. Liner and jacket shall be silicone impregnated heavy duty glass fiber rated for a maximum temperature of 260 degrees C (500 degrees F).
b. Insulation shall be 25 mm (1 inch) minimum thickness, Type E needled glass fiber mat rated for a maximum temperature of 650 degrees C (1200 F).
c. Jacket shall be sewn with Nomex thread with a UV inhibitor.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
B. Permanently support in-line pumps by the connecting piping only, not from the casing or the motor eye bolt.
C. Sequence of installation for base-mounted pumps:

1. Level and shim the unit base and grout to the concrete pad.
2. Shim the driver and realign the pump and driver. Correct axial, angular or parallel misalignment of the shafts.
3. Connect properly aligned and independently supported piping.
4. Recheck alignment.
D. Pad-mounted Condensate Pump: Level, shim, bolt, and grout the unit base onto the concrete pad.
F. Coordinate location of thermometer and pressure gauges as per Section 2322 13, STEAM and CONDENSATE HEATING PIPING.

### 3.2 START-UP

A. Verify that the piping system has been flushed, cleaned and filled.
B. Lubricate pumps before start-up.
C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.

## SECTION 232300 REFRIGERANT PIPING

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Field refrigerant piping for direct expansion HVAC systems.
B. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.
C. Definitions:

1. Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
b. High side means the parts of a refrigerating system subjected to condenser pressure.
2. Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees $F$ ) but less than the melting temperatures of the joined parts.

### 1.2 RELATED WORK

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
B. Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION:

Requirements for piping insulation.
C. Section 2321 13, HYDRONIC PIPING: Requirements for water and drain piping and valves.

### 1.3 QUALITY ASSURANCE

A. Refer to specification Section 230511 , COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of
every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.
C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

### 1.4 SUBMITTALS

A. Submit in accordance with specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Shop Drawings:

1. Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
a. Tubing and fittings
b. Valves
c. Strainers
d. Moisture-liquid indicators
e. Filter-driers
f. Flexible metal hose
g. Liquid-suction interchanges
h. Oil separators (when specified)
i. Gages
j. Pipe and equipment supports
k. Refrigerant and oil
l. Pipe/conduit roof penetration cover
m. Soldering and brazing materials
2. Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002)........Standard for Refrigerant Liquid Receivers 730-2005................Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers

```
 750-2007..............Thermostatic Refrigerant Expansion Valves
 760-2007..............Performance Rating of Solenoid Valves for Use
 with Volatile Refrigerants
C. American Society of Heating Refrigerating and Air Conditioning Engineers
 (ASHRAE) :
 ANSI/ASHRAE 15-2007.....Safety Standard for Refrigeration Systems (ANSI)
 ANSI/ASHRAE 17-2008.....Method of Testing Capacity of Thermostatic
 Refrigerant Expansion Valves (ANSI)
 63.1-95 (RA 01).........Method of Testing Liquid Line Refrigerant Driers
 (ANSI)
D. American National Standards Institute (ANSI):
 ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems
 Z535.1-2006............Safety Color Code
E. American Society of Mechanical Engineers (ASME):
 ANSI/ASME B16.22-2001 (R2005)
 Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI)
 ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged
 Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI)
 ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer
 Components (ANSI)
 ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments
 ANSI/ASME B40.200-2008..Thermometers, Direct Reading and Remote Reading
F. American Society for Testing and Materials (ASTM)
 A126-04...............Standard Specification for Gray Iron Castings
 for Valves, Flanges, and Pipe FittingsB32-08
 Standard Specification for Solder Metal
 B88-03................Standard Specification for Seamless Copper Water
 Tube
 B88M-05...............Standard Specification for Seamless Copper Water
 Tube (Metric)
 B280-08...............Standard Specification for Seamless Copper Tube
 for Air Conditioning and Refrigeration Field
 Service
G. American Welding Society, Inc. (AWS):
 Brazing Handbook
 A5.8/A5.8M-04..........Standard Specification for Filler Metals for
 Brazing and Braze Welding
H. Federal Specifications (Fed. Spec.)
 Fed. Spec. GG
I. Underwriters Laboratories (U.L.):
```

> U.L.207-2009............ Standard for Refrigerant-Containing Components and Accessories, Nonelectrical
> U.L.429-99 (Rev.2006) ...Standard for Electrically Operated Valves

## PART 2 - PRODUCTS

### 2.1 PIPING AND FITTINGS

A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel.
B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type $M$ or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
C. Fittings, Valves and Accessories:

1. Copper fittings: Wrought copper fittings, ASME B16.22.
a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5.
b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
2. Steel fittings: ASTM wrought steel fittings.
a. Refrigerant piping - Welded Joints.
3. Flanges and flanged fittings: ASME B16.24.
4. Refrigeration Valves:
a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
C. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, twoposition, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location and normally closed holding coil.
d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for
superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
5. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
6. Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication. Provide screwed brass seal caps.
7. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.
8. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.
9. Water Piping Valves and Accessories: Refer to specification Section 2321 13, HYDRONIC PIPING.

### 2.2 GAGES

A. Temperature Gages: Comply with ASME B40.200. Industrial-duty type and in required temperature range for service in which installed. Gages shall have Celsius scale in 1-degree (Fahrenheit scale in 2-degree) graduations and with black number on a white face. The pointer shall be adjustable. Rigid stem type temperature gages shall be provided in thermal wells located within 1525 mm ( 5 feet) of the finished floor. Universal adjustable angle type or remote element type temperature gages shall be provided in thermal wells located 1525 to 2135 mm ( 5 to 7 feet) above the finished floor. Remote element type temperature gages shall be
provided in thermal wells located 2135 mm (7 feet) above the finished floor.
B. Vacuum and Pressure Gages: Comply with ASME B40.100 and provide with throttling type needle valve or a pulsation dampener and shut-off valve. Gage shall be a minimum of 90 mm (3-1/2 inches) in diameter with a range from $0 \mathrm{kPa}(0 \mathrm{psig})$ to approximately 1.5 times the maximum system working pressure. Each gage range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range. 1. Suction: $101 \mathrm{kPa}(30$ inches Hg$)$ vacuum to 1723 kPa (gage) (250 psig). 2. Discharge: 0 to 3445 kPa (gage) ( 0 to 500 psig ).

### 2.3 THERMOMETERS AND WELLS

A. Refer to specification Section 2321 13, HYDRONIC PIPING.

### 2.4 PIPE SUPPORTS

A. Refer to specification Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

### 2.5 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

### 2.6 PIPE INSULATION FOR DX HVAC SYSTEMS

Refer to specification Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5

1. Install piping as short as possible, with a minimum number of joints, elbow and fittings.
2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
4. Use copper tubing in protective conduit when installed below ground.
5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.
B. Joint Construction:
6. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
D. Pipe relief valve discharge to outdoors for systems containing more than $45 \mathrm{~kg}(100 \mathrm{lbs})$ of refrigerant.
E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
F. Seismic Bracing: Refer to specification Section 1305 41, SEISMIC RESTRAINTS REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS, for bracing of piping in seismic areas.

### 3.2 PIPE AND TUBING INSULATION

A. Refer to specification Section 230511 , COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

### 3.3 SIGNS AND IDENTIFICATION

A. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:

1. Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
2. Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

### 3.4 FIELD QUALITY CONTROL

Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.
A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of Contracting Officer's Representative. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.

1. Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group A1 refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C ( 68 degrees $F)$ minimum.
B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

### 3.5 SYSTEM TEST AND CHARGING

A. System Test and Charging: As recommended by the equipment manufacturer
or as follows:

1. Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa ( 500 microns ) 665 mPa (2245.6 inches of mercury at 60 degrees $F$ ) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

\author{

-     -         - END - - -
}


## SECTION 232500

## HVAC WATER TREATMENT

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.

1. Cleaning compounds.
2. Chemical treatment for closed glycol loop heat transfer systems.

### 1.2 RELATED WORK

A. Test requirements and instructions on use of equipment/system: Section 0100 00, GENERAL REQUIREMENTS.
B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
C. Piping and valves: Section 2321 13, HYDRONIC PIPING and Section 2322 13, STEAM and CONDENSATE HEATING PIPING.

### 1.3 QUALITY ASSURANCE

A. Refer to paragraph, QUALITY ASSURANCE in Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data including:

1. Cleaning compounds and recommended procedures for their use.
2. Chemical treatment for closed systems, including installation and operating instructions.
3. Glycol-water system materials, equipment, and installation.
C. Water analysis verification.
D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
E. Maintenance and operating instructions in accordance with Section 010000 , GENERAL REQUIREMENTS.

### 1.5 APPLICABLE PUBLICATIONS

A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. National Fire Protection Association (NFPA) : 70-2008.................National Electric Code (NEC)
C. American Society for Testing and Materials (ASTM): F441/F441M-02 (2008) ... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

## PART 2 - PRODUCTS

### 2.1 CLEANING COMPOUNDS

A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
B. All chemicals to be acceptable for discharge to sanitary sewer.
C. Refer to Section 2321 13, HYDRONIC PIPING and Section 2322 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

### 2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5 .
C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system
essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005 .
D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at $860 \mathrm{kPa}(125 \mathrm{psig})$ minimum working pressure.

### 2.3 GLYCOL-WATER SYSTEM

A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 50 percent for hydronic system.
C. Pot Feeder Make-up Unit: By pass type for chemical treatment, schedule 3.5 mm (10 gauge) heads, 20 mm (3/4-inch) system connections and large neck opening for chemical addition. Feeders shall be 19 Liters (5 gallon) minimum size.

### 2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
C. Refer to Section 232113 HYDRONIC PIPING for chemical treatment piping, installed as follows:

1. Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
2. Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
3. Provide piping for the flow assembly piping to the main control panel and accessories.
a. The inlet piping shall connect to the discharge side of the circulating water pump.
b. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.
4. Install injection nozzles with corporation stops in the water piping serving the cooling tower downstream of the heat source.
5. Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.
6. Provide piping for erosion chemical feeder per manufacturer's installation instructions. Provide ball valves to isolate and service feeder.
7. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
E. Do not valve in or operate system pumps until after system has been cleaned.
F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
G. Perform tests and report results in accordance with Section 010000 , GENERAL REQUIREMENTS.
H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
I. Instruct VA personnel in system maintenance and operation in accordance with Section 010000 , GENERAL REQUIREMENTS.

-     -         - E N D - - -


# SECTION 233100 HVAC DUCTS AND CASINGS 

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Ductwork and accessories for HVAC including the following:

1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
B. Definitions:
2. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
3. Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
4. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
5. Exposed Duct: Exposed to view in a finished room, and exposed to weather.

### 1.2 RELATED WORK

A. Fire Stopping Material: Section 078400 , FIRESTOPPING.
B. Outdoor and Exhaust Louvers: Section 089000 , LOUVERS and VENTS.
C. General Mechanical Requirements: Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
D. Noise Level Requirements: Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
E. Duct Insulation: Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
F. Plumbing Connections: Section 221100 , FACILITY WATER DISTRIBUTION
G. Air Flow Control Valves and Terminal Units: Section 233600 , AIR TERMINAL UNITS.
H. Duct Mounted Coils: Section 2382 16, AIR COILS.
I. Supply Air Fans: Section 237300 , INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
J. Return Air and Exhaust Air Fans: Section 2334 00, HVAC FANS.
K. Air Filters and Filters' Efficiencies: Section 234000 , HVAC AIR CLEANING DEVICES.
L. Duct Mounted Instrumentation: Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
M. Testing and Balancing of Air Flows: Section 2305 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
N. Smoke Detectors: Section 283100 , FIRE DETECTION and ALARM.

### 1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE, in Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Fire Safety Code: Comply with NFPA 90A.
C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Rectangular ducts:
a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
b. Duct liner.
c. Sealants and gaskets.
d. Access doors.
2. Round and flat oval duct construction details:
a. Manufacturer's details for duct fittings.
b. Duct liner.
c. Sealants and gaskets.
d. Access sections.
e. Installation instructions.
3. Volume dampers, back draft dampers.
4. Upper hanger attachments.
5. Fire dampers, fire doors, and smoke dampers with installation instructions.
6. Sound attenuators, including pressure drop and acoustic performance.
7. Flexible ducts and clamps, with manufacturer's installation instructions.
8. Flexible connections.
9. Instrument test fittings.

10 Details and design analysis of alternate or optional duct systems.
11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 230511

- Common Work Results for HVAC and Steam Generation.


### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Civil Engineers (ASCE):

ASCE7-05................Minimum Design Loads for Buildings and Other Structures
C. American Society for Testing and Materials (ASTM):

A167-99(2009)..........Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
A653-09................Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process
A1011-09a...............Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, HighStrength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength
B209-07.................Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
C1071-05e1..............Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)

E84-09a.................Standard Test Method for Surface Burning Characteristics of Building Materials
D. National Fire Protection Association (NFPA):

90A-09...................Standard for the Installation of Air Conditioning and Ventilating Systems
96-08...................Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations
E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA) :
2nd Edition - 2005......HVAC Duct Construction Standards, Metal and Flexible

```
 1st Edition - 1985......HVAC Air Duct Leakage Test Manual
 6th Edition - 2003......Fibrous Glass Duct Construction Standards
F. Underwriters Laboratories, Inc. (UL):
181-08................Factory-Made Air Ducts and Air Connectors
555-06Standard for Fire Dampers
555S-06Standard for Smoke Dampers
```


## PART 2 - PRODUCTS

### 2.1 DUCT MATERIALS AND SEALANTS

A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
B. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.

1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
3. Gaskets in Flanged Joints: Soft neoprene.
C. Approved factory made joints may be used.

### 2.2 DUCT CONSTRUCTION AND INSTALLATION

A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
B. Duct Pressure Classification:

0 to 50 mm (2 inch)
$>50 \mathrm{~mm}$ to 75 mm (2 inch to 3 inch)
$>75 \mathrm{~mm}$ to 100 mm (3 inch to 4 inch)
Show pressure classifications on the floor plans.
C. Seal Class: All ductwork shall receive Class A Seal
D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.

1. Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Contracting Officer's Representative (COR).
E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - $1350 \mathrm{~mm}(48-54$ inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
H. Ductwork in excess of $620 \mathrm{~cm}^{2}$ ( 96 square inches) shall be protected unless the duct has one dimension less than 150 mm (6 inches)if it passes through the areas listed below. Refer to the Mission Critical

Physical Design Manual for VA Facilities. This applies to the
following:

1. Perimeter partitions of computer rooms
2. Perimeter partitions of Entrances
3. Security control centers (SCC)

### 2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:

1. Each duct mounted coil and humidifier.
2. Each fire damper (for link service), smoke damper and automatic control damper.
3. Each duct mounted smoke detector.
4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
5. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
6. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

### 2.4 FIRE DAMPERS

A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees $C(160$ degrees $F)$ fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
B. Fire dampers in wet air exhaust shall be of stainless steel
construction, all others may be galvanized steel.
C. Minimum requirements for fire dampers:

1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
2. Submit manufacturer's installation instructions conforming to UL rating test.

### 2.5 FLEXIBLE AIR DUCT

A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz , based on 150 mm (6 inch) duct, of $750 \mathrm{~m} / \mathrm{min}$ (2500 fpm).
D. Application Criteria:

1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
2. Maximum working velocity: $1200 \mathrm{~m} / \mathrm{min}(4000$ feet per minute).
3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, $500 \mathrm{~Pa}(2$ inches) negative.
E. Duct Clamps: 100 percent nylon strap, $80 \mathrm{~kg}(175$ pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

### 2.6 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

### 2.7 SOUND ATTENUATING UNITS

A. Casing, not less than $1.0 \mathrm{~mm}(20$ gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than $0,6 \mathrm{~mm}$ (24 gage) or heavier galvanized perforated sheet steel, or $0.85 \mathrm{~mm}(22$ gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa ( 8 inches W.G.) at operating velocities.
C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

### 2.8 FIRESTOPPING MATERIAL

Refer to Section 078400 , FIRESTOPPING.

### 2.9 DUCT MOUNTEDTHERMOMETER (AIR)

A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
B. Thermometer Supports:

1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

### 2.10 DUCT MOUNTEDTEMPERATURE SENSOR (AIR)

Refer to Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

### 2.11 INSTRUMENT TEST FITTINGS

A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Comply with provisions of Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:

1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated andor smoke rated walls, shafts and where required by the COR. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant
springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the COR.
E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
H. Control Damper Installation:
5. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
6. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
7. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
8. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
I. Air Flow Measuring Devices (AFMD) : Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
J. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by COR. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

### 3.2 DUCT LEAKAGE TESTS AND REPAIR

A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the COR on ductwork constructed to the $500 \mathrm{~Pa}\left(2^{\prime \prime} \mathrm{WG}\right)$ duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.
C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
E. All tests shall be performed in the presence of the COR and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the COR and identify leakage source with excessive leakage.
F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the COR.
G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

### 3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 2305 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

### 3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

## SECTION 233400 <br> HVAC FANS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Fans for heating, ventilating and air conditioning.
B. Product Definitions: AMCA Publication 99, Standard l-66.

### 1.2 RELATED WORK

A. Section 010000 , GENERAL REQUIREMENTS.
B. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
C. Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
D. Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
E. Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
F. Section 2305 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
G. Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
H. Section 2382 16, AIR COILS.
I. Section 2629 11, LOW-VOLTAGE MOTOR STARTERS.

### 1.3 QUALITY ASSURANCE

A. Refer to paragraph, QUALITY ASSURANCE, in Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
B. Fans and power ventilators shall be listed in the current edition of AMCA 26l, and shall bear the AMCA performance seal.
C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
D. Fans and power ventilators shall comply with the following standards:
l. Testing and Rating: AMCA 210.
2. Sound Rating: AMCA 300.
E. Vibration Tolerance for Fans and Power Ventilators: Section 230541 , NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
F. Performance Criteria:
l. The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
2. Select the fan operating point as follows:
a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
H. Corrosion Protection:

1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturers Literature and Data:
l. Fan sections, motors and drives.
2. Centrifugal fans, motors, drives, accessories and coatings.
a. In-line centrifugal fans.
b. Utility fans and vent sets.
C. Certified Sound power levels for each fan.
D. Motor ratings types, electrical characteristics and accessories.
E. Roof curbs.
F. Belt guards.
G. Maintenance and Operating manuals in accordance with Section 010000 , GENERAL REQUIREMENTS.
H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air Movement and Control Association International, Inc. (AMCA):

99-86................... Standards Handbook
210-06..................Laboratory Methods of Testing Fans for Aerodynamic Performance Rating
261-09.................. Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually
300-08...................Reverberant Room Method for Sound Testing of Fans
C. American Society for Testing and Materials (ASTM):

B117-07a...............Standard Practice for Operating Salt Spray (Fog) Apparatus

```
 D1735-08...............Standard Practice for Testing Water Resistance
 of Coatings Using Water Fog Apparatus
 D3359-08..............Standard Test Methods for Measuring Adhesion by
 Tape Test
 G152-06................Standard Practice for Operating Open Flame
 Carbon Arc Light Apparatus for Exposure of Non-
 Metallic Materials
 G153-04
 Standard Practice for Operating Enclosed Carbon
 Arc Light Apparatus for Exposure of Non-Metallic
 Materials
D. National Fire Protection Association (NFPA):
 NFPA 96-08..............Standard for Ventilation Control and Fire
 Protection of Commercial Cooking Operations
E. National Sanitation Foundation (NSF):
 37-07................Air Curtains for Entrance Ways in Food and Food
 Service Establishments
F. Underwriters Laboratories, Inc. (UL):
 181-2005..............Factory Made Air Ducts and Air Connectors
```


### 1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

## PART 2 - PRODUCTS

### 2.1 FAN SECTION (CABINET FAN)

Refer to specification Section 237400 , OUTDOOR CENTRAL-STATION AIRHANDLING UNITS.

### 2.2 CENTRIFUGAL FANS

A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
B. Fan arrangement, unless noted or approved otherwise:

1. DWDl fans: Arrangement 3.
2. SWSl fans: Arrangement l, 3, 9 or 10.
C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
l. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
3. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
4. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
5. Bearings: Heavy duty ball or roller type sized to produce a Blo life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
6. Belts: Oil resistant, non-sparking and non-static.
7. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
8. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15 HP . Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
9. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
10. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for controller/motor combination requirements.
D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.
E. Industrial Fans: Use where scheduled or in lieu of centrifugal fans for low volume high static service. Construction specifications paragraphs A and $C$ for centrifugal fans shall apply. Provide material handling flat blade type fan wheel.
F. Utility Fans, Vent Sets and Small Capacity Fans: Class l design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300 mm (l2 inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron.

### 2.3 POWER WALL VENTILATOR

A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
B. Type: Centrifugal fan, backward inclined blades.
C. Construction: Steel or aluminum, completely weatherproof, for wall mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.
D. Motor and Drive: Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Install fan, motor and drive in accordance with manufacturer's instructions.
B. Align fan and motor sheaves to allow belts to run true and straight.
C. Bolt equipment to curbs with galvanized lag bolts.
D. Install vibration control devices as shown on drawings and specified in Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

### 3.2 PRE-OPERATION MAINTENANCE

A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
C. Clean fan interiors to remove foreign material and construction dirt and dust.

### 3.3 START-UP AND INSTRUCTIONS

A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
B. Check vibration and correct as necessary for air balance work.
C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

## SECTION 233600 AIR TERMINAL UNITS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Air terminal units, air flow control valves.

### 1.2 RELATED WORK

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
B. Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise requirements.
C. Section 233100 , HVAC DUCTS AND CASINGS: Ducts and flexible connectors.
D. Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
E. Section 2305 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: Flow rates adjusting and balancing.
F. Section 2382 16, AIR COILS: Heating and Cooling Coils pressure ratings.

### 1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Air Terminal Units: Submit test data.
2. Air flow control valves.
C. Samples: Provide one typical air terminal unit for approval by the Contracting Officer's Representative. This unit will be returned to the Contractor after all similar units have been shipped and deemed acceptable at the job site.
D. Certificates:
3. Compliance with paragraph, QUALITY ASSURANCE.
4. Compliance with specified standards.
E. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 010000 , GENERAL REQUIREMENTS.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI):

880-08..................Air Terminals Addendum to ARI 888-98 incorporated into standard posted $15^{\text {th }}$ December 2002
C. National Fire Protection Association (NFPA) :

90A-09..................Standard for the Installation of Air Conditioning and Ventilating Systems
D. Underwriters Laboratories, Inc. (UL):

181-08..................Standard for Factory-Made Air Ducts and Air Connectors
E. American Society for Testing and Materials (ASTM):

C 665-06................Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

### 1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

## PART 2 - PRODUCTS

### 2.1 GENERAL

A. Coils:

1. All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
2. Water Heating Coils:
a. ARI certified, continuous plate or spiral fin type, leak tested at $2070 \mathrm{kPa}(300 \mathrm{PSI})$.
b. Capacity: As indicated, based on scheduled entering water temperature.
c. Headers: Copper or Brass.
d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
e. Tubes: Copper, arrange for counter-flow of heating water.
f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
g. Provide vent and drain connection at high and low point, respectively of each coil.
h. Coils shall be guaranteed to drain.
B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
D. Dampers with internal air volume control: See section 233100 HVAC DUCTS and CASINGS.

### 2.2 AIR TERMINAL UNITS (BOXES)

A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 2305 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM) .
C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 230541 (Noise and Vibration Control for HVAC Piping and Equipment).
D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.

1. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
2. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
3. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet.
E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
4. Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG) .
F. Provide multi-point velocity pressure sensors with external pressure taps.
5. Provide direct reading air flow rate table pasted to box.
G. Provide static pressure tubes.
H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
B. Handle and install units in accordance with manufacturer's written instructions.
C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

### 3.2 OPERATIONAL TEST

Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

# SECTION 233700 AIR OUTLETS AND INLETS 

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Roof Curbs
B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

### 1.2 RELATED WORK

A. General Mechanical Requirements: Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
B. Noise Level Requirements: Section 230541 , NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
C. Testing and Balancing of Air Flows: Section 2305 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

### 1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE, in Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
B. Fire Safety Code: Comply with NFPA 90A.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:

1. Diffusers, registers, grilles and accessories.
C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air Diffusion Council Test Code:

1062 GRD-84..............Certification, Rating, and Test Manual $4^{\text {th }}$ Edition
C. American Society of Civil Engineers (ASCE):

ASCE7-05.................Minimum Design Loads for Buildings and Other Structures
D. American Society for Testing and Materials (ASTM): A167-99 (2004).........Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip
B209-07.................Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
E. National Fire Protection Association (NFPA):

> 90A-09................ Standard for the Installation of Air Conditioning and Ventilating Systems
F. Underwriters Laboratories, Inc. (UL):

181-08..................UL Standard for Safety Factory-Made Air Ducts and Connectors

## PART 2 - PRODUCTS

### 2.1 EQUIPMENT SUPPORTS

Refer to Section 2105 11, Section 2205 11, COMMON WORK RESULTS FOR PLUMBING, and Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

### 2.2 AIR OUTLETS AND INLETS

A. Materials:

1. Steel or aluminum except that all supply air outlets installed in operating rooms and Cystoscopy rooms (see Article 2.3C.3) shall be stainless steel. Use aluminum air outlets and inlets for facilities located in high-humidity areas. Exhaust air registers located in combination toilets and shower stalls shall be constructed from aluminum. Provide manufacturer's standard gasket.
2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT for NC criteria.
C. Air Supply Outlets:
4. Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
b. Louver face type: Square or rectangular, removable core for 1, 2, 3 , or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.
5. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
a. Margin: Flat, $30 \mathrm{~mm}(1-1 / 4$ inches) wide.
b. Bar spacing: 20 mm (3/4 inch) maximum.
c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
6. Supply Grilles: Same as registers but without the opposed blade damper.
7. Jet Diffusers: Aluminum construction (nozzle and frame) suitable for wall or ceiling mounting or direct mounting on ducts.
D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
8. Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
9. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
10. Perforated Face Type: To match supply units.
11. Grid Core Type: 13 mm by $13 \mathrm{~mm}(1 / 2$ inch by $1 / 2$ inch) core with 30 mm (1-1/4 inch) margin.
E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

### 2.3 WIRE MESH GRILLE

A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
B. Use grilles where shown in unfinished areas such as mechanical rooms.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Comply with provisions of Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Contracting Officer's Representative. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

### 3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of $145 \mathrm{~km} / \mathrm{h}$ ( 90 mph) .

### 3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 2305 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION

## SECTION 234000 hVac air cleaning devices

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Air filters for heating, ventilating and air conditioning.
B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

### 1.2 RELATED WORK

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
B. Section 2374 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.
C. Section 230800 - COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

### 1.3 QUALITY ASSURANCE

A. Air Filter Performance Report for Extended Surface Filters:

1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Contracting Officer's Representative (COR), indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for $150 \mathrm{~m} / \mathrm{min}(500 \mathrm{fpm})$ will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
C. Comply with UL Standard 900 for flame test.
D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Manufacturer's Literature and Data:

1. Extended surface filters.
2. Holding frames. Identify locations.
3. Side access housings. Identify locations, verify insulated doors.
4. Magnehelic gages.
C. Air Filter performance reports.
D. Suppliers warranty.
E. Field test results for HEPA filters as per paragraph 2.3.E.3.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE) :
52.2-2007...............Method of Testing General Ventilation AirCleaning Devices for Removal Efficiency by Particle Size, including Appendix J
C. American Society of Mechanical Engineers (ASME):

NQA-1-2008.............Quality Assurance Requirements for Nuclear Facilities Applications
D. Underwriters Laboratories, Inc. (UL):

900; Revision 15 July 2009 Test Performance of Air Filter Units
PART 2 - PRODUCTS

### 2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 010000 , GENERAL REQUIREMENTS, provide one complete set of additional filters to the COR.
B. The COR will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

### 2.2 EXTENDED SURFACE AIR FILTERS

A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall
be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
B. Filter Classification: UL listed and approved conforming to UL Standard 900.
C. HVAC Filter Types

HVAC Filter Types Table 2.2C				
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type
8	8-A	Pre-Filter	3 to 10 Microns	$\begin{gathered} 50 \text { mm (2-inch) } \\ \text { Throwaway } \end{gathered}$
14	14-A	After-Filter	0.3 to 1 Microns	$\begin{gathered} 150 \mathrm{~mm} \text { (6-inch) or } 300 \\ \mathrm{~mm} \text { (12-inch) Rigid } \\ \text { Cartridge } \end{gathered}$

### 2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or $100 \%$ virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28 -point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.
B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix $J$ of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal $24^{\prime \prime} \mathrm{x} 24^{\prime \prime}$ face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	$24 \times 24 \times 2$
Rated Air Flow Capacity (Cubic Feet per   Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)   Maximum Recommended Change-Out Resistance   (Inches w.g.)	1.0
Rated Initial Resistance (Inches w.g.)	0.66

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 45111.

### 2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of $A B S$ plastic. No metal components are to be used.
B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the AirConditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal $24 " x 24 "$ header dimension.

Minimum Efficiency Reporting Value   (MERV)	14
Gross Media Area (Sq. Ft.)   Dust Holding Capacity (Grams)	197
Nominal Size (Width x Height x Depth)	$24 \times 24 \times 12$
Rated Air Flow Capacity (cubic feet per   minute)	2,000
Rated Air Flow Rate (feet per minute)	500
Final Resistance (inches w.g.)   Maximum Recommended Change-Out   Resistance (Inches w.g.)	2.0
Rated Initial Resistance (inches w.g.)	0.74

### 2.5 FILTER HOUSINGS/SUPPORT FRAMES

A. Holding Frame System (HVAC Grade):

1. Air filter-holding frames shall be 16-gauge galvanized steel with filter sealing flange, centering dimples, sealing gasket and lances for appropriate air filter fasteners. Sizes shall be noted on drawings or other supporting materials.
2. Construction: Filter holding frame shall be constructed of 16-gauge galvanized steel. The frame shall be assembled from two corner sections and welded to assure a rigid and durable frame assembly. The frame shall include a variety of pre-punched lances for filter fastener attachment. Fastener shall be capable of being installed without the use of tools, nuts or bolts. Lance penetrations shall be upstream of filter flange to assure leak-free integrity. The frame shall include filter-centering dimples on each frame wall to facilitate ease of filter installation and assure filter centering against filter sealing flange. A $3 / 4^{\prime \prime}$ filter-sealing flange shall be an integral component of the holding frame. All corners shall be flush mitered and a permanently mounted polyurethane foam gasket shall be mounted on the sealing flange to assure filter to frame sealing integrity.
3. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.
B. Equipment Identification: Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

### 2.6 INSTRUMENTATION

A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch
for HEPA) range. Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
B. DDC static (differential) air pressure measuring station. Refer to Specification Section 230923 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

### 2.7 HVAC EQUIPMENT FACTORY FILTERS

A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
B. Cleanable filters are not permitted.
C. Automatic Roll Type filters are not permitted.

### 2.8 FILTER RETURN GRILLES

Refer to Section 233700 AIR OUTLETS AND INLETS.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Install supports, filters and gages in accordance with manufacturer's instructions.

### 3.2 START-UP AND TEMPORARY USE

A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the COR.

### 3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

## SECTION 237413

## PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. Outdoor air handling units including integral components specified herein.
B. Definitions: Roof Top Air Handling Unit(Roof Top Units, RTU): A factory fabricated assembly consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

### 1.2 RELATED WORK

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
B. Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Sound and vibration requirements.
C. Section 2307 11, HVAC and BOILER PLANT INSULATION: Piping and duct insulation.
D. Section 2321 13, HYDRONIC PIPING and Section 2322 13, STEAM and CONDENSATE HEATING PIPING: Piping and valves.
E. Section 2382 16, AIR COILS: Heating and cooling coils and pressure requirements.
F. Section 2334 00, HVAC FANS: Return and exhaust fans.
G. Section 233100 , HVAC DUCTS and CASINGS: Requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
H. Section 234000 , HVAC AIR CLEANING DEVICES: Air filters and filters' efficiency.
I. Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: HVAC controls.
J. Section 2305 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing, adjusting and balancing of air and water flows.
K. Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT: Types of motors.
L. Section 2629 11, LOW-VOLTAGE MOTOR STARTERS: Types of motor starters.
M. Section 230800 - COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

### 1.3 QUALITY ASSURANCE

A. Refer to Article, Quality Assurance, in Section 2305 11, COMMON WORK RESULTS FOR HVAC.
B. Air Handling Units Certification

1. Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
D. Performance Criteria:
2. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
3. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
4. Select the fan operating point as follows:
a. Forward Curve: Right hand side of peak pressure point.
b. Air Foil, Backward Inclined: At or near the peak static efficiency but at an appropriate distance from the stall line.
5. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

### 1.4 SUBMITTALS:

A. The contractor shall, in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish a complete submission for all roof top units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
B. Manufacturer's Literature and Data:

1. Submittals for RTUs shall include fans, drives, motors, coils, mixing box with outside/return air dampers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, diffusion plates, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc) and rigging points.
2. Submittal drawings of section or component only, will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details; if the unit cannot be shipped in one piece, the contractor shall
indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
3. Submit sound power levels in each octave band for fan and at entrance and discharge of RTUs at scheduled conditions. Include sound attenuator capacities and itemized internal component attenuation. Internal lining of supply air ductwork with sound absorbing material is not permitted. In absence of sound power ratings refer to Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute) and 110 percent of design static pressure.
5. Submit total fan static pressure, external static pressure, for RTU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
C. Maintenance and operating manuals in accordance with Section 010000 , GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
D. Submit written test procedures two weeks prior to factory testing. Submit written results of factory tests for approval prior to shipping.
E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 230800 COMMISSIONING OF HVAC SYSTEMS.
F. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
6. Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
7. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
8. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
9. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI):

260-01..................Sound Rating of Ducted Air Moving and Conditioning Equipment
410-01.................Standard for Forced-Circulation Air-Heating and Air-Cooling Coils
430-09..................Standard for Central Station Air Handling Units AHRI-DCAACP.............Directory of Certified Applied Air Conditioning Products
C. Air Moving and Conditioning Association (AMCA):

210-07.................. Laboratory Methods of Testing Fans for Rating
D. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA):

9-90 (R2008)............Load Ratings and Fatigue life for Ball Bearings
E. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) :
51-2007.................Laboratory Methods of Testing Fans for Rating
F. American Society for Testing and Materials (ASTM) :

A653/653M-02............Steel Sheet, Zinc-Coated (Galvanized) or ZincIron Alloy-Coated (Galvannealed) by the Hot-Dip Process

B117-07a............... Salt Spray (Fog) Testing
C1071-05e1..............Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)

D1654-08...............Standard Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
D1735-08..................Water Resistance of Coatings Using Water Fog Apparatus

```
 D3359-08..............Standard Test Methods for Measuring Adhesion by
 Tape Test
 E84-10................Standard Test Method for Surface Burning
 Characteristics of Building Materials
G. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA):
 9-90.................Load Ratings and Fatigue life for Ball Bearings
H. Military Specifications (Mil. Spec.):
 DOD-P-21035A-2003.......Paint, High Zinc Dust Content, Galvanizing
 Repair
```

    I. National Fire Protection Association (NFPA):
    NFPA 90A................Standard for Installation of Air Conditioning
        and Ventilating Systems, 2009
    J. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

### 2.1 ROOF TOP AIR HANDLING UNITS

A. General:

1. Roof top units (RTU) shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing is specified in paragraph 2.1.C. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter ( 0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
2. The contractor and the RTU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
3. RTUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site.

Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
4. The RTU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed $1 / 200$ of the span based on a differential static pressure of 1991 Pa ( 8 inches water gage) or higher.
B. Base:

1. Provide a heavy duty steel base for supporting all major RTU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm ( 5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap as shown on drawings.
2. RTUs shall be completely self supporting for installation on steel support pedestals.
3. The RTU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
C. Casing (including wall, floor and roof):
4. General: RTU casing shall be entirely double wall insulated panels, integral of or attached to a structural frame. Construction shall be such that removal of any panel shall not affect the structural integrity of the unit. Casing finished shall meet salt-spray test as specified in paragraph 2.1.C.10. All casing and panel sections shall
be tightly butted and gasketed. No gaps of double wall construction will be allowed where panels bolt to air handling unit structural member. Structural members, not covered by the double wall panels, shall have equivalent insulated double wall construction.
5. Double wall galvanized steel panels, minimum 51 mm (2 inches) thick, constructed of minimum 1.3 mm (18 gauge) outer skin and 1.0 mm (20 gauge) solid or perforated inner skin to limit wall, roof and floor deflection to not exceed an $L / 240$ ratio when the unit casing is pressurized to ( $\pm 1245 \mathrm{~Pa}( \pm 5 \mathrm{in} . \mathrm{w} . \mathrm{g}$.$) . Deflection shall be measured$ at the midpoint of the panel height. Total housing leakage shall not exceed 1\% of rated cfm when the unit casing is pressurized to $\pm 5$ in. w.g. ( $\pm 1245 \mathrm{~Pa}$. The outer (skin) and inner panels shall be solid.
6. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
7. Insulation: Insulation shall be injected CFC free polyurethane foam encased in double-wall casing between exterior and interior panels such that no insulation can erode to the air stream. Insulation shall be 50 mm (2 inch) thick, and $48 \mathrm{~kg} / \mathrm{m}^{3}\left(3.0 \mathrm{lb} / \mathrm{ft}^{3}\right)$ density with a total thermal resistance (R-value) of approximately $2.3 \mathrm{~m} . \mathrm{K} / \mathrm{W}$ (13.0 $\left.h r-f t^{2}{ }^{\circ} \mathrm{F} / \mathrm{BTU}\right)$. Units with less than 50 mm (2 inch) of insulation in any part of the walls, floor, roof or drain pan shall not be acceptable. The insulation shall comply with NFPA 90-A for the flame and smoke generation requirements. Also, refer to specification Section 2307 11, HVAC and BOILER PLANT INSULATION.

Table 2.1.C. 4

Outer Panel	$0.8 \mathrm{~mm}(22 \mathrm{Gage})$ Minimum
Inner Panel	$0.8 \mathrm{~mm}(22 \mathrm{Gage})$ Minimum
Insulation	Foam
Thickness   Density	$40 \mathrm{~mm} \mathrm{(2} \mathrm{inch)} \mathrm{Minimum}$
Total R Value	$2.3 \mathrm{~m}^{2} . \mathrm{K} / \mathrm{W}\left(13.0 \mathrm{lb} / \mathrm{ft}^{3}\right)$ Minimum   Minimum

5. The thickness of insulation, mode of application, and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU.
6. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to
allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inches) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm ( 6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, coil section shall include a minimum $150 \mathrm{~mm} x$ 150 mm (6 inch x 6 inch) double thickness, with air space between glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 pound) weight hung on latch side of door.
b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa ( 8 inches water gage).
c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
9. Roof of the unit shall be sloped to have a minimum pitch of $1 / 4$ inch per foot. The roof shall overhang the side panels by a minimum of
three inches to prevent precipitation drainage from streaming down the unit side panels.
10. Casing finished shall meet ASTM B117, 500 -hour salt spray test, using 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no sign of blistering, wrinkling, or cracking, no loss of adhesion, and the specimen shall show no sign of rust creepage beyond $1 / 8$-inch on either side of scratch mark.
D. Unit floor shall be level without offset space or gap and designed to support a minimum of $488 \mathrm{~kg} / \mathrm{square}$ meter (100 pounds per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double wall construction, Type 304 stainless steel and have a minimum of 50 mm (2 inch) insulation, and shall be sloped to drain. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
11. An intermediate condensate drip pan shall be provided on stacked cooling coils and shall be constructed of type 304 stainless steel with copper downspouts factory piped to main condensate pan. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
12. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
13. Installation, including frame, shall be designed and sealed to prevent blow-by.
F. Housed Centrifugal Fan Sections:
14. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined or forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow
block, regreasable ball-type bearings selected for a $B(10)$ life of not less than 40,000 hours and an $L(50)$ average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
15. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 2305 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of $0.005 \mathrm{~m} / \mathrm{s} \quad(0.20$ inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 2305 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
16. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 230512 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 2629 11, LOW-VOLTAGE MOTOR STARTERS.
17. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 2305 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
H. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 cfm per square foot) at 250 Pa (1 inch water gage) and 2.8 cubic meters/min/square meter ( 9 cfm per square foot) at $995 \mathrm{~Pa}(4$ inches water gage) // Electronic // Pneumatic // damper operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
I. Filter Section: Refer to Section 234000 , HVAC AIR CLEANING DEVICES, for filter requirements.
18. Filters including one complete set for temporary use at site shall be provided independent of the RTU. The RTU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The RTU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for RTU testing.
19. Factory-fabricated filter section shall be of the same construction and finish as the RTU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
J. Diffuser Section: Furnish a diffuser segment with perforated diffuser plate immediately downstream of supply fan to assure uniform distribution of leaving air across the face of the downstream afterfilters to create uniform velocity profiles across the entire opening. Bolt or weld diffuser plate to a sturdy steel support frame so that it remains rigid. Manufacturer shall include any diffuser section pressure loss in excess of diffuser plate and this value shall be included in unspecified internal losses when selecting fan.
K. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure
no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings and Section 238216 , AIR COILS, for additional coil requirements.
20. Water Coils, Including Glycol-Water.
21. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
L. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.

Air-Cooled, Compressor-Condenser Components:

1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Service valves, fittings, and gage ports shall be brass and located outside of the casing.
2. Compressor: Hermetically sealed scroll with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermaland current-sensitive overload devices, start capacitor, relay, and contactor.
3. Compressor motor with manual-reset, high-pressure switch and automatic-reset, low-pressure switch.
4. Refrigerant: R-410A unless otherwise indicated.
5. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with liquid subcooler.
6. Fan: Aluminum, propeller type, directly connected to motor.
7. Motor: Permanently lubricated, with integral thermal-overload protection.
8. Low Ambient Kit: Permit operation down to 7 deg C (45 deg F).
9. Mounting Base: Polyethylene.
10. Minimum Energy Efficiency: Comply with ASHRAE/IESNA 90.1-2004, "Energy Standard for Buildings except Low-Rise Residential Buildings."
M. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
11. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction
box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
12. Install compatible 100 watt bulb in each light fixture.
13. Provide a convenience duplex weatherproof receptacle next to the light switch.
14. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Install roof top unit in conformance with ARI 435.
B. Assemble roof top unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035A. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air-handing units clean prior to operation.
C. Leakage and test requirements for roof top units shall be the same as specified for ductwork in Specification Section 233100 , HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class ( $C_{L}$ ) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
D. Perform field mechanical (vibration) balancing in accordance with Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
E. Seal and/or fill all openings between the casing and RTU components and utility connections to prevent air leakage or bypass.

### 3.2 STARTUP SERVICES

A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

### 3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

```
- - - E N D - - -
```


## SECTION 238123 COMPUTER-ROOM AIR-CONDITIONERS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies process cooling split systems air conditioning unit.
B. Definitions:

1. Energy Efficiency Ratio (EER): A ratio calculated by dividing the cooling capacity in Btu by the power input in watts at any given set of rating conditions, expressed in Watts (Btu/h) per watt.
2. Coefficient of Performance (COP): A ratio calculated by dividing the change in heating or cooling capacity (Btu/h) to the energy consumed by the system (kW), expressed in Btu/kWh.
3. Unitary (AHRI): Consists of one or more factory-made assemblies, which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function.
4. CRAC Units: Computer Room Air Conditioning Units.

### 1.2 RELATED WORK

A. Section 010000 , GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
B. Section 2305 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
C. Section 2321 23, HYDRONIC PUMPS and Section 2322 23, STEAM CONDENSATE PUMPS: Requirements for pumping equipment.
D. Section 2305 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Requirements for vibration isolators and room noise level.
E. Section 2307 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Requirements and for ducts and piping insulation.
F. Section 232300 , REFRIGERANT PIPING: Requirements for field refrigerant piping.
G. Section 2321 13, HYDRONIC PIPING and Section 2322 13, STEAM and CONDENSATE HEATING PIPING: Requirements for condensate piping and fittings.
H. Section 233100 , HVAC DUCTS and CASINGS: Requirements for sheet metal ducts and fittings.
I. Section 2340 00, HVAC AIR CLEANING DEVICES: Requirements for filters including efficiency.
J. Section 2309 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
K. Section 2305 93: TESTING, ADJUSTING, and BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.
L. Section 230800 - COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

### 1.3 QUALITY ASSURANCE

Refer to specification Section 2305 11, COMMON WORK RESULTS FOR HVAC.

### 1.4 SUBMITTALS

A. Submit in accordance with specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data, rated capacities (at design indoor and outdoor conditions), EER/COP, operating characteristics, required specialties and accessories. Submit published catalog selection data showing equipment ratings and compliance with required sensible ratio.

1. Indoor Air Conditioning Unit
2. Air Cooled Condensing Unit
C. Submit detailed equipment assemblies with dimensions, operating weights, required clearances.
D. Submit wiring diagrams for power, alarm and controls.
E. Certification: Submit, simultaneously with shop drawings, a proof of certification:
F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 230800 COMMISSIONING OF HVAC SYSTEMS.

### 1.5 GUARANTEE

The unit shall be guaranteed against all mechanical defects in material, parts or workmanship and shall be repaired or replaced at the Contractor's expense within the period of one year from final acceptance. Contractor shall adhere to a four hour service response time to troubles during the guarantee period.

### 1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Federal Specifications (Fed Spec) : 00-A-374C-95...........Air-Conditioners with Remote Condensing Units or Remote Air-cooled and Water-Cooled Condenser Units, Unitary
TT-C-490D-93............Cleaning Methods for Ferrous Surfaces and Pretreatments for Organic Coatings

```
C. Air-Conditioning, Heating and Refrigeration Institute (AHRI) Standards:
 210/240-08.............Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment
 340/360-07.............Performance Rating of Commercial and Industrial Unitary Air Conditioning and Heat Pump Equipment
 410-01................Forced-Circulation Air-Cooling and Air-Heating
 Coils
 460-2005...............Performance Rating of Remote Mechanical-Draft
 Air-Cooled Refrigerant Condensers
 520-04..................Performance Rating of Positive DisplacementCondensing Units
 AHRI-DCPP...............Directory of Certified Product Performance -
 Applied Directory of Certified Products
```

D. Air Movement and Control Association (AMCA):
210-07.................Laboratory Methods of Testing Fans for Certified
Aerodynamic Performance Rating (ANSI)
410-96..................Recommended Safety Practices for Users and
Installers of Industrial and Commercial Fans
E. American Society of Heating, Refrigerating, and Air-Conditioning
Engineers Inc. (ASHRAE):
15-10..................Safety Standard for Refrigeration Systems (ANSI)
90.1-10................Energy Standard for Buildings except Low-Rise
Residential Buildings (ANSI Approved; IESNA Co-
sponsored)
2008 Handbook...........HVAC Systems and Equipment
2010 Handbook...........Refrigeration
52.1-92.................Gravimetric and Dust-Spot Procedures for Testing
Air-Cleaning Devices used in General Ventilation
for Removing Particulate Matter
F. American Society of Testing and Materials (ASTM):
B117-09.................Standard Practice for Operating Salt Spray (Fog)
Apparatus
G. National Electrical Manufacturer's Association (NEMA):
MG 1-09 (R2010).........Motors and Generators (ANSI)
H. National Fire Protection Association (NFPA) Publications:
70-11....................National Electrical Code
90A-09..................Standard for the Installation of Air-
Conditioning and Ventilating Systems

## PART 2 - PRODUCTS

### 2.1 CEILING-MOUNTED UNITS

A. Description: Self-contained, factory assembled, prewired, and prepiped; consisting of cabinet, fan, filters, and controls; for horizontal ceiling mounting to fit $T$-bar ceiling opening of 610 by 1220 mm (24 by 48 inches).
B. Cabinet: Galvanized steel with baked-enamel finish, insulated with 13mm (1/2-inch) thick duct liner.
C. Integral factory-supplied supply and return grille to fit ceiling grid kit of 610 by 1220 mm (24 by 48 inches), with filter.
D. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2010.
E. Supply-Air Fan:

1. Forward-Curved, Centrifugal Fan: Provide with directly-driven fan with two-speed motor.
F. Compressor: Hermetic scroll, (VA: Type) with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
G. Refrigeration Circuit: Low-pressure switch, manual-reset high-pressure switch, thermal-expansion valve with external equalizer, sight glass with moisture indicator, service shutoff valves, charging valves, and charge of refrigerant.
H. Refrigerant: R-407C unless otherwise indicated.
I. Refrigerant Evaporator Coil: Direct-expansion coil of seamless copper tubes expanded into aluminum fins.
2. Mount coil assembly over stainless-steel drain pan complying with ASHRAE 62.1-2007 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
J. Remote Air-Cooled Refrigerant Condenser: Integral, copper-tube aluminum-fin coil with propeller fan, direct driven.
K. Split system shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.
L. Filter: 25-mm (1 inch) thick, disposable, glass-fiber media.
3. MERV Rating: 7 according to ASHRAE 52.2.
M. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
N. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature-control modules, time-delay relay, and
high-temperature thermostat. Wall-mounted control panel shall be solidstate, with start-stop switch and adjustable temperature set point.
O. DDC Interface: Provide connection to DDC system.

### 2.4 FAN MOTORS

A. Default motor characteristics are specified in Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
B. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 2305 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
C. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0 .
D. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

### 2.5 SPECIAL TOOLS

If any part of equipment furnished under these specifications requires a special tool for assembly, adjustment, setting, or maintenance and the tool is not readily available from the commercial tool market, furnish the necessary tools with equipment as a standard accessory

### 2.6 CORROSION CONTROL

A. Remote Outdoor Condenser Coils:

1. Epoxy Immersion Coating - Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The coating process shall be such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
a. Salt Spray Resistance (Minimum 6,000 Hours)
b. Humidity Resistance (Minimum 1,000 Hours)
c. Water Immersion (Minimum 260 Hours)
d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
e. Impact Resistance (Up to 160 Inch/Pound)
B. Exposed Outdoor Cabinet
2. Casing Surfaces (Exterior and Interior): All exposed and accessible metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be $2-4 \mathrm{mils}$ and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) AND 500 hours UV resistance (ASTM D4587).

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Handle and install refrigeration units and accessories in accordance with the instructions and recommendations of the manufacturer.
B. Coordinate installation of Computer room Air Conditioning Units with Computer room access flooring installer.
C. Field Refrigerant Piping: As specified in specification Section

232300 , REFRIGERANT PIPING.
D. Electrical System Connections and Equipment Ground: As specified in Division 26 Sections.

### 3.2 CONNECTIONS

A. Coordinate piping installations and specialty arrangements with schematics on Drawings and with requirements specified in piping systems. If Drawings are explicit enough, these requirements may be reduced or omitted.
B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
C. Install piping adjacent to machine to allow service and maintenance.
D. Water and Drainage Connections: Comply with applicable requirements in Section 2205 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING and Section 221100 , FACILITY WATER DISTRIBUTION. Provide adequate connections for condensate drain.
E. Refrigerant Piping: Comply with applicable requirements in Section 232300 , REFRIGERANT PIPING. Provide shutoff valves and piping.

### 3.3 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
B. After startup service and performance test, change filters and flush humidifier.

### 3.4 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

### 3.5 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior notice.

### 3.6 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

### 3.7 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
B. Submit training plans and instructor qualifications in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS.

## SECTION 238216 <br> AIR COILS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

Heating and cooling coils for air handling unit and duct applications

### 1.2 RELATED WORK

A. Section 2305 11, COMMON WORK RESULTS FOR HVAC.
B. Section 233100 , HVAC DUCTS AND CASINGS
C. Section 233600 , AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
D. Section 2374 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS
E. Section 238200 , CONVECTION HEATING AND COOLING UNITS
F. Section 230800 , COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

### 1.3 QUALITY ASSURANCE

A. Refer to paragraph, QUALITY ASSURANCE, Section 2305 11, COMMON WORK RESULTS FOR HVAC.
B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
C. Provide installation, operating and maintenance instructions.
D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
E. Coils may be submitted with Section 237300 , Section 2374 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS, Section 233600 , AIR TERMINAL UNITS.
F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 230800 COMMISSIONING OF HVAC SYSTEMS.

### 1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air Conditioning and Refrigeration Institute (AHRI):

Directory of Certified Applied Air Conditioning Products
AHRI 4l0-01..............Forced-Circulation Air-Cooling and Air-Heating Coils
C. American Society for Testing and Materials (ASTM):

B75/75M-02..............Standard Specifications for Seamless Copper Tube
D. National Fire Protection Association (NFPA) :

70-11.....................National Electric Code
E. National Electric Manufacturers Association (NEMA):

250-11.................Enclosures for Electrical Equipment (1,000 Volts Maximum)
F. Underwriters Laboratories, Inc. (UL):

1996-09.................Electric Duct Heaters

## PART 2 - PRODUCTS

### 2.1 HEATING AND COOLING COILS

A. Conform to ASTM B75 and AHRI 410.
B. Tubes: Minimum 16 mm ( 0.625 inch) tube diameter; Seamless copper tubing.
C. Fins: 0.1397 mm ( 0.0055 inch) aluminum or 0.1143 mm ( 0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
D. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
E. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
F. Coil Casing: 1.6 mm (l6 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
G. Pressures kPa (PSIG):

Pressure	Water Coil	Steam Coil	Refrigerant Coil
Test	$2070(300)$	$1725(250)$	$2070(300)$
Working	$1380(200)$	$520(75)$	$1725(250)$

H. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
I. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
J. Cooling Coil Condensate Drain Pan: Section 2374 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.
K. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; 1.6 mm (l6 gage) steel, coated with factory applied corrosion resistant baked enamel finish. Provide damper linkage and electric operators. Damper operators shall be of same manufacturer as controls furnished under Section 2309 23, DIRECTDIGITAL CONTROL SYSTEM FOR HVAC.

### 2.2 REHEAT COILS, DUCT MOUNTED

The coils shall be continuous circuit booster type for steam or hot water as shown on drawings. Use the same coil material as listed in Paragraphs 2.1.

### 2.3 WATER COILS, INCLUDING GLYCOL-WATER

A. Use the same coil material as listed in Paragraphs 2.1.
B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
l. Cooling, all types.
2. Heating or preheat.
3. Runaround energy recovery. ARI certification of capacity adjustment is waived. See Section 2372 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.
C. Cleanable Tube Type; manufacturer standard:
l. Well water applications.
2. Waste water applications.

### 2.4 VOLATILE REFRIGERANT COILS

A. Continuous circuit, straight tubes, dry expansion type equipped with multi-port distribution header, less expansion valve.
B. Minimum 16 mm (5/8-inch) tube diameter.
C. Designed for R410A or other EPA approved refrigerants.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Follow coil manufacturer's instructions for handing, cleaning, installation and piping connections.
B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

### 3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior notice.

### 3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS for all inspection,
start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 230800 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

### 3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
B. Submit training plans and instructor qualifications in accordance with the requirements of Section 230800 - COMMISSIONING OF HVAC SYSTEMS.

SECTION 260511

## REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section applies to all sections of Division 26.
B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, cable, panelboards, and other items and arrangements for the specified items are shown on drawings or schedules.
C. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited.

### 1.2 MINIMUM REQUIREMENTS

A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards.
B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

### 1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as NEMA, or ANSI. Evidence of compliance shall include certified test reports and definitive shop drawings.
B. Definitions:

1. Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed
equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
3. Certified; equipment or product which:
a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner.
b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory.
c. Bears a label, tag, or other record of certification.
4. Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor.

### 1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
B. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

### 1.5 APPLICABLE PUBLICATIONS

A. Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted.

### 1.6 MANUFACTURED PRODUCTS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer.
C. Equipment Assemblies and Components:

1. Components of an assembled unit need not be products of the same manufacturer.
2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
3. Components shall be compatible with each other and with the total assembly for the intended service.
4. Constituent parts which are similar shall be the product of a single manufacturer.
D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
E. When Factory Testing Is Specified:
5. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Contracting Officer's Representative (COR) a minimum of 15 working days prior to the manufacturers making the factory tests.
6. Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
7. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

### 1.7 EQUIPMENT REQUIREMENTS

A. Where variations from the contract requirements are requested in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

### 1.8 EQUIPMENT PROTECTION

A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.

1. Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to panelboards, motor controllers, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories.
2. During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
3. Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

### 1.9 WORK PERFORMANCE

A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart $K$ in addition to other references required by contract.
B. Job site safety and worker safety is the responsibility of the contractor.
C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:

1. Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E.
3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the COR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used and exit pathways.
4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COR.
D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 0100 00, GENERAL REQUIREMENTS .
E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 010000 , GENERAL REQUIREMENTS.
F. Coordinate location of equipment and conduit with other trades to minimize interferences.

### 1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Equipment location shall be as close as practical to locations shown on the drawings.
B. Working spaces shall not be less than specified in the NEC for all voltages specified.
C. Inaccessible Equipment:

1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
2. "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

### 1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as panelboards, cabinets, motor controllers (starters), fused and unfused safety switches, separately enclosed circuit breakers, individual breakers and controllers in motor control assemblies, control devices and other significant equipment.
B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of $1 / 2$ inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm²), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

### 1.12 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.

1. Mark the submittals, "SUBMITTED UNDER SECTION ".
2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
3. Submit each section separately.
E. The submittals shall include the following:
4. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog
information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
5. Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
6. Parts list which shall include those replacement parts recommended by the equipment manufacturer.
F. Manuals: Submit in accordance with Section 010000 , GENERAL REQUIREMENTS.
7. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, manufacturer's standard binders, or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
8. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
9. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
10. The manuals shall include:
a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
b. A control sequence describing start-up, operation, and shutdown.
c. Description of the function of each principal item of equipment.
d. Installation instructions.
e. Safety precautions for operation and maintenance.
f. Diagrams and illustrations.
g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers and replacement frequencies.
h. Performance data.
i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list
shall indicate sources of supply, recommended spare parts, and name of servicing organization.
j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
G. Approvals will be based on complete submission of manuals together with shop drawings.
H. After approval and prior to installation, furnish the COTR with one sample of each of the following:
11. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
12. Each type of conduit coupling, bushing and termination fitting.
13. Conduit hangers, clamps and supports.
14. Duct sealing compound.
15. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

### 1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

### 1.14 ACCEPTANCE CHECKS AND TESTS

A. The contractor shall furnish the instruments, materials and labor for field tests.

### 1.15 TRAINING

A. Training shall be provided in accordance with Article 1.25, INSTRUCTIONS, of Section 010000 , GENERAL REQUIREMENTS.
B. Training shall be provided for the particular equipment or system as required in each associated specification.
C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.

## SECTION 260519

## LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

### 1.2 RELATED WORK

A. Section 078400 , FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
B. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
D. Section 2605 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
E. Section 2605 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

### 1.5 SUBMITTALS

A. Submit six copies of the following in accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1. Shop Drawings:
a. Submit sufficient information to demonstrate compliance with drawings and specifications.
b. Submit the following data for approval:
1) Electrical ratings and insulation type for each conductor and cable.
2) Splicing materials and pulling lubricant.
2. Certifications: Two weeks prior to final inspection, submit the following.
a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

### 1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
B. American Society of Testing Material (ASTM):

D2301-10...............Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

D2304-10................Test Method for Thermal Endurance of Rigid Electrical Insulating Materials

D3005-10............... Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
C. National Electrical Manufacturers Association (NEMA):

WC 70-09................Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
D. National Fire Protection Association (NFPA):

70-11....................National Electrical Code (NEC)
E. Underwriters Laboratories, Inc. (UL):

44-10..................Thermoset-Insulated Wires and Cables
83-08..................Thermoplastic-Insulated Wires and Cables
467-07................. Grounding and Bonding Equipment
486A-486B-03...........Wire Connectors
486C-04.................Splicing Wire Connectors
486D-05.................Sealed Wire Connector Systems
486E-09................Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
493-07.................Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-04.................Conduit, Tubing, and Cable Fittings

## PART 2 - PRODUCTS

### 2.1 CONDUCTORS AND CABLES

A. Conductors and cables shall be in accordance with NEMA, UL, as
specified herein, and as shown on the drawings.
B. All conductors shall be copper.
C. Single Conductor and Cable:

1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
2. No. 8 AWG and larger: Stranded.
3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
4. Insulation: THHN-THWN and XHHW-2.
D. Direct Burial Cable: UF or USE cable.
E. Color Code:
5. No. 10 AWG and smaller: Solid color insulation or solid color coating.
6. No. 8 AWG and larger: Color-coded using one of the following methods:
a. Solid color insulation or solid color coating.
b. Stripes, bands, or hash marks of color specified.
c. Color using 19 mm ( 0.75 inches) wide tape.
7. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
8. Conductors shall be color-coded as follows:

$208 / 120 \mathrm{~V}$	Phase	$480 / 277 \mathrm{~V}$
Black	A	Brown
Red	B	Orange
Blue	C	Yellow
White	Neutral	Gray *
$*$ or white with colored (other than green) tracer.		

5. Lighting circuit "switch legs", and 3-way and 4-way switch
"traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Contracting Officer's Representative.

### 2.2 SPLICES

A. Splices shall be in accordance with NEC and UL.
B. Above Ground Splices for No. 10 AWG and Smaller:

1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
2. The integral insulator shall have a skirt to completely cover the stripped conductors.
3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
4. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
5. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
6. Splice and insulation shall be product of the same manufacturer.
7. All bolts, nuts, and washers used with splices shall be cadmiumplated steel.
D. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

### 2.3 CONNECTORS AND TERMINATIONS

A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be cadmiumplated steel.

### 2.4 CONTROL WIRING

A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

### 2.5 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

## PART 3 - EXECUTION

### 3.1 GENERAL

A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
B. Install all conductors in raceway systems.
C. Splice conductors only in outlet boxes, junction boxes and pullboxes.
D. Conductors of different systems (e.g., 120 V and 277 V ) shall not be installed in the same raceway.
E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
I. Conductor and Cable Pulling:

1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
2. Use nonmetallic pull ropes.
3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
4. All conductors in a single conduit shall be pulled simultaneously.
5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
J. No more than three branch circuits shall be installed in any one conduit.
K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

### 3.2 SPLICE AND TERMINATION INSTALLATION

A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

### 3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes and pullboxes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

### 3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

### 3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

### 3.6 CONTROL WIRING INSTALLATION

A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

### 3.7 CONTROL WIRING IDENTIFICATION

A. Install a permanent wire marker on each wire at each termination.
B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
C. Wire markers shall retain their markings after cleaning.

### 3.8 DIRECT BURIAL CABLE INSTALLATION

A. Tops of the cables:

1. Below the finished grade: Minimum 750 mm (30 inches) unless greater depth is shown.
B. Work with extreme care near existing ducts, conduits, cables, and other utilities to prevent any damage.
C. Excavation and backfill is specified in Section 312000 , EARTH MOVING.

In addition:

1. Place 75 mm (3 inches) bedding sand in the trenches before installing the cables.
2. Place 75 mm (3 inches) shading sand over the installed cables.
3. Install continuous horizontal 25 mm by 200 mm (1 inch x 8 inches) preservative-impregnated wood planking 75 mm (3 inches) above the cables before backfilling.
D. Provide horizontal slack in the cables for contraction during cold weather.
E. Install the cables in continuous lengths. Splices within cable runs shall not be accepted.
F. Connections and terminations shall be listed submersible-type designed for the cables being installed.
G. Warning tape shall be continuously placed 300 mm (12 inches) above the buried cables.

### 3.9 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:

1. Visual Inspection and Tests: Inspect physical condition.
2. Electrical tests:
a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
c. Perform phase rotation test on all three-phase circuits.

## SECTION 260526

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the general grounding and bonding requirements for electrical equipment and operations to provide a low impedance path for possible ground fault currents.
B. "Grounding electrode system" refers to all electrodes required by NEC, as well as made and supplementary grounding electrodes.
C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

### 1.2 RELATED WORK

A. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
B. Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low Voltage power and lighting wiring.
C. Section 2624 16, PANELBOARDS: Low voltage panelboards.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. Shop Drawings:

1. Clearly present enough information to determine compliance with drawings and specifications.
2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
C. Test Reports: Provide certified test reports of ground resistance.
D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Contracting Officer's Representative:
3. Certification that the materials and installation are in accordance with the drawings and specifications.
4. Certification by the contractor that the complete installation has been properly installed and tested.

### 1.5 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
A. American Society for Testing and Materials (ASTM):

B1-07..................Standard Specification for Hard-Drawn Copper Wire

B3-07..................Standard Specification for Soft or Annealed Copper Wire

B8-04..................Standard Specification for Concentric-LayStranded Copper Conductors, Hard, Medium-Hard, or Soft
B. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-1983.................IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System

C2-07...................National Electrical Safety Code
C. National Fire Protection Association (NFPA):

70-08....................National Electrical Code (NEC)
99-2005....................Health Care Facilities
D. Underwriters Laboratories, Inc. (UL):

44-05 ...................Thermoset-Insulated Wires and Cables
83-08 ..................Thermoplastic-Insulated Wires and Cables
467-07 .................Grounding and Bonding Equipment
486A-486B-03 ...........Wire Connectors

## PART 2 - PRODUCTS

### 2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be UL 44 or UL 83 insulated stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG [25 $\left.\mathrm{mm}^{2}\right]$ and larger shall be identified per NEC.
B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes No. 10 AWG [ $6 \mathrm{~mm}^{2}$ ] and smaller shall be ASTM B1 solid bare copper wire.
C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.

### 2.2 GROUND CONNECTIONS

A. Below Grade: Exothermic-welded type connectors.
B. Above Grade:

1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
2. Connection to Building Steel: Exothermic-welded type connectors.
3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.

### 2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 0.375 in [4 mm] thick x 0.75 in [19 mm] wide.

## PART 3 - EXECUTION

### 3.1 GENERAL

A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
B. System Grounding:

1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

### 3.2 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
B. Metallic Piping, Building Steel, and Supplemental Electrode(s):

1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building steel, and supplemental or made electrodes. Provide jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.
2. Provide a supplemental ground electrode and bond to the grounding electrode system.
C. Panelboards:
3. Connect the various feeder equipment grounding conductors to the ground bus in the enclosure with suitable pressure connectors.
4. Provide ground bars, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
5. Connect metallic conduits that terminate without mechanical connection to the housing, by grounding bushings and grounding conductor to the equipment ground bus.

### 3.3 RACEWAY

A. Conduit Systems:

1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
3. Conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
4. Metallic conduits which terminate without mechanical connection to electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a bare grounding conductor to the equipment ground bus.
B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
C. Boxes, Cabinets, Enclosures, and Panelboards:
5. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
6. Provide lugs in each box and enclosure for equipment grounding conductor termination.
D. Wireway Systems:
7. Bond the metallic structures of wireway to provide $100 \%$ electrical continuity throughout the wireway system, by connecting a No. 6 AWG [16 mm²] bonding jumper at all intermediate metallic enclosures and across all section junctions.
8. Install insulated No. 6 AWG [16 mm²] bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 50 ft [16 M].
9. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
10. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 49 ft [15 M].
E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
F. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

## 3. 4 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

### 3.5 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

## SECTION 260533

## RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

### 1.2 RELATED WORK

A. Section 078400 , FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
B. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
D. Section 2605 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

In accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
B. Shop Drawings:

1. Size and location of main feeders.
2. Size and location of panels and pull-boxes.
3. Layout of required conduit penetrations through structural elements.
C. Certifications:
4. Two weeks prior to the final inspection, submit four copies of the following certifications to the Contracting Officer's Representative (COR) :
a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
b. Certification by the contractor that the material has been properly installed.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
B. American National Standards Institute (ANSI):

C80.1-05................Electrical Rigid Steel Conduit
C80.3-05................ Steel Electrical Metal Tubing
C80.6-05.................Electrical Intermediate Metal Conduit
C. National Fire Protection Association (NFPA):

70-08...................National Electrical Code (NEC)
D. Underwriters Laboratories, Inc. (UL):

1-05.....................Flexible Metal Conduit
5-04.....................Surface Metal Raceway and Fittings
6-07...................Electrical Rigid Metal Conduit - Steel
50-95..................Enclosures for Electrical Equipment
360-093................ Liquid-Tight Flexible Steel Conduit
467-07...................Grounding and Bonding Equipment
514A-04.................Metallic Outlet Boxes
514B-04..................Conduit, Tubing, and Cable Fittings
514C-96.................Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers

651-05..................Schedule 40 and 80 Rigid PVC Conduit and Fittings

651A-00................Type EB and A Rigid PVC Conduit and HDPE Conduit
797-07.................Electrical Metallic Tubing
1242-06.................Electrical Intermediate Metal Conduit - Steel
E. National Electrical Manufacturers Association (NEMA):

TC-2-03................Electrical Polyvinyl Chloride (PVC) Tubing and Conduit
TC-3-04.................PVC Fittings for Use with Rigid PVC Conduit and Tubing
FB1-07...................Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

## PART 2 - PRODUCTS

### 2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm ] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm]
flexible conduit may be used for tap connections to recessed lighting fixtures.
B. Conduit:

1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
4. Flexible galvanized steel conduit: Shall conform to UL 1.
5. Liquid-tight flexible metal conduit: Shall conform to UL 360.
6. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
7. Surface metal raceway: Shall conform to UL 5.
C. Conduit Fittings:
8. Rigid steel and IMC conduit fittings:
a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
9. Electrical metallic tubing fittings:
a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
b. Only steel or malleable iron materials are acceptable.
c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats.
d. Indent-type connectors or couplings are prohibited.
e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
10. Flexible steel conduit fittings:
a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
b. Clamp-type, with insulated throat.
11. Liquid-tight flexible metal conduit fittings:
a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
b. Only steel or malleable iron materials are acceptable.
c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
12. Direct burial plastic conduit fittings:

Fittings shall meet the requirements of UL 514C and NEMA TC3.
6. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
D. Conduit Supports:

1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm$]$, 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
E. Outlet, Junction, and Pull Boxes:
5. UL-50 and UL-514A.
6. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
7. Sheet metal boxes: Galvanized steel, except where otherwise shown.
8. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

## PART 3 - EXECUTION

### 3.1 PENETRATIONS

A. Cutting or Holes:

1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the COR as required by limited working space.
B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 078400 , FIRESTOPPING.
C. Waterproofing: At floor, and exterior wall conduit penetrations, completely seal clearances around the conduit and make watertight.

### 3.2 INSTALLATION, GENERAL

A. In accordance with UL, NEC, as shown, and as specified herein.
B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
C. Install conduit as follows:

1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
5. Cut square, ream, remove burrs, and draw up tight.
6. Independently support conduit at $8 \mathrm{ft}[2.4 \mathrm{M}]$ on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
7. Support within 12 in [ 300 mm ] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
9. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
10. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
D. Conduit Bends:
11. Make bends with standard conduit bending machines.
12. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
13. Bending of conduits with a pipe tee or vise is prohibited.
E. Layout and Homeruns:
14. Install conduit with wiring, including homeruns, as shown on drawings.
15. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.

### 3.3 CONCEALED WORK INSTALLATION

A. Above Furred or Suspended Ceilings and in Walls:

1. Conduit for conductors 600 V and below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
2. Align and run conduit parallel or perpendicular to the building lines.
3. Connect recessed lighting fixtures to conduit runs with maximum 6 ft [1.8 M] of flexible metal conduit extending from a junction box to the fixture.
4. Tightening setscrews with pliers is prohibited.

### 3.4 EXPOSED WORK INSTALLATION

A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
C. Align and run conduit parallel or perpendicular to the building lines.
D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
E. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
F. Surface metal raceways: Use only where shown.
G. Painting:

1. Paint exposed conduit as specified in Section 099100 , PAINTING.
2. Paint legends, using 2 in $[50 \mathrm{~mm}]$ high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

### 3.5 DIRECT BURIAL INSTALLATION

Refer to Section 2605 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

### 3.6 WET OR DAMP LOCATIONS

A. Unless otherwise shown, use conduits of rigid steel or IMC.
B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 $M]$ of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

### 3.7 MOTORS AND VIBRATING EQUIPMENT

A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

### 3.8 CONDUIT SUPPORTS, INSTALLATION

A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
B. Use pipe straps or individual conduit hangers for supporting individual conduits.
C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of
the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
E. Fasteners and Supports in Solid Masonry and Concrete:

1. Existing Construction:
a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
F. Hollow Masonry: Toggle bolts.
G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

### 3.9 BOX INSTALLATION

A. Boxes for Concealed Conduits:

1. Flush-mounted.
2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
G. On all branch circuit junction box covers, identify the circuits with black marker.

## SECTION 260541 <br> UNDERGROUND ELECTRICAL CONSTRUCTION

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of underground ducts and raceways to form a complete underground electrical raceway system.
B. The terms "duct" and "conduit" are used interchangeably in this section.

### 1.2 RELATED WORK

A. Section 079200 , JOINT SEALANTS: Sealing of conduit penetrations.
B. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. Coordinate layout and installation of ducts with final arrangement of other utilities, site grading, and surface features.

### 1.4 SUBMITTALS

A. Submit six copies of the following in accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1. Shop Drawings:
a. Submit sufficient information to demonstrate compliance with drawings and specifications.
b. Submit information on ducts and hardware.
c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the Contracting Officer's Representative (COR) for approval prior to construction.
2. Certifications: Two weeks prior to the final inspection, submit the following.
a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
b. Certification by the Contractor that the materials have been properly installed, connected, and tested.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
B. American Concrete Institute (ACI):

Building Code Requirements for Structural Concrete
318-11/318M-11.......... Building Code Requirements for Structural Concrete \& Commentary
SP-66-04................ACI Detailing Manual
C. National Electrical Manufacturers Association (NEMA):

TC 2-03.................Electrical Polyvinyl Chloride (PVC) Conduit
TC 3-04..................Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing

TC 6 \& 8-03..............Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations

TC 9-04.................Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation
D. National Fire Protection Association (NFPA):

70-11...................National Electrical Code (NEC)
70E-12....................National Electrical Safety Code
E. Underwriters Laboratories, Inc. (UL):

6-07...................Electrical Rigid Metal Conduit-Steel
467-07...................Grounding and Bonding Equipment
651-11...................Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11................Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

651B-07................Continuous Length HDPE Conduit

## PART 2 - PRODUCTS

### 2.1 DUCTS

A. Number and sizes shall be as shown on the drawings.
B. Ducts (direct-burial):

1. Plastic duct:
a. Schedule 80 PVC or HDPE conduit.
b. Duct shall be suitable for use with $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ rated conductors.
2. Rigid metal conduit: UL6 and NEMA RN1 galvanized rigid metal, halflap wrapped with 10 mil PVC tape.

### 2.2 GROUNDING

A. Ground Rods and Ground Wire: Per Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

### 2.3 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

### 2.4 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

## PART 3 - EXECUTION

### 3.1 TRENCHING

A. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
B. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
C. Cut the trenches neatly and uniformly.

### 3.2 DUCT INSTALLATION

A. General Requirements:

1. Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
2. Join and terminate ducts with fittings recommended by the manufacturer.
3. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
4. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC
tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
5. Install insulated grounding bushings on the conduit terminations.
6. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
7. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
8. Clearances between individual ducts:
a. For similar services, not less than 75 mm (3 inches).
b. For power and signal services, not less than 150 mm (6 inches).
9. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
10. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
11. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
12. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
13. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
B. Direct-Burial Ducts:
14. Install direct-burial ducts only where shown on the drawings.
15. Tops of ducts shall be:
a. Not less than 750 mm (30 inches) and not less than shown on the drawings, below finished grade.
b. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
16. Do not kink the ducts. Compaction shall not deform the ducts.

### 3.3 ACCEPTANCE CHECKS AND TESTS

A. Duct Testing and Cleaning:

1. Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of
earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm ( 0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the COR at no cost to the Government.
4. Mandrel pulls shall be witnessed by the COR.

## SECTION 260923 LIGHTING CONTROLS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

### 1.2 RELATED WORK

A. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26 .
B. Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

A. In accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
B. Product Data: For each type of lighting control, submit the following information.

1. Manufacturer's catalog data.
2. Wiring schematic and connection diagram.
3. Installation details.
C. Manuals:
4. Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
5. Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Contracting Officer's Representative (COR).
D. Certifications:
6. Two weeks prior to final inspection, submit four copies of the following certifications to the COR:
a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
B. Green Seal (GS):

GC-12................... Occupancy Sensors
C. Illuminating Engineering Society of North America (IESNA):

IESNA LM-48............ Guide for Calibration of Photoelectric Control Devices
D. National Electrical Manufacturer's Association (NEMA)

C136.10................American National Standard for Roadway Lighting Equipment-Locking-Type Photocontrol Devices and Mating Receptacles - Physical and Electrical Interchangeability and Testing
ICS-1....................Standard for Industrial Control and Systems General Requirements
ICS-2...................Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment

ICS-6..................Standard for Industrial Controls and Systems Enclosures
E. Underwriters Laboratories, Inc. (UL):
20.....................Standard for General-Use Snap Switches
773....................Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting
773A Nonindustrial Photoelectric Switches for Lighting Control
98.....................Enclosed and Dead-Front Switches
917......................Clock Operated Switches

## PART 2 - PRODUCTS

### 2.1 INDOOR OCCUPANCY SENSORS

A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.

1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
2. Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
3. Relay Unit: Dry contacts rated for 20A ballast load at 120V, for 13A tungsten at 120V, and for 1 hp at 120V.
4. Mounting:
a. Sensor: Suitable for mounting in any position on a standard outlet box.
b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
6. Bypass Switch: Override the on function in case of sensor failure.
7. Manual/automatic selector switch to override sensor.
8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc [21.5 to 2152 lx]; keep lighting off when selected lighting level is present.
9. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 2627 26, WIRING DEVICES.
B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
10. Sensitivity Adjustment: Separate for each sensing technology.
11. Detector Sensitivity: Detect occurrences of 6-inch [150mm] minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. [232 sq. cm], and detect a person of average size and weight moving not less than 12 inches [305 mm] in either a horizontal or a vertical manner at an approximate speed of 12 inches/s [305 mm/s].
12. Detection Coverage: as scheduled on drawings.

PART 3 - EXECUTION

### 3.1 INSTALLATION:

A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
B. Set occupancy sensor "on" duration to 5 minutes.

### 3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations.
B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
C. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

### 3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are
in good operating condition and properly performing the intended function.

\author{

-     -         - END - -
}


## SECTION 262416 <br> PANELBOARDS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

### 1.2 RELATED WORK

A. Section 099100 , PAINTING: Identification and painting of panelboards.
B. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
C. Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
D. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
E. Section 2605 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. Shop Drawings:

1. Sufficient information, shall be clearly presented to determine compliance with drawings and specifications.
2. Include electrical ratings, dimensions, mounting details, materials, wiring diagrams, accessories, and weights of equipment. Complete nameplate data, including manufacturer's name and catalog number.
C. Manuals:
3. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.
4. If changes have been made to the maintenance and operating manuals that were originally submitted, then submit four copies of updated
maintenance and operating manuals to the Contracting Officer's
Representative (COR) two weeks prior to final inspection.
D. Certification: Two weeks prior to final inspection, submit four copies of the following to the COR:
5. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
6. Certification by the contractor that the materials have been properly installed, connected, and tested.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
B. National Electrical Manufacturers Association (NEMA):

PB-1-06
. . . . . . . . . . . . . . . . Panelboards
250-08.................Enclosures for Electrical Equipment (1000V Maximum)
C. National Fire Protection Association (NFPA):

70-2005 ................National Electrical Code (NEC)
70E-2004.................Standard for Electrical Life Safety in the Workplace
D. Underwriters Laboratories, Inc. (UL):

50-95..................Enclosures for Electrical Equipment
67-09.................... . . Panelboards
489-09..................Molded Case Circuit Breakers and Circuit Breaker Enclosures

## PART 2 - PRODUCTS

### 2.1 PANELBOARDS

A. Panelboards shall be in accordance with UL, NEMA, NEC, and as shown on the drawings.
B. Panelboards shall be standard manufactured products.
C. All panelboards shall be hinged "door in door" type with:

1. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
2. Outer hinged door shall be securely mounted to the panelboard box with factory bolts, screws, clips, or other fasteners, requiring a tool for entry. Hand-operated latches are not acceptable.
3. Push inner and outer doors shall open left to right.
D. All panelboards shall be completely factory-assembled with molded case circuit breakers. Include one-piece removable, inner dead front cover, independent of the panelboard cover.
E. Panelboards shall have main breaker or main lugs, bus size, voltage, phase, top or bottom feed, and flush or surface mounting as scheduled on the drawings.
F. Panelboards shall conform to NEMA PB-1, NEMA AB-1, and UL 67 and have the following features:
4. Non-reduced size copper bus bars with current ratings as shown on the panel schedules, rigidly supported on molded insulators.
5. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
6. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys of sizes suitable for the conductors to which they will be connected.
7. Neutral bus shall be $100 \%$ rated, mounted on insulated supports.
8. Grounding bus bar shall be equipped with screws or lugs for the connection of grounding wires.
9. Buses shall be braced for the available short-circuit current. Bracing shall not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards.
10. Branch circuit panelboards shall have buses fabricated for bolt-on type circuit breakers.
11. Protective devices shall be designed so that they can easily be replaced.
12. Where designated on panel schedule "spaces," include all necessary bussing, device support, and connections. Provide blank cover for each space.
13. Series-rated panelboards are not permitted.

### 2.2 CABINETS AND TRIMS

A. Cabinets:

1. Provide galvanized steel cabinets to house panelboards.
2. Cabinet enclosure shall not have ventilating openings.
3. Cabinets for panelboards may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.

### 2.3 MOLDED CASE CIRCUIT BREAKERS FOR PANELBOARDS

A. Circuit breakers shall be per UL 489, in accordance with the NEC, as shown on the drawings, and as specified.
B. Circuit breakers in panelboards shall be bolt-on type.
C. Molded case circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than: 1. 120/208 V Panelboard: 10,000 A symmetrical.
D. Molded case circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for 100 A frame or lower. Magnetic trip shall be adjustable from $3 x$ to $10 x$ for breakers with 600 A frames and higher.
E. Breaker features shall be as follows:

1. A rugged, integral housing of molded insulating material.
2. Silver alloy contacts.
3. Arc quenchers and phase barriers for each pole.
4. Quick-make, quick-break, operating mechanisms.
5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
6. Electrically and mechanically trip free.
7. An operating handle which indicates ON, TRIPPED, and OFF positions.
8. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.
9. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
B. Locate panelboards so that the present and future conduits can be conveniently connected.
C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall be printed on the panelboard directory cards, installed in the appropriate panelboards, and incorporate all applicable contract changes. Information shall indicate outlets, lights, devices, or other equipment controlled by each circuit, and the final room numbers served by each circuit.
D. Mount the fully-aligned panelboard such that the maximum height of the top circuit breaker above the finished floor shall not exceed 78 in [1980 mm]. Mount panelboards that are too high such that the bottom of the cabinets will not be less than 6 in [150 mm] above the finished floor.
E. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims, doors, and boxes with finishes to match surrounding surfaces after the panelboards have been installed.

### 3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests: 1. Visual and Mechanical Inspection
a. Compare equipment nameplate data with specifications and approved shop drawings.
b. Inspect physical, electrical, and mechanical condition.
c. Verify appropriate anchorage and required area clearances.
d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
f. Clean panelboard.

### 3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

## SECTION 262726 <br> WIRING DEVICES

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of wiring devices.

### 1.2 RELATED WORK

A. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
B. Section 2605 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlets boxes.
C. Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
D. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

A. In accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
B. Shop Drawings:

1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
2. Include electrical ratings, dimensions, mounting details, construction materials, grade and termination information.
C. Manuals: Two weeks prior to final inspection, deliver four copies of the following to the Contracting Officer's Representative (COR): Technical data sheets and information for ordering replacement units.
D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR: Certification by the Contractor that the devices comply with the drawings and specifications, and have been properly installed, aligned, and tested.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent
referenced. Publications are referenced in the text by basic designation only.
B. National Fire Protection Association (NFPA):
70.......................National Electrical Code (NEC)
C. National Electrical Manufacturers Association (NEMA):

WD 1....................General Color Requirements for Wiring Devices
WD 6 ...................Wiring Devices - Dimensional Requirements
D. Underwriter's Laboratories, Inc. (UL):
5.......................Surface Metal Raceways and Fittings
20.......................General-Use Snap Switches
231.....................Power Outlets
467........................Grounding and Bonding Equipment
498....................Attachment Plugs and Receptacles
943..............................

## PART 2 - PRODUCTS

### 2.1 RECEPTACLES

A. General: All receptacles shall be listed by Underwriters Laboratories, Inc., and conform to NEMA WD 6.

1. Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four min.) and side wiring from four captively held binding screws.
B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, and conform to the NEMA 5-20R configuration in NEMA WD. The duplex type shall have break-off feature for two-circuit operation. The ungrounded pole of each receptacle shall be provided with a separate terminal.
3. Bodies shall be ivory in color.
4. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The remaining receptacle shall be unswitched.
5. Duplex Receptacles on Emergency Circuit:
a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
6. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box. a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of five milliamperes and shall function to
interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliamp) on the load side of the device. Device shall have a minimum nominal tripping time of $1 / 30$ th of a second.
b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the "hospital-grade" listing.
7. Safety Type Duplex Receptacles:
a. Bodies shall be gray in color.
1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
2) Screws exposed while the wall plates are in place shall be the tamperproof type.
6. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the "hospital grade" listing and as follows.
a. Bodies shall be brown phenolic compound supported by a plated steel mounting strap having plaster ears.
C. Receptacles; 20, 30 and 50 ampere, 250 volts: Shall be complete with appropriate cord grip plug. Devices shall meet UL 231.
D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

### 2.2 TOGGLE SWITCHES

A. Toggle Switches: Shall be totally enclosed tumbler type with bodies of phenolic compound. Toggle handles shall be ivory in color unless otherwise specified. The rocker type switch is not acceptable and will not be approved.

1. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
2. Ratings:
a. 120 volt circuits: 20 amperes at $120-277$ volts AC.

### 2.3 WALL PLATES

A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
B. Color shall be ivory unless otherwise specified.
C. Standard NEMA design, so that products of different manufacturers will be interchangeable. Dimensions for openings in wall plates shall be accordance with NEMA WD 6.
D. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
E. Wall plates for data, telephone or other communication outlets shall be as specified in the associated specification.
F. Duplex Receptacles on Emergency Circuit:

1. Bodies shall be red in color. Wall plates shall be red with the word "EMERGENCY" engraved in 6 mm , (1/4 inch) white letters.

### 2.4 SURFACE MULTIPLE-OUTLET ASSEMBLIES

A. Assemblies shall conform to the requirements of NFPA 70 and UL 5.
B. Shall have the following features:

1. Enclosures:
a. Thickness of steel shall be not less than 0.040 inch [1mm] steel for base and cover. Nominal dimension shall be 1-1/2 by 2-3/4 inches [40 by 70mm] with inside cross sectional area not less than 3.5 square inches [2250 square mm]. The enclosures shall be thoroughly cleaned, phosphatized and painted at the factory with primer and the manufacturer's standard baked enamel or lacquer finish.
2. Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
3. Unless otherwise shown on drawings, spacing of the receptacles along the strip shall be 24 inches [600mm] on centers.
4. Wires within the assemblies shall be not less than No. 12 AWG copper, with 600 volt ratings.
5. Installation fittings shall be designed for the strips being installed including bends, offsets, device brackets, inside couplings, wire clips, and elbows.
6. Bond the strips to the conduit systems for their branch supply circuits.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Installation shall be in accordance with the NEC and as shown as on the drawings.
B. Ground terminal of each receptacle shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the green equipment grounding conductor.
C. Outlet boxes for light switches shall be mounted on the strike side of doors.
D. Provide barriers in multigang outlet boxes to separate systems of different voltages, Normal Power and Emergency Power systems, and in compliance with the NEC.
E. Coordinate with other work, including painting, electrical boxes and wiring installations, as necessary to interface installation of wiring devices with other work. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with call center equipment.
F. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades. In addition, check for exact direction of door swings so that local switches are properly located on the strike side.
G. Install wall switches 48 inches [1200mm] above floor, OFF position down.
H. Install convenience receptacles 18 inches [450mm] above floor, and 6 inches [152mm] above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
I. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.
J. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
K. Test GFCI devices for tripping values specified in UL 1436 and UL 943.

> - - - E N D - - -

## SECTION 262911 MOTOR STARTERS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. All motor starters and variable speed motor controllers, including installation and connection (whether furnished with the equipment specified in other Divisions or otherwise), shall meet these specifications.

### 1.2 RELATED WORK

A. Other sections which specify motor driven equipment, except elevator motor controllers.
B. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
B. Shop Drawings:

1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
2. Include electrical ratings, dimensions, weights, mounting details, materials, running over current protection, size of enclosure, over current protection, wiring diagrams, starting characteristics, interlocking and accessories.
C. Manuals:
3. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams and information for ordering replacement parts.
a. Wiring diagrams shall have their terminals identified to facilitate installation, maintenance and operation.
b. Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
c. Elementary schematic diagrams shall be provided for clarity of operation.
4. Two weeks prior to the project final inspection, submit four copies of the final updated maintenance and operating manual to the Contracting Officer's Representative (COR).
D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certifications to the COR: 1. Certification that the equipment has been properly installed, adjusted, and tested.
5. Certification by the manufacturer that medium voltage motor controller(s) conforms to the requirements of the drawings and specifications. This certification must be furnished to the COR prior to shipping the controller(s) to the job site.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
B. Institute of Electrical and Electronic Engineers (IEEE):
519.......................Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1...............Standard Surge Withstand Capability (SWC) Tests for Protective Relays and Relay Systems
C. National Electrical Manufacturers Association (NEMA):

ICS 1...................Industrial Control and Systems General Requirements

ICS 1.1................Safety Guidelines for the Application, Installation and Maintenance of Solid State Control

ICS 2...................Industrial Control and Systems, Controllers, Contactors and Overload Relays Rated 600 Volts DC

ICS 6...................Industrial Control and Systems Enclosures
ICS 7.....................Industrial Control and Systems Adjustable-Speed Drives
ICS 7.1.................Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems
D. National Fire Protection Association (NFPA):
70......................National Electrical Code (NEC)
E. Underwriters Laboratories Inc. (UL):
508.....................Industrial Control Equipment

## PART 2 - PRODUCTS

### 2.1 MOTOR STARTERS, GENERAL

A. Shall be in accordance with the requirements of the IEEE, NEC, NEMA (ICS

1, ICS 1.1, ICS 2, ICS 6, ICS 7 and ICS 7.1) and UL.
B. Shall have the following features:

1. Separately enclosed unless part of another assembly.
2. Circuit breakers and safety switches within the motor controller enclosures shall have external operating handles with lock-open padlocking provisions and shall indicate the ON and OFF positions.
3. Motor control circuits:
a. Shall operate at not more than 120 volts.
b. Shall be grounded except as follows:
1) Where isolated control circuits are shown.
2) Where manufacturers of equipment assemblies recommend that the control circuits be isolated.
c. Incorporate a separate, heavy duty, control transformer within each motor controller enclosure to provide the control voltage for each motor operating over 120 volts.
d. Incorporate over current protection for both primary and secondary windings of the control power transformers in accordance with the NEC.
4. Overload current protective devices:
a. Overload relay (solid state type.)
b. One for each pole.
c. Manual reset on the door of each motor controller enclosure.
d. Correctly sized for the associated motor's rated full load current.
e. Check every motor controller after installation and verify that correct sizes of protective devices have been installed.
f. Deliver four copies of a summarized list to the COR, which indicates and adequately identifies every motor controller installed. Include the catalog numbers for the correct sizes of protective devices for the motor controllers.
5. Hand-Off-Automatic ( $\mathrm{H}-\mathrm{O}-\mathrm{A}$ ) switch is required unless specifically stated on the drawings as not required for a particular starter. H-OA switch is not required for manual motor starters.
6. Incorporate into each control circuit a 120 -volt, solid state time delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time delay relay is not required where $\mathrm{H}-\mathrm{O}-\mathrm{A}$ switch is not required.
7. Unless noted otherwise, equip with not less than two normally open and two normally closed auxiliary contacts. Provide green run pilot lights and H-O-A control devices as indicated, operable at front of enclosure without opening enclosure. Push buttons, selector switches, pilot lights, etc., shall be interchangeable.
8. Enclosures:
a. Shall be the NEMA types shown on the drawings for the motor controllers and shall be the NEMA types which are the most suitable for the environmental conditions where the motor controllers are being installed.
b. Doors mechanically interlocked to prevent opening unless the breaker or switch within the enclosure is open. Provision for padlock must be provided.
c. Enclosures shall be primed and finish coated at the factory with the manufacturer's prime coat and standard finish.
C. Motor controllers incorporated with equipment assemblies shall also be designed for the specific requirements of the assemblies.
D. For motor controllers being installed in existing motor control centers or panelboards, coordinate with the existing centers or panelboards.
E. Additional requirements for specific motor controllers, as indicated in other sections, shall also apply.
F. Provide a disconnecting means or safety switch near and within sight of each motor. Provide all wiring and conduit required to facilitate a complete installation.

### 2.2 MANUAL MOTOR STARTERS

A. Shall be in accordance with applicable requirements of 2.1 above.
B. Manual motor starters.

1. Starters shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
2. Units shall include overload and low voltage protection, red pilot light, NO auxiliary contact and toggle operator.
C. Fractional horsepower manual motor starters.
3. Starters shall be general-purpose Class A, manually operated with full voltage controller for fractional horsepower induction motors.
4. Units shall include thermal overload protection, red pilot light and toggle operator.
D. Motor starting switches.
5. Switches shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
6. Units shall include thermal overload protection, red pilot light No auxiliary contact and toggle operator.

### 2.3 MAGNETIC MOTOR STARTERS

A. Shall be in accordance with applicable requirements of 2.1 above.
B. Starters shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum size 0.
C. Where combination motor starters are used, combine starter with protective or disconnect device in a common enclosure.
D. Provide phase loss protection for each starter, with contacts to deenergize the starter upon loss of any phase.
E. Unless otherwise indicated, provide full voltage non-reversing across-the-line mechanisms for motors less than 75 HP , closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced voltage starters. Equip starters with 120V AC coils and individual control transformer unless otherwise noted. Locate "reset" button to be accessible without opening the enclosure.

### 2.4 VARIABLE SPEED MOTOR CONTROLLERS

A. Shall be in accordance with applicable portions of 2.1 above.
B. Shall be solid state, micro processor-based with adjustable frequency and voltage, three phase output capable of driving standard NEMA B design, three phase alternating current induction motors at full rated speed. The drives shall utilize a full wave bridge design incorporating diode rectifier circuitry with pulse width modulation (PWM). Other control techniques are not acceptable. Silicon controlled rectifiers (SCR) shall not be used in the rectifying circuitry. The drives shall be designed to be used on variable torque loads and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
C. Unit shall be capable of operating within voltage parameters of plus 10 to minus 10 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
D. Operating and Design Conditions:

Elevation: 1000 feet AMSL
Temperatures: Maximum $+100^{\circ} \mathrm{F}$ Minimum $-10^{\circ} \mathrm{F}$
Relative Humidity: 95\%
Drive Location: Exterior air handling unit
E. Controllers shall have the following features:

1. Isolated power for control circuits.
2. Manually re-settable motor overload protection for each phase.
3. Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 30 seconds. (Set timers to the equipment manufacturer's recommended time in the above range.)
5. Provide 4 to 20 ma current follower circuitry for interface with mechanical sensor devices.
6. Automatic frequency adjustment from 20 Hz to 60 Hz .
7. Provide circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The controller shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The drive shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
a. Incorrect phase sequence.
b. Single phasing.
c. Over voltage in excess of 10 percent.
d. Under voltage in excess of 10 percent.
e. Running over current above 110 percent (shall not automatically reset for this condition.)
f. Instantaneous overcurrent above 150 percent (shall not automatically reset for this condition).
g. Surge voltage in excess of 1000 volts.
h. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
8. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.
F. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
G. The displacement power factor of the controller shall not be less than 95 percent under any speed or load condition.
H. Controllers shall include a door interlocked fused safety disconnect switch or door interlocked circuit breaker switch which will disconnect all input power.
I. Controller shall include a 3\% line reactor, and RFI/EMI filter.
J. The following accessories are to be door mounted:
9. AC Power on light.
10. Ammeter (RMS motor current).
11. HAND-OFF-AUTOMATIC switch.
12. Manual speed control in HAND mode.
13. System protection lights indicating that the system has shutdown and will not automatically restart.
14. System protection light indicating that the system has shutdown but will restart when conditions return to normal.
15. Manual variable speed controller by-pass switch.
16. Diagnostic shutdown indicator lights for each shutdown condition.
17. Provide two N.O. and two N.C. dry contacts rated 120 volts, 10 amperes, 60 HZ for remote indication of the following:
a. System shutdown with auto restart.
b. System shutdown without auto restart.
c. System running.
18. Incorporate into each control circuit a 120 -volt, time delay relay (ON delay), adjustable from 0.3-10 minutes, with transient protection. Provide transformer/s for the control circuit/s.
19. Controller shall not add any current or voltage transients to the input AC power distribution system nor shall transients from other devices on the AC power distribution system affect the controller. Controllers shall be protected to comply with IEEE C37.90.1 and UL-508. Line noise and harmonic voltage distortion shall not exceed the values allowed by IEEE 519.
K. Hardware and software to enable the BAS to monitor, control, and display controller status and alarms.
L. Network Communications Ports: Ethernet and RS-422/485.
M. Embedded BAS Protocols for Network Communications: As specified in Division 22.
N. Bypass Operation: Manually transfers motor between power converter output and bypass circuit, manually, automatically, or both. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter. Transfer between power converter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
O. Bypass Controller: Provide contactor-style bypass, arranged to isolate the power converter input and output and permit safe testing of the power converter, both energized and de-energized, while motor is operating in bypass mode. Motor overload protection shall be provided. 1. Bypass Contactor: Load-break NEMA-rated contactor.
20. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Install motor control equipment in accordance with manufacturer's recommendations, the NEC, NEMA and as shown on the drawings.
B. Motor Data: Provide neatly-typed label inside each motor starter enclosure door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, voltage/phase rating and heater element installed.
C. Connect hand-off auto selector switches so that automatic control only is by-passed in "manual" position and any safety controls are not by-passed.
D. Install manual motor starters in flush enclosures in finished areas.
E. Examine control diagrams indicated before ordering motor controllers. Should conflicting data exist in specifications, drawings and diagrams, request corrected data prior to placing orders.

### 3.2 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
C. Adjust trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify COR before increasing settings.

### 3.3 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests: 1. Visual and Mechanical Inspection
a. Compare equipment nameplate data with specifications and approved shop drawings.
b. Inspect physical, electrical, and mechanical condition.
c. Inspect contactors.
d. Clean motor starters and variable speed motor controllers.
e. Verify overload element ratings are correct for their applications.
f. If motor-running protection is provided by fuses, verify correct fuse rating.
g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
2. Variable speed motor controllers:
a. Final programming and connections to variable speed motor controllers shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.
b. Test all control and safety features of the variable frequency drive.

### 3.4 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor starters and variable speed motor controllers are in good operating condition and properly performing the intended functions.

### 3.5 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses (including heater elements) for each starter/controller installed on this project.

-     -         - E N D - - -


## SECTION 262921 DISCONNECT SWITCHES

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of low voltage disconnect switches.

### 1.2 RELATED WORK

A. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
B. Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
D. Section 2605 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.
E. Section 2629 11, LOW-VOLTAGE MOTOR STARTERS: Motor rated toggle switches.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

A. Submit in accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. Shop Drawings:

1. Clearly present sufficient information to determine compliance with drawings and specifications.
2. Include electrical ratings, dimensions, mounting details, materials, enclosure types, and fuse types and classes.
3. Show the specific switch and fuse proposed for each specific piece of equipment or circuit.
C. Manuals:
4. Provide complete maintenance and operating manuals for disconnect switches, including technical data sheets, wiring diagrams, and information for ordering replacement parts. Deliver four copies to the Contracting Officer's Representative (COR) two weeks prior to final inspection.
5. Terminals on wiring diagrams shall be identified to facilitate maintenance and operation.
6. Wiring diagrams shall indicate internal wiring and any interlocking.
D. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the COR:
7. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
8. Certification by the contractor that the materials have been properly installed, connected, and tested.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
B. National Electrical Manufacturers Association (NEMA):

FU l-07................. Low Voltage Cartridge Fuses
KS l-06.................Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum)
C. National Fire Protection Association (NFPA):

70-08....................National Electrical Code (NEC)
D. Underwriters Laboratories, Inc. (UL):

98-04...................Enclosed and Dead-Front Switches
248-00..................Low Voltage Fuses
977-94...................Fused Power-Circuit Devices

## PART 2 - PRODUCTS

### 2.1 LOW VOLTAGE FUSIBLE SWITCHES RATED 600 AMPERES AND LESS

A. In accordance with UL 98, NEMA KS1, and NEC.
B. Shall have NEMA classification Heavy Duty (HD) for all switches.
C. Shall be HP rated.
D. Shall have the following features:

1. Switch mechanism shall be the quick-make, quick-break type.
2. Copper blades, visible in the OFF position.
3. An arc chute for each pole.
4. External operating handle shall indicate ON and OFF position and have lock-open padlocking provisions.
5. Mechanical interlock shall permit opening of the door only when the switch is in the OFF position, defeatable to permit inspection.
6. Fuse holders for the sizes and types of fuses specified.
7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
8. Ground lugs for each ground conductor.
9. Enclosures:
a. Shall be the NEMA types shown on the drawings for the switches.
b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions. Unless otherwise indicated on the plans, all outdoor switches shall be NEMA 3R.
c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel (for the type of enclosure required).

### 2.2 LOW VOLTAGE UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as Low Voltage Fusible Switches Rated 600 Amperes and Less, but without provisions for fuses.

### 2.3 MOTOR RATED TOGGLE SWITCHES

A. Refer to Section 2629 11, LOW-VOLTAGE MOTOR STARTERS.

### 2.4 LOW VOLTAGE CARTRIDGE FUSES

A. In accordance with NEMA FU1.
B. Motor Branch Circuits: Class RK1, time delay.
C. Control Circuits: Class CC, time delay.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Install disconnect switches in accordance with the NEC and as shown on the drawings.
B. Fusible disconnect switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuse.

### 3.2 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fusible disconnect switch installed on the project. Deliver the spare fuses to the COR.

[^0]
## SECTION 263623 TRANSFER SWITCHES

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of non-automatic transfer switches.

### 1.2 RELATED WORK

A. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section in Division 26.
B. Section 2605 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personal safety and to provide a low impedance path for possible ground fault currents.
D. Section 2605 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS: Raceways for power and control wiring.

### 1.3 QUALITY ASSURANCE

A. QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. A factory-authorized representative shall maintain a service center capable of providing emergency maintenance and repair services at the project site within 8 hour maximum response time.
C. Comply with OSHA - 29 CFR 1910.7 for the qualifications of the testing agency.

### 1.4 FACTORY TESTS

A. Transfer switches shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted per UL standards. Factory tests shall be certified. The following factory tests shall be performed:

1. Visual inspection to verify that each ATS is as specified.
2. Mechanical test to verify that ATS sections are free of mechanical hindrances.
3. Insulation resistance test to ensure integrity and continuity of entire system.
4. Main switch contact resistance test.
5. Electrical tests to verify complete system electrical operation and to set up time delays and voltage sensing settings.

### 1.5 SUBMITTALS

A. Submit in accordance with Section 260511 , REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. Shop Drawings:

1. Clearly present sufficient information to determine compliance with drawings and specifications.
2. Include electrical ratings (including withstand), dimensions, weights, mounting details, conduit entry provisions front view, side view, equipment and device arrangement, elementary and interconnection wiring diagrams, factory relay settings, and accessories.
3. Complete nameplate data, including manufacturer's name and catalog number.
4. A copy of the markings that are to appear on the transfer switches when installed.
C. Manuals:
5. When submitting the shop drawings, submit companion copies of complete maintenance and operating and maintenance manuals, including technical data sheets, wiring diagrams and information, such as telephone number, fax number and web sites, for ordering replacement parts.
6. Two weeks prior to final inspection, submit four copies of a final updated maintenance and operating manual to the Contracting Officer's Representative (COR).
a. Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
b. Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
c. The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
D. Certifications:
7. When submitting the shop drawings, submit a certified test report from a recognized independent testing laboratory that a representative sample has passed UL 1008 prototype testing.
8. Two weeks prior to final inspection, submit four copies of the following to the COR:
a. Certification that no design changes have been made to the switch or its components since last certified by UL or tested by an independent laboratory.
b. Certification by the manufacturer that the equipment conforms to the requirements of the drawings and specifications.
c. Certification that the withstand current rating has been coordinated with upstream protective devices.
d. Certification by the contractor that the equipment has been properly installed, adjusted, and tested.
e. A certified test report from an independent laboratory that a representative sample has passed the ANSI surges withstand test for transfer switches which incorporate solid-state components.

### 1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only:
B. Institute of Electrical and Electronic Engineers (IEEE):
 of Emergency and Standby Power Systems
C37.90.1-02.............Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
C62.41.1-02................Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits
C62.41.2..................Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits
C. National Electrical Manufacturers Association (NEMA):

250-03................Enclosure for Electrical Equipment (1000 Volts Maximum)
ICS 6-06.................Enclosures
IC3 4-05.................Industrial Control and Systems: Terminal Blocks
MG 1-07.................Motors and Generators
D. National Fire Protection Association (NFPA):

70-08......................National Electrical Code (NEC)

110-10.................Emergency and Standby Power Systems
E. Underwriters Laboratories, Inc. (UL):

50-95...................Enclosures for Electrical Equipment
508-99..................Industrial Control Equipment
891-05................. Dead-Front Switchboards
1008-96.................Transfer Switch Equipment
PART 2 - PRODUCTS

### 2.1 GENERAL TRANSFER SWITCH PRODUCT REQUIREMENTS

A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp
loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.

1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.
C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltageimpulse withstand test of NEMA ICS 1.
E. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism, mechanically and electrically interlocked in both directions.
F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
2. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable.
3. Switch Action: Double throw; mechanically held in both directions. 3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.
G. Neutral Switching. Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.
H. Oversize Neutral: Ampacity and switch rating of neutral path through units indicated for oversize neutral shall be double the nominal rating of circuit in which switch is installed.
I. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, either by color-code or by numbered or lettered wire and cable tape markers at terminations.
4. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
5. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
6. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
J. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

### 2.2 NON-AUTOMATIC TRANSFER SWITCHES

A. Operation: Electrically actuated by push buttons designated "Original Liebert Unit" and "Backup Liebert Unit." Switch shall be capable of transferring load in either direction with either or both sources energized.
B. Double-Throw Switching Arrangement: Incapable of pauses or intermediate position stops during switching sequence.
C. Nonautomatic Transfer-Switch Accessories:

1. Pilot Lights: Indicate source to which load is connected.
2. Active Unit Indicating Lights: Supervise operation via transferswitch normal- and alternate-unit sensing circuits.
a. Original Liebert Unit Supervision: Green light with nameplate engraved "Originaly Liebert Unit Active."
b. Backup Unit Supervision: Red light with nameplate engraved "Backup Liebert Unit Active."
3. Unassigned Auxiliary Contacts: One set of normally closed contacts for each switch position, rated 10 A at $240-\mathrm{V}$ ac.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Install the transfer switch in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
B. Mount transfer switch adjacent to (E) original Liebert Unit. Field locate on wall and ensure proper clearance in front of device.

### 3.2 ACCEPTANCE CHECKS AND TESTS

A. A factory-authorized service representative is required to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.

1. Following completion of transfer switch installation and after making proper adjustments and settings, site tests shall be performed by the manufacturer's representative in accordance with manufacturer's written instructions to demonstrate that transfer switch functions satisfactorily and as specified. Advise COR of the site testing within five days prior to its scheduled date, and provide certified field test reports within 14 days following successful completion of the site tests. Test reports shall describe adjustments and settings made and site tests performed. Minimum operational tests shall include the following:
a. Insulation resistance shall be tested, both phase-to-phase and phase-to-ground.
b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
c. Verify that manual transfer warnings are properly placed.
d. Perform manual transfer operation.
2. After energizing circuits, demonstrate the interlocking sequence and operational function for each transfer switch at least three times. a. Simulate manual switching between original and new Liebert Units.
3. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
a. Verify grounding connections and locations and ratings of sensors.
b. Manual transfer switch functions shall be verified.
c. When any defects are detected, correct the defects and repeat the test as requested by the COR at no additional cost to the Government.

### 3.3 DEMONSTRATION

A. At the final inspection in the presence of COR, demonstrate that the manual transfer switch operates properly in every respect.

### 3.4 TRAINING

A. Furnish the services of a competent, factory-trained engineer or technician for one 4-hour period to instruct VA personnel in the operation and maintenance of the equipment, including review of the operation and maintenance manual, on a date requested by the COR.

## SECTION 265100 INTERIOR LIGHTING

## PART 1 - GENERAL

### 1.1 DESCRIPTION:

A. This section specifies the furnishing, installation and connection of the interior lighting systems.

### 1.2 RELATED WORK

A. Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
B. Section 2605 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
C. Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
D. Section 2627 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.4 SUBMITTALS

A. In accordance with Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
B. Product Data: For each type of lighting fixture (luminaire) designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of fixture designation, submit the following information.

1. Material and construction details include information on housing, optics system and lens/diffuser.
2. Physical dimensions and description.
3. Wiring schematic and connection diagram.
4. Installation details.
5. Energy efficiency data.
6. Photometric data based on laboratory tests complying with IESNA Lighting Measurements, testing and calculation guides.
7. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours) and color temperature (degrees Kelvin).
8. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts and total harmonic distortion (THD).
C. Manuals:
9. Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
10. Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Contracting Officer's Representative (COR).
D. Certifications:
11. Two weeks prior to final inspection, submit four copies of the following certifications to the COR:
a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

### 1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
B. Institute of Electrical and Electronic Engineers (IEEE):

C62.41-91...............Guide on the Surge Environment in Low Voltage (1000V and less) AC Power Circuits
C. National Fire Protection Association (NFPA):
70.......................National Electrical Code (NEC)
101.....................Life Safety Code
D. National Electrical Manufacturer's Association (NEMA):

C82.1-97.................Ballasts for Fluorescent Lamps - Specifications
C82.2-02.................Method of Measurement of Fluorescent Lamp Ballasts
E. Underwriters Laboratories, Inc. (UL):

496-96.................Edison-Base Lampholders
542-99..................Lampholders, Starters, and Starter Holders for Fluorescent Lamps

844-95.................Electric Lighting Fixtures for Use in Hazardous (Classified) Locations

924-95.................Emergency Lighting and Power Equipment
935-01.....................Fluorescent-Lamp Ballasts
1598-00................. .Luminaires
2108-04..................Standard for Low-Voltage Lighting Systems
8750-08................Light Emitting Diode (LED) Light Sources for Use in Lighting Products
F. Federal Communications Commission (FCC):

Code of Federal Regulations (CFR), Title 47, Part 18

## PART 2 - PRODUCTS

### 2.1 LIGHTING FIXTURES (LUMINAIRES)

A. Shall be in accordance with NFPA 70 and UL 1598, as shown on drawings, and as specified.
B. Sheet Metal:

1. Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved) and parallel to each other as designed.
2. Wireways and fittings shall be free of burrs and sharp edges and shall accommodate internal and branch circuit wiring without damage to the wiring.
3. When installed, any exposed fixture housing surface, trim frame, door frame and lens frame shall be free of light leaks; lens doors shall close in a light tight manner.
4. Hinged door closure frames shall operate smoothly without binding when the fixture is in the installed position, latches shall function easily by finger action without the use of tools.
C. Ballasts shall be serviceable while the fixture is in its normally installed position, and shall not be mounted to removable reflectors or wireway covers unless so specified.
D. Lamp Sockets:
5. Fluorescent: Lampholder contacts shall be the biting edge type or phosphorous-bronze with silver flash contact surface type and shall conform to the applicable requirements of UL 542. Lamp holders for bi-pin lamps shall be of the telescoping compression type, or of the single slot entry type requiring a one-quarter turn of the lamp after insertion.
E. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, captive hinges or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
F. Metal Finishes:
6. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
7. Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
8. Exterior finishes shall be as shown on the drawings.
G. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
H. Light Transmitting Components for Fluorescent Fixtures:
9. Shall be 100 percent virgin acrylic.
10. Flat lens panels shall have not less than $1 / 8$ inch [3.2mm] of average thickness. The average thickness shall be determined by adding the maximum thickness to the minimum unpenetrated thickness and dividing the sum by 2.
11. Unless otherwise specified, lenses, diffusers and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction of the lens without distortion or cracking.
I. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures (not the lamp). Fixtures shall be designed for lamps as specified.

### 2.2 BALLASTS

A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 - 277V) electronic programmed-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated; including the following features:

1. Lamp end-of-life detection and shutdown circuit (T5 lamps only).
2. Automatic lamp starting after lamp replacement.
3. Sound Rating: Class A.
4. Total Harmonic Distortion Rating: 10 percent or less.
5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
6. Operating Frequency: 20 kHz or higher.
7. Lamp Current Crest Factor: 1.7 or less.
8. Ballast Factor: 0.87 or higher unless otherwise indicated.
9. Power Factor: 0.98 or higher.
10. Interference: Comply with 47 CFT 18, Ch.1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
B. Compact Fluorescent Lamp Ballasts: Multi-voltage (120-277V), electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bilevel control is indicated; including the following features:
11. Lamp end-of-life detection and shutdown circuit.
12. Automatic lamp starting after lamp replacement.
13. Sound Rating: Class A.
14. Total Harmonic Distortion Rating: 10 percent or less.
15. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
16. Operating Frequency: 20 kHz or higher.
17. Lamp Current Crest Factor: 1.7 or less.
18. Ballast Factor: 0.95 or higher unless otherwise indicated.
19. Power Factor: 0.98 or higher.
20. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.

### 2.3 LAMPS

A. Linear and U-shaped T5 and T8 Fluorescent Lamps:

1. Rapid start fluorescent lamps shall comply with ANSI C78.1; and instant-start lamps shall comply with ANSI C78.3.
2. Chromacity of fluorescent lamps shall comply with ANSI C78.376.
3. Lamps shall be low-mercury energy saving type, have a color temperature between $3500^{\circ}$ and $4100^{\circ} \mathrm{K}$, a Color Rendering Index (CRI) of greater than 70 , average rated life of 20,000 hours, and be suitable for use with dimming ballasts, unless otherwise indicated. Low mercury lamps shall have passed the EPA Toxicity Characteristic Leachate Procedure (TCLP) for mercury by using the lamp sample preparation procedure described in NEMA LL 1.
B. Compact Fluorescent Lamps:
4. T4, CRI 80 (minimum), color temperature 3500 K , and suitable for use with dimming ballasts, unless otherwise indicated.
C. Long Twin-Tube Fluorescent Lamps:
5. T5, CRI 80 (minimum), color temperature between $3500^{\circ}$ and $4100^{\circ} \mathrm{K}$, 20,000 hours average rated life.

### 2.4 EXIT LIGHT FIXTURES

A. Exit light fixtures shall meet applicable requirements of NFPA 101 and UL 924.
B. Housing and Canopy:

1. Shall be made of die-cast aluminum.
2. Optional steel housing shall be a minimum 20 gauge thick or equivalent strength aluminum.
3. Steel housing shall have baked enamel over corrosion resistant, matte black or ivory white primer.
C. Door frame shall be cast or extruded aluminum, and hinged with latch.
D. Finish shall be satin or fine-grain brushed aluminum.
E. There shall be no radioactive material used in the fixtures.
F. Fixtures:
4. Maximum fixture wattage shall be 1 watt or less.
5. Inscription panels shall be cast or stamped aluminum a minimum of 0.090 inch [2.25mm] thick, stenciled with 6 inch [150mm] high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass. The LED shall be rated minimum 25 years life.
6. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
7. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
G. Voltages: Refer to Lighting Fixture Schedule.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
B. Align, mount and level the lighting fixtures uniformly.
C. Lighting Fixture Supports:

1. Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
2. Shall maintain the fixture positions after cleaning and relamping.
3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
4. Hardware for recessed fluorescent fixtures:
a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame
at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
5. Hardware for surface mounting fluorescent fixtures to suspended ceilings:
a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than $1 / 4$ inch [6mm] secured to channel members attached to and spanning the tops of the ceiling structural grid members. Non-turning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned $1 / 4$ inch [6mm] studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, $1 / 4$ inch [6mm] toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.
D. Furnish and install the specified lamps for all lighting fixtures installed and all existing lighting fixtures reinstalled under this project.
E. Coordinate between the electrical and ceiling trades to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges), to match the ceiling system being installed.
F. Bond lighting fixtures and metal accessories to the grounding system as specified in Section 2605 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
G. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless a lesser period is specifically recommended by lamp manufacturer. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed,
for at least 100 hours at full voltage. Replace any lamps and ballasts which fail during burn-in.
H. At completion of project, relamp/reballast fixtures which have failed lamps/ballasts. Clean fixtures, lenses, diffusers and louvers that have accumulated dust/dirt/fingerprints during construction. Replace damaged lenses, diffusers and louvers with new.
I. Dispose of lamps per requirements of Section 0174 19, CONSTRUCTION WASTE MANAGEMENT.


## SECTION 270511

## REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of cable, and other items and arrangements for the specified items are shown on drawings.

### 1.2 MINIMUM REQUIREMENTS

A. References to industry and trade association standards and codes are minimum installation requirement standards.
B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

### 1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
B. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

### 1.4 MANUFACTURED PRODUCTS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
C. Equipment Assemblies and Components:

1. Components of an assembled unit need not be products of the same manufacturer.
2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
3. Components shall be compatible with each other and with the total assembly for the intended service.
4. Constituent parts which are similar shall be the product of a single manufacturer.
D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
E. When Factory Testing Is Specified:
5. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Contracting Officer's Representative (COR) a minimum of 15 working days prior to the manufacturers making the factory tests.
6. Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
7. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

### 1.5 EQUIPMENT REQUIREMENTS

A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

### 1.6 EQUIPMENT PROTECTION

A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:

1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
2. Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

### 1.7 WORK PERFORMANCE

A. Job site safety and worker safety is the responsibility of the contractor.
B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 010000 , GENERAL REQUIREMENTS.
C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 0100 00, GENERAL REQUIREMENTS.
D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

### 1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Equipment location shall be as close as practical to locations shown on the drawings.
B. Inaccessible Equipment:

1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

### 1.9 EQUIPMENT IDENTIFICATION

A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as a standard catalog item, or where other method of identification is herein specified, are exceptions.

### 1.10 SUBMITTALS

A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.

1. Mark the submittals, "SUBMITTED UNDER SECTION $\qquad$ ".
2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
3. Submit each section separately.
E. The submittals shall include the following:
4. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
5. Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
6. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
F. Manuals: Submit in accordance with Section 010000 , GENERAL REQUIREMENTS.
7. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
8. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of
each subcontractor installing the system or equipment and the local representatives for the system or equipment.
9. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
10. The manuals shall include:
a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
b. A control sequence describing start-up, operation, and shutdown.
c. Description of the function of each principal item of equipment.
d. Installation and maintenance instructions.
e. Safety precautions.
f. Diagrams and illustrations.
g. Testing methods.
h. Performance data.
i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
G. Approvals will be based on complete submission of manuals together with shop drawings.
H. After approval and prior to installation, furnish the COR with one sample of each of the following:
11. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
12. Each type of conduit and pathway coupling, bushing and termination fitting.
13. Raceway and pathway hangers, clamps and supports.
14. Duct sealing compound.
I. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

### 1.11 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

### 1.12 TRAINING

A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 010000 , GENERAL REQUIREMENTS.
B. Training shall be provided for the particular equipment or system as required in each associated specification.
C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.

\author{

-     -         - E N D - - -
}


## SECTION 270526

## GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies general grounding and bonding requirements of telecommunication installations for equipment operations.
B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes.
C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

### 1.2 RELATED WORK

A. Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 27.

### 1.3 SUBMITTALS

A. Submit in accordance with Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
B. Shop Drawings:

1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
C. Test Reports: Provide certified test reports of ground resistance.
D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Contracting Officer's Representative:
3. Certification that the materials and installation is in accordance with the drawings and specifications.
4. Certification, by the Contractor, that the complete installation has been properly installed and tested.

### 1.4 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
A. American Society for Testing and Materials (ASTM):

B1-2001................Standard Specification for Hard-Drawn Copper Wire

B8-2004 Standard Specification for Concentric-LayStranded Copper Conductors, Hard, Medium-Hard, or Soft
B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983.................IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System
C. National Fire Protection Association (NFPA):

70-2005.................National Electrical Code (NEC)
D. Telecommunications Industry Association, (TIA)

J-STO-607-A-2002.......Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications
E. Underwriters Laboratories, Inc. (UL):

44-2005 ................Thermoset-Insulated Wires and Cables
83-2003 ................Thermoplastic-Insulated Wires and Cables
467-2004 ...............Grounding and Bonding Equipment
486A-486B-2003 .........Wire Connectors

## PART 2 - PRODUCTS

### 2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes $6 \mathrm{~mm}^{2}(10$ AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes $25 \mathrm{~mm}^{2}$ (4 AWG) and larger shall be permitted to be identified per NEC.
B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes $6 \mathrm{~mm}^{2}(10$ AWG) and smaller shall be ASTM B1 solid bare copper wire.

### 2.2 SPLICES AND TERMINATION COMPONENTS

Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

### 2.3 GROUND CONNECTIONS

A. Above Grade:

1. Bonding Jumpers: compression type connectors, using zinc-plated fasteners and external tooth lockwashers.
B. Cable Shields: Make ground connections to multipair communications cables with metallic shields using shield bonding connectors with screw stud connection.

## PART 3 - EXECUTION

### 3.1 GENERAL

A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified.
B. System Grounding:

1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
C. Equipment Grounding: Metallic structures (including ductwork and building steel), enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits shall be bonded and grounded.

### 3.2 SECONDARY EQUIPMENT AND CIRCUITS

A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
B. Metallic Piping, Building Steel, and Supplemental Electrode(s):

1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water and gas pipe systems, building steel, and supplemental or made electrodes. Jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.
2. Provide a supplemental ground electrode and bond to the grounding electrode system.
C. Conduit Systems:
3. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
4. Non-metallic conduit systems shall contain an equipment grounding conductor, except that non-metallic feeder conduits which carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment need not contain an equipment grounding conductor.
5. Conduit containing only a grounding conductor, and which is provided for mechanical protection of the conductor, shall be bonded to that conductor at the entrance and exit from the conduit.
D. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
E. Boxes, Cabinets, Enclosures, and Panelboards:
6. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
7. Provide lugs in each box and enclosure for equipment grounding conductor termination.
8. Provide ground bars in panelboards, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
F. Receptacles shall not be grounded through their mounting screws. Ground with a jumper from the receptacle green ground terminal to the device box ground screw and the branch circuit equipment grounding conductor.

### 3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

### 3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
B. In operating rooms and at intensive care and coronary care type beds, bond the gases and suction piping, at the outlets, directly to the room or patient ground bus.

### 3.5 COMMUNICATIONS CABLE GROUNDING

A. Bond all metallic cable sheaths in multipair communications cables together at each splicing and/or terminating location to provide 100 percent metallic sheath continuity throughout the communications distribution system.

1. At terminal points, install a cable shield bonding connector provide a screw stud connection for ground wire. Use a bonding jumper to connect the cable shield connector to an appropriate ground source like the rack or cabinet ground bar.
2. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or the splice case grounding and bonding accessories provided by the splice case manufacturer. When an external ground connection is provided as part of splice closure, connect to an approved ground source and all other metallic components and equipment at that location.

### 3.6 COMMUNCIATIONS RACEWAY GROUNDING

A. Conduit: Use insulated $16 \mathrm{~mm}^{2}$ ( 6 AWG) bonding jumpers to ground metallic conduit at each end and to bond at all intermediate metallic enclosures.
B. Wireway: use insulated $16 \mathrm{~mm}^{2}(6$ AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and across all section junctions.

### 3.7 GROUND RESISTANCE

A. Grounding system resistance to ground shall not exceed 5 ohms. Make necessary modifications or additions to the grounding electrode system for compliance without additional cost to the Government. Final tests shall assure that this requirement is met.
B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

-     -         - E N D - - -


## SECTION 270533 <br> RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise.
B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

### 1.2 RELATED WORK

A. Mounting board for communication closets: Section 061000 , ROUGH CARPENTRY.
B. Sealing around penetrations to maintain the integrity of fire rated construction: Section 078400 , FIRESTOPPING.
C. Fabrications for the deflection of water away from the building envelope at penetrations: Section 076000 , FLASHING AND SHEET METAL.
D. Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building: Section 079200 , JOINT SEALANTS.
E. Identification and painting of conduit and other devices: Section 0991 00, PAINTING.
F. General electrical requirements and items that is common to more than one section of Division 27: Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 2705 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

### 1.3 SUBMITTALS

In accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
A. Shop Drawings:

1. Size and location of panels and pull boxes
2. Layout of required conduit penetrations through structural elements.
3. The specific item proposed and its area of application shall be identified on the catalog cuts.
B. Certification: Prior to final inspection, deliver to the COR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

### 1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
B. National Fire Protection Association (NFPA) :

70-05...................National Electrical Code (NEC)
C. Underwriters Laboratories, Inc. (UL):

1-03....................Flexible Metal Conduit
5-01......................Surface Metal Raceway and Fittings
6-03.................... Rigid Metal Conduit
50-03..................Enclosures for Electrical Equipment
360-03..................Liquid-Tight Flexible Steel Conduit
467-01..................Grounding and Bonding Equipment
514A-01................ Metallic Outlet Boxes
514B-02.................Fittings for Cable and Conduit
514C-05.................Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers
651-02.................Schedule 40 and 80 Rigid PVC Conduit
651A-03................Type EB and A Rigid PVC Conduit and HDPE Conduit
797-03.................Electrical Metallic Tubing
1242-00.................Intermediate Metal Conduit
D. National Electrical Manufacturers Association (NEMA):

TC-3-04.................PVC Fittings for Use with Rigid PVC Conduit and Tubing

FB1-03.................Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

## PART 2 - PRODUCTS

### 2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than $3 / 4$ inch unless otherwise shown. Where permitted by the NEC, 13 mm (1/2 inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
B. Conduit:

1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
2. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
3. Electrical metallic tubing (EMT) : Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.
4. Flexible galvanized steel conduit: Shall Conform to UL 1.
5. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
6. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
7. Surface metal raceway: Shall Conform to UL 5.
C. Conduit Fittings:
8. Rigid steel and IMC conduit fittings:
a. Fittings shall meet the requirements of UL $514 B$ and ANSI/ NEMA FB1.
b. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
d. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
f. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
9. Electrical metallic tubing fittings:
a. Fittings shall meet the requirements of UL $514 B$ and ANSI/ NEMA FB1.
b. Only steel or malleable iron materials are acceptable.
c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
d. Indent type connectors or couplings are prohibited.
e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
10. Flexible steel conduit fittings:
a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
b. Clamp type, with insulated throat.
11. Liquid-tight flexible metal conduit fittings:
a. Fittings shall meet the requirements of UL $514 B$ and ANSI/ NEMA FB1.
b. Only steel or malleable iron materials are acceptable.
c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
12. Surface metal raceway fittings: As recommended by the raceway manufacturer.
13. Expansion and deflection couplings:
a. Conform to UL 467 and UL 514B.
b. Accommodate, 19 mm ( 0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
D. Conduit Supports:
14. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
15. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
16. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by $1-1 / 2$ inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
17. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
E. Outlet, Junction, and Pull Boxes:
18. UL-50 and UL-514A.
19. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
20. Sheet metal boxes: Galvanized steel, except where otherwise shown.
21. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.
F. Wireways: Equip with hinged covers, except where removable covers are shown.

## PART 3 - EXECUTION

### 3.1 PENETRATIONS

A. Cutting or Holes:

1. Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the $C O R$ as required by limited working space.
B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 078400 , FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 079200 , JOINT SEALANTS.

### 3.2 INSTALLATION, GENERAL

A. Install conduit as follows:

1. In complete runs before pulling in cables or wires.
2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
5. Mechanically continuous.
6. Independently support conduit at $8^{\prime \prime} 0^{\prime \prime}$ on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
7. Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
9. Conduit installations under fume and vent hoods are prohibited.
10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
11. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
12. Do not install type THW insulation in $1 / 2^{\prime \prime}$ conduit.
B. Conduit Bends:
13. Make bends with standard conduit bending machines.
14. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
15. Bending of conduits with a pipe tee or vise is prohibited.
C. Layout and Homeruns:
16. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.

### 3.3 CONCEALED WORK INSTALLATION

A. Furred or Suspended Ceilings and in Walls:

1. Conduit for conductors above 600 volts:
a. Rigid steel or rigid aluminum.
b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
2. Conduit for conductors 600 volts and below:
a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
3. Align and run conduit parallel or perpendicular to the building lines.
4. Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (six feet) of flexible metal conduit extending from a junction box to the fixture.
5. Tightening set screws with pliers is prohibited.

### 3.4 EXPOSED WORK INSTALLATION

A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
B. Conduit for conductors above 600 volts:

1. Rigid steel or rigid aluminum.
2. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
C. Conduit for Conductors 600 volts and below:
3. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
D. Align and run conduit parallel or perpendicular to the building lines.
E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
F. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
G. Surface metal raceways: Use only where shown.
H. Painting:
4. Paint exposed conduit as specified in Section09 9100 , PAINTING.
5. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 099100 , PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

### 3.5 EXPANSION JOINTS

A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
C. Install expansion and deflection couplings where shown.

### 3.6 CONDUIT SUPPORTS, INSTALLATION

A. Safe working load shall not exceed $1 / 4$ of proof test load of fastening devices.
B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m ( 8 foot) on center.
C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of
the weights of the conduits, wires, hanger itself, and $90 \mathrm{~kg}(200$ pounds). Attach each conduit with U-bolts or other approved fasteners.
D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling $T$-bars, angle supports, and similar items.
E. Fasteners and Supports in Solid Masonry and Concrete:

1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
2. Existing Construction:
a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
F. Hollow Masonry: Toggle bolts are permitted.
G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

### 3.7 BOX INSTALLATION

A. Boxes for Concealed Conduits:

1. Flush mounted.
2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

### 3.8 COMMUNICATION SYSTEM CONDUIT

A. Install the communication raceway system as shown on drawings.
B. Minimum conduit size of $19 \mathrm{~mm}(3 / 4$ inch), but not less than the size shown on the drawings.
C. All conduit ends shall be equipped with insulated bushings.
D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm ( 3 inches) below the ceiling of the floor below.
F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
G. Were drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
H. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit Trade Size	Radius of Conduit Bends mm , Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

J. Furnish and install $19 \mathrm{~mm}(3 / 4$ inch) thick fire retardant plywood specified in Section 061000 , ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

```
- - - E N D - - -
```


## SECTION 270800

## COMMISSIONING OF COMMUNICATIONS SYSTEMS

## PAET 1 - GENERAL

### 1.1 DESCRIPTION

A. The requirements of this Section apply to all sections of Division 27.
B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 019100 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 019100 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

### 1.2 RELATED WORK

A. Section 010000 GENERAL REQUIREMENTS.
B. Section 019100 GENERAL COMMISSIONING REQUIREMENTS.
C. Section 013323 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

### 1.3 SUMMARY

A. This Section includes requirements for commissioning the communications systems, subsystems and equipment. This Section supplements the general requirements specified in Section 019100 GENERAL COMMISSIONING REQUIREMENTS.
B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
C. Refer to Section 019100 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

### 1.4 DEFINITIONS

A. Refer to Section 019100 GENERAL COMMISSIONING REQUIREMENTS for definitions.

### 1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in this Division is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
B. The following Communications systems will be commissioned:

1. Facility Telecommunications and Data Distribution Systems.

### 1.6 SUBMITTALS

A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the Resident Engineer prior to forwarding to the Contractor. Refer to Section 013323 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 019100 GENERAL COMMISSIONING REQUIREMENTS.

## PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

### 3.1 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 019100 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

### 3.2 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 27 shall be scheduled and documented in accordance with Section 010000 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

### 3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the CoTR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 019100 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

### 3.4 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 019100 GENERAL COMMISSIONING REQUIREMENTS and Division 27 Sections for additional Contractor training requirements.

## SECTION 271000

 STRUCTURED CABLING
## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of the structured cabling system to provide a comprehensive telecommunications infrastructure.

### 1.2 RELATED WORK

A. Sealing around penetrations to maintain the integrity of time rated construction: Section 078400 , FIRESTOPPING.
B. General electrical requirements that are common to more than one section in Division 27: Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
C. Conduits for cables and wiring: Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 2705 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

### 1.3 SUBMITTALS

A. In accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

1. Manufacturer's Literature and Data: Showing each cable type and rating.
2. Certificates: Two weeks prior to final inspection, deliver to the Contracting Officer's Representative (COR) four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

### 1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
B. American Society of Testing Material (ASTM):

D2301-04................Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape
C. Federal Specifications (Fed. Spec.) :

A-A-59544-00............Cable and Wire, Electrical (Power, Fixed Installation)
D. National Fire Protection Association (NFPA) :

```
70-05..................National Electrical Code (NEC)
```

E. Underwriters Laboratories, Inc. (UL):
44-02...................Thermoset-Insulated Wires and Cables
83-03..................Thermoplastic-Insulated Wires and Cables
467-01.................Electrical Grounding and Bonding Equipment
486A-01.................Wire Connectors and Soldering Lugs for Use with
Copper Conductors
486C-02.................Splicing Wire Connectors
486D-02................Insulated Wire Connector Systems for Underground
Use or in Damp or Wet Locations
486E-00................Equipment Wiring Terminals for Use with Aluminum
and/or Copper Conductors
493-01..................Thermoplastic-Insulated Underground Feeder and
Branch Circuit Cable
514B-02................Fittings for Cable and Conduit
1479-03..................Fire Tests of Through-Penetration Fire Stops

## PART 2 - PRODUCTS

### 2.1 CONTROL WIRING

A. Unless otherwise specified in other sections of these specifications, control wiring shall be as specified for power and lighting wiring, except the minimum size shall be not less than No. 14 AWG.
B. Control wiring shall be large enough so that the voltage drop under inrush conditions does not adversely affect operation of the controls.

### 2.2 COMMUNICATION AND SIGNAL WIRING

A. Shall conform to the recommendations of the manufacturers of the communication and signal systems; however, not less than what is shown.
B. Wiring shown is for typical systems. Provide wiring as required for the systems being furnished.
C. Multi-conductor cables shall have the conductors color coded.

### 2.3 WIRE LUBRICATING COMPOUND

A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
B. Shall not be used on wire for isolated type electrical power systems.

### 2.4 FIREPROOFING TAPE

A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

## PART 3 - EXECUTION

### 3.1 INSTALLATION, GENERAL

A. Install all wiring in raceway systems.
B. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
C. Wire Pulling:

1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
2. Use ropes made of nonmetallic material for pulling feeders.
3. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
4. Pull in multiple cables together in a single conduit.
5. Do not use type THW insulation in a $1 / 2^{\prime \prime}$ conduit.

### 3.2 CONTROL, COMMUNICATION AND SIGNAL WIRING INSTALLATION

A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.
B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
C. Where separate power supply circuits are not shown, connect the systems to the nearest panelboards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
D. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
E. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
3.3 CONTROL, COMMUNICATION AND SIGNAL SYSTEM IDENTIFICATION
A. Install a permanent wire marker on each wire at each termination.
B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
C. Wire markers shall retain their markings after cleaning.

### 3.4 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

```
- - - E N D - - -
```


## SECTION 271100 COMMUNICATIONS EQUIPMENT ROOM FITTINGS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the system"), and associated equipment and hardware to be installed in the VA Medical Center, here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic and analog radio frequency (RF) systems coaxial distribution cables, connectors, "patch" cables, and/or "break out" devices.
B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
D. The Voice, Digital, and Analog Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters

7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.
E. The VA Contracting Officer or the Contracting Officer's Representative (COR) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the COR before proceeding with the change.
F. System Performance:

1. At a minimum, the System shall be able to support the following voice and data and analog RF operations for Category 6 Certified Telecommunication Service:
a. Provide the following interchange (or interface) capabilities:
1) Basic Rate (BRI).
2) Primary Rate (PRI).
b. ISDN measured at Server Room 70:
3) Narrow Band BRI:
a) B Channel: 64 kilo-Bits per second (kBps), minimum.
b) D Channel: $16 \mathrm{kBps}, ~ m i n i m u m$.
c) H Channel: 384 kBps , minimum.
4) Narrow Band PRI:
a) B Channel: 64 kBps, minimum.
b) D Channel: 64 kBps , minimum.
c) H Channel: 1,920 kBps, minimum.
5) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
C. ATM operation and interface: ATM 155 mBps measured at Server Room 70.
d. Frame Relay: All stated compliance's measured at Server Room 70.
e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at Server Room 70.
f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at Server Room 70.
g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga( $g$ ) -Bps data bit stream speed measured at Server Room 70 (shall be Synchronous Optical Network [SONET] compliant).
h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data and analog RF locations.
2. At a minimum the System shall support the following operating parameters:
a. EPBX connection:
1) System speed: 1.0 gBps per second, minimum.
2) Impedance: 600 Ohms.
3) Cross Modulation: -60 deci-Bel (dB).
4) Hum Modulation: -55 dB .
5) System data error: 10 to the -10 Bps , minimum.
6) Loss: Measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
a) Trunk to station: 1.5 dB , maximum.
b) Station to station: 3.0 dB , maximum.
c) Internal switch crosstalk: -60 dB when a signal of $\pm 10$ deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
d) Idle channel noise: 25 dBm " C " or 3.0 dBm " $O$ " above reference (terminated) ground noise, whichever is greater.
e) Traffic Grade of Service for Voice and Data:
(1) A minimum grade of service of $P$-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.
(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.
b. Telecommunications Outlet (TCO):
7) Voice:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, balanced (BAL).
c) Signal Level: 0 deciBel per mili-Volt (dBmV) $\pm 0.1 \mathrm{dBmV}$.
d) System speed: 100 mBps , minimum.
e) System data error: 10 to the -6 Bps , minimum.
8) Data:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, BAL.
c) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
d) System speed: 120 mBps , minimum.
e) System data error: 10 to the -8 Bps, minimum.
9) Fiber optic:
a) Isolation (outlet-outlet): 36 dB .
b) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
c) System speed: 540 mBps , minimum.
d) System data error: 10 to the -6 bps , minimum.
10) Closed Circuit Analog Video Service: Analog video service is considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum operating parameters shall be capable over each installed analog video circuit:

Impedance	75 Ohm, unbalanced
Output Level	1.0 V peak to peak (P-P), for 87.5\%   depth of Modulation (Mod)
Diff Gain	$\pm 1 \mathrm{~dB}$ at 87.5\% Mod
Diff Phase	$\pm 1.5$ at 87.5\% Mod
Signal to Noise (S/N) ratio	44 dB, minimum
Hum Modulation	-55 dB
Return Loss	-14 dB (or 1.5 Voltage Standing Wave   Ratio [VSWR]), maximum
Isolation (outlet-outlet)	$24 \mathrm{DB}, \mathrm{MINIMUM}$
Bandwidth	$6.0 \mathrm{mHz} \mathrm{per} \mathrm{channel} ,\mathrm{fully} \mathrm{loaded}$,   minimum

### 1.2 RELATED WORK

A. Specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Specification Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
C. Specification Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
D. Specification Section 271000 , STRUCTURED CABLING.
E. Specification Section 2627 26, WIRING DEVICES.
F. Specification Section 2705 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
G. Specification Section 273100 , VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
H. Specification Section 2731 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION.
I. H-088-C3, VA HANDBOOK DESIGN FOR TELEPHONE SYSTEMS.

### 1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)
75	Protection of Electronic Computer/Data Processing   Equipment
77	Recommended Practice on Static Electricity
101	Standard for Health Care Facilities
1221	Life Safety Code

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
$96 A$	INSTALLATION REQUIREMENTS FOR LIGHTNING   PROTECTION SYSTEMS


467	Grounding and Bonding Equipment
$497 / 497 A / 497 B$	PROTECTORS FOR PAIRED CONDUCTORS/   COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS   AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568B	Commercial Building Telecommunications Wiring   Standard
569B	Commercial Building Standard for   Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE   TELECOMMUNICATIONS INFRASTRUCTURE OF   COMMERCIAL BUILDINGS
607 A	Grounding and Bonding Requirements for   Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for   Telecommunications in Commercial Buildings

E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
F. International Telecommunication Union - Telecommunication Standardization Sector (ITU-T).
G. Federal Information Processing Standards (FIPS) Publications.
H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
I. United States Air Force: Technical Order 33K-l-lOO Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

### 1.4 QUALITY ASSURANCE

A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and
complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the System.

### 1.5 SUBMITTALS

A. Provide submittals in accordance with Specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The COR shall retain one copy for review and approval.

1. If the submittal is approved the COR shall retain one copy for Official Records and return three (3) copies to the Contractor.
2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The COR shall retain one copy for Official Records.
B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
3. Floor loading for batteries and cabinets.
4. Minimum floor space and ceiling heights.
5. Minimum size of doors for equipment passage.
6. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
7. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
8. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
9. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
10. Conduit size requirement (between main $T C$, computer, and console rooms).
11. Main trunk line and riser pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
12. Title page to include:
a. VA Medical Center.
b. Contractor's name, address, and telephone (including FAX) numbers.
c. Date of Submittal.
d. VA Project No.
13. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
a. Installation Location and Name.
b. Owner's or User's name, address, and telephone (including FAX) numbers.
c. Date of Project Start and Date of Final Acceptance by Owner.
d. System Project Number.
e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
14. Narrative Description of the system.
15. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. The following is the minimum equipment required by the system:

QUANTITY	UNIT
As required	Cabinet Assembly(s)
As required	Cross Connection (CCS) Systems
As required	Wire Management System/Equipment
As required	Telecommunications Outlets (TCO)
As required	Distribution Cables
As required	TCo Connection Cables
As required	System Connectors
As required	Terminators
As required	Telecommunications Closets (TC)
As required	Environmental Requirements
As required	Installation Kit
1 ea.	Separate List Containing Each Equipment Spare (s)
As required	

5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
6. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin, fiberoptic and coaxial cable jack.
8. List of test equipment as per paragraph 1.5.D. below.
9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
10. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
D. Test Equipment List:
11. The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be
considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
12. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
a. Spectrum Analyzer.
b. Signal Level Meter.
c. Volt-Ohm Meter.
d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
e. Bit Error Test Set (BERT).
f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
E. Samples: A sample of each of the following items shall be furnished to the COR for approval prior to installation.
13. TCO Wall Outlet Box $4 " \mathrm{x} 4 " \mathrm{x} 2.5 "$ with:
a. One each telephone (or voice) rj45 jack installed.
b. Two each multi pin data rj45 jacks installed.
c. Cover Plate installed.
d. Fiber optic $S T$ jack(s) installed.
e. RF (F)/video (BNC)/audio (XL) jack(s) installed.
14. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
15. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
16. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
17. $610 \mathrm{~mm}(2 \mathrm{ft}$.$) section of each copper cable to be used with cable$ sweep tags as specified in paragraph 2.4.H and connectors installed.
18. 610 mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
19. $610 \mathrm{~mm}(2 \mathrm{ft}$.$) section of each analog RF, video coaxial and audio$ cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
20. Analog video CCS patch panel or breakout box with cable management equipment and "BNC" connectors installed.
F. Certifications:
21. Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
22. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
23. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.
G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the COR. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
H. Record Wiring Diagrams:
24. Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the COR. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
25. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The

COR shall verify and inform the Contractor of the version of AutocAD being used by the Facility.
I. Surveys Required as a Part of the Technical Submittal: The Contractor shall provide the following surveys that depict various system features and capacities are required in addition to the on site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal survey requirements), as a minimum:

1. The required EPBX connections (each CSU shall be compatible with) shall be compatible with the following:
a. Initially connect:

EQUIPPED ITEM	CAPACITY	WIREDCAPACITY
Main Station Lines		
Single Line		
Multi Line (Equipped for direct input   dial [DID])		
Central Office (CO) Trunks		
Two WAY		
DID		
Two-way DRTL		
Foreign Exchange (FX)		
Conference		
Radio Paging Access		
Audio Paging Access		
Off-Premise Extensions		
Co Trunk By-pass		
CRT w/keyboard		
Printers		
Attendant Consoles		
T-1 Access/Equipment		
Maintenance console		

b. Projected Maximum Growth: The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.1.a. as a part of the technical submittal. For this
purpose, the following definitions and sample connections are provided to detail the system's capability:

EQUIPPED ITEM	CAPACITY	WIRED CAPACITY
Servers		
PC's		
Projected Maximum Growth		

The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.2.a. as a part of the technical submittal.
2. Cable Distribution System Design Plan: A design plan for the entire cable distribution systems requirements shall be provided with this document. A specific cable count shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems entire cable requirements and engineer a distribution system requirement plan using the format of the following paragraph(s), at a minimum:
a. UTP (and/or STP) Requirements/Column Explanation:

Column	Explanation
TC ROOM NUMBER	Identifies the floor signal closet room, by   room number, which cabling shall be   provided
ROOM NUMBER	Identifies the room, by number, from which   cabling and TCOs shall be provided
NUMBER OF CABLE   PAIR	Identifies the number of cable pair   required to be provided on each floor   designated or the number of cable pair (VA   Owned) to be retained
NUMBER OF STRANDS   USED/SPARE	Identifies the number of strands provided   in each run

b. Fiber Optic Cabling Requirements/Column Explanation:

Column	Explanation
TC ROOM NUMBER	Identifies the room, by number, from which   cabling shall be installed
NUMBER OF STRANDS	Identifies the number of strands in each   run of fiber optic cable
INSTALLED METHOD	Identifies the method of installation in   accordance with as designated herein


NOTES	Identifies a note number for a special   feature or equipment
BUILDING MTC	Identifies the building by number or title

c. Analog Video Cabling Requirements/Column Explanation:

Column	Explanation
FROM BUILDING	Identifies building, by number or location,   from which cabling is installed
TC ROOM NUMBER	Identifies the room, by number, from which   cabling shall be installed
TO BUILDING IMC	Identifies building, by number or location,   to which cabling is installed
TC ROOM NUMBER	Identifies the room, by number, to which   cabling shall be installed
NUMBER OF STRANDS	Identifies the number of strands in each   run of fiber optic cable
INSTALLED METHOD	Identifies the method of installation in   accordance with as designated herein
NOTES	Identifies a note number for a special   feature or equipment
BUILDING MTC	Identifies the building by number or title

3. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

## PART 2 - PRODUCTS

### 2.1 EQUIPMENT AND MATERIALS

A. System Requirements:

1. The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:
a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal

Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
b. Be a voice and data cable distribution system that is based on a existing Topology.
c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide $T-1$ access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all $T-1$ equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.
d. Where the System connects to an existing or future telephone system, refer to specification Section 273100 , VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT OR specification Section 2731 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION for specific telephone equipment and system operational performance standards.
2. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional voice and digital telecommunications cabling system: "Main" (MTC), "intermediate" (IMTC), and "riser" (RTC) TC's; "vertical" (or "riser") trunk cabling system; vertical crossconnection (VCC) cabling systems, and TCO's with a minimum of three (3) RJ-45 jacks for the appropriate telephone, Data connections, and
additional jacks, connectors, drop and patch cords, terminators, and adapters provided.
a. Telecommunication Closet (TC):

1) There shall be a minimum of one TC for the MTC, each building IMTC, and each RTC per building floor location. However, in large building(s), where the horizontal distance to the farthest voice and digital work area may exceed 90 Meters (M) (or 295 feet [ft]), additional TC's shall be provided as described herein. The maximum DC resistance per cable pair shall be no more than 28.6 Ohms per 305 M (1,000 feet). Each TC shall be centrally located to cover the maximum amount of local floor space. The TC's house in cabinets or enclosures, on relay racks, and/or on backboards, various telecommunication data equipment, controllers, multiplexers, bridges, routers, LAN hub(s), telephone cross-connecting, active and passive equipment.
2) Additionally, the $\mathrm{TC}^{\prime}$ s may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all vertical copper and fiber optic cables shall be terminated on appropriate cross-connection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.
a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with "U" grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every $800 \mathrm{M}^{2}$ (or 8,000 $\mathrm{ft}^{2}$ ) of useable floor space. Additional outlets shall be equally spaced along the wall.
b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications. The RE and/or Facility Chief Engineering Officer are responsible for informing the Contractor regarding the minimum climate control requirements. In identified hostile TC locations where it has been determined (by the RE or Facility Chief Engineer) that proper $T C$ climate or external signal radiation cannot be properly maintained or controlled, the Contractor may, at his/her option, provide a minimum of two individual and properly sized self contained climate controlled equipment cabinet enclosures; one designated for voice, and one designated for data service, in each TC location identified on the drawings, in lieu of providing additional required TC air handling capability.
B. System Performance:
1. At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
a. Provide the following interchange (or interface) capabilities:
1) Basic Rate (BRI).
2) Primary Rate (PRI).
b. ISDN measured at Server Room 70:
3) Narrow Band BRI.
a) B Channel: 64 kilo-Bits per second (kBps), minimum.
b) D Channel: 16 kBps , minimum.
c) H Channel: 384 kBps , minimum.
4) Narrow Band PRI:
a) B Channel: 64 kBps, minimum.
b) D Channel: 64 kBps , minimum.
c) H Channel: 1,920 kBps, minimum.
5) Wide (or Broad) Band:
a) All channels: 140 mega (m)-Bps, minimum, capable to 565 mBps at "T" reference.
C. ATM operation and interface: ATM 155 mBps measured at Server Room 70.
d. Frame Relay: All stated compliance's measured at Server Room 70.
e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at Server Room 70.
f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at Server Room 70.
g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at Server Room 70 (shall be Synchronous Optical Network [Sonet] compliant).
h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data and analog RF locations.
2. At a minimum the System shall support the following operating parameters:
a. EPBX connection:
1) System speed: 1.0 gBps per second, minimum.
2) Impedance: 600 Ohms.
3) Cross Modulation: -60 deci-Bel (dB).
4) Hum Modulation: -55 Db.
5) System data error: 10 to the -10 Bps , minimum loss measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
a) Trunk to station: 1.5 dB , maximum.
b) Station to station: 3.0 dB , maximum.
c) Internal switch crosstalk: -60 dB when a signal of $\pm 10$ deciBel measured (dBm), $500-2,500 \mathrm{~Hz}$ range is applied to the primary path.
d) Idle channel noise: 25 dBm "C" or 3.0 dBm " $O$ " above reference (terminated) ground noise, whichever is greater.
e) Traffic Grade of Service for Voice and Data:
(1) A minimum grade of service of $\mathrm{P}-01$ with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.
(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.
b. Telecommunications Outlet (TCO):
6) Voice:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, balanced (BAL).
c) Signal Level: 0 deciBel per mili-Volt ( dBmV ) $\pm 0.1 \mathrm{dBmV}$.
d) System speed: 100 mBps , minimum.
e) System data error: 10 to the -6 Bps , minimum.
7) Data:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, BAL.
c) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
d) System speed: 120 mBps , minimum.
e) System data error: 10 to the -8 Bps, minimum.
8) Fiber optic:
a) Isolation (outlet-outlet): 36 dB .
b) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
c) System speed: 540 mBps , minimum.
d) System data error: 10 to the -6 BPS, minimum.
9) Closed Circuit Analog Video Service: Analog video service is considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum operating parameters shall be capable over each installed analog video circuit:
a) Impedance: 75 Ohm, unbalanced.
b) Output Level: 1.0 V peak to peak (P-P), for $87.5 \%$ depth of Modulation (Mod).
c) Diff Gain: $\pm 1 \mathrm{~dB}$ at $87.5 \%$ Mod.
d) Diff Phase: $\pm 1.5$ at $87.5 \%$ Mod.
e) Signal to Noise (S/N) ratio: 44 dB , minimum.
f) Hum Modulation: -55 dB .
g) Return Loss: -14 dB (or 1.5 Voltage Standing Wave Ratio [VSWR]), maximum.
h) Isolation (outlet-outlet): 24 dB , minimum.
i) Bandwidth: 6.0 mHz per channel, fully loaded, minimum.
C. General:
1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
a. Maintains a stock of replacement parts for the item submitted.
b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the system. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
3. The Contractor shall provide written verification, in writing to the COR at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
4. The Telephone Contractor is responsible for providing interfacing cable connections for the telephone and PA systems with the System.
5. The telephone equipment and PA interface equipment shall be the interface points for connection of the PA interface cabling from the telephone switch via the system telephone interface unit.
6. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of $F C C$ standards for telephone equipment, systems, and service.
7. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
8. All interconnecting twisted pair, fiber-optic or coaxial cables shall be terminated on equipment terminal boards, punch blocks,
breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.
9. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 2710 00, STRUCTURED CABLING.
10. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
11. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.
12. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
13. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
D. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
POWER LINE FREQUENCY	$60 \mathrm{HZ} \pm 2.0 \mathrm{HZ}$
Operating Temperature	0 to 50 degrees ( ${ }^{\circ}$ ) Centigrade (C)
Humidity	80 percent (\%) minimum rating

E. Equipment Standards and Testing:

1. The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.
3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the COR approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

### 2.2 EQUIPMENT ITEMS

A. Cabinet with Internal Equipment Mounting Rack:

1. The provided equipment cabinet shall be lockable, fabricated of heavy 16 gauge (ga) steel, and have fully adjustable internal equipment mounting racks or rails that allows front panel equipment
mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief. It shall be floor or wall mounted with knock-out holes for cable entrance and conduit connection, contain ventilation ports and a quiet fan with non disposable air filter for equipment cooling. Two keys shall be provided to the COR for each lock when the VA accepts the System.
2. A minimum of one cabinet shall be provided with blank rack space, for additional equipment. Blank panels shall be installed to cover any open or unused rack space. In addition, provide two 120 VAC power strips connected to surge protectors, a ventilation fan with non-disposable air filter, and a conduit or cable duct interfaced to adjacent cabinet(s), as part of this cabinet.
3. Blank panels shall be color matched to the cabinet, 3.175 mm (1/8in.) aluminum with vertical dimensions in increments of one rack unit 45 mm (or 1.75in.) with mounting holes spaced to correspond to EIA 480 mm (or 19in.) rack dimensions. Single standard size blank panels shall be used to fill unused panel or rack spaces in lieu of numerous $45 \mathrm{~mm}(1.75 i n$.$) types. One blank 45 \mathrm{~mm}$ (1.75in.) high blank panel shall be installed between each item of equipment.
4. Technical Characteristics:

Overall Height	2180 mm (85 7/8in.), maximum
Overall Depth	$650 \mathrm{~mm}(25 \mathrm{I} / 2 \mathrm{in}),$. maximum
Overall Width	$535 \mathrm{~mm}(21 \mathrm{I} / 16 i n),$. maximum
Front Panel Opening Width	480 mm (19in.), EIA horizontal
Hole Spacing	per EIA and Industry Standards

5. Internal Cabinet Components (minimum required):
a. AC power outlet strip(s):
1) Power outlet strip(s) shall be provided as directed by the COR or the IRM. The additional equipment cabinet with no installed items in the cabinet, shall contain strip(s) with a minimum of 12 ea. AC power outlets. Each strip shall be mounted inside and at the rear of the cabinet. It shall contain "U" grounded AC outlets for distributing AC power to the installed electronic equipment. The strip shall be self-contained in a
metal enclosure and may be provided with a 2 M (6 ft.) long (maximum) connecting cord with three prong plug.
2) Technical Characteristics:
a) Power capacity 20 Ampere (AMP), 120 VAC continuous duty. b) Wire gauge: Three conductor, \#12 AWG copper.
b. Cabinet AC Power Line Surge Protector and Filter:
3) Each cabinet shall be equipped with an AC Surge Protector and Filter. The Protector and Filter shall be housed in one single enclosure. The Protector and Filter shall perform instantaneous regulation of the AC input voltage and isolate and filter any noise present on the AC input line. The unit shall be equipped with AC voltage and current surge protectors to prevent damage to the electronic equipment from power line induced voltage spikes, surges, lightning, etc. It shall be cabinet mounted and the cabinet AC power strip (maximum of two strips) may be connected to it as long as the system design is met.
4) Technical Characteristics:

Input Voltage range	120 VAC $\pm 15 \%$
Power capacity	$20 \mathrm{AMP}, 120 \mathrm{VAC}$
Voltage output   regulation	$\pm 3.0 \%$
Circuit breaker	15 AMP, may be self contain
Noise filtering	Greater than -45 dB
AC outlets	Four duplex grounded types, minimum
Response time	5.0 ns
Surge suppression	10,000 AMPS
Noise suppression	-40 dB
Common	-45 dB
Differential	

3) Specific requirements for current and surge protection shall include:
a) Voltage protection threshold, line to neutral, starts at no more than 220 Volts peak. The transient voltage shall not exceed 300 volts peak. The Contractor shall furnish
documentation on peak clamping voltage as a function of transient AMP.
b) Peak power dissipation minimum 35 Joules per phase, as measured for 1.0 mS at sub branch panels, 100 Joules per phase at branch panels and 300 Joules per phase at service entrance panels. The Contractor shall furnish an explanation of how the ratings were measured or empirically derived.
c) Surge protector must not short circuit the AC power line at any time.
(1) The primary surge protection components must be silicon semiconductors. Secondary stages, if used, may include other types of devices.
(2) Surge protectors shall incorporate a visual device which indicates whether the surge suppression component(s) are functioning.
(3) Surge protection devices shall be UL listed.
(4) Voltage and current surge protectors shall be provided
on all ancillary equipment provided by the Contractor.
d) Power dissipation 12,000 Watts (W) for 1.0 mS (or 12 Joules).
e) Voltage protection threshold starts at not more than 100 VAC.
B. Distribution or System Interface Cabinet:
1. The cabinet shall be constructed of heavy 16 gauge cold rolled steel, have top and side panels and hinged front and rear (front door only if wall mounted) doors. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the COR, contain integral and adjustable predrilled rack mounting rails or frame that allows front panel equipment mounting and access. When all equipment, doors and panels are installed, snap-in-place chrome trim strip covers are required to be installed that will cover all front panel screw fasteners. It shall be equipped the same as the equipment cabinet.
2. Technical Characteristics:

Overall height	$2180 \mathrm{~mm}(85 \mathrm{7} / 8 \mathrm{in}),$. maximum
Overall depth	$650 \mathrm{~mm}(25 \mathrm{l} / 2 \mathrm{in}),$. maximum
Overall width	$535 \mathrm{~mm}(21 \mathrm{l} / 16 \mathrm{in}),$. maximum
Equipment vertical mounting   space	$1960 \mathrm{~mm}(77 \mathrm{I} / 8 \mathrm{in}),$. maximum
Front panel horizontal	484 mm (19 1/16in.), maximum width

D. Stand Alone Equipment (or sometimes called Radio Relay) Rack:

1. The rack shall be constructed of heavy 16 gauge cold rolled steel and have fully adjustable equipment front mounting rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the COR. It shall be floor or wall mounted or mounted on casters as directed by the COR.
2. Technical Characteristics:

Overall Height	$2180 \mathrm{~mm}(85 \mathrm{7} / 8 \mathrm{in}),$. maximum
Overall Depth	$650 \mathrm{~mm}(25 \mathrm{l} / 2 \mathrm{in}),$. maximum
Overall Width	$535 \mathrm{~mm}(21 \mathrm{l} / 16$ in. $)$, maximum
Front Panel Opening	480 mm (19in.), EIA horizontal width
Hole Spacing	per EIA and Industry Standards

E. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:

1. The connector panel(s) shall be made of flat smooth $3.175 \mathrm{~mm}(1 / 8$ in.) thick solid aluminum, custom designed, fitted and installed in the cabinet. Bulkhead equipment connectors shall be mounted on the panel to enable all cabinet equipment's signal, control, and coaxial cables to be connected through the panel. Each panel shall be color matched to the cabinet installed.
a. Voice (or Telephone):
1) The CSS for voice or telephone service shall be Industry Standard type 110 (minimum) punch blocks for voice or telephone, and control wiring in lieu of patch panels, each being certified for category six service. IDC punch blocks (with internal RJ45 jacks) are acceptable for use in all CCS and shall be specifically designed for category six telecommunications service and the size and type of UTP cable used as described herein. As a minimum, punch block strips shall be secured to an OEM designed physical anchoring unit on
a wall location in the MTC, IMTC, RTC, and TC. However, console, cabinet, rail, panel, etc. mounting is allowed at the OEM recommendation and as approved by the COR. Punch blocks shall not be used for Class II or 120 VAC power wiring.
2) Technical Characteristics:

Number of horizontal rows	100, MINIMUM
Number of terminals per row	4, minimum
Terminal protector	required for each used or   unused terminal
Insulation splicing	required between each row of   terminals

b. Digital or High Speed Data:

1) The CSS for digital or high-speed data service shall be a patch panel with modular female RJ45 jacks installed in rows. Patch panels and RJ45 jacks shall be specifically designed for category six telecommunications service and the size and type of UTP or STP cable used. Each panel shall be 480 mm (19in.) horizontal EIA rack mountable dimensions with EIA standard spaced vertical mounting holes.
2) Technical Characteristics:

Number of horizontal rows	2, minimum
Number of jacks per row	24, MINIMUM
Type of jacks	RJ45
Terminal protector	required for each used or   unused jack
Insulation	required between each row of   jacks

c. Fiber optic:

1) Product reference of a Government Approved (US State Department) type is Telewire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel may be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with the proper connectors. This panel is not allowed to be used for 120 VAC power connections.
2) Technical Characteristics:

Height	Two rack units (RUs), 88 mm (3.5in.)   minimum
Width	484 mm (19 1/16in.), EIA minimum
Number of connections	12 pairs, minimum
Connectors	Use RCA 6.35 mm (1/4in.) Phono, XL or   Barrier Strips, surface mounted with   spade lugs (punch block or wire wrap   type strips are acceptable alternates   for barrier strips as long as system   design is maintained and RE approved)
Audio Service	Barrier strips surface mounted with   spade lugs (punch block or wire wrap   type strips are acceptable alternates   for barrier strips as long as system   design is maintained and RE approved)
Control Signal   Service	Barrier strips with spade lugs and   clear full length plastic cover,   surfaced mounted
Low voltage power   (class II)	"ST" Stainless steel, female
Fiber optic	

d. Mounting Strips and Blocks:

1) Barrier Strips: Barrier strips are approved for AC power, data, voice, and control cable or wires. Barrier strips shall accommodate the size and type of audio spade (or fork type) lugs used with insulating and separating strips between the terminals for securing separate wires in a neat and orderly fashion. Each cable or wire end shall be provided with an audio spade lug, which is connected to an individual screw terminal on the barrier strip. The barrier strips shall be surface secured to a console, cabinet, rail, panel, etc. 120 VAC power wires shall not be connected to signal barrier strips.
2) Technical Characteristics:

Terminal size	$6-32$, minimum
Terminal Count	ANY COMBINATION
Wire size	20 AWG, minimum
Voltage handling	100 V, minimum
Protective connector cover	Required for Class II and   120 VAC power connections

2. Solderless Connectors: The connectors (or fork connectors) shall be crimp-on insulated lug to fit a 6-32 minimum screw terminal. The fork connector shall be installed using a standard lug-crimping tool.
3. Punch Blocks: As a minimum, Industry Standard 110 type punch blocks are approved for data, voice, and control wiring. Punch blocks shall be specifically designed for the size and type of wire used. Punch block strips shall be secured to a console, cabinet, rail, panel, etc. Punch blocks shall not be used for Class II or 120 VAC power wiring.
4. Wire Wrap Strips: Industry Standard wire wrap strips (16.5 mm (0.065in.) wire wrap minimum) are approved for data, voice and control wiring. Wire wrap strips shall be secured to a cabinet, rail, panel, etc. Wire wrap strips shall not be used for Class II or 120 VAC power wiring.
F. Wire Management System and Equipment:
5. Wire Management System: The system(s) shall be provided as the management center of the respective cable system, CCS, and TC it is incorporated. It shall perform as a platform to house peripheral equipment in a standard relay rack or equipment cabinet. It shall be arranged in a manner as to provide convenient access to all installed management and other equipment. All cables and connections shall be at the rear of each system interface to IDC and/or patch panels, punch blocks, wire wrap strips, and/or barrier strip.
6. Wire Management Equipment: The wire management equipment shall be the focal point of each wire management system. It shall provide an orderly interface between outside and inside wires and cables (where used), distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide a uniform connection media for all system fire retardant wires and cables and other subsystems. It shall be fully compatible and interface to each cable tray, duct, wireway, or conduit used in the system. All interconnection or distribution wires and cables shall enter the system at the top (or from a wireway in the floor) via a overhead protection system and be uniformly routed down either side (or both at the same time) of the frames side protection system
then laterally via a anchoring or routing shelf for termination on the rear of each respective terminating assembly. Each system shall be custom configured to meet the System design and user needs.

### 2.3 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
A. Floor loading for batteries and cabinets.
B. Minimum floor space and ceiling heights.
C. Minimum size of doors for equipment passage.
D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
E. Air conditioning, heating, and humidity requirements. The bidder shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
F. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
G. Proposed floor plan based on the expanded system configuration of the bidder's proposed EPBX for this Facility.
H. Conduit size requirement (between equipment room and console room).

### 2.4 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the COR all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:
A. System Grounding:

1. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
2. This includes, but is not limited to:
a. Coaxial Cable Shields.
b. Control Cable Shields.
c. Data Cable Shields.
d. Equipment Racks.
e. Equipment Cabinets.
f. Conduits.
g. Duct.
h. Cable Trays.
i. Power Panels.
j. Connector Panels.
k. Grounding Blocks.
B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment,
maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Product Delivery, Storage and Handling:

1. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the COR.
B. System Installation:
3. After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the CO or COR.
4. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
5. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data, and lightwave signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
6. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
7. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
8. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
9. All vertical copper and fiber optic, and coaxial cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
10. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair, and coaxial, and lightwave cables carrying telephone and data, and analog signals in telephone and data, and analog video, and lightwave systems.
11. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
12. Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
C. Conduit and Signal Ducts:
13. Conduit:
a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the COR if requested.) Conduits shall be provided in accordance with Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for
use in the System, their installation guidelines and standards shall be as specified herein, Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
e. Conduit (including GFE) fill shall not exceed 40\%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
g. Ensure that Critical Care -- Nurse Call, and PA and Radio Paging Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
14. Signal Duct, Cable Duct, or Cable Tray:
a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
b. Approved signal and/or cable duct shall be a minimum size of 100 mm x $100 \mathrm{~mm}(4 \mathrm{in}$.X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The COR shall approve width and height dimensions.
F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
15. Wires:
a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
16. Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
17. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or $1 / 8 "$ phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.
18. Speaker Line Audio:
a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM's approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.
b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently
soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.
G. AC Power: AC power wiring shall be run separately from signal cable.
H. Grounding:
19. General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
b. Gas protection devices shall be provided on all circuits and cable pairs serving building distribution frames located in buildings other than the building in which the system is located or in any area served by an unprotected distribution system (manhole, aerial, etc.). The Contractor shall install the gas protection devices at the nearest point of entrance in buildings where protection is required and on the same circuits on the MDF in the telephone switch room.
c. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
d. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
20. Cabinet Buss: A common ground buss of at least \#10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection
from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
21. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least \#12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
22. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with \#12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
I. Equipment Assembly:
23. Cabinets:
a. Each enclosure shall be: floor or wall mounted with standard knockout holes for conduit connections or cable entrance; provide for ventilation of the equipment; have front and rear locking doors (except wall mounted cabinets that require only a front locking door); power outlet strip(s), and connector or patch panel(s).
b. Rack (including freestanding radio relay) mounted equipment shall be installed in the enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustment(s) can be conveniently made. Heavy equipment shall be mounted with rack slides or rails allowing servicing from the front of the enclosure. Heavy equipment shall not depend only upon front panel mounting screws for support. Equipment shall be provided with sufficient cable slack to permit servicing by removal of the installed equipment from the front of the enclosure. A color matched blank panel (spacer) of 44 mm (1.75 in.) high, shall be installed between each piece of equipment (active or passive) to insure adequate air circulation. The enclosure shall be designed for efficient equipment cooling and air ventilation. Each console or cabinet shall be equipped with a quiet fan and nondisposable air filter.
c. Enclosures and racks shall be installed plumb and square. Each shall be permanently attached to the building structure and held firmly in place. Fifteen inches of front vertical space opening shall be provided for additional equipment.
d. Signal connector, patch, and bulkhead panels (i.e.: audio, data, control, analog video, etc.) shall be connected so that outputs from each source, device or system component shall enter the panel at the top row of jacks, beginning left to right as viewed from the front, which will be called "inputs". Each connection to a load, device or system component shall exit the panel at the bottom row of jacks, beginning left to right as viewed from the front, which will be called "outputs".
1) Equipment located indoors shall be installed in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
2) Cables shall enter the equipment racks or enclosures in such a manner that allows all doors or access panels to open and close without disturbing or damaging the cables.
3) All distribution hardware shall be securely mounted in a manner that allows access to the connections for testing and provides sufficient room for the doors or access panels to open and close without disturbing the cables.
J. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
1. Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters
(10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

### 3.2 TESTS

A. Interim Inspection:

1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T 568 B pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
2. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
3. The Contractor shall notify the COR, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
4. Results of the interim inspection shall be provided to the COR and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
5. The COR and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.
B. Pretesting:
6. Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
7. Pretesting Procedure:
a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The

Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:

1) Local Telephone Company Interfaces or Inputs.
2) EPBX interfaces or inputs and outputs.
3) MDF interfaces or inputs and outputs.
4) EPBX output $S / N R$ for each telephone and data channel.
5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the COR.
C. Acceptance Test:
4. After the System has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test date and give the COR 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this
specification. The notification of the acceptance test shall include the expected length (in time) of the test.
D. Verification Tests:
5. Test the UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
6. Multimode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B. 3 and ANSI/EIA/TIA-526-14A using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
7. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B. 3 and ANSI/EIA/TIA-526-7 using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
E. Performance Testing:
8. Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B. 1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
9. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
F. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) and the multimode and single mode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
10. Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.
11. Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

### 3.3 TRAINING

A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM
personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

### 3.4 GUARANTEE PERIOD OF SERVICE

A. Contractor's Responsibilities:

1. The Contractor shall guarantee that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the COR (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year guarantee period:
a. Response Time:
1) The COR (or facility Contracting Officer if the facility has taken possession of the building[s]) are the Contractor's reporting and contact officials for the System trouble calls, during the guarantee period.
2) A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the RE or Facility Director. The COR or Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.
b. Required on-site visits during the one year guarantee period
5) The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.
a) The Contractor shall arrange all Facility visits with the COR or Facility Contracting Officer prior to performing the required maintenance visits.
b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive
maintenance during a non-busy time agreed to by the COR or Facility Contracting Officer and the Contractor.
c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the COR or Facility Contracting Officer.
6) The Contractor shall provide the COR or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the COR with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to RE or Facilities Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
7) The COR or Facility Contracting Officer shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
a) The COR or Facility Contracting Officer shall ensure copies of these reports are entered into the System's official acquisition documents.
b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the COR or Facility Contracting Officer in writing upon the discovery of these incidents. The COR or Facility Contracting Officer will investigate all reported incidents and render findings concerning any Contractor's responsibility.

## SECTION 271500 COMMUNICATIONS HORIZONTAL CABLING

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as "the system"), and associated equipment and hardware to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
D. The Voice and Digital Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum , the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care

Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.
E. The VA Contracting Officer (CO) and Contracting Officer's

Representative (COR) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the CO/COR before proceeding with the change.
F. System Performance:

1. At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
a. Provide the following interchange (or interface) capabilities:
1) Basic Rate (BRI).
2) Primary Rate (PRI).
b. ISDN measured at Server Room 70:
3) Narrow Band BRI:
a) B Channel: 64 kilo-Bits per second (kBps), minimum.
b) D Channel: 16 kBps, minimum.
c) H Channel: 384 kBps , minimum.
4) Narrow Band PRI:
a) B Channel: $64 \mathrm{kBps}, ~ m i n i m u m$.
b) D Channel: 64 kBps, minimum.
c) H Channel: 1,920 kBps, minimum.
5) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
c. ATM operation and interface: ATM 155 mBps measured at Server Room 70.
d. Frame Relay: All stated compliance's measured at Server Room 70.
e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at Server Room 70.
f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at Server Room 70.
g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga( $g$ ) -Bps data bit stream speed measured at Server Room 70 (shall be Synchronous Optical Network [SONET] compliant).
h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data and analog RF locations.
2. At a minimum the System shall support the following operating parameters:
a. EPBX connection:
1) System speed: 1.0 gBps per second, minimum.
2) Impedance: 600 Ohms .
3) Cross Modulation: -60 deci-Bel (dB).
4) Hum Modulation: -55 dB .
5) System data error: 10 to the -10 Bps , minimum.
6) Loss: Measured at the frame output with reference Zero (0) deciBel measured (dBm) at $1,000 \mathrm{Hertz}(\mathrm{Hz})$ applied to the frame input.
a) Trunk to station: 1.5 dB , maximum.
b) Station to station: 3.0 dB , maximum.
c) Internal switch crosstalk: -60 dB when a signal of $\pm 10$ deciBel measured (dBm), 500-2,500 Hz range is applied to the primary path.
d) Idle channel noise: 25 dBm "C" or 3.0 dBm " $O$ " above reference (terminated) ground noise, whichever is greater.
e) Traffic Grade of Service for Voice and Data:
(1) A minimum grade of service of $P$-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.
(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.
b. Telecommunications Outlet (TCO):
7) Voice:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, balanced (BAL).
c) Signal Level: 0 deciBel per mili-Volt ( dBmV ) $\pm 0.1 \mathrm{dBmV}$.
d) System speed: 100 mBps , minimum.
e) System data error: 10 to the -6 Bps, minimum.
8) Data:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, BAL.
c) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
d) System speed: 120 mBps , minimum.
e) System data error: 10 to the -8 Bps , minimum.
9) Fiber optic:
a) Isolation (outlet-outlet): 36 dB .
b) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
c) System speed: 540 mBps , minimum.
d) System data error: 10 to the -6 bps , minimum.
10) Closed Circuit Analog Video Service: Analog video service is considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum operating parameters shall be capable over each installed analog video circuit:

Impedance	75 Ohm, unbalanced
Output Level	1.0 V peak to peak (P-P), for 87.5\%   depth of Modulation (Mod)
Diff Gain	$\pm 1 \mathrm{~dB}$ at 87.5\% Mod
Diff Phase	$\pm 1.5$ at 87.5\% Mod
Signal to Noise   (S/N) ratio	44 dB, minimum
Hum Modulation	-55 dB
Return Loss   Ratio [VSWR]), maximum	
Isolation (outlet-   outlet)	$24 \mathrm{DB}, \mathrm{MINIMUM}$
Bandwidth	6.0 mHz per channel, fully loaded,


	minimum

### 1.2 RELATED WORK

A. Specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Specification Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
C. Specification Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
D. Specification Section 271000 , STRUCTURED CABLING.
E. Specification Section 2627 26, WIRING DEVICES.
F. Specification Section 2705 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
I. Specification Section 273100 , VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
J. Specification Section 2731 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION.
N. H-088-C3 VA HANDBOOK DESIGN FOR TELEPHONE SYSTEMS.

### 1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
B. National Fire Protection Association (NFPA):

70	NATIONAL ELECTRICAL CODE (NEC)
75	Protection of Electronic Computer/Data Processing   Equipment
77	Recommended Practice on Static Electricity
101	Standard for Health Care Facilities
1221	Life Safety Code

C. Underwriters Laboratories, Inc. (UL):

65	Wired Cabinets


96	Lightning Protection Components
96 A	INSTALLATION REQUIREMENTS FOR LIGHTNING   PROTECTION SYSTEMS
467	Grounding and Bonding Equipment
$497 / 497 \mathrm{~A} / 497 \mathrm{~B}$	PROTECTORS FOR PAIRED CONDUCTORS/   COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS   AND FIRE ALARM CIRCUITS
884	Underfloor Raceways and Fittings

D. ANSI/EIA/TIA Publications:

568B	Commercial Building Telecommunications Wiring   Standard
569B	Commercial Building Standard for   Telecommunications Pathways and Spaces
606A	ADMINISTRATION STANDARD FOR THE   TELECOMMUNICATIONS INFRASTRUCTURE OF   COMMERCIAL BUILDINGS
607A	Grounding and Bonding Requirements for   Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for   Telecommunications in Commercial Buildings

E. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
F. International Telecommunication Union - Telecommunication Standardization Sector (ITU-T).
G. Federal Information Processing Standards (FIPS) Publications.
H. Federal Communications Commission (FCC) Publications: Standards for telephone equipment and systems.
I. United States Air Force: Technical Order 33K-l-loo Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.
J. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals.
K. National and/or Government Life Safety Code(s): The more stringent of each listed code.

### 1.4 QUALITY ASSURANCE

A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.
B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.
C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor's Technical Submittal.
D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM's direction, and support the System design, the OEM's quality control and validity of the OEM's warranty.
E. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the system.

### 1.5 SUBMITTALS

A. Provide submittals in accordance with Specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The COR shall retain one copy for review and approval.

1. If the submittal is approved the COR shall retain one copy for Official Records and return three (3) copies to the Contractor.
2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The COR shall retain one copy for Official Records.
B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
3. Floor loading for batteries and cabinets.
4. Minimum floor space and ceiling heights.
5. Minimum size of doors for equipment passage.
6. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
7. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
8. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
9. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
10. Conduit size requirement (between main $T C$, computer, and console rooms).
11. Main backbone, trunk line, riser, and horizontal cable pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
12. Title page to include:
a. VA Medical Center.
b. Contractor's name, address, and telephone (including FAX) numbers.
c. Date of Submittal.
d. VA Project No.
13. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
a. Installation Location and Name.
b. Owner's or User's name, address, and telephone (including FAX) numbers.
c. Date of Project Start and Date of Final Acceptance by Owner.
d. System Project Number.
e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
14. Narrative Description of the system.
15. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. The following is the minimum equipment required by the system:

QUANTITY	UNIT
As required	Cabinet Assembly(s)
As required	Distribution/Interface Cabinet
As required	Cross Connection (CCS) Systems
As required	Wire Management System/Equipment
As required	Telecommunications Outlets (TCO)
As required	Distribution Cables
As required	TCo Connection Cables
As required	System Connectors
As required	Terminators
As required	Distribution Frames
As required	Telecommunications Closets (TC)
As required	Environmental Requirements
1 ea.	Installation Kit
As required	Separate List Containing Each Equipment Spare (s)

5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.
6. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed $T C O$ values, and signal level at each $T C O$ multipin, fiberoptic, and coaxial cable jack.
8. List of test equipment as per paragraph 1.5.D. below.
9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.
10. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
D. Test Equipment List:
11. The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.
12. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
a. Spectrum Analyzer.
b. Signal Level Meter.
c. Volt-Ohm Meter.
d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
e. Bit Error Test Set (BERT).
f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
E. Samples: A sample of each of the following items shall be furnished to the COR for approval prior to installation.
13. TCO Wall Outlet Box 4" x 4"x 2.5" with:
a. One each telephone (or voice) rj45 jack installed.
b. Two each multi pin data rj45 jacks installed.
c. Cover Plate installed.
d. Fiber optic ST jack(s) installed.
e. $\operatorname{RF}(F) / v i d e o$ installed.
14. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.
15. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
16. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
17. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
18. $610 \mathrm{~mm}(2 \mathrm{ft}$.$) section of each fiber optic cable to be used with$ cable sweep tags as specified in paragraph 2.4.H and connectors installed.
19. 610 mm (2 ft.) section of each analog RF, video coaxial and audio cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
20. Analog video CCS patch panel or breakout box with cable management equipment and "BNC" connectors installed.
F. Certifications:
21. Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
22. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
23. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B. G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the COR. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.
H. Record Wiring Diagrams:
24. Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the COR. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, Equipment and room/area locations.
25. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility's current operating version of Computer Aided Drafting (AutoCAD) system. The COR shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.
I. Surveys Required As A Part Of The Technical Submittal: The Contractor shall provide the following surveys that depict various system features and capacities are required in addition to the on site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal survey requirements), as a minimum:
26. The required EPBX connections (each CSU shall be compatible with) shall be compatible with the following:
a. Initially connect:

EQUIPPED ITEM	CAPACITY	WIREDCAPACITY
Main Station Lines		
Single Line		
Multi Line (Equipped for direct input   dial [DID])		
Central Office (CO) Trunks		
Two WAY		
DID		
Two-way DRTL		
Foreign Exchange (FX)		
Conference		
Radio Paging Access		
Audio Paging Access		
Off-Premise Extensions		
Co Trunk By-pass		
CRT w/keyboard		
Printers		
Attendant Consoles		
T-1 Access/Equipment		
Maintenance console		

b. Projected Maximum Growth: The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.1.a. as a part of the technical submittal. For this purpose, the following definitions and sample connections are provided to detail the system's capability:

EQUIPPED ITEM	CAPACITY	WIRED CAPACITY
Servers		
PC's $^{\text {Projected Maximum Growth }}$		

The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.2.a. as a part of the technical submittal.
2. Cable Distribution System Design Plan: A design plan for the entire cable distribution systems requirements shall be provided with this document. A specific cable count shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems entire cable requirements and engineer a distribution system requirement plan using the format of the following paragraph(s), at a minimum:
a. UTP (and/or STP) Requirements/Column Explanation:

Column	Explanation
FROM BUILDING	Identifies the building by number, title,   or location, and main signal closet or   intermediate signal closet cabling is   provided from
BUILDING	Identifies the building by number, title,   or location cabling is to be provided in
TO BUILDING IMC	Identifies building main terminal signal   closet, by room number or location, to   which cabling is provided too, in, and from
FLOOR	Identifies the floor by number (i.e. lst,   2nd, etc.) cabling and TCOs are to be   provided
TC ROOM NUMBER	Identifies the floor signal closet room, by   room number, which cabling shall be


	provided
ROOM NUMBER	Identifies the room, by number, from which   cabling and TCOs shall be provided
NUMBER OF CABLE   PAIR	Identifies the number of cable pair   required to be provided on each floor   designated OR the number of cable pair (VA   Owned) to be retained
NUMBER OF STRANDS   USED/SPARE	Identifies the number of strands provided   in each run

b. Fiber Optic Cabling Requirements/Column Explanation:

Column	Explanation
FROM BUILDING	Identifies the building by number, title,   or location, and main signal closet or   intermediate signal closet cabling is   provided from
TO BUILDING IMC	Identifies building, by number, title, or   location, to which cabling is provided
FLOOR	Identifies the floor by number (i.e. 1st,   2nd, etc.)
TC ROOM NUMBER	Identifies the room, by number, from which   cabling shall be installed
NUMBER OF STRANDS	Identifies the number of strands in each   run of fiber optic cable
INSTALLED METHOD	Identifies the method of installation in   accordance with as designated herein
NOTES	Identifies a note number for a special   feature or equipment
BUILDING MTC	Identifies the building by number or title

c. Analog Video Cabling Requirements/Column Explanation:

Column	Explanation
FROM BUILDING	Identifies building, by number or location,   from which cabling is installed
TC ROOM NUMBER	Identifies the room, by number, from which   cabling shall be installed
TO BUILDING IMC	Identifies building, by number or location,   to which cabling is installed
TC ROOM NUMBER	Identifies the room, by number, to which   cabling shall be installed
NUMBER OF STRANDS	Identifies the number of strands in each   run of fiber optic cable


INSTALLED METHOD	Identifies the method of installation in   accordance with as designated herein
NOTES	Identifies a note number for a special   feature or equipment
BUILDING MTC	Identifies the building by number or title

3. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

## PART 2 - PRODUCTS

### 2.1 EQUIPMENT AND MATERIALS

A. System Requirements:

1. The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:
a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.
b. Be a voice and data cable distribution system that is based on an existing Topology.
c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard "T" and/or "DS" carrier services and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be
included in the System design. Provide $T-1$ access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the System's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.
d. Where the System connects to an existing or future telephone system, refer to specification Section 273100 , VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT OR specification Section 2731 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION for specific telephone equipment and system operational performance standards.
2. Cable Systems - Twisted Pair and Fiber optic
a. General:
1) The Contractor shall be responsible for providing a new system conforming to current and accepted telephone and digital industrial/commercial cable distribution standards. The distribution cable installation shall be fully coordinated with the Facility, the PM, the RE and the Contractor prior to the start of installation.
2) The Contractor is responsible for complete knowledge of the space and cable pathways (i.e. equipment rooms, TCs, conduits, wireways, etc.) of the Facility. The Contractor shall at a minimum design and install the System using the Pathway Design Handbook H-088C3, TIA/EIA Telecommunications Building Wiring Standards, and Facility Chief of Information Resource Management's (IRM) instructions, as approved in writing by the CO and/or COR.
3) The System cables shall be fully protected by cable duct, trays, wireways, conduit (rigid, thin wall, or flex), and when specifically approved, flexible innerduct. It is the responsibility of the Contractor to confirm all contract drawings and the Facility's physical layout to determine the
necessary cable protective devices to be provided. If flexible innerduct is used, it shall be installed in the same manner as conduit.
4) Cable provided in the system (i.e. backbone, outside plant, inside plant, and station cabling) shall conform to accepted industry and OEM standards with regards to size, color code, and insulation. The pair twists of any pair shall not be exactly the same as any other pair within any unit or sub-unit of cables that are bundled in twenty-five (25) pairs or less. The absence of specifications regarding details shall imply that best general industry practices shall prevail and that first quality material and workmanship shall be provided. Certification Standards, (i.e., EIA, CCITT, FIPPS, and NFPA) shall prevail.
5) Some areas of this Facility may be considered "plenum". All wire and cable used in support of the installation in those areas (if any) shall be in compliance with national and local codes pertaining to plenum environments. It is the responsibility of the Contractor to review the VA's cable and wire requirements with the $R E$ and the IRM prior to installation to confirm the type of environment present at each location.
6) The Contractor shall provide outside and inside plant cables that furnishes the number of cable pairs required in accordance with the System requirements described herein. The Contractor shall fully coordinate and obtain approval of the design with the OEM, COR and the IRM prior to installation.
7) All metallic cable sheaths, etc. shall be grounded by the Contractor (i.e.: risers, underground, station wiring, etc.) as described herein.
8) If temporary cable and wire pairs are used, they shall be installed so as to not present a pedestrian safety hazard and the Contractor shall be responsible for all work associated with the temporary installation and for their removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the COR and the IRM prior to installation.
9) Conductors shall be cabled to provide protection against induction in voice and data circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
10) Measures shall be employed by the Contractor to minimize the radiation of $R F$ noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
11) The System's cables shall be labeled on each end and been fully tested and certified in writing by the Contractor to the COR before proof of performance testing can be conducted. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The tests required for data cable must be made to guarantee the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. All cable installation and test records shall be made available at acceptance testing by the COR or Contractor and thereafter maintained in the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
12) The Contractor shall coordinate with the LEC to install the telephone entrance cable to the nearest point of entry into the Facility and as shown on the drawings. The Contractor shall coordinate with the COR and the LEC to provide all cable pairs/circuits from the Facility point of entry to the Telephone Switch Room all telephone, FTS, DHCP, ATM, Frame Relay, data, pay stations, patient phones, and any low voltage circuits as described herein.
13) The Contractor shall coordinate with the COR and the IRM to install the computer interface cable to the Facility Telephone

Switch Room from the Facility's Computer Room for all data, DHCP, FTS, ATM, Frame Relay, and telephone circuits and as shown on the drawings.
14) The Contractor shall coordinate with the COR and the IRM to provide all cable pairs/circuits from the Facility Telephone Switch Room and establish circuits throughout the Facility for all voice, data, computer alarm (except fire alarm), private maintenance line, Radio Paging, PA, LAN, DHCP, and any low voltage circuits as described herein.
15) The Contractor shall provide proper test equipment to guarantee that cable pairs meet each OEM's standard transmission requirements, and guarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
b. Telecommunications Closets (TC): In TC's that are served with both a UTP backbone cable and a fiber optic backbone cable, the UTP cable shall be terminated on separate RJ-45, 8-pin connectors with 110A or equivalent type punch down blocks located on the back or front of a 48-port modular patch panel dedicated to data applications. Only the UTP backbone cable pairs, identified as being connected to the fiber optic backbone, shall be extended to the fiber optic interface device. All connecting cables required to extend these cables (i.e. patch cords, twenty-five pair connectors, etc.), to the fiber optic interface device, in the TC's shall also be provided by the Contractor to insure a complete and operational fiber optic distribution system:

1) In TC's, which are only served by a UTP backbone cable, the cable shall be terminated on separate modular connecting devices (110A or equivalent) that are dedicated to data applications. In order to provide full service to all data cable pairs as identified in each TC/cabinet including spare capacity noted herein, the size of all vertical (riser) cables and/or outside cables serving these TC's shall be increased as required.
c. Backbone and Trunk Cables:
2) The Contractor shall identify, in the technical submittal, the voice and data (analog RF coaxial cable shall not be provided
in main trunk or backbone lines) connecting arrangements required by the LEC for interconnection of the System to the commercial telephone and FTS networks. The Contractor shall provide all required voice and data connecting arrangements.
3) The Contractor shall be responsible for compatibility of the proposed TCs (to be compliant with the EPBX and CSU equipment) numbering scheme with the numbering plan for the FTS, DID, local stations, and the North American Numbering Plan. The Contractor shall consult with the VA and the LEC regarding the FTS and North American Numbering plan to be implemented for the Facility to ensure system compatibility.
4) All submitted equipment shall meet or exceed standards, rules, and regulations of the Federal Communications Commission (FCC) and shall be capable of operating without outboard or "extra" devices. The Contractor shall identify the FCC registration number of the System equipment, EPBX, and proposed CSU (if known) in the technical submittal.
5) A minimum of one (1) 400 shielded twisted pair (STP) cable shall be installed from the Telephone Switch Room cross connecting system (CCS) to the Main Computer Room MDF. This cable shall support the transmission of data information over twisted pair cable. The cable shall be tested and terminated on a Contractor provided cable management frame, RJ-45 modular jacks with eight (8) pin connectors, and 48 port modular patch panels located in the Main Computer Room and Telephone Switch Room. The cable shall be labeled, terminated, and separated from the other cables on the MDF and Telephone Switch Room CCS. This requirement shall be fully coordinated and approved by the Facility Chief, IRM and the COR prior to installation. The cabling requirements of this paragraph are in addition to the requirements specified in the System Design Plan identified herein.
d. Riser Cable:
6) All communication riser cables shall be listed as being suitable for the purpose and marked accordingly per Articles 517, 700, and 800 of the NEC.
7) All voice and data communication (analog RF coaxial cable is not to be provided in riser systems) riser cables shall be STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors. They shall be enclosed with a thermoplastic outer jacket.
8) The Contractor shall provide and install inside riser cables to insure full service to all voice cable pairs identified in each TC terminating enclosure plus not less than 50\% additional spare capacity.
9) The complete riser cabling system shall be labeled and tested as described herein.
e. Horizontal and Station Cable:
10) A Four (4) UTP 24 AWG station wiring cable shall be installed from the top TCO jack to the $T C$ and shall be of a type designed to support Category 6 communications (250 mega-Hertz [mHz] or above). At the jack location, terminate all four pair on the RJ-45/11 jack. At the signal closet, all four pair shall be terminated on the modular punch down blocks dedicated to telephone applications.
11) A Four (4) UTP 24 AWG (in thermoplastic jacket unless otherwise specified by COR) station wiring cable shall be installed from each of the two (2) bottom TCO RJ-45 jacks (shall conform to EIA/TIA 568 Standard "T568A" and NFPA) to the TC and shall be of a type designed to support Category 6 communications ( 250 mHz or above).
f. Telecommunication Outlets (TCO), Jacks: All TCO's shall have a minimum of three (3) RJ-45 type jacks. The top jack shall be an eight pin RJ-45/11 compatible jack, labeled, and designated for telephone applications only. The bottom two jacks shall be eight pin RJ-45 type unkeyed (sometimes called center keyed) jacks, labeled, and designated for data.
g. Patient Bedside Prefabricated Units (PBPU): Where PBPU's exist in the Facility, the Contractor shall identify the single gang "box" location on the PBPU designated for installation of the telephone jack. This location shall here-in-after be identified as the PBTCO. The Contractor shall be responsible for obtaining written approval and specific instructions from the PBPU OEM regarding
the necessary disassembly and reassembly of each PBPU to the extent necessary to pull wire from above the ceiling junction box to the PBPU box reserved for the PBTCO. A Contractor provided stainless steel cover plate approved for use by the PBPU OEM and Facility IRM Chief shall finish out the jack installation. Under no circumstances shall the Contractor proceed with the PBPU installations without the written approval of the PBPU OEM and the specific instructions regarding the attachment to or modifying of the PBPU. The COR shall be available to assist the Contractor in obtaining these approvals and instructions in a timely manner as related to the project's time constraints. It is the responsibility of the Contractor to maintain the $u$ integrity of each PBPU. If the Contractor violates that integrity, it shall be the responsibility of the Contractor to obtain on site UL recertification of the violated PBPU at the direction of the RE and at the Contractor's expense.
h. Fiber Optics:
12) A complete fiber optic cable distribution system shall be provided as a part of the System. The Contractor shall provide a fiber optic cable that meets the minimum bandwidth requirements for FDDI, ATM, and Frame Relay services. This fiber optic cable shall be a $62.5 / 125$ micron multi-mode, containing a minimum of 18 strands of fiber, unless otherwise specified, and shall not exceed a distance of 2,000 Meters (M), or 6,560 feet (ft.) in a single run. Loose tube cable, which separates the individual fibers from the environment, shall be installed for all outdoor runs or for any area which includes an outdoor run. Tight buffered fiber cable shall be used for indoor runs. The multimode fibers shall be terminated and secured at both ends in "ST" type female stainless steel connectors installed in an appropriate patch or breakout panel with a cable management system. A 610 mm (2 ft.) cable loop (minimum) shall be provided at each end to allow for future movement.
13) In addition, a 12 strand (minimum), 8.3 mm single mode fiber optic cable shall be provided. Single mode fibers shall be terminated and secured at both ends with "ST" type female
stainless steel connectors installed in an appropriate patch or breakout panel. The panel shall be provided with a cable management system. A 610 mm (2 ft.) cable loop (minimum) shall be provided at each end to allow for future movement.
14) The fiber optic backbone shall use a conventional hierarchical "star" design where each TC is wired to the primary hub (main cross-connect system) or a secondary hub (intermediate crossconnect system) and then to the primary hub. There shall be no more than two hierarchical levels of cross-connects in the backbone wiring. Each primary hub shall be connected and terminated to a CCS in the Telephone Switch Room. Additionally, a parallel separate fiber optic interconnection shall be provided between the Telephone Switch Room CCS and the MDF in the Main Computer Room.
15) In the TC's, Telephone Switch Room, and Main Computer Room, all fiber optic cables shall be installed in a CCS and/or MDF rack mounted fiber optic cable distribution component/splice case (Contractor provided and installed rack), patch, or breakout panel in accordance with industry standards. Female "ST" connectors shall be provided and installed on the appropriate panel for termination of each strand.
16) The Contractor shall test each fiber optic strand. Cable transmission performance specifications shall be in accordance with EIA/TIA standards. Attenuation shall be measured in accordance with EIA fiber optic test procedures EIA/TIA-45546, -61, or -53 and NFPA. Information transmission capacity shall be measured in accordance with EIA/TIA-455-51 or -30 and NFPA. The written results shall be provided to the COR for review and approval.
3. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional voice and digital telecommunications cabling system: "Main" (MTC), "intermediate" (IMTC), and "riser" (RTC) TC's; "backbone" cabling (BC) system; "vertical" (or "riser") trunk cabling system; "horizontal" (or "lateral") sub-trunk cabling system, vertical and horizontal cross-connection (VCC and HCC respectively) cabling systems, and $T C O$ 's with a minimum of three (3)

RJ-45 jacks for the appropriate telephone, Data connections, and additional jacks, connectors, drop and patch cords, terminators, and adapters provided.
a. Telecommunication Closet (TC):

1) There shall be a minimum of one TC for the MTC, each building IMTC, and each RTC per building floor location. However, in large building(s), where the horizontal distance to the farthest voice and digital work area may exceed 90 Meters (M) (or 295 feet [ft]), additional TC's shall be provided as described herein. The maximum DC resistance per cable pair shall be no more than 28.6 Ohms per 305 M (1,000 feet). Each TC shall be centrally located to cover the maximum amount of local floor space. The TC's house in cabinets or enclosures, on relay racks, and/or on backboards, various telecommunication data equipment, controllers, multiplexers, bridges, routers, LAN hub(s), telephone cross-connecting, active and passive equipment.
2) Additionally, the TC's may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all backbone, vertical, and horizontal copper and fiber optic cables shall be terminated on appropriate crossconnection systems (CCS) containing patch panel(s), punch blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.
a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with "U" grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every $800 \mathrm{M}^{2}$
(or $8,000 \mathrm{ft}^{2}$ ) of useable floor space. Additional outlets shall be equally spaced along the wall.
b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications. The CO or COR are responsible for informing the Contractor regarding the minimum climate control requirements. In identified hostile TC locations where it has been determined (by the CO or COR) that proper TC climate or external signal radiation cannot be properly maintained or controlled, the Contractor may, at his/her option, provide a minimum of two individual and properly sized self contained climate controlled equipment cabinet enclosures; one designated for voice, and one designated for data service, in each TC location identified on the drawings, in lieu of providing additional required TC air handling capability.
b. Cross-connect Systems (CCS) :
3) The CCS shall be selected based on the following criteria: requires the use of a single tool, has the fewest amount of parts, and requires the least amount of assembly or projected trouble shooting time during the life of the system.
4) The CCS system used at the MTC, each IMTC, and each TC shall force cross-connect cable slack management through adherence to the OEM's installation methods, provided cable management systems, and as described herein, so that moves, adds, and changes can be administered easily and cost effectively.
5) Copper Cables: The MTC, each IMTC, and TC shall contain a copper CCS sized to support the System TCO's and connections served by each individual $T C$ and as shown on the drawings. The System layout shall allow for a minimum of $50 \%$ anticipated growth. Additionally, each CCS must provide maximum flexibility, while maintaining performance, in order to meet system-changing requirements that are likely to occur throughout its useful life.
6) Fiber Optic Cables:
a) The MTC and each TC shall contain a fiber CCS sized to support the System TCO's and connections served by each individual TC and as shown on the drawings. The System layout shall allow for a minimum of $50 \%$ anticipated growth.
b) Each fiber CCS must provide maximum flexibility and cable management while maintaining performance in order to meet changing requirements that are likely to occur throughout the expected life of the system. All fiber optic cable slack shall be stored in protective enclosures.
c) If it is determined that a fiber optic distribution system is not necessary for the immediate system needs. Each TC shall be provided with fiber optic cable(s) that contain a minimum of 12 strands "dark" multimode fiber and 12 strands "dark" single mode fiber, each fiber properly terminated on its respective female stainless steel connector mounted in an appropriate fiber termination enclosure provided in each TC.
7) The Contractor shall not "cross-connect" the copper or fiber optic cabling systems and subsystems even though appropriate "patch" cords are to be provided for each "patch", "punch", or "breakout" panel. In addition, the Contractor shall not provide active electronic distribution or interface equipment as a part of the System.
8) Grounding: Proper grounding and bonding shall be provided for each TC and all internal equipment. Reference shall be made to proper codes and standards, such that all grounding systems must comply with all applicable National, Regional, and Local Building and Electrical codes. The most stringent code of these governing bodies shall apply.
a) If local grounding codes do not exist for the System location, then at a minimum, a \#6 American Wire Gauge (AWG) stranded copper wire, or equivalent copper braid, shall be connected to a separate earth grounding system for each TC (the looping of $T C^{\prime}$ s in a general location is allowed as long as the specifications contained herein are met). Under no circumstance shall the AC neutral be used for this
ground. See PART 3 - EXECUTION for specific grounding instructions.
b) Each copper UTP or STP cable that enters a TC from the outside of a building (regardless if the cable is installed underground or aerial) shall be provided with a surge protector and grounded an to earth ground at each cable's entry point in and out of the MTC and each IMTC.
c. Main Cross-connection Subsystem (MCCS) : The MCCS shall be located in the MTC and it shall be the common point of appearance for inter and intra-building copper and fiber optic "backbone" system cables, and connections to the telephone and data cable systems. The MTC usually houses telephone EPBX, public address, radio paging interface, routers, and main hierarchical data LAN concentrating equipment. Additionally, it shall provide a single administration and management point for the entire System.
d. Voice (or Telephone) Cable Cross-Connection Subsystem:
9) Due to the usually high number of copper cable termination's required at the MCCS, Insulation Displacement Connection (IDC) hardware shall be used. Termination options shall include the following for a Category 6 Cabling System: IDC termination of cross-connection wire(s), IDC patch cord connector to IDC patch cord connector, and hybrid modular cord to IDC patch cord connector shall be the minimum provided.
10) Additionally, due to the large or many MCCS (at initial installation and over the life of the System) copper termination points, the CCS that makes the best use of real estate while still following the OEM design and installation guidelines, and meeting the specifications described herein, shall be provided.
11) For ease of maintenance purposes, all terminations shall be accessible without the need for disassembly of the IDC wafer. IDC wafers shall be removable from their mounts to facilitate testing on either side of the connector. Designation strips or labels shall be removable to allow for inspection of the terminations. The maximum number of terminations on a wall or on a rack frame or panel shall comply with the OEM recommendations and guidelines, and as described herein. A
cable management system shall be provided as a part of the IDC.
12) IDC connectors shall be capable of supporting cable reterminations without damaging the connector and shall support a minimum of 200 (telephone equipment standard compliant) IDC insertions or withdrawals on either side of the connector panel.
13) A non-impact termination method using a full-cycle terminating tool having both a tactile and an audible feedback to indicate proper termination is required. For personnel safety and ease of use in day to day administration, high impact installation tools shall not be used.
14) All system "inputs" from the EPBX, FTS, Local Telephone System, or diverse routed voice distribution systems shall appear on the "left" side of the IDC (110A blocks with RJ45 connections are acceptable alternates to the IDC) of the MCCS.
15) All system "outputs" from the MCCS to the voice backbone cable distribution system shall appear on the "right" side of the same IDC (or 110A blocks) of the MCCS.
16) The splitting of pairs within cables between different jacks or connections shall not be allowed. In the case of ISDN and/or ATM and /or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.
17) UTP or STP cross connecting wires shall be provided for each "pair" of connection terminals plus an additional 50\% spare.
e. Data Cross-Connection Subsystems:
18) The MCCS shall be a Main Distribution Terminating (MDT) data unit and shall be provided in the MTC. The MDT shall consist of a "patch" panel(s) provided with modular RJ45 female connectors for cross-connection of all copper data cable terminations. The panels shall provide for system grounding (where no dielectric cables are used) and be provided with a cable management system.
19) Each panel shall conform to EIA dimensions and be suitable for mounting in standard equipment racks, have the RJ45 jacks aligned in two horizontal rows (up to a maximum of 48 jacks
per panel), and shall not exceed the OEM's recommendations. Each RJ45 jack shall be of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging the jack. It is not necessary to provide a jack for unused positions that are not part of the 50\% expansion requirement.
a) All data system inputs from the server(s), data LAN, bridge, or interface distribution systems shall appear on the "top" row of jacks of the appropriate patch panel.
b) All System outputs or backbone cable connections shall appear on the "bottom" row of jacks of the same patch panel.
c) The splitting of pairs within cables between different jacks shall not be allowed. In the case of ISDN and/or ATM and/or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.
20) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular RJ45 connectors provided on each end to match the panel's modular RJ45 female jack's being provided.
f. Fiber optic Cross-Connection Subsystems: The MTC shall be provided with a separate fiber MCCS. Each TC shall be provided with a rack mounted patch or distribution panel that is installed inside a lockable cabinet or "breakout enclosure" that accommodates a minimum of 12 strands multimode fiber and 12 strand single mode fiber (these counts shall not be included the 50\% spare requirement). Two of the single mode fibers shall be designated for educational analog video applications. A cable management system shall be provided for each panel.
21) The panel(s) shall contain a minimum of 24 female "SC" connectors, be able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to the OEM's maximum standard panel size for this type of use. All patch panel sides, including the front and back, shall be protected by a cabinet or enclosure.
22) The panel(s) shall conform to EIA dimensions and be suitable for installation in standard racks, cabinets, and enclosures. The panels shall provide for system grounding (where no dielectric cables are used).
23) The patch panel with the highest OEM approved density of fiber "SC" termination's (maximum of 72 each), while maintaining a high level of manageability, shall be selected. Patch cables, with proper "SC" connectors installed on each end shall be provided for each pair of fiber optic cable "SC" connectors.
a) All System "inputs" from interface equipment or distribution systems shall appear on the "top" row of connectors of the appropriate patch panel.
b) All System "outputs" or backbone cable connections shall appear on the "bottom" row of connectors of the same patch panel.
24) In order to achieve a high level of reliability that approximates that of an OEM connector, field installable connectors shall have an OEM specified physical contact polish. Every fiber cable shall be terminated with the appropriate connector, and tested to ensure compliance to OEM and specifications outlines herein. Where a local fiber optic system connector standard, Industry Standard fiber optic "SC" female connector terminated with a fiber optic cable, shall be used. But, if the fiber optic cable is not used (or "dark"), a "SC" male terminating "cap" shall be provided for each unused "SC" female connector.
g. Intermediate Cross-connection Subsystems (IMCCS): The MTC and each IMTC shall be provided with an IMCCS that shall be the connection point between the MCCS system and the distribution backbone cable and the IMCCS, that is located in one or more buildings on a campus, where each IMCCS is placed by system design. For a technical explanation of internal equipment and system requirements, refer to the above MTC and MCCS paragraphs.
h. Distribution Cable Systems / Backbone Cable System (Common to Inter-buildings) : The backbone cable system extends from the MCCS to each IMCCS to establish service between buildings on a campus. The media (copper and fiber optic) used in the BC system shall be
designed according to the system requirements, OEM standards and guidelines, and as described herein. A multi-pair copper for voice and data, and separate multiple fiber optic backbone system shall be provided as a part of the BC distribution system.
25) All outside cable shall be minimum of STP or UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flexgel waterproof Rural Electric Association (REA) LISTED PE 39 CODE) between the outer armor or jacket and inner conductors protective lining.
26) The copper cable system shall be configured as a "Star" Topology with separate dedicated cables between the MCCS and each IMCCS.
27) UTP and STP copper cables shall consist of thermoplastic insulated conductors formed into binder groups. The groups are to be identified by distinctly colored binders and assembled to form a single compact core covered by a protective sheath. Each cable shall be rated for Category 6 Telecommunications System Service. A minimum of eight pairs per circuit, plus an additional $50 \%$ spare for growth shall be provided.
28) Where the distance limitations of UTP or STP may be exceeded, multimode (or single mode) fiber optic cable(s) shall be used to augment the voice and/or data backbone cable system(s). The total loss of each fiber shall not exceed 12 decibel (dB) at 850 nano-Meter (nM), 11 dB at $1,300 \mathrm{nM}$, or 10 dB at $1,500 \mathrm{nM}$.
29) All voice system "inputs" from the MCCS via the BC distribution system shall appear on the "left" side of IDC (minimum 110 blocks) punch terminals of the IMCCS.
30) All voice system "outputs" or trunk line connections shall appear on the "right" side of the same IDC (minimum 110 blocks) of the IMCCS.
31) All data system "inputs" from the MCCS via the BC distribution system shall appear on the "top" row of jacks of the appropriate patch panel of the IMCCS.
32) All data system "outputs" or trunk line connections shall appear on the "bottom" row of jacks in the same patch panel of the IMCCS.
33) The splitting of pairs within cables between different jacks shall not be allowed. In the case of ISDN and/or ATM and /or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.
34) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular connectors provided on each end to match the panel's modular female jack.
35) The fiber optic BC system shall be configured as a "Buss" Topology with separate dedicated fibers between the MCCS and each IMCCS. The System shall be sized to meet the system requirements plus an expansion capability of $50 \%$. Fiber optic cable(s) having a minimum of 12 strands multimode fiber and 12 strands single mode fiber shall be provided. Two of the single mode fibers shall be designated for analog video service.
36) All BC shall be identified with permanent labels at both ends. Labels will indicate system, floor, closet, and zone. The label designations shall match those used for crossconnect terminals and patch panels.
i. Distribution (Common to Intra-Building) Cabling Systems: The intra-building trunk cabling system provides for connection between the IMCCS and each Riser TC's provided vertical crossconnecting system (VCCS) within a building. The media (copper, fiber optic) used in the intra-building backbone cabling system shall be designed according to the system requirements, OEM standards and guidelines, and as described herein. A multi-pair copper for voice and data, and separate multiple fiber optic trunk system shall be provided as a part of the System.
37) Category 6 UTP or STP multi-pair trunk cable(s) shall be used in the voice and data trunk-line-cabling systems. A minimum of eight pairs per circuit, plus an additional $50 \%$ spare for growth shall be provided.
38) Where the distance limitations of UTP and/or STP will be exceeded, multimode (or single mode) fiber optic cable shall be used in the voice and/or trunk cabling systems. The total loss of the fiber trunks shall not exceed 12 dB at $850 \mathrm{nM}, 11$ dB at $1,300 \mathrm{nM}$, or 10 dB at $1,500 \mathrm{nM}$.
a) All voice system "outputs" from the IMCCS to the trunk-line distribution system shall appear on the "right" side of IDC (minimum 110A blocks) punch terminals of the IMCCS.
b) All data system "outputs" from the IMCCS to the trunk-line distribution system shall appear on the "bottom" row of jacks of the same IDC (minimum 110A blocks) of the IMCCS.
c) The splitting of pairs within cables between different jacks shall not be allowed. In the case of ISDN and/or ATM and/or Frame Relay applications, terminating resistors shall be provided externally to the patch panel connector or jack.
d) A patch cord shall be provided for each system "pair" of connection jacks. Each patch cord shall have modular connectors provided on each end to match the panel's modular female jack.
39) The fiber optic trunk line system shall be configured as a "Buss" Topology with separate dedicated fibers between the IMCCS and each RCS. The System shall be sized to meet the System requirements with a expansion capability of $50 \%$ provided. Separate individual fiber optic cable(s) with a minimum of 18 strands multimode fiber and/or 12 strands single mode fiber shall be provided. Two of the single mode fibers shall be designated for analog video service.
40) All trunk lines shall be identified with permanent labels at both ends. Labels will indicate system, floor, closet, and zone. The label designations shall match those used for crossconnects and patch panels.
a) All System outputs from the IMCCS to the trunk-line distribution system shall appear on the "bottom" row of "SC" connectors in the appropriate patch panel.
b) A patch cord shall be provided for each system "pair" of connection "SC" connectors. As a minimum, each patch cord shall have "SC" male connectors provided on each end to match the panel's female "SC" connector provided.
41) The analog RF coaxial trunk-line systems shall be connected between each IMCCS "bottom" row of "F" connectors and shall terminate on the VCCS "top" row of "F" connectors on an
appropriate patch panel. A minimum of six coaxial cables shall be provided in the riser trunk-line system.
j. VCCS and Horizontal Cross-connecting (HCCS) Systems: Each TC shall be provided with a separate VCCS and HCCS located within the TC. The VCCS and HCCS shall interconnect and interface the riser (vertical) trunk line cables with the horizontal (or station) sub-trunk line cables. The media (copper, fiber optic) used in the CCS system shall be designed according to the system requirements, OEM standards and guidelines, and as described herein. A multi-pair copper for voice and data, and separate multiple fiber optic CCS system shall be provided as a part of the system.
42) The UTP, STP, and fiber optic trunk-line cabling systems are that connected between the trunk-lines and Riser VCCS, shall be terminated:
a) On the "left" or "top" IDC (or 110A blocks) for each UTP or STP voice cable.
b) On the "top" row of RJ45 jacks on the appropriate patch panel for each UTP or STP data cable.
c) On the "top" row of "SC" connectors on the appropriate patch panel for each fiber.
43) The UTP, STP, and fiber optic sub-trunk (lateral) floor distribution cabling systems that are connected between each RTC and each TCO or secondary system distribution or connection point, shall terminate on an appropriate HCCS, at the:
a) On the "right" IDC (or 110A block) used as the VCCS input for each UTP or STP voice cable.
b) On the "bottom row of RJ45 jacks on the appropriate patch panel used as the VCCS input for each UTP or STP data cable.
c) On the "bottom" row of "ST" connectors on the appropriate patch panel used as the VCCS input for each fiber.
d) The technical requirements of the VCCS and HCCS "patch", "terminating", or "breakout" panels and cable management assemblies for voice, data and fiber optic ( and RF
coaxial) cables shall be as described in the above MCCS, IMCCS, and TC technical paragraphs.
44) The Contractor shall not "cross-connect" the VCCS or HCCS cabling systems even though appropriate patch cords are provided for each "patch", "punch", or "breakout" panel. Also, the Contractor shall not provide active interface or distribution electronic equipment as a part of the System.
k. Horizontal (or Station) Cabling (HC): The HC distribution cabling systems connects the distribution field of the voice and data HCCS, in a "Star" Topology, to each TCO or connector and as shown on the drawings via the sub-trunk system.
45) Horizontal cables shall consist of insulated, UTP or STP conductors that are rated for Category 6 telecommunications service for voice and data systems.
46) The number of UTP or STP distribution pairs dedicated to each floor from the $H C$ shall be sufficient to accommodate all the horizontal voice and data circuits served by the distribution cable to each TCO.
a) A minimum of four pairs for voice shall be connected to the "right" side of the IDC (or 110A block) that the VCCS "input" connections appear in the RTC.
b) A minimum of two separate sets of four pairs each for data shall be connected to the "bottom" row of RJ45 jacks that the VCCS "input" connections appear in the RTC.
47) The horizontal cable length to the farthest system outlet shall be limited to a maximum of 90 M (or 295 ft ). These maximum lengths must be derated, adjusted and reduced to include cross-connection and distribution system losses. Additional TC(s) shall be provided on large floor areas of buildings to limit the horizontal distribution to a maximum of 90M (or 295 ft ).
48) The splitting of pairs within a cable between different jacks shall not be permitted.
49) The installation of the HC shall conform to appropriate OEM recommendations and standards outlined herein. This requirement will insure adequate protection for ElectroMagnetic Interference (EMI) sources.
50) A system design where "looping" the HC distribution cables from room to room shall not be permitted.
51) The number of fiber optic cables dedicated from the "bottom" row of "SC" connectors of the appropriate patch panel that the VCCS "input" connections were made, to each floor shall be sufficient to accommodate all the horizontal TCO's served by the distribution cable system in a "home run" configuration minimum of two cables (one multimode and one single mode) per each TCO and as shown on the drawings.
l. System Telecommunication Outlets (TCO): The System shall be capable of receiving the specified telephone (or voice) and data signals acquired from the LEC, FTS contracted carrier and computer system, and one each fiber optic single mode and multimode cables and shall process and distribute them to the designated TCO's and as shown on the drawings. At a minimum, one TCO shall be provided on each room wall, associated with an active 120 VAC shall be provided and as shown on the drawings. The only exception to the general rule, of one outlet per wall, shall be those "special" locations (e.g., surgical suites, radiology MRI rooms, labs, patient bed rooms, warehouse, loading docks, storage rooms, etc.) where there is usually only one TCO provided as designated on the drawings.
52) Each TCO shall consist of three multipin modular RJ45 jacks, one designated for telephone and two for data service, and two fiber optic "SC" connectors, one designated for multimode fiber optic cable and the other for single mode fiber optic cable connection(s) and one analog RF coaxial "F" connector. Each TCO with appropriate jacks installed shall be provided by the Contractor in each designated location and as shown on the drawings.
53) The Contractor shall connect each telephone multipin modular RJ45 jack to a separate "right side as you look at it" telephone HC distribution system HCCS "punch down" 110A block or approved IDC terminating device in each associated RTC. The modular RJ45 jack shall be able to accept and operate with smaller modular RJ11 plugs while providing proper connection and not damaging the modular jack. he OEM shall warrant all
modular RJ45/11 jacks in such a manner to be usable for modular RJ11 plugs.
54) The Contractor shall connect each TCO data multipin modular RJ45 jack to a separate lower row jack on the HCCS "patch panel" in each associated RTC. The Contractor is not to "cross-connect" VCCS and HCCS data distribution cables or provides active electronic data distribution equipment as a part of the system.
55) A non-impact termination method, using either a stuffer cap with installation tool or full-cycle terminating tool having both tactile and audible feedback to indicate proper termination shall be used. High impact installation tools shall not be used.
56) Each terminated conductor end shall be properly trimmed to assure a minimum clearance of 6.35 mm ( 0.250 in ) clearance between the conductors of adjacent modules.
57) The multipin RJ45 jack shall be modular in construction that will accept and operate with a modular UTP and STP RJ45 connector and its pin assignments.
58) The Contractor shall connect each fiber optic TCO "ST" connector to a separate fiber optic "bottom" row "ST" connector HCCS "patch panel" or "breakout" terminating device in each associated TC. The Contractor is not to "interconnect" VCCS and HCCS fiber optic distributions cables or provide active fiber optic electronic distribution equipment as a part of the system.
B. System Performance:
1. At a minimum, the System shall be able to support the following voice and data operations for Category 6 Certified Telecommunication Service:
a. Provide the following interchange (or interface) capabilities:
1) Basic Rate (BRI).
2) Primary Rate (PRI).
b. ISDN measured at Server Room 70:
3) Narrow Band BRI.
a) B Channel: 64 kilo-Bits per second (kBps), minimum.
b) D Channel: 16 kBps , minimum.
c) H Channel: 384 kBps , minimum.
4) Narrow Band PRI:
a) B Channel: 64 kBps, minimum.
b) D Channel: 64 kBps, minimum.
C) H Channel: $1,920 \mathrm{kBps}$, minimum.
5) Wide (or Broad) Band:
a) All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at "T" reference.
c. ATM operation and interface: ATM 155 mBps measured at Server Room 70.
d. Frame Relay: All stated compliance's measured at Server Room 70.
e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at Server Room 70.
f. Government Open Systems Interconnection Profile (GOSSIP)
compliant: Measured at Server Room 70.
g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at Server Room 70 (shall be Synchronous Optical Network [Sonet] compliant).
h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data locations.
2. At a minimum the System shall support the following operating parameters:
a. EPBX connection:
1) System speed: 1.0 gBps per second, minimum.
2) Impedance: 600 Ohms .
3) Cross Modulation: -60 deci-Bel (dB).
4) Hum Modulation: -55 Db.
5) System data error: 10 to the -10 Bps , minimum loss measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz ( Hz ) applied to the frame input.
a) Trunk to station: 1.5 dB , maximum.
b) Station to station: 3.0 dB , maximum.
c) Internal switch crosstalk: -60 dB when a signal of $\pm 10$ deciBel measured ( dBm ), $500-2,500 \mathrm{~Hz}$ range is applied to the primary path.
d) Idle channel noise: 25 dBm "C" or 3.0 dBm " O " above reference (terminated) ground noise, whichever is greater.
e) Traffic Grade of Service for Voice and Data:
(1) A minimum grade of service of $\mathrm{P}-01$ with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.
(2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.
b. Telecommunications Outlet (TCO):
6) Voice:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, balanced (BAL).
c) Signal Level: 0 deciBel per mili-Volt ( dBmV ) $\pm 0.1 \mathrm{dBmV}$.
d) System speed: 100 mBps , minimum.
e) System data error: 10 to the -6 Bps , minimum.
7) Data:
a) Isolation (outlet-outlet): 24 dB .
b) Impedance: 600 Ohms, BAL.
c) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
d) System speed: 120 mBps , minimum.
e) System data error: 10 to the -8 Bps , minimum.
8) Fiber optic:
a) Isolation (outlet-outlet): 36 dB .
b) Signal Level: $0 \mathrm{dBmV} \pm 0.1 \mathrm{dBmV}$.
c) System speed: 540 mBps , minimum.
d) System data error: 10 to the -6 BPS, minimum.
9) Closed Circuit Analog Video Service: Analog video service is considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum operating parameters shall be capable over each installed analog video circuit:
a) Impedance: 75 Ohm, unbalanced.
b) Output Level: 1.0 V peak to peak ( $\mathrm{P}-\mathrm{P}$ ), for $87.5 \%$ depth of Modulation (Mod).
c) Diff Gain: $\pm 1 \mathrm{~dB}$ at $87.5 \%$ Mod.
d) Diff Phase: $\pm 1.5$ at $87.5 \%$ Mod.
e) Signal to Noise (S/N) ratio: 44 dB , minimum.
f) Hum Modulation: -55 dB .
g) Return Loss: -14 dB (or 1.5 Voltage Standing Wave Ratio [VSWR]), maximum.
h) Isolation (outlet-outlet): 24 dB , minimum.
i) Bandwidth: 6.0 mHz per channel, fully loaded, minimum.
C. General:
1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
a. Maintains a stock of replacement parts for the item submitted.
b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.
3. The Contractor shall provide written verification, in writing to the COR at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
4. The Telephone Contractor is responsible for providing interfacing cable connections for the telephone, PA systems with the System.
5. The telephone equipment and PA interface equipment shall be the interface points for connection of the PA interface cabling from the telephone switch via the system telephone interface unit.
6. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of $F C C$ standards for telephone equipment, systems, and service.
7. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
8. All interconnecting twisted pair, fiber-optic or coaxial cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiber-optic, or coaxial cable unterminated, unconnected, loose or unsecured.
9. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 2710 00, STRUCTURED CABLING and Section 2731 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
10. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with COR regarding a suitable circuit location prior to bidding.
11. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base- band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier
terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.
12. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.
13. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
D. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
POWER LINE FREQUENCY	60 HZ $\pm 2.0$ HZ
Operating Temperature	0 to 50 degrees ( ${ }^{\circ}$ ) Centigrade (C)
Humidity	80 percent (\%) minimum rating

E. Equipment Standards and Testing:

1. The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.
3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the COR approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to
be used in completion of this contract, the equipment must bear the approved UL seal.
4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

### 2.2 DISTRIBUTION EQUIPMENT AND SYSTEMS

A. Telecommunication Outlet (TCO):

1. The TCO shall consist of one telephone multipin jack and two data multipin jacks, and one multimode fiber optic jacks mounted in a steel outlet box. A separate 100 mm (4in.) x 100 mm (4in.) x 63 mm (2.5in.) steel outlet box with a labeled stainless steel faceplate will be used. A second 100 mm (4in.) x 100 mm (4in.) x 63mm (2.5in.) steel outlet box with a labeled faceplate shall be provided as required adjacent to the first box to ensure system connections and expandability requirements are met.
2. All telephone multipin connections shall be RJ-45/11 compatible female types. All data multipin connections shall be RJ-45 female types. All fiber optic (single mode and multimode) connections shall be "SC" stainless steel female types.
3. The TCO shall be fed from the appropriate CCS located in the respective RTC in a manner to provide a uniform and balanced distribution system.
4. Interface of the data multipin jacks to appropriate patch panels (or approved "punch down" blocks) in the associated RTC, is the responsibility of the Contractor. The Contractor shall not extend data cables from the RTCs to data terminal equipment or install data terminal equipment.
5. The wall outlet shall be provided with a stainless steel or approve alternate cover plate to fit the telephone multipin jack, data multi- pin jacks, fiber optic jacks and the outlet box provided (100mm (4in.) x 100 mm (4in.) for single and 100 mm (4in.) x 200 mm (8in.) for dual outlet box applications). For PBPU installations, the cover plate shall be stainless steel.
6. Interface of the fiber optic "SC" jacks to appropriate patch panels in the associated RTC, is the responsibility of the Contractor. The

Contractor shall not cross-connect fiber optic cables in the to
fiber optic equipment or install fiber optic equipment.
B. Distribution Cables: Each cable shall meet or exceed the following specifications for the specific type of cable. Each cable reel shall be sweep tested and certified by the OEM by tags affixed to each reel. The Contractor shall turn over all sweep tags to the RE or PM. Additionally, the Contractor shall provide a 610 mm (2 ft.) sample of each provided cable, to the COR and receive approval before installation. Cables installed in any outside location (i.e. above ground, under ground in conduit, ducts, pathways, etc.) shall be filled with a waterproofing compound between outside jacket (not immediately touching any provided armor) and inter conductors to seal punctures in the jacket and protect the conductors from moisture.

1. Remote Control:
a. The remote control cable shall be multi-conductor with stranded (solid is permissible) conductors. The cable shall be able to handle the power and voltage necessary to control specified system equipment from a remote location. The cable shall be UL listed and pass the $F R-1$ vertical flame test, at a minimum. Each conductor shall be color-coded. Combined multi-conductor and coaxial cables are acceptable for this installation, as long as all system performance standards are met.
b. Technical Characteristics:

Length	As required, in 1K (3,000 ft.) reels   minimum
Connectors	As required by system design
Size	18 AWG, minimum, Outside   20 AWG, minimum, Inside
Color coding	Required, EIA industry standard
Bend radius	10 X the cable outside diameter
Impedance	As required
Shield coverage	As required by OEM specification
Attenuation	
Frequency in mHz	dB per $305 \mathrm{M}(1,000 \mathrm{ft}),$. maximum
0.7	5.2
1.0	6.5


4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

2. Telephone:
a. The System cable shall be provided by the Contractor to meet the minimum system requirements of Category Six service. The cable shall interconnect each part of the system. The cable shall be completely survivable in areas where it is installed.
b. Technical Characteristics:

Length	As required, in 1K (3,000 ft.) reels   minimum
Cable	Voice grade category six
Connectors	As required by system design
Size	22 AWG, minimum, Outside   24 AWG, minimum, Inside
Color coding	Required, telephone industry standard
Bend radius	10 X the cable outside diameter
Impedance	120 Ohms $\pm$ 15\%, BAL
Shield coverage	As required by OEM specification
Attenuation	dB per 305 M (1,000ft.), maximum
Frequency in mHz	5.2
0.7	6.5
1.0	14.0
4.0	19.0
8.0	26.0
16.0	29.0
20.0	33.0
25.0	36.0
31.0	52.0
62.0	


100.0	68.0

3. Data Multi-Conductor:
a. The cable shall be multi-conductor, shielded or unshielded cable with stranded conductors. The cable shall be able to handle the power and voltage used over the distance required. It shall meet Category Six service at a minimum.
b. Technical Characteristics:

Wire size	$22 \mathrm{AWG}, \mathrm{minimum}$
Working shield	350 V
Bend radius	10 X the cable outside diameter
Impedance	100 Ohms $\pm 15 \%$, BAL
Bandwidth	100 mHz, minimum
DC RESISTANCE	$10.0 \mathrm{Ohms} / 100 \mathrm{M}$, maximum
Shield coverage	$100 \%$
Overall Outside (if OEM   specified)	$100 \%$
Individual Pairs (if OEM   specified)	$\mathrm{dB} \mathrm{per} \mathrm{305} \mathrm{M} \mathrm{(1,000ft),} maximum$.
Attenuation	5.2
Frequency in mHz	6.5
0.7	14.0
1.0	19.0
4.0	26.0
8.0	29.0
16.0	33.0
20.0	36.0
25.0	52.0
31.0	68.0
62.0	100.0

4. Fiber Optic:
a. Multimode Fiber:
1) The general purpose multimode fiber optic cable shall be a dual window type installed in conduit for all system
locations. A load-bearing support braid shall surround the inner tube for strength during cable installation.
2) Technical Characteristics:

Bend radius	$6.0 "$, minimum   Outer jacket, As required
FIBER DIAMETER	62.5 MICRONS
Cladding	125 microns
Attenuation	4.0 dB per kM, maximum
850 nM	2.0 dB per kM, maximum
$1,300 \mathrm{nM}$	160 mHz, minimum
Bandwidth	500 mHz, minimum
850 nM	Stainless steel
$1,300 \mathrm{nM}$	
Connectors	

5. AC Power Cable: AC power cable(s) shall be 3-conductor, no. 12 AWG minimum, and rated for $13 \mathrm{~A}-125 \mathrm{~V}$ and $1,625 \mathrm{~W}$. Master AC power, installation specification and requirements, are given in the NEC and herein.
6. General Purpose Analog Video:
a. The coaxial cable shall be an RG-59/U type (or equal), minimum. It may also be used for baseband signals as approved by the OEM. b. Technical Characteristics:

Impedance	75 Ohm, UNBAL
Center conductor	20 AWG, SOLID OR STRANDED COPPER
Dielectric	Cellular polyethylene
Shield coverage	$95 \%$, copper braid
Connector type	BNC or UHF
Attenuation	
Frequency (k or mHz$)$	Maximum dB/30.5M (100ft.)
10 kHz	0.20
100 kHz	0.22
1.0 kHz	0.25
4.5 mHz	0.85


10.0 mHz	1.40
100 mHz	$5.00 \mathrm{/} /$

C. Outlet Connection Cables:

1. Telephone:
a. The Contractor shall provide a connection cable for each TCO telephone jack in the System with $10 \%$ spares. The telephone connection cable shall connect the telephone instrument to the TCO telephone jack. The Contractor shall not provide telephone instrument(s) or equipment.
b. Technical Characteristics:

Length	1.8 M (6ft.), minimum
Cable	Voice Grade
Connector	RJ-11/45 compatible male on each   end
Size	24 AWG, minimum
Color coding	Required, telephone industry   standard

2. Data:
a. The Contractor shall provide a connection cable for each TCO data jack in the system with $10 \%$ spares. The data connection cable shall connect a data instrument to the TCO data jack. The Contractor shall not provide data terminal(s)/equipment.
b. Technical Characteristics:

Length	1.8 M (6 ft.), minimum
Cable	Data grade Category Six
Connector	RJ- 45 male on each end
Color coding	Required, data industry standard
Size	24 AWG, minimum

3. Fiber Optic:
a. The Contractor shall provide a connection cable for each TCO fiber optic connector in the System with 10\% spares. The data connection cable shall connect a fiber optic instrument to the

TCO fiber optic jack. The Contractor shall not provide fiber optic instrument(s)/equipment.
b. Technical Characteristics:

Length	1.8 M (6 ft.), minimum
Cable	Flexible single conductor with jacket
Connector	ST male on each end
Size	To fit single mode or multimode cable//

4. Analog Video:
a. The Contractor shall provide a connection cable for each TCO analog video jack in the System with 10\% spares. The analog video connection cable shall connect a analog video instrument to the TCO analog video jack. The Contractor shall not provide analog video instrument(s)/equipment.
b. Technical Characteristics:

Length	1.8 M (6 ft.), minimum
Cable	Flexible RG-59/U, minimum
Connector	BNC male on each end

D. System Connectors:

1. Solderless (Forked Connector):
a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The connector barrel shall be insulated and color-coded.
b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V

2. Multipin:
a. The connector shall have a crimp-on coupling for quick connect/disconnect of wires or cables. The crimp-on connector shall be designed to fit the wire or cable furnished. The
connector housing shall be fully enclosed and shielded. It shall be secured to the cable group by screw type compression sleeves. b. Technical Characteristics:

Impedance	As required
Working Voltage	500 V
Number of pins	As requires, usually 25 pairs minimum

3. Modular (RJ-45/11 and RJ-45): The connectors shall be commercial types for voice and high speed data transmission applications. he connector shall be compatible with telephone instruments, computer terminals, and other type devices requiring linking through the modular telecommunications outlet to the System. The connector shall be compatible with UTP and STP cables.
a. Technical Characteristics:

Type	Number of Pins
RJ-11/45	Compatible with RJ45
RJ-45	Eight
Dielectric	Surge
Voltage	$1,000 \mathrm{~V}$ RMS, 60 Hz @ one minute,   minimum
Current	$2.2 A$ RMS @ 30 Minutes or 7.0A RMS @   5.0 seconds
Leakage	100 MA, maximum
Connectability	20 mili-Ohms, maximum
Initial contact   resistance	10 mili-Ohms, maximum   Insulation displacement   InterfaceMust interface with modular jacks from   a variety of oEMs. RJ-11/45 plugs   shall provide connection when used in   RJ-45 jacks.
Durability	200 insertions/withdrawals, minimum

4. Fiber Optic: The connectors shall be commercial types for voice and high speed data transmission applications. The connector shall be compatible with telephone instruments, computer terminals, and other
type devices requiring linking through the modular telecommunications outlet to the system. The connector shall be compatible with UTP and STP cables.
5. "BNC" Type:
a. The BNC connector shall have a bayonet locking coupling for quick connect/disconnect of coaxial cable/termination's. It shall be a crimp-on (twist on are acceptable) connector designed to fit the coaxial cable furnished.
b. Technical Characteristics:

Impedance	50 or 75 Ohms, UNBAL
Working Voltage	500 V

6. "F" Type:
a. The "F" connector shall have a screw type coupling for quick connect/disconnect of coaxial cable/termination's. It shall be a crimp-on connector designed to fit the coaxial cable furnished with integral $12.7 \mathrm{~mm}\left(\frac{1}{2} i n.\right)$ ferrule.
b. Technical Characteristics:

Impedance	75 Ohms, UNBAL
Working Voltage	500 V

E. Terminators:

1. Coaxial:
a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on type that has low VSWR when installed and the proper impedance to terminate the required system unit or coaxial cable.
b. Technical Characteristics:

Frequency	$0-1 \mathrm{GHz}$
Power blocking	As required
Return loss	25 dB
Connectors	" F ", "BNC", minimum
Impedance	50 or 75 Ohms, UNBAL

2. Fiber Optic:
a. These units shall be metal-housed precision types in the frequency ranges selected. They shall be the screw-on type that has low VSWR when installed and the proper impedance to terminate the required system unit or fiber optic cable.
b. Technical Characteristics:

Frequency	Lightwave
Power blocking	As required
Return loss	25 dB
Connectors	"SC", minimum
Construction	Stainless steel
Impedance	As required

F. Distribution Frames:

1. A new stand-alone (i.e., self supporting, free standing) MDF shall be provided to interconnect the EPBX and computer room. The MDF shall be modular and equipped with modular terminating mini blocks (i.e. Ericsson, 3M, etc.), and patch panels that are as small as possible and provide all the requirements of this specifications as described herein.
2. All cable distribution closets and MDFs shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The MDF/telephone closet riser cable shall be sized to satisfy all voice requirements plus not less than 50\% spare (growth) capacity in each telephone closet which includes a fiber optic backbone. The MDF/telephone closet riser cable shall be sized to satisfy all voice and data requirements plus not less than $50 \%$ spare (growth) capacity in each telephone closet which does not include a fiber optic backbone.
3. The MDF and all intermediate distribution frames shall be connected to the EPBX system ground.
4. Technical Characteristics:

Telephone	
IDC type unit	As described in Part 2


Contact wires	50 micron of Gold over Nickel
Contact pressure	100 Grams, MIN
110A Punch blocks	Acceptable alternate to IDC
Data	110A blocks as described in Part 2
Fiber optic	Patch panel as described in Part 2
Analog Video	Patch panel as described in Part 2

### 2.3 TELECOMMUNCATIONS CLOSET REQUIREMENTS

Refer to VA Handbook H-088C3, Telephone System Requirements, for specific TC guidelines for size, power input, security, and backboard mounting requirements. It is the Contractors responsibility to ensure TC compliance with the System Requirements.

### 2.4 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:
A. Floor loading for batteries and cabinets.
B. Minimum floor space and ceiling heights.
C. Minimum size of doors for equipment passage.
D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
E. Air conditioning, heating, and humidity requirements. The bidder shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
F. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
G. Proposed floor plan based on the expanded system configuration of the bidder's proposed EPBX for this Facility.
H. Conduit size requirement (between equipment room and console room).

### 2.5 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires
shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the COR all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:
A. System Grounding:

1. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
2. This includes, but is not limited to:
a. Coaxial Cable Shields.
b. Control Cable Shields.
c. Data Cable Shields.
d. Equipment Racks.
e. Equipment Cabinets.
f. Conduits.
g. Duct.
h. Cable Trays.
i. Power Panels.
j. Connector Panels.
k. Grounding Blocks.
B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to
interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Product Delivery, Storage and Handling:

1. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The COR may inventory the cable, patch panels, and related equipment.
2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the COR.
B. System Installation:
3. After the contract's been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the COR and PM.
4. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
5. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC's, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data, lightwave,
and analog signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.
6. All passive equipment shall be connected according to the OEM's specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.
7. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
8. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
9. All vertical and horizontal copper and fiber optic, and coaxial cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.
10. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair, and coaxial, and lightwave cables carrying telephone and data, and analog signals in telephone and data, and analog video and lightwave systems.
11. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
12. Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
C. Conduit and Signal Ducts:
13. Conduit:
a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be $19 \mathrm{~mm}(3 / 4 \mathrm{in}$.$) .$
b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the RE if requested.) Conduits shall be provided in accordance with Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
e. Conduit (including GFE) fill shall not exceed 40\%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
g. Ensure that Critical Care -- Nurse Call, and PA, and Radio Paging Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
14. Signal Duct, Cable Duct, or Cable Tray:
a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the COR.
b. Approved signal and/or cable duct shall be with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The COR shall approve width and height dimensions.
D. Distribution System Signal Wires and Cables:
15. Wires and cables shall be provided in the same manner and use like construction practices as Fire Protective and other Emergency Systems that are identified and outlined in NFPA 101, Life Safety Code, Chapters 7, 12, and/or 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions. The wires and cables shall be able to withstand adverse environmental conditions in their respective location without deterioration. Wires and cables shall enter each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of the cables.
a. Each wire and cable shall terminate on an item of equipment by direct connection. Spare or unused wire and cable shall be provided with appropriate connectors (female types) that are installed in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
b. Fiber optic cables that are spare, unused or dark shall be provided with Industry Standard "ST" type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
c. Coaxial cables that are spare, unused or dark shall be provided with the cable OEM specified type female connectors installed in appropriate break out, patch, or bulkhead connector panels provided in enclosure(s) and shall be protected from the environment.
d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or
raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible.
16. Routing and Interconnection:
a. Wires or cables between consoles, cabinets, racks and other equipment shall be in an approved conduit, signal duct, cable duct, or cable tray that is secured to building structure.
b. Wires and cables shall be insulated to prevent contact with signal or current carrying conductors. Wires or cables used in assembling consoles, panels, equipment cabinets and racks shall be formed into harnesses that are bundled and tied. Harnessed wires or cables shall be combed straight, formed and dressed in either a vertical or horizontal relationship to equipment, controls, components or terminations.
c. Harnesses with intertwined members are not acceptable. Each wire or cable that breaks out from a harness for connection or termination shall have been tied off at that harness or bundle point, and be provided with a neatly formed service loop.
d. Wires and cables shall be grouped according to service (i.e.: AC, grounds, signal, DC, control, etc.). DC, control and signal cables may be included with any group. Wires and cables shall be neatly formed and shall not change position in the group throughout the conduit run. Wires and cables in approved signal duct, conduit, cable ducts, or cable trays shall be neatly formed, bundled, tied off in 600 mm to 900 mm (24 in. to $36 \mathrm{in}$. ) lengths and shall not change position in the group throughout the run. Concealed splices are not allowed.
e. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right. This installation shall be accomplished with ties and/or fasteners that will not damage or distort the wires or cables. Limit spacing between tied off points to a maximum of 150 mm ( 6 inches).
f. Do not pull wire or cable through any box, fitting or enclosure where change of cable tray or signal or cable duct alignment or direction occurs. Ensure the proper bend radius is maintained for each wire or cable as specified by it's OEM.
g. Employ temporary guides, sheaves, rollers, and other necessary items to protect the wire or cable from excess tension or damage from bending during installation. Abrasion to wire or cable jackets is not acceptable and will not be allowed. Replace all cables whose jacket has been abraded. The discovery of any abraded and/or damaged cables during the proof of performance test shall be grounds for declaring the entire system unacceptable and the termination of the proof of performance test. Completely cover edges of wire or cable passing through holes in chassis, cabinets or racks, enclosures, pull or junction boxes, conduit, etc., with plastic or nylon grommeting.
h. Cable runs shall be splice free between conduit junction and interface boxes and equipment locations.
i. Cables shall be installed and fastened without causing sharp bends or rubbing of the cables against sharp edges. Cables shall be fastened with hardware that will not damage or distort them.
j. Cables shall be labeled with permanent markers at the terminals of the electronic and passive equipment and at each junction point in the System. The lettering on the cables shall correspond with the lettering on the record diagrams.
k. Completely test all of the cables after installation and replace any defective cables.
l. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
m. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.
1) Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
2) Wires and cables shall be hidden, protected, fastened and tied at $600 \mathrm{~mm}(24 \mathrm{in}$.$) intervals, maximum, as described herein to$ building structure.
3) Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
4) Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
n. Wires or cables installed in underground conduit, duct, etc.
5) Wires or cables installed in underground installations shall be waterproofed by the inclusion of a water protective barrier (i.e. gel, magma, etc.) or flooding compound between the outside jacket and first shield. Each underground connection shall be accessible in a manhole, recessed ground level junction box, above ground pedestal, etc., and shall be provided with appropriate waterproof connectors to match the cable being installed. Once the System has been tested and found to meet the System performance standards and accepted by VA, the Contractor shall provide waterproof shrink tubing or approved mastic to fully encompass each wire or cable connection and overlay at least 150 mm ( 6 inches) above each wire or cable jacket trim point.
6) It is not acceptable to connect waterproofed cable directly to an inside CCS punch block or directly to an equipment
connection port. When an under ground cable enters a building, it shall be routed directly to the closest $T C$ that has been designated as the building's IMTC. The Contractor shall provide a "transition" splice in this TC where the "water proofed" cable enters on one side and "dry" cable exits on the other side. The "transition" splice shall be fully waterproof and be capable of reentry for system servicing. Additionally, the transition splice shall not allow the waterproofing compound to migrate from the water proof cable to the dry cable.
7) Warning tape shall be continuously placed 300 mm (12 inches) above buried conduit, cable, etc.
E. Outlet Boxes, Back Boxes, and Faceplates:
1. Outlet Boxes: Signal, power, interface, connection, distribution, and junction boxes shall be provided as required by the system design, on-site inspection, and review of the contract drawings.
2. Back Boxes: Back boxes shall be provided as directed by the OEM as required by the approved system design, on-site inspection, and review of the contract drawings.
3. Face Plates (or Cover Plates): Faceplates shall be of a standard type, stainless steel, anodized aluminum or UL approved cycolac plastic construction and provided by the Contractor for each identified system outlet location. Connectors and jacks appearing on the faceplate shall be clearly and permanently marked.
F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.
4. Wires:
a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal,
not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.
5. Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.
6. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
b. Two and 3 conductor $1 / 4$ " Signal or positive conductor is tip; neutral or $1 / 8 "$ phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.
7. Speaker Line Audio:
a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM's approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.
b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.
G. AC Power: AC power wiring shall be run separately from signal cable. H. Grounding:
8. General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
b. Gas protection devices shall be provided on all circuits and cable pairs serving building distribution frames located in buildings other than the building in which the system is located or in any area served by an unprotected distribution system (manhole, aerial, etc.). The Contractor shall install the gas protection devices at the nearest point of entrance in buildings where protection is required and on the same circuits on the MDF in the telephone switch room.
c. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
d. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the system to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.
9. Cabinet Buss: A common ground buss of at least \#10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.
10. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least \#12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
11. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with \#12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables,
shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.
I. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using laser printers. Handwritten labels are not acceptable.
12. Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams".
13. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
14. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
15. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams".

### 3.2 TESTS

A. Interim Inspection:

1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for $T 568$ p pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm Category 6 marking of outlets, faceplates, outlet/connectors and patch cords.
2. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with
manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
3. The Contractor shall notify the COR, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.
4. Results of the interim inspection shall be provided to the COR. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.
5. The COR shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.
B. Pretesting:
6. Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
7. Pretesting Procedure:
a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
1) Local Telephone Company Interfaces or Inputs.
2) EPBX interfaces or inputs and outputs.
3) MDF interfaces or inputs and outputs.
4) EPBX output $S / N R$ for each telephone and data channel.

## 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.

3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the COR.
C. Acceptance Test: After the System has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test date and give the COR 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
D. Verification Tests:
4. Test the UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.
5. Multimode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B. 3 and ANSI/EIA/TIA-526-14A using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
6. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with ANSI/EIA/TIA-568-B. 3 and ANSI/EIA/TIA-526-7 using Method A, Optical Power Meter and Light Source and/or Method B, OTDR. Perform verification acceptance test.
E. Performance Testing:
7. Perform Category 6 tests in accordance with ANSI/EIA/TIA-568-B. 1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
8. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
F. Total System Acceptance Test: The Contractor shall perform verification tests for UTP copper cabling system(s) and the multimode and single mode fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.
9. Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.
10. Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

### 3.3 TRAINING

A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

### 3.4 GUARANTEE PERIOD OF SERVICE

A. Contractor's Responsibilities:

1. The Contractor shall guarantee that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the COR (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.
3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year guarantee period:
a. Response Time:
1) The COR is the Contractor's reporting and contact officials for the System trouble calls, during the guarantee period.
2) A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the COR. The COR shall
notify the Contractor of this type of trouble call at the direction of the Facilities Director.
b. Required on-site visits during the one year guarantee period
5) The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.
a) The Contractor shall arrange all Facility visits with the COR or Facility Contracting Officer prior to performing the required maintenance visits.
b) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the COR or Facility Contracting Officer and the Contractor.
c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the COR.
6) The Contractor shall provide the COR or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the COR with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:
a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to COR by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and
causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
7) The COR shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
a) The COR shall ensure copies of these reports are entered into the System's official acquisition documents.
b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System's official technical as-installed documents.
B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the COR in writing upon the discovery of these incidents. The COR will investigate all reported incidents and render findings concerning any Contractor's responsibility.

## SECTION 273131 VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating extension of an existing operating Telephone System, and associated equipment (here-inafter referred to as "the System") and associated equipment to be installed in the VA Medical Center here-in-after referred to as "the Facility". The System shall include, but not be limited to, equipment cabinets, interface enclosures, and relay racks, stand-by battery(s), necessary combiners, traps, and filters; distribution nodes and/or amplifiers; telephone instruments; auxiliary systems; and necessary passive devices such as: protectors, isolators, splitters, couplers, cable "patch", "punch down", and cross-connector blocks or devices, cable management items, voice and digital cable distribution system, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and/or "break out" devices.
B. The System shall be delivered free of engineering, manufacturing, installation, and operating defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
C. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
D. The Telephone System is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, if the System connects to or extends the telephone system, the System's installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum, the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines;
this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.
E. The VA Project Manager (PM) and/or Contracting Officer's Representative (COR) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the COR before proceeding with the change.

### 1.2 RELATED WORK

A. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Section 2705 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
C. Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
D. Section 271000 , STRUCTURED CABLING.
E. Section 2627 26, WIRING DEVICES.
F. Section 2705 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
G. Section 271500 , COMMUNICATIONS HORIZONTAL CABLING.
H. H-088C3: VA HANDBOOK DESIGN FOR TELEPHONE SYSTEMS

### 1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given, the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system's submittal is technically approved by VA, shall be enforced.
B. Joint Commission on Accreditation of Health Care Organization (JCAHO): Comprehensive Accreditation Manual for Hospitals - Volumes One and Two.
C. National and/or Government Life Safety Code(s): The more stringent of each listed code.
D. National Fire Protection Association (NFPA):

No. 70	National Electrical Code (NEC)
No. 75	Protection of Electronic Computer/Data   Processing Systems
No. 77	Recommended Practice on Static Electricity


No. 99	Standard for Health Care Facilities
No. 101	Life Safety Code
No. 1221	Emergency Services Communication Systems

E. Underwriter's Laboratories, Inc. (UL):

65	Wired Cabinets
96	Lightning Protection Components
96 A	Installation Requirements for Lightning   Protection Systems
467	Grounding and Bonding Equipment
$497 / 497 A / 497 B$	Protectors for Paired Conductors/   Communications Circuits/Data Communications   and Fire Alarm Circuits
884	Underfloor Raceways and Fittings

F. ANSI/EIA/TIA PUBLICATIONS:

568B	Commercial Building Telecommunications
569B	COMMERCIAL BUILDING STANDARD FOR TELECOMMUNICATIONS   PATHWAYS AND SPACES
598C	Optical Fiber Cable Color Coding
606 A	Administration Standard for the Telecommunications   Infrastructure of Commercial Buildings
607 A	Grounding and Bonding Requirements for   Telecommunications in Commercial Buildings
758	Grounding and Bonding Requirements for   Telecommunications in Commercial Buildings

G. Lucent Technologies: Document 900-200-318 "Outside Plant Engineering Handbook".
H. International Telecommunication Union - Telecommunication Standardization Sector (ITU-T).
I. Federal Information Processing Standards (FIPS) Publications.
J. Federal Communications Commission (FCC) Publication: Standards for telephone equipment and systems.
K. United States Air Force: Technical Order 33K-l-100 - Test Measurement and Diagnostic Equipment (TMDE) Interval Reference Guide.

### 1.4 QUALITY ASSURANCE

A. The authorized representative of the System's OEM shall be responsible for the design, satisfactory total operation of the system, and its certification.
B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regard to coordinating, engineering, testing, certifying, supervising, training, and documentation. Each of these installations shall have been in successful operation for a minimum of three years after final acceptance by the user. These installations shall be provided as a part of the submittal identified in Paragraph 1.5 .
C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design installation, certification, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as a part of the Contractor's Technical Submittal.
D. The Contractor's Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the COR before being allowed to commence work on the System.

### 1.5 SUBMITTALS

A. On-Site Survey: The Contractor shall provide an on-site telephone equipment location, cable pathway, TC, TCO, and interconnection survey with the submittal that is accomplished no later than 18 months prior to the expected completion of the facility.

1. The survey will be accomplished by a physical walk through of the facility and existing locations with the contract drawings (including all approved changes) and existing survey performed by the IRM department. Differences in locations between the two surveys
shall be clearly identified and shall be provided to COR in writing within 30 days of the completion of the survey.
B. Provide submittals in accordance with Specification Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The COR shall retain one copy for review and approval.
2. If the submittal is approved COR shall retain one copy for Official Records and return three (3) copies to the Contractor.
3. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached indicating the areas where the submittal deviated from the System Specifications. The COR shall retain one copy for Official Records.
C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:
4. Title page to include:
a. VA Medical Center.
b. Contractor's name, address, and telephone (including fax) numbers.
c. Date of Submittal.
d. VA Project No.
5. List containing a minimum of three (3) locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
a. Installation Location and Name.
b. Owner's or user's name, address, and telephone numbers (including fax).
c. Date of Project Start and Date of Final Acceptance by Owner.
d. System Project Number.
e. Brief (three paragraphs minimum) description of each system's function, operation, and installation.
6. Narrative: Description of the System as it is expected to be installed.
7. A list of equipment to be furnished. The quantity, make and mode number of each item is required. Select the required equipment items quantities that will satisfy the needs of the System and edit between the // - //. Delete equipment items that are not required, add additional items required, and renumber section as per system design. List format shall be as follows:

The following is the minimum equipment required by the System:

QUANTITY	UNIT
As required	CSU
As required	Back-up Battery Power Supply
As required	AC Power Supply
As required	Equipment Cabinet (s)
1 ea.	Lightning Protection System
As required	Distribution/Interface Cabinets
As required	Stand Alone Relay Rack
As required	CCS
As required	Wire Management System/Equipment
As required	Telephone Instruments
As required	Cable Distribution System
As required	System Conduits, Cable Duct, and/or Cable Tray
1 ea.	Installation Kit
1 ea.	Separate Spare Part List
As required	Telephone Paging Adapter (one each required for PA, Radio   Paging and sub-systems)
As required	Time Out Device (one each required for PA, Radio, and   Dial Dictation sub-system)

5. Interface cabinet and each distribution cabinet layout drawing, as each is to be installed.
6. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
7. Engineering drawings of the System, showing calculated signal levels at the CSU output, each input and output distribution point, proposed telephone outlet values, and signal level at each telephone outlet multipin jack.
8. List of test equipment as per paragraph 1.5.E below.
9. A letter certifying that the Contractor understands the requirements of the Samples paragraph 1.5.F below.
10. A letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.
D. Environmental Requirements: Technical submittals shall confirm the environmental specifications for $T C$ areas occupied by the System.

These environmental specifications shall identify the requirements for initial and expanded system configurations for:

1. Floor loading for batteries and cabinets.
2. Minimum floor space and ceiling heights.
3. Minimum size of doors for equipment passage.
4. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
5. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required to prevent equipment damage.
6. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
7. Main backbone, trunk line, riser, and horizontal cable pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.
E. Test Equipment List. The Contractor is responsible for furnishing all test equipment required to test the System in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be considered part of the system. The Contractor shall furnish test equipment of an accuracy better than the parameters to be tested. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 3 months prior to the test. As part of the proposal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
8. Spectrum Analyzer.
9. Signal Level Meter.
10. Volt-Ohm Meter.
11. Time Domain Reflectomoter (TDR) with strip chart recorder.
12. Bit Error Test Set (BERT).
F. Samples. A sample of each of the following items shall be furnished to the COR for approval prior to installation. The samples may be returned to the Contractor at the discretion of the COR.
13. TCO Wall Outlet Box $100 \mathrm{~mm} x 100 \mathrm{~mm} x 63 \mathrm{~mm}(4 " \mathrm{x} 4 " \mathrm{x} 2.5 ")$ with:
a. One each telephone (or voice) RJ45 jack installed.
b. Two each multi pin data RJ45 jacks installed.
c. Cover Plate installed.
d. Fiber-optic SC jack(s) installed.
e. RF (F)/video (BNC)/audio (XL) jack(s) installed.
14. Data CCS patch panel, punch block or connection device with RJ 45 connectors installed.
15. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.
16. Fiber optic CCS patch panel or breakout box with cable management equipment and "ST" connectors installed.
17. $610 \mathrm{~mm}(2 \mathrm{ft}$.$) section of each copper cable to be used with cable$ sweep tags as specified in Section 271500 , COMMUNICATIONS HORIZONTAL CABLING, and connectors installed.
18. $610 \mathrm{~mm}(2 \mathrm{ft}$.$) section of each fiber optic cable to be used with$ cable sweep tags as specified in Section 271500 , COMMUNICATIONS HORIZONTAL CABLING, and connectors installed.
19. 610 mm (2 ft.) section of each, video coaxial cable to be used with cable sweep tags as specified in Section 271500 , COMMUNICATIONS HORIZONTAL CABLING, and connectors installed.
20. Analog video CCS patch panel or breakout box with cable management equipment and "BNC" connectors installed.
G. Certifications:
21. Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual's exact name and address and OEM credentials in the certification.
22. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Local (whichever is the more stringent) Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.
23. Preacceptance Certification: This certification shall be made in accordance with the test procedure paragraph 3.2.B.
H. Equipment Manuals: Ten (10) working days prior to the scheduled acceptance test, the Contractor shall deliver four (4) complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the COR. The manuals shall detail
the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams and parts list.
I. As-Installed Equipment and Wiring Diagrams. Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of the record Wiring Diagrams of the System to the COR. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified according to the markers installed on the interconnecting cables, equipment and room/area locations. The drawings shall show the signal levels of the telephone aural carriers of each telephone channel at the input and output of all electronic equipment, beginning and end of each distribution line, and the telephone outlets. The record wiring diagrams shall be provided in hard copy and two compact disk copies properly formatted to match the Facilities current operating version of Computer Aided Drafting (AUTO CAD) system. The COR shall verify and inform the Contractor of the current version of AutoCAD being used by the Facility. The COR shall submit one hard copy of each as-installed drawing to TSSO-005N2 for review 15 working days prior to the scheduled acceptance test.
J. Ten (10) days prior to the start of the intermediate test, provide a typewritten detailed description of the System testing plan that meets this specification's performance standards as indicated in paragraph 2.1.C including illustrations and utilizes test equipment specified in paragraph 1.5.C. The test plan will need to be evaluated and approved by the COR before intermediate testing begins.
K. Provide two copies of an OEM developed training video tape presentation (reference paragraph 3.3.B) for evaluation and approval by the COR.
L. Provide a typewritten document that details the complete record program in memory for all associated station assignments.
M. Needs Analysis (required for extension of existing system) : The Contractor shall conduct a needs analysis of the existing Facility with representative's from the IRM and various departments to determine the System's requirements. The analysis shall depict System features and capacities, in addition to specific site requirements. The analysis shall be typewritten and contain the following information as a minimum:
24. The CSU shall be compatible with the existing or projected EPBX and will:
a. Initially provide:

EQUIPPED ITEM	CAPACITY	WIRED CAPACITY					
Main Station Lines:							
a) Single Line							
(Equipped for DID)			$\quad$				
:---	:---:	:---:	:---:				
Multi Line							
Two-way DRTL							
Foreign Exchange (FX)							
WATS							
Conference							
Dial Dictation Access							
RADIO PAGING ACCESS							
AUDIO PAGING ACCESS							
Off-Premise Extensions							
CO Trunk By-Pass							
CO Trunk By-Pass							
CRT w/keyboard							
Printers							
Operator Consoles							
T-1 Access Equipment							
Maintenance Console							

b. Projected Maximum Growth. The Contractor shall identify the projected maximum growth for each item identified in Paragraph 1.5.C.4. as a part of the needs analysis. For this purpose, the following definitions are provided to detail the System's capability:

1) All software and hardware required to completely equip the CSU with all items listed under equipped capacity, shall be provided and installed by the contractor 30 days prior to system cut-over.
2) "Wired Capacity" is to include all wiring and equipment listed under wired capacity, with the exception of line, data, and trunk cards, and shall be provided, installed, and tested 30 days prior to system cut-over.
3) The System shall be capable of expansion to the projected maximum growth through the use of printed circuit boards
and/or modular cabinets which do not require extensive rewiring and reprogramming.
2. Cable Distribution System: A design plan for twisted pair and fiberoptic and video, distribution cable plant requirements is not included in this document. See Specification Section 271500 , COMMUNICATIONS HORIZONTAL CABLING, for specific cable distribution system requirements. However, the Contractor is required to formulate a projected cable count that shall coincide with the Maximum Growth items described herein. It is the Contractors responsibility to provide the systems CCS, cable distribution, and TCO requirements in order to develop a copper and fiber-optic and video, distribution requirements plan using the following paragraphs as an example:
a. Twisted Pair Requirements/Column Explanation:

Column	Explanation
From Building	Identifies the building by number or   title
Floor	IDENTIFIES THE FLOOR BY NUMBER (I.E.   1ST, 2ND, ETC.)
Room Number	Identifies the room, by number, from   which cabling shall be installed
Number of Cable Pair	Identifies the number of cable pair   required to be terminated on the floor   designated or the number of cable pair   (VA Owned) to be retained
Building	Identifies the building by number or   title
Room	Identifies room number

b. Fiber Optic Cabling Requirements/Column Explanation:

Column	Explanation
From Building	Identifies building, by number or   location, from which cabling is   installed
Room Number	Identifies the room, by number, from   which cabling shall be installed
To Building	IDENTIFIES BUILDING, BY NUMBER OR   LOCATION, TO WHICH CABLING IS INSTALLED
Room Number	Identifies the room, by number, to


	which cabling shall be installed
Number of Strands	Identifies the number of strands in   each run of fiber optic cable
Installed Method	Identifies the method of installation   in accordance with requirements as   designated herein
Notes	Identifies a note number for a special   feature or equipment
Building	Identifies the building by number or   title

3. Telephone Instruments (or Stations). The Contractor shall clearly and fully indicate this category for each telephone instrument and compare the total count to the locations identified above and indicated the projected EPBX port count requirements as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares:

Column	Explanation
MSL	Number of Main Station Lines (MSL) to be   associated with the instrument.
Instrument and Outlets. All equipment to be installed are   assigned the following codes:	
DS	Desk type - single line
WS	Wall type - single line
DM	Desk type - multi-line
WM	Wall type - multi-line
Jack	The type of jack shall be the type identified   (i.e. wall, single, dual, triplex, etc.).
Notes	Identifies a note number which spells out a   requirement for a special feature or function   associated with the circuits and equipment on that   particular line of the station.
SVC	Identifies the using SERVICE.
Position	Identifies primary user of the instrument by   position description or function.

4. Telecommunication Outlets (TCO). The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified and as shown on the
drawings as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

## PART 2 - PRODUCTS

### 2.1 EQUIPMENT AND MATERIALS

A. System Requirements:

1. The System shall extend the following minimum services generated by the existing telephone system. If these services are not generated by an operating existing telephone system, the System shall be fully compatible and capable of providing them in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility service. The System shall be capacity sized so that loss of connectivity to an external telephone system(s) shall not affect the Facilities operation in specific designated emergency operating locations and instruments. The System shall:
a. Inter-operate, connect, and function fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), at a minimum.
b. Inter operate with current identified voice mail and automatic attendant functions, and are required as specified herein. A universal night answering function from a Facility designated remote locations shall be provided if not currently in operation and/or will not be deviated as a result of the system installation.
c. Be a voice and data cable distribution system that is based on existing Topology. An analog RF coaxial cable distribution system shall be provided in a "home run" configuration from each associated riser TC to identified locations and as shown on the drawings.
d. Be compatible with and able to provide direct digital connection to trunk level equipment including, but, not limited to: directly accessing trunk level equipment including radio paging, audio paging, Federal Information Processing Standards [FIPPS] publications), Industry Standard "T" and/or "DS" carrier protocols and external protocol converters. Additionally, connections to "T" and/or "DS" access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk
applications, shall be included in the System design.
Additionally T-1 access/equipment (or CSU) shall be used in FTS and other trunk applications as required by system design if these functions are not provided by the existing telephone system and/or will be deactivated by the System. The Contractor shall provide all $T-1$ equipment necessary to terminate and make operational the quantity of circuits designated. The CSU's shall be connected to the system's emergency battery power supply. The System shall be fully capable of operating in the Industry Standard "DS" protocol and provide that service when required.
e. Contain attendant and operator consoles, video monitors with keyboards, and printers to provide employee directory access from the Traffic Management System (TMS), as required by system design if not provided by the existing telephone system and/or will be deactivated by the System installation. All additional console positions, video monitors, and keyboards shall have identical capabilities. The System shall accept a mixture of trunk types at each attendant console and extend calls received via these trunks to station users.
f. Be capable of interfacing and operating with Direct-Incoming-dial (DID) service to stations as identified herein. Assignment to DID shall not affect intra-Facility operation. A DID trunk group, which will operate as a separate trunk group from other Central Office (CO) trunks shall be provided as described herein.
g. Contain the designated number of telephone instruments, where each instrument (also referred to as "station") shall have the ability to direct dial other Facility telephone stations, the public telephone network, tie-lines, and FTS telephone numbers without attendant assistance. Each station shall be dual tone multi-frequency (DTMF) for intra-Facility and external-Facility calling. The term DTMF, as used herein, shall be defined as "a dialing operation (e.g., push-button, digit dialing, or tone dialing, other than rotary/pulse dialing).
1) Standard digital telephone instruments shall be provided at the designated $T C O(s)$ and as shown on the drawings.
2) "Special hands free" digital telephone instruments shall be provided at designated $\mathrm{TCO}(\mathrm{s})$ and as shown on the drawings.
h. Receive the specified telephone signals acquired from the LEC and FTS contracted carrier, shall process and distribute them to the designated telephone stations as determined by Class-of-Service and indicated on the drawings.
i. At a minimum, one $\mathrm{TCO}(\mathrm{s})$ shall be provided on each room wall and on either side of each door opening, and shall be supplied with an associated (within 305 mm (one foot)) or attached active duplex 120 Volts Alternating Current (VAC) outlet (using a quad receptacle box for the $T C O$ and a separate duplex receptacle box for the AC outlet) and as shown on the drawings (The only exception to this general one outlet per wall rule are specifically identified "special" locations (e.g., surgical suites, radiology, MRI rooms, labs, patient rooms, warehouse, loading docks, storage rooms, etc.) where usually only two active TCOs are designated and as shown on the drawings).
3) The Contractor shall provide the TCOs that consist of one telephone multipin and two data multipin jacks each meeting Category 5 Level of service. The telephone multipin jack shall be interfaced and connected to the System via a terminal punch block in each associated TC.
4) The telephone system Contractor shall connect each data multipin jack to a separate data system approved terminating patch panel device in each associated TC. The telephone system Contractor is not to install active data distribution equipment to the System or cross connect the data systems.
5) The construction of distribution TCOs is found in Specification Section 271500 , COMMUNICATIONS HORIZONTAL CABLING.
6) The appropriate distribution cable termination methods are found in Specification Section 271500 , COMMUNICATIONS HORIZONTAL CABLING.
7) The appropriate distribution $T C$ construction is found in Specification Section 271500 , COMMUNICATIONS HORIZONTAL CABLING.
j. Be able to accomplish adjacent channel operation of the existing telephone system's local, long distance, and FTS telephone signals. The System equipment shall be installed and interfaced according to the OEM's schematic diagram for adjacent telephone
channel operation. The System shall be provided with testing capability in each equipment rack and test ports that provides access for each telephone channel without the need to disconnect distribution cables or equipment. Each telephone channel shall be processed as a single channel. A means of monitoring the complete system along with appropriate printout and computer disk archiving of each processed and distributed channel.
k. The System shall be designed to minimize cross talk, background processor noise, inter-modulation, and other signal interference. The equipment shall be installed and interfaced according to the OEM schematic diagram for adjacent audio channel operation. Each audio input channel shall be processed as a single separate channel and combined into one output channel. Additionally, if not provided in the existing telephone system or will be deactivated by the System installation, an audio, and visual monitoring panel shall be provided in the telephone switch room to test each converted audio input and distribution channel transmitted and received signal functions as described herein. The System shall continuously electronically or electrically supervise the EPBX's Alternating Current (AC) power input, stand by batteries and charger, and internal Direct Current (DC) power supply primary Voltages and/or Currents; each remote control unit, audio interface unit, from the telephone switch room. A trouble panel shall be provided in the telephone switch room and at the telephone operator room, Security Service Control Console to check the supervisory signals, signal level, audio sound and visual level, and alert personnel to problems as described herein.
2. Refer to Section 1.5 for initial voice sizing requirements.
3. The System shall be capable of interfacing with the existing or future planned EPBX.
4. A system design where "looping" the distribution cables from room to room shall not be permitted. See Specification Section 271500 , COMMUNICATIONS HORIZONTAL CABLING, for cable distribution TC and TCO requirements.
5. Point of Telephone System Interface:
a. The telephone signals shall be acquired at the existing telephone EPBX equipment cabinet or as designated in the telephone switch
room TC. The Contractor is not responsible for the condition of the telephone signals of the existing telephone system. If the telephone signals at the interface point do not meet the minimum signal level and quality as stated herein, the Contractor shall notify COR, in writing, detailing the nature of the deficiencies, and the expected effect on the telephone signals in the new extension system. COR will coordinate with the Facility Engineering Officer so the necessary repairs for the identified deficiencies can be accomplished.
b. The System shall acquire telephone signals as shown on the drawings.
6. EPBX Location Selection. The EPBX cabinets and associated equipment shall be located as shown on the drawings.
B. General:
7. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
a. Maintains a factory production line for the item submitted.
b. Maintains a stock of replacement parts for the item submitted.
c. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
d. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least one year prior to the Invitation for Bid.
8. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item for which there is a specification contained herein, the item shall meet or exceed the specification for that item of equipment.
9. The Contractor shall produce verification, in writing to COR at time of installation, that the type of wire/cable actually being provided is recommended and approved by the OEM and will provide a total system free of undesirable effects. The Contractor is responsible for providing the correct protection cable duct and/or conduit and
wiring even though the actual installation may be by another subcontractor.
10. The Telephone Contractor is responsible for interfacing the telephone, PA, systems with the System. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method, requires not only a physical and mechanical connection; but, includes matching of signal, voltage, and processing levels, with regard to signal quality and impedance. Each interface point must adhere to all standards described herein for full separation of the Critical Care, Life Safety, and Emergency systems.
11. The telephone equipment and PA interface equipment shall be the interface points for connection of the PA Radio interface cabling from the telephone switch via the System telephone interface unit. The telephone interface unit and PA interface unit shall be provided by the Telephone Contractor.
12. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the FCC standards for telephone equipment, systems, and service.
13. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.
14. All interconnecting twisted pair, fiber optic or coaxial cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM's instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiber optic, or coaxial cable unterminated, unconnected, loose or unsecured.
15. The System shall utilize microprocessor components for all signaling and programming circuits and functions. Program memory shall be nonvolatile or protected from erasure from power outages for a minimum of two hours.
16. The System shall provide the continuous electrical supervision of each telephone switch cabinet mounted equipment, interconnecting cabling, distribution cable plant, and back up battery and charger to determine change of status and to assist in trouble shooting System faults.
17. All distribution Voltages, except for the primary AC power to the power supply circuits, shall not exceed 30V AC Root Mean Squared (RMS) or 42 V direct current (DC).
18. Color code all distribution wiring to conform to the Telephone Industry standard, ANSI/EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record wiring diagrams, to facilitate installation and maintenance. Reference Specification Section 271000 , STRUCTURED CABLING and Section 271500 , COMMUNICATIONS HORIZONTAL CABLING.
19. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC Power Distribution System as shown on the Drawings or if not shown on the drawings consult with COR regarding a suitable circuit location, prior to bidding.
20. Verify existing UPS system will support the extensions additional load. If adequate capacity is not present, provide the additional equipment required to support the normal operation and functions of the System including the extension (as if there was no AC power failure) in the event of an $A C$ power failure for a minimum of four hours.
21. All equipment shall function and operate normally from the furnished power source, and also, during input power fluctuations or loss of power for a minimum of four hours.
22. Plug-in connectors shall be provided to connect all equipment, with the exception of interface points. Baseband cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.
23. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic that matches the equipment item where it is installed. All faceplates shall be constructed of the same material throughout the Facility.
24. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low voltage circuits.
C. Equipment Functional Characteristics:

FUNCTIONS	CHARACTERISTICS
Input Voltage	105 to 130 VAC
Power Line Frequency	$60 \mathrm{~Hz} \pm 2.0 \mathrm{~Hz}$
Operating Temperature	0 to 50 degrees ( ${ }^{\circ}$ ) Centigrade (C)
Humidity	80 percent (\%) minimum rating

### 2.2 EQUIPMENT SPECIFICATIONS

A. Customer Service Unit (CSU) Equipment:

1. The CSU shall be fully self contained, electronic, digital in operation, fully compatible with the existing telephone equipment, EPBX, and perform, as a minimum, the following functions:
a. Intra-Facility: station-to-station four digit direct dialing, including those telephone instruments equipped with the DID features.
b. Direct-output-dial (DOD) : from any unrestricted telephone instrument to any $C O$ trunk or $F T S$ access lines by dialing a predesignated access code. Also, DOD from any station to tie-lines by dialing a pre-designated access code.
c. Incoming calls from FTS: access lines and tie-lines shall have the ability to direct dial all stations without attendant assistance.
d. Restricted telephone instruments: shall have access to outside lines through the operators' console.
e. Unrestricted telephone instruments: shall have access to all features, functions, CO trunks, FTS access lines, tie-lines, toll free 800 numbers, and long distance directory assistance.
f. Class-of-service (COS): restrictions provided by the existing telephone system shall be provided. hese restrictions are to be applied individually or in combination as dictated by individual telephone number service requirements. Technical submittals shall describe the number and type of $\operatorname{COS}$ restrictions available.
g. Provide all station users with the feature package provided by the existing telephone system or at a minimum, those listed below. The ability to restrict any of these features on a station by station basis shall be provided:
1) Line Hunt Capability
2) Consultation Hold
3) Shall Transfer
4) Call Pick-Up
5) Call Forwarding
6) Call Queuing
7) Call back/Ring back
8) Music on Hold
9) Conferencing
10) Automatic Number Identification
11) Station to Station Call Waiting
12) Station and System Speed Dialing
13) Call Park
14) Universal Night Answer Service
15) Line Load Control
16) Dual Common Controls
17) Line Lock Out
18) Supervisory Signaling and Ringing
h. Fusing:
19) The CSU shall be equipped with fuses to protect the total telephone system and individual segments of the CSU so that a problem in one segment may be isolated without damaging the total CSU.
20) Fuses shall be of the alarm indicating type and their rating designated by numerical or color code on fuse panels that are easily visible.
i. Equipment Power Supply:
21) The CSU shall be equipped with a complete on-line power supply. The System shall consist of AC surge protection, dual load-sharing rectifiers/chargers, batteries, and inverter.
22) The power supply shall have a capacity sufficient to support the CSU including it's projected maximum growth and as required in this specification for interfaced equipment.
23) The UPS w/Battery Back-up or the reserve battery power supply shall have sufficient capacity to supply the CSU for four (4) hours including projected maximum growth and interfaced equipment. The battery power supply shall consist of not less than 24 sealed (dry cells are not acceptable), maintenancefree cells.
24) The system shall be capable of adjustable voltage for float or equalizing batteries. A full redundant system (not including batteries and inverter) shall be provided. Each rectifier or charger shall have the capacity to support the combined load requirements of the existing EPBX as configured including maximum growth and interfaced equipment.
25) The Contractor shall coordinate with the local Facility Telephone Contractor, coordinated through COR and Facility Contracting Officer, to determine CO trunk, FTS access line, and other required interface unit power requirements and provide power to the GFE telephone company or Facility furnished and installed interface units so they will continue to function in event of a commercial AC power failure.
j. Alarms and Trouble Indicators:
26) The Contractor shall provide visual and audible alarms, equipped with cut-off switches, indicating AC power failure, rectifier failure, major and minor alarms, and temperature/humidity alarms. The Contractor shall be responsible for providing the required sensors for environmental alarms. These alarms shall be remoted to the existing telephone system and one other location to be as specified herein. These alarms shall be separate and in addition to the major and minor alarm functions.
27) The alarm panel(s) shall contain small red indicator lamps for each alarm with cut-off switches or one switch for all alarms and a distinctive audible alarm(s) that can be heard over the ambient noise in its respective location. If one cutoff switch is provided for all audible alarms, it shall restore the alarms to the ready status condition for the audible registration of additional alarms.
a) The technical submittal shall describe any other CSU alarms that are remoted.
b) The technical submittal shall describe CSU alarms/indicators of malfunction(s) that are located on the equipment.
k. The CSU shall provide four-digit intra-station dialing.
28) Due to the varied trunk group requirements and possible future trunk group requirements, e.g. audio paging, alternate access codes may be proposed. Grouping of like type trunk group/features, e.g. 5-2 radio paging, 5-3 audio paging is acceptable.
29) The CSU shall provide emergency numbers accessible by all station users. The numbers shall appear on the console or a multi-line instrument and at least one other designated location. There shall be a distinctive audible and visual signal associated with the emergency number to ensure immediate response to calls. The console or multi-line instrument shall have the capability of priority answering the emergency number and extending the call as the situation dictates. A modified trunk circuit may be used for this purpose.
l. The CSU equipment shall have such sensitivity as required to provide satisfactory service up to 3,000 feet for all voice locations.
$m$. The Contractor shall provide a complete set of EPBX electronic modules and/or cards to be used as on-hand operational emergency spare equipment. One each of $T-1, \mathrm{DS}-* *$, interface cards etc. is the minimum required or a compliment as directed by the OEM. Additionally, the Contractor shall confer with COR to determine other spare items that may be required to equip the system with a fully emergency repair capability completely adhering to the System Guaranty Requirements as described herein.
2. The installed CSU shall be as a minimum, compatible with the existing EBPX or equipped with the following features at a minimum:
a. AC to DC power supplies.
b. Emergency battery power supply.
c. DC to AC inverter power supply (shall be connected to the CSU emergency battery power supply).
d. Dual common controls.
e. Redundant signaling supply units, or equivalent.
f. Cable distribution frame.
g. Cable distribution system.
h. Programmable Emergency Telephone Number(s).
i. An on-site automatic program loading device (tape drives are not acceptable) to reload system memory in case of power or system failure (shall be connected to the CSU emergency battery power supply).
j. An on-site maintenance administration terminal (MAT) with CRT/keyboard and printer (shall be connected to the CSU emergency battery power supply).
k. An automatic central office trunk connection to pre-determined stations for emergency trunk by-pass/cut-through service. Immediately upon failure of the GFE EPBX, these stations shall have the ability to process calls. If required, each of these stations shall be equipped with automatic ground start for outgoing calls. Single line instruments, if required, shall be provided by the contractor.
3. Voice Mail:
a. The system shall allow a predetermined number of users to send complete and confidential messages in the users own voice and receive complete and confidential messages in the sender's own voice. The system shall provide 24 hours per day, 7 days per week access. The system shall be integrated into the operation of the existing telephone system and be compatible with the local telephone company central office.
b. The system shall provide capacity for the following number of ports:

	Equipped   Capacity	Wired   Capacity
Automated Attendant	12	20
Voice Mail	12	20

c. The voice mail system shall initially provide for 500 mailboxes and 40 hours of storage with growth to 60 hours of storage.
d. Voice Mail Features. The system shall have the following features:

1) Access to the system and its features from any instrument anywhere that provides DTMF signaling.
2) The ability of those leaving a message to review the message and/or edit the message that is being placed in the mailbox.
3) Privacy/Security through the use of a "password".
4) The ability to send messages to users on the voice mail system in the following manner:
a) To any user on the same voice mail system.
b) To more than one user on the same voice mail system - an ad hoc distribution list determined by the sender at the time of message transmission.
c) To a predetermined distribution list.
d) Broadcast to all users on the same voice mail system.
5) Verification, with Receipt: The ability of a user to request and receive verification of when a message is actually played through the use of a touch-tone command. The system shall indicate the time and date of when a message is played and place that information in the sender's mailbox.
6) Envelope Information: The ability of a user to request and receive time and date information of when specific messages were left in the user's mailbox.
7) Connection to the voice mail system shall be through an extension number of the existing telephone system EPBX or a seven/ten digit telephone number from the LEC.
8) Message "PROMPTS" shall be provided for every transaction. Messages shall be provided for "GREETINGS" and "INSTRUCTIONS FOR RECORDING OR EDITING A MESSAGE".
9) A message waiting tone, lamp, and/or display shall notify the user that messages are in the user's mailbox.
10) A message shall notify the user, upon accessing the system, of how many messages are in the user mailbox.
11) The user, upon accessing the system, shall have the following response alternatives:
a) Respond or send a reply to another user on the same voice mail system.
b) Route the message to another user on the same voice mail system.
c) Delete the message.
d) Save the message.
12) A "Default Path" shall be provided to allow those callers who do not have touch-tone capability or who need to talk to someone to be routed to an operator or some other predetermined answering position.
13) The system shall the ability to fast forward or rewindrecorded messages while being reviewed by the user.
14) The system shall present messages to the user on a "FIFO" basis.
15) User Administration: The system shall provide, as a minimum, management information and statistics in the following categories:
16) Port Usage: Traffic statistics on each of the different access paths into the system.
17) Usage of Storage Capacity - Remaining storage capacity at any one time and during peak periods.
18) Mailbox Usage: Connect time and number of new or saved messages.
19) The user administration terminal shall allow for "Class of Service Controls" in the following areas and for the following parameters:
a) Initial Authorization:
(1) Ability to enable a mailbox.
(2) Record the "OWNER'S" name.
(3) Set initial PASS NUMBER.
b) Usage Control:
(1) Length of personal greeting.
(2) Length of messages received.
(3) Number of messages.
(4) Message retention time.
c) Feature Authorizations - Allowed or Not:
(1) Group List Creation.
(2) Group List Usage.
(3) Broadcast Messages.
B. Voice Traffic Management System (TMS) :
1. A complete and self-contained on-site $T M S$ shall be provided that is fully compatible with and compliments the existing telephone system.
2. As a minimum, the following functions shall be provided:
a. A 300 characters per second (CPS) letter quality printer, shall be provided. The CSU and/or the maintenance administration terminal may generate some of the reports.
b. The TMS shall be connected to the CSU emergency battery power supply.
c. All screen menus shall be standard with access to each category of reports to be provided.
d. Traffic Accounting and Management Call Detail Recording (CDR) Package shall be provided for all voice circuits. The TMS shall:
1) Include all necessary hardware, software, and interconnections to the CSU.
2) Contain a database that shall be stored on non-volatile media. Tape drives are not acceptable.
3) Contain line numbers, physical locations of equipment by building and room number, the department to which a line is assigned, the name of the person(s) assigned to a particular number, the type of equipment, and any comments regarding CSU features.
4) Support additional I/O ports for video monitors or other terminals, which will allow a passive display of the data base(s) by, authorized medical center personnel other than those individuals responsible for data input and conducting studies.
5) Exhibit a method of security that shall be provided by User ID and password to protect the data base(s).
6) Perform separate voice line reports, on demand and predetermined schedule, for automatic printing. As a minimum, the following reports are required:
a) Originating trunk traffic by trunk group expressed in CCS.
b) Terminating trunk traffic by trunk group expressed in CCS.
c) All trunk busy, by trunk group, expressed as blocked call count.
d) All equipment busy, i.e., no dial tone and failure to complete cross office call because of all equipment busy, expressed in blocked call count.
e) List of all equipment alarms, error tables, trouble logs, history files, $V$ \& $H$ coordinates etc.
7) Perform the following console measurements for each console:
a) Incoming calls.
b) Calls answered.
8) Contain remote video monitors that shall be provided in the immediate vicinity of the telephone operators for use as an on-line directory lookup system of Facility personnel. The Contractor provided monitors shall be compatible with the proposed TMS hardware and software.
9) Produce reports that shall be in English notation and will not require interpretation of abbreviations or codes by the user.
10) Contain sufficient storage on disk shall be provided to prevent a purge of stored data. Call record and facility usage data shall be maintained in the database for a minimum of 30 days. Storage must be capable of accommodating a minimum of 5,000 calls per day.
e. Samples of all reports generated by the TMS are to be submitted with the technical submittal for evaluation of formats and compliance with information field content.
f. Detailed description of the method to be used to measure traffic data shall be included in the technical submittal.
g. Normal system traffic data shall be furnished to the appropriate Facility staff within seven days of a Facility request. A complete and comprehensive traffic study, to include the required traffic data with the Contractor's comments and recommendations, will be prepared and submitted to the appropriate Facility staff quarterly. These studies shall be provided at no additional cost to the VA.
h. Automatic directory service shall generate a telephone directory that includes, name, title, organization, location, extension, and class-of-service. The contractor shall be responsible for loading and maintaining the directory.
i. A Cable plant management function shall be provided with the following requirements, at a minimum:
11) A list of off-premise cable by circuit number, numbers of pairs for each circuit, and circuit definition.
12) Provide a complete cable plant distribution record to identify the location (cable pair) on the MDF, the riser, the size cable, cable pair in-use (main cable feeder and station
cable), building and room number of the termination, and the type equipment terminated.
13) Automatically provide when the service order is entered, the cable number and pair assignments.
j. Equipment inventory list shall be provided containing the following minimum requirements:
14) CSU cabinets, cards (active and spares), batteries, current and surge protectors, rectifiers, all peripheral equipment, i.e. radio page, audio page, etc.
15) Quantity of single and multi-line telephones, speakerphones, dial intercom units, speakers, gongs, loud horns, bells, chimes, recorders, etc.
16) A list of equipment as being used or spare; ordered or received; installed date, warranty date, cost, location, serial number, etc.
C. Equipment Cabinet with Internal Mounting Rack:
1. The equipment cabinet shall be lockable, heavy gauge steel with baked on paint finish. It shall be floor or wall mounted with knockout holes for cable entrance and conduit connection, provided with ventilation ports and quiet fan with non disposable air filter for equipment cooling. Two keys shall be provided for each lock to COR when the System is accepted.
2. A minimum of one cabinet shall be provided with blank rack space, for additional equipment. Blank panels shall be installed to cover any open or unused rack space. Two 120 VAC power strips connected to surge protectors, cooling fan with non-disposable air filter, and conduit or cable duct interface to adjacent cabinet(s) shall be a part of this cabinet.
3. Blank panels shall be color matched to the cabinet, $3.175 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)$ aluminum with vertical dimensions in increments of 44 mm (1.75") with mounting holes spaced to correspond to Electronic Industry Association (EIA) 480 mm (19") dimensions. Single standard size blank panels shall be used to fill unused panel or rack spaces in lieu of numerous $44 \mathrm{~mm}\left(1.75^{\prime \prime}\right)$ types. One blank 44 mm (1.75") high blank panel shall be installed between each item of equipment.
4. AC Power Outlet Strip(s):
a. A strip shall be provided with an outlet for each item of equipment and a minimum of four spare AC power outlets. Each
strip shall be mounted inside and at the rear of each equipment cabinet. It shall contain "U" ground AC outlets for distributing AC power to the installed electronic equipment. The strip shall be self-contained in a metal enclosure with a maximum of 1.8 M (6-foot) connecting wire with three-prong plug.
b. Technical Characteristics:

Power capacity	20 Ampere (AMP), 120 VAC continuous duty
Wire gauge	Three conductor, \#12 AWG copper

5. Cabinet AC Power Line Surge Protector and Filter:
a. Each cabinet containing active electronic equipment shall be equipped with a AC Surge Protector and Filter. The Protector and Filter shall be housed in one single enclosure. The Protector and Filter shall provide instantaneous regulation of the AC input voltage and isolate and filter any noise present on the AC input line. It shall be cabinet mounted and the cabinet AC power strip (two strips maximum) may be connected to it.
b. Technical Characteristics:

Input Voltage range	$120 \mathrm{VAC}+15 \%$
Power capacity	$20 \mathrm{AMP}, 120$ VAC
Voltage output regulation	$+3.0 \%$
Circuit breaker	15 AMP, may be self contain
Noise filtering	Greater than 45 dB
AC outlets	Four duplex grounded types,   minimum
Response time	5 Nano Seconds
Surge suppression	10,000 AMPS
Noise suppression	-40 dB
Common	-45 dB
Differential	

6. Main AC Input Line:
a. The CSU shall be equipped with AC voltage and current surge protectors to prevent damage to the CSU and rectifiers from power line induced voltage spikes, surges, lightning, etc.

[^1]door only if wall mounted) doors. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or COR, contain integral and adjustable predrilled rack mounting rails or frame that allows front panel equipment mounting and access. When all equipment, doors and panels are installed, snap-in-place chrome trim strip covers are required to be installed that will cover all front panel screw fasteners. It shall be equipped in the same manner as the equipment cabinet.
2. Technical Characteristics:

Overall height	$\left.2180 \mathrm{~mm} \mathrm{(85} \mathrm{7/8}^{\prime \prime}\right), ~ m a x i m u m ~$
Overall depth	$\left.650 \mathrm{~mm} \mathrm{(25} \mathrm{1/2}^{\prime \prime}\right), ~ m a x i m u m ~$
Overall width	$\left.535 \mathrm{~mm} \mathrm{(21} \mathrm{1/16}^{\prime \prime}\right), ~ m a x i m u m ~$
Equipment vertical	$\left.1960 \mathrm{~mm} \mathrm{(77} \mathrm{1/8}^{\prime \prime}\right), ~ m a x i m u m ~$
mounting space	$484 \mathrm{~mm}\left(191 / 16^{\prime \prime}\right)$, maximum,
Front panel horizontal	
width	

E. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:

1. The connector panel(s) shall be made of flat smooth $3.175 \mathrm{~mm}(1 / 8$ inch) thick solid aluminum, custom designed, fitted and installed in the cabinet. Bulkhead equipment connectors shall be mounted on the panel to enable all cabinet equipment's signal, control, and coaxial cables to be connected through the panel. Each panel shall be color matched to the cabinet installed.
a. Voice (or Telephone):
1) The CSS for voice or telephone service shall be Industry Standard 110 type punch blocks. This represents the minimum requirement for voice or telephone, and control wiring in lieu of patch panels, each being certified for category six service. IDC punch blocks (with internal RJ45 jacks) are acceptable for use in all CCS and shall be specifically designed for category six telecommunications service and the size and type of UTP cable used as described herein. As a minimum, punch block strips shall be secured to an OEM designed physical anchoring unit located on a wall in the MTC,

IMTC, and TC. However, console, cabinet, rail, panel, etc. mounting is allowed at the OEM's recommendation and as approved by COR. Punch blocks shall not be used for Class II or 120 VAC power wiring.
2) Technical Characteristics:

Number of horizontal rows	100, minimum
Number of terminals per   row	4, minimum
Terminal protector	required for each used or   unused terminal
INSULATION SPLICING	required between each row of   terminals

b. Fiberoptic:

1) Product reference of a Government Approved (US State Department) type is Telewire, PUP-17 with prepunched chassis mounting holes arranged in two horizontal rows. This panel may be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with the proper connectors. This panel is not allowed to be used for 120 VAC power connections.
2) Technical Characteristics:

Size:	
Height	Two RUs, $89 \mathrm{~mm} \mathrm{(3.5")} \mathrm{minimum}$
Width	$484 \mathrm{~mm}\left(19 \mathrm{l} / 16^{\prime \prime}\right)$, EIA minimum
Number of connections	12 pairs, minimum
Connectors:	Barrier strips surface mounted with   spade lugs (punch block or wire wrap   type strips are acceptable alternates   for barrier strips as long as system   design is maintained)
Service	Barrier strips with spade lugs and   clear full length plastic cover,   surfaced mounted
Low voltage power   (class II)	"SC" STAINLESS STEEL, FEMALE
FIBER OPTIC	

c. Mounting Strips and Blocks:

1) Barrier Strips:
a) Barrier strips are approved for AC power, data, voice, and control cable or wires. Barrier strips shall accommodate the size and type of audio spade (or fork type) lugs used with insulating and separating strips between the terminals for securing separate wires in a neat and orderly fashion. Each cable or wire end shall be provided with an audio spade lug, which is connected to an individual screw terminal on the barrier strip. The barrier strips shall be surface secured to a console, cabinet, rail, panel, etc. 120 VAC power wires shall not be connected to signal barrier strips.
b) Technical Characteristics:

Terminal size	$6-32$, minimum
Terminal Count	Any combination
Wire size	20 AWG, minimum
Voltage handling	100 V, minimum
Protective connector   cover	Required for Class II and 120   VAC power connections

2) Solderless Connectors: The connectors (or fork connectors) shall be crimp-on insulated lug to fit a 6-32 minimum screw terminal. The fork connector shall be installed using a standard lug-crimping tool.
3) Punch Blocks: Industry Standard 110 type punch blocks are approved for data, voice, and control wiring at a minimum. Punch blocks shall be specifically designed for the size and type of wire used. Punch block strips shall be secured to a console, cabinet, rail, panel, etc. Punch blocks shall not be used for Class II or 120 VAC power wiring.
4) Wire Wrap Strips: Wire wrap strips (minimum of 1.65 mm (0.065") wire wrap) are approved for voice and control wiring and shall meet Industry Standards. Wire wrap strips shall be secured to a cabinet, rail, panel, etc. Wire wrap strips shall not be used for Class II or 120VAC power wiring.
H. Wire Management System and Equipment:
1. Wire Management System: The system(s) shall be provided as the management center of the respective cable system, CCS, and TC it is incorporated. It shall perform as a platform to house peripheral equipment in a standard relay rack or equipment cabinet. It shall be arrange in a manner as to provide convenient access to all install management and other equipment. All cables and connections shall be at the rear of each system interface to IDC and/or patch panels, punch blocks, wire wrap strips, and/or barrier strip.
2. Wire Management Equipment: The wire management equipment shall be the focal point of each wire management system. It shall provide an orderly interface between outside and inside wires and cables (where used), distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide a uniform connection media for all system fire retardant wires and cables and other subsystems. It shall be fully compatible and interface to each cable tray, duct, wireway, or conduit used in the system. All interconnection or distribution wires and cables shall enter the system at the top (or from a wireway in the floor) via a overhead protection system and be uniformly routed down either side (or both at the same time) of the frame in side protection system then laterally via a anchoring or routing shelf for termination on the rear of each respective terminating assembly. Each system shall be custom configured to meet the system design and user needs.
I. Telephone Instruments:
3. Telephone instruments (or station equipment) that are initially installed shall be configured as indicated herein. Final location of some station equipment shall be coordinated with designated VA official prior to installation.
4. All telephone instruments shall be equipped with the inductive capability to radiate a magnetic field required to activate the hearing aid telecoil and to provide personnel, who use hearing aids, access to all telephones within the Facility.
5. Station equipment shall consist of standard single line instruments, patient bedside instruments, and multi-line digital electronic telephone instruments with digital display, of the latest state-of-the-art design.
6. All telephone instruments except patient bedside phones, shall be equipped with a flash button (or equivalent feature button) with pre-determined timing feature to initiate consultation hold and other features normally initiated by operation of the hook-switch. Flash button shall be distinct from the hook-switch.
7. All telephone instruments, except patient bedside phones, shall be equipped with a laminated faceplate listing the most common user features and their appropriate access codes. The faceplates may be an integral part of the instrument housing or may be an adhesive backed decal that shall be applied over the tone pad area of the housing at the time of telephone set installation.
8. Station instruments shall be feature compatible and have transmission characteristics which are compatible with the proposed system.
9. Telephone instrument signaling shall be by means of standard adjustable, buzzers, chimes, or electronic tone, unless otherwise specified:
a. Single Line:
1) Single line instruments may be electronic or 2500-type analog phones.
2) Single line instruments used must be capable of supporting bridged cabling to allow a single phone number on multiple instruments without using multiple switch ports.
3) Single line instruments must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment without using multiple switch ports.
b. Multi-Line, Digital and Electronic:
4) The instruments shall be equipped with a digital read-out display and shall have no less than 14 programmable (lines or features) buttons.
5) The instruments shall employ only one adjustable ringer, bell, buzzer, chime or electronic tone to announce calls. The signaling device shall detect an incoming call to the multibutton instrument and provide an audible signal only on designated lines.
6) Each instrument shall be equipped with lights to identify the called line and remain illuminated for the duration of the call.
7) Telephone intercom systems shall normally be associated with these instruments.
8) The equipment associated with intercom systems may require special features such as built in microphone and speaker. Telephone Intercom Systems shall be required to provide secretaries with a means of announcing calls to offices with extensions or pickups on the system. The provision of intercom systems shall be identified during the data base survey required as described herein. Any required intercom systems shall be provided and installed by the contractor.
9) This equipment must be capable of supporting auxiliary equipment, such as amplified handsets; external chimes, light, or bells; and other similar equipment. The use of analog switch ports to provide ringing voltage, if required, is acceptable and these switch ports shall be included in the Equipped Capacity as described herein.
10) Hot Line Telephones shall be provided between two identified points and as shown on the drawings. These hot lines shall be equipped with two-way automatic ring and cut-off controlled by the telephone hook-switch, i.e. when near-end hand set is removed from the hook switch, the far-end telephone shall ring until the hand set is removed from the hook-switch.
11) Hands Free telephone stations shall be required. In this configuration, a speaker shall be used as both transmitter and receiver to answer or initiate a call. These facilities will normally be used as a hot line between two points. Requirements for hands-free operated facilities shall be identified on the drawings.
c. Patient Bedside:
12) Patient bedside instruments shall be maintenance free, sanitized packet, and capable of supporting tabletop, siderail, top bed-rail, or wall mounting. Each phone should have a self-contained line cord of not less than 4.5 M (15 feet).
13) At the discretion of the facility, patient bedside instruments may be discarded, cleaned for reuse, or given to the patient,
as appropriate. The anticipated cost per instrument should not exceed \$10.00.

### 2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

The System shall be provided with a complete cable backbone and building distribution system consisting of copper, fiberoptic, and other specified cable and connectors, signal closets, cross connection or terminating systems, telecommunication outlets and interface points as identified in Specification Section 271500 , COMMUNICATIONS HORIZONTAL CABLING and with technical instructions and approval from COR.

### 2.4 INSTALLATION KIT

The kit provided shall include, at a minimum, all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. The Contractor shall turn over all unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware to COR. At a minimum, the following installation sub-kits are required:
A. System Grounding:

1. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
2. This includes, but is not limited to:
a. Coaxial Cable Shields
b. Control Cable Shields.
c. Data Cable Shields.
d. Equipment Racks.
e. Equipment Cabinets.
f. Conduits.
g. Cable Duct.
h. Cable Trays.
i. Power Panels.
j. Connector Panels.
k. Grounding Blocks.
B. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
C. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
D. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
E. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, Record Wiring Diagrams, and this document.
F. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

### 2.5 AUXILIARY SYSTEMS

B. The CSU shall be compatible with an EPBX that is interfaced to the Public Address System (PA) identified in Section 2751 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS, and with technical instructions from COR. If the EPBX is not interfaced with a PA system the CSU shall be capable of performing this function. The console attendants shall have direct access to selected zones and all zone(s) paging. The attendant shall also have "priority access" to all zones. Selected station users shall have access to appropriate zone(s), by dialing the proper access. The contractor is responsible for providing and installing the required interface device(s) to the PA. The EPBX shall provide a feature to prevent the PA from being "locked up" by a user placing the system on hold or leaving the receiver "off-hook".

## PART 3 - EXECUTION

### 3.1 INSTALLATION

A. Product Delivery, Storage and Handling:

1. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment model and serial identification numbers. COR may inventory the EPBX and related equipment.
2. Storage and Handling: Store and protect equipment in a manner that will preclude damage as directed by COR.
B. System Installation:
3. After award of contract, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the system without written approval from COR and PM.
4. The Contractor shall install all equipment and systems in a manner, which complies with, accepted industry standards of good practice, the requirements of this specification and in a manner that does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.
5. The Contractor shall install suitable filters, traps, directional couplers, splitters, telephone outlets, and pads for minimizing interference and for balancing the amplifiers and distribution system(s). Items used for balancing and minimizing interference shall be able to pass telephone channels in the frequency bands selected, in the directions specified, with low loss, and high isolation and with minimum delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of paragraph 2.1.C and the System performance standards.
6. All passive equipment shall be connected according to the OEM's specifications to insure correct termination, isolation, impedance match and signal level balance at each telephone outlet.
7. Where telephone/data outlets are installed adjacent to each other, install one outlet for each instrument.
8. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.
9. All vertical and horizontal copper and fiber optic lines shall be terminated so shall require modifications of the System CSU or signal closet equipment only.
10. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair cables carrying digital, and analog signals in telephone systems.
11. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
12. Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.
C. Equipment Assembly:
13. Cabinets:
a. Each enclosure shall be: Floor or wall mounted with standard knockout holes for conduit connection or cable entrance; provide for ventilation of the equipment; have front and rear locking doors (except, wall mounted cabinets that require only a front locking door); power outlet strip(s), connector, and patch panel(s).
b. Each enclosure shall be equipped with a quiet fan and nondisposable air filter.
c. Enclosures and stand alone racks shall be installed plumb and square. Each shall be permanently attached to the building structure and be held firmly in place and approved by COR.
d. Rack mounted equipment shall be installed in the enclosure's equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustment(s) can be conveniently made. Heavy equipment shall be mounted with rack slides or rails allowing servicing from the front of the enclosure. Heavy equipment shall not depend only upon front panel mounting screws for support. Equipment shall be provided with sufficient cable slack to permit servicing by removal of the installed equipment from the front of the enclosure. A color matched blank panel (spacer) of 44 mm (1.75
inches) high, shall be installed between each piece of equipment (active or passive) to insure adequate air circulation. The enclosure shall be designed for efficient equipment cooling and air ventilation.
e. Provide 380 mm (15 inches) of front vertical space opening for additional equipment. Install color matched blank panels to cover any unused enclosure openings.
f. Signal connector, patch, and connector panels (i.e. PA, telephone, control, RF, TV, etc.) shall be connected so that outputs from each source, device or system component shall enter the panel at the top row of jacks, beginning left to right as viewed from the front. These will be called "inputs". Each connection to a load, device or system component shall exit the panel at the bottom row of jacks, beginning left to right as viewed from the front. These will be called "outputs".
1) Equipment located indoors shall be installed in metal racks or enclosures with hinged doors and be accessible for maintenance without interference to other nearby equipment.
2) Cables shall enter the equipment racks or enclosures in such a manner that allows all doors or access panels to open and close without disturbing or damaging the cables.
3) All distribution hardware shall be securely mounted in a manner that allows access to the connections for testing and provides sufficient room for the doors or access panels to open and close without disturbing the cables.
2. Installation of the CSU:
a. General:
1) The CSU installation shall comply with all laws and codes applying to interconnected telephone installations.
2) In the absence of specifications regarding installation details, standard industry practices shall prevail and first quality material and workmanship shall be provided.
3) All material, installed by the Contractor, shall be new and thoroughly tested. All installation shall be carried out in a professional manner.
4) Installation of all equipment shall be fully coordinated with COR and Facility staffs. No area shall be left without minimal telephone service as described herein.
5) The Contractor shall provide an outlet with triplex modular jack with stainless steel cover plate for each telephone outlet as shown and verified on the drawings. The Contractor shall provide the appropriate modular jack (single or triplex) with appropriate cover plate for each 'outlet' location identified on the drawings.
6) The Contractor shall install all patient and wall telephone instruments on a single modular jack designed for wall telephone instruments and patient wall or PBPU installations.
7) All permanent telephone cable and wire shall be installed in conduit or an enclosed duct system or be of the type approved for installation, as determined by VA requirements, without conduit or enclosed duct system. Cable and wire not installed in conduit or an enclosed duct system must be installed in cable tray or mechanically supported and separated from other signal cable systems as described herein.
8) Where cable and wire penetrate through fire/smoke partitions, firewalls, or floors, the Contractor shall provide fire/smoke stopping around the outside of any installed conduit/cable tray. The Contractor shall provide and install fire stopping material, type approved by COR, inside the provided conduit/cable tray after installation is complete.
b. The Contractor Shall:
9) Install the equipment in accordance with the specifications for the CSU as specified and recommended by the OEM.
10) Provide a full time on-site Project Manager effective with VA issuance of the notice to proceed. The Project Manager shall be responsible for fully coordinating and supervising all contractor/sub-contractor personnel in all phases of the installation, training, inspection, cutover, and final acceptance of the System. The Project Manager shall be provided a complete copy of these specifications to include all amendments prior to the start of installation of the telephone system.
11) Coordinate and conduct the CSU data base survey with COR and a member of the IRM staff. The Contractor is responsible for identifying all programming of features, classes of service, and equipment to be installed by types and physical locations
as specified in this document and all attachments thereto. After the survey is completed, a complete list of equipment shall be provided to COR and the IRM for approval prior to the start of installation.
12) Be responsible for the removal and replacement of damaged ceiling tiles during installation and maintenance service of the cable and wire distribution system. The Contractor shall be responsible for restoring to original condition any immediate (approximately one meter (three feet) in diameter) areas that were damaged during the installation and maintenance of the systems.
13) Run all cross connects to established circuits during installation and maintenance service for the contract life.
14) Remove, on a daily basis, all debris and scrap generated in the conduct of work.
15) Provide COR, for review, coordination and approval, a Proof of Performance Test Plan 90 days prior to activation of the CSU. The plan shall be used for testing and acceptance of the System. It shall include sufficient tests to demonstrate the systems capabilities of providing the services outlined in this document. Test equipment required for demonstration shall be Contractor provided and approved by COR. A list of test equipment required shall be included with the acceptance test plan. Test equipment shall have under gone calibration certification within six months prior to system activation.
16) Provide Contractor personnel (switch technicians, installers, trainers, and the project manager) on premise for seven consecutive days after cut-over to clear any malfunctions which may develop, to assign/reassign any software features/COS, and conduct any additional training as required.
17) Ensure that the project manager and sufficient skilled personnel remain on premise until all items on the punch list, developed during inspection, cut-over, and acceptance testing of the System are completed, inspected, and accepted by cor.
18) Be responsible for any and all coordination with the LEC relative to interface with the commercial telephone system. The contractor shall also be responsible for the removal of all voice and/or data equipment and cabling abandoned by the

LEC, VA, or other organizations and not retained for exclusive use by VA as a result of this installation.
11) Connect all telephone equipment located in the equipment room to the common signal ground buss that is provided. The common signal ground buss shall be located in all telephone closets and the CSU switch room.
12) Provide system ground between CSU and all interfaced systems such as existing telephone system, PA system equipment chassis, radio paging equipment chassis, etc.
13) Ensure that other dedicated telecommunications systems applications within the Facility (i.e., pay stations, electrowriting equipment, facsimile etc.) that require space within switch room/telephone closets, conduits, and cable pair are accommodated. Coordination between applicable parties will be necessary to ensure accommodation of these systems. It shall be the responsibility of the bidders to determine the requirements and include them in their proposal.
14) All portions of the System installation shall conform to local building and fire codes.
15) The Contractor shall not use gasoline, benzene, alcohol, naphtha, carbon tetrachloride, or turpentine for cleaning any part of the equipment. Flammable materials shall be kept in suitable places outside the building. OSHA safety standards and local Facility safety standards shall prevail.
D. Conduit, Cables and Wiring, Cable Tray, Raceways, Signal Ducts, Etc.:

1. The Contractor shall employ the latest installation practices and materials.
2. All cables shall be installed in conduit and/or signal ducts. Conduits shall be provided in accordance with Section 2705 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
3. Ensure that Telephone and PA Systems (as identified by NEC Section 517) are completely separated and protected from all systems.
4. All cable junctions and taps shall be accessible. Do not install multi-taps or other distribution equipment items inside cable ducts or raceways. As a minimum, use a $200 \mathrm{~mm} x 200 \mathrm{~mm} x 100 \mathrm{~mm}$ ( $8^{\prime \prime} \mathrm{X} 8^{\prime \prime} \mathrm{X}$ 4") junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible.
5. Cables shall be installed and fastened without causing sharp bends or rubbing of the cables against sharp edges. Cables shall be fastened with hardware that will not damage or distort them.
6. Cables shall be labeled with permanent markers at the terminals of the electronic and passive equipment and at each junction point in the System. The lettering on the cables shall correspond with the lettering on the record wiring diagrams.
7. Cable shall be grouped and shall not change position throughout the cable run.
8. Completely test all of the cables after installation and replace any defective cables.

### 3.2 TESTS

If this Section is being used in conjunction with Specification Section
273100 , VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT or
Section 271500 , COMMUNICATIONS HORIZONTAL CABLING, the following testing guidelines are in addition to the requirements outlined in these documents. If this document is being used as a "Stand Alone" cable plant installation, the following testing guidelines shall be the standard of measure for the respective system.
A. Interim Inspection:

1. The interim inspection will be conducted in the presence of a Government Representative designated as the VA Contract Coordinator prior to the proof of performance testing. This inspection shall verify that the equipment provided adheres to the installation requirements of this document.
2. The Contractor shall have 50\% of the telephone extension system equipment installed to include, but not be limited to: CSU, interface, origination and junction enclosures powered with the permanent AC wiring, outlets, conduit and cables, before the interim inspection can take place.
3. The Contractor shall notify COR, in writing, of the estimated date the Contractor expects to be ready for in the interim inspection, at least 7 working days before the requested inspection date.
4. Results of the interim inspection shall be provided to COR and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor the Contractor to continue with the System installation.
5. COR in conjunction with $P E$ shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the systems' completion date. The Contracting Officer shall ensure all test documents will become a part of the systems record wiring diagrams documentation.
B. Pretesting: Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.
C. Pretesting Procedure: During the System pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the System performance requirements of this document. The Contractor shall measure and record the aural carrier levels of each system telephone, at each of the following points in the system:
6. Local Telephone System Inputs.
7. CSU inputs and outputs.
8. MDU, BIU, amplifiers, channel processor and converter inputs and outputs.
9. CSU output $S / N R$ for each telephone channel.
10. Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
11. A copy of the recorded system pretest measurements shall be submitted, along with the pretest certification, to COR.
D. Pretesting Certification. After pretesting the System, the Contractor shall notify COR, in writing, that the System is ready for proof of performance testing, and that it meets all requirements stated in this document. The Contractor shall accomplish submission of this notification of system readiness, no later than 20 working days prior to the beginning of the scheduled Government proof of performance test. Failure of the Contractor to comply with these pretest requirements, shall be grounds for canceling the scheduled test.
E. Acceptance Test:
12. After the System has been pretested and the Contractor has submitted the pretest results and certification to COR, the Contractor shall
schedule an acceptance test date and give COR 20 days advance written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
13. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed system complies with the operational and technical requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System the precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System. Repeated failures that result in a cumulative time of eight (8) hours to effect repairs, shall cause the entire System to be declared unacceptable. Re-testing of the entire System shall be rescheduled at the convenience of the Government.
F. Acceptance Test Procedure:
14. Physical and Mechanical Inspection:
a. The Government Representative will tour all major areas where the System is and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
b. The System diagrams, record drawings, equipment manuals, Auto CAD disks, interim inspection and pretest results shall be formally inventoried and reviewed.
c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.
15. Operational Test: After the Physical and Mechanical Inspection, the Contractor shall perform an operational test to verify that all
equipment is properly connected, interfaced and is functionally operational to meet the requirements of this specification. If any sub-system is not functionally ready, that sub-system shall be declared unacceptable and all testing shall be terminated. At this point, the Contractor shall be permitted one hour to correct the deficiencies. It may be mutually agreed upon, at this time, to wait one hour or to commence testing of the next sub-system.
16. Performance Test: After the functional test, each sub-system shall be checked to verify that all performance requirements and standards are met. The performance requirements shall be verified using the necessary test equipment. A spectrum analyzer, signal level meter and BERT shall be used to verify there are no visible signal distortions, such as inter-modulation, beats, etc. appearing on any received or generated telephone channel.
17. Total System Test:
a. The testing shall proceed until the system and subsystems are functionally tested and accepted. The total system tests shall verify that the requirements have been met for all system signals as described herein.
1) Existing Telephone System Point of Demarcation: The system output(s) shall be checked to verify that all performance requirements are met.
2) CSU: This test shall be conducted within 30 days following successful pre-testing of the CSU. In addition to compliance with the technical characteristics and quantities of equipment specified herein, the Final Acceptance Test shall contain the provision that 30 continuous days uninterrupted telephone service, must be completed prior to the Contractor being deemed to be in compliance with the contract.
b. For the purpose of final acceptance, the telephone service shall be considered interrupted when the failure of any Contractor provided telephone equipment including batteries, results in an interruption of service. This includes a failure of more than 20\% of any trunk group, $15 \%$ of any number group (15 or more stations), operator console, or telephone service to any area determined to be critical by the Facility Director. Response time to restore service shall have no bearing upon the term "interrupted service".
c. To facilitate the CSU Acceptance Test and to allow familiarization and training of Facility employees, the Contractor shall activate the CSU, including the operator consoles, stations and equipment a minimum of 30 days prior to the acceptance test date. All installed equipment and circuits shall be fully tested prior to the acceptance by VA. During this "burn-in" period, the Contractor shall de-bug the CSU. The Contractor shall make the CSU available for in-house communications and demonstrate to the Facility staff the required features. The Facility Director and Contractor will make designated trunks and tie-line circuits available to the CSU during this "burn-in" period for testing.
d. At the conclusion of the Acceptance Test, the PM, COR and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages, if any. When the test show the System performs in accordance with the specifications, the 30 days of uninterrupted service provision shall begin. This provision must be successfully met for contract compliance. If any retests are needed to reach agreement on the results of the tests or to establish compliance with these specifications such retesting will be done at the Contractor's expense.
5. Individual Item Test: The Government Representative may select individual items of equipment for detailed proof-of-performance testing. That item shall meet or exceed the minimum requirements of the specification.
6. Distribution System:
a. To ensure that the System meets all performance requirements, a minimum of $75 \%$ of the System outlets shall be checked. Additionally, each distribution system interface, junction and connection point or location will be checked. Each distribution active and passive item of equipment, signal input(s) and output(s) will be tested.
b. For specific distribution testing instructions refer to Specification Section 271500 , COMMUNICATIONS HORIZONTAL CABLING, and COR for technical assistance.

### 3.3 TRAINING

A. Furnish the services of an OEM trained and certified engineer or technician for a total of two eight hour classes to instruct designated Facility maintenance personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment. Training shall be accomplished before the VA can accept the System. Additionally, training will be scheduled at the convenience of the Facility's, Chief Engineering Service.
B. Also, furnish the services of an OEM trained and certified engineer or technician, familiar with the functions and operation of the system and equipment, for two eight hour periods to train designated Facility IRM personnel. Instructions shall be provided for staff personnel in each area where the System is installed under this contract. When multiple areas are involved, classes will be grouped. Periods of training shall be coordinated with COR or the Facility Contracting Officer. COR or the Facility Contracting Officer shall coordinate with the Facility to ensure all shifts receive the required training. Each session shall include instructions utilizing "hands-on" operation and functions of the System.

### 3.4 SYSTEM GUARANTEE

A. Contractor's Responsibility: The Contractor shall guarantee that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by VA. The Contractor shall provide OEM's equipment warranty documents, to COR and Facility Contracting Officer, certifying that all equipment installed under this document conforms to its published specifications.
B. The Contractor shall provide a written commitment from the System equipment OEM to the supply of parts and on-site engineering support services for the one year guarantee service (materials and labor) in the event of default or unsatisfactory service by the Contractor.

1. The OEM certification shall describe, in the event of default or unsatisfactory service by the Contractor, the manufacturer or an authorized distributor shall fully support the contract (initial installation, guarantee service for the one year warranty period of the contract).
2. The System equipment OEM's signatory of the certified written commitment must be of an individual who has the full authority to
obligate the OEM to this commitment. Names, corporate addresses, and telephone numbers of the individuals who have this authority shall be provided as a part of the commitment.
C. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM's central emergency maintenance and request remote diagnostic testing and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
D. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of their current and qualified OEM training certificates and OEM certification upon request.
E. Additionally, the Contractor shall accomplish the following minimum requirements during the one year guarantee period:
3. Response Time:
a. COR is the Contractor's reporting and contact official for the System trouble calls, during the guarantee period.
b. A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
c. The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
1) A routine trouble call within one working day of its report. A routine trouble is considered a trouble that causes a subsystem to be inoperable.
2) An emergency trouble call within eight (8) hours of its report. An emergency trouble is considered a trouble that causes a system to be inoperable at anytime.
a) An emergency trouble call shall be deemed appropriate when a failure involves more than 20 voice circuits.
b) In addition, the failure of a common control unit, power supply, signal generating device or attendant console shall also be deemed as an emergency maintenance call.
3) A catastrophic trouble call within four (4) hours of its report. A catastrophic trouble call is considered a EPBX failure.
a) If an EPBX failure cannot be corrected within six (6) hours, the Contractor shall be responsible for providing an alternate CSU equipped for a minimum of 100 station lines,

10 CO trunks, 10 FTS access lines and two operator's consoles.
(1) This alternate system shall be operational within 12 hours (time to commence at the end of the six-hour trouble shooting period) and shall provide emergency service to critical areas as determined by the Facility Director.
(2) The alternate system shall be a programmable system and a pre-written compact disk program shall be provided to the Facility Contracting Officer prior to cut-over of the main telephone system.
b) Failures affecting operation of critical emergency health care facilities (i.e. cardiac arrest teams, intensive care units, etc.) shall also be deemed catastrophic trouble calls if so determined by the Facility Director. The Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facility Director.
4) The Contractor shall respond on-site to installation of station or equipment requests or service within:
a) Eight (8) hours for emergency installations designated by the Facility Contracting Officer, and
b) Three working days for routine installations designated by the Facility Contracting Officer.
2. Required On-Site Visits During The One Year Guarantee Period:
a. The Contractor shall visit, on-site, for a minimum of eight hours, once every twelve (12) weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning and operational adjustments to maintain the System according the descriptions identified in this specification.

1) The Contractor shall arrange all Facility visits with COR or the Facility Contracting Officer prior to performing the required maintenance visits.
2) The Contractor in accordance with the OEM's recommended practice and service intervals shall perform preventive maintenance during non-busy time agreed to by COR or the Facility Contracting Officer and the Contractor.
3) The preventive maintenance schedule, functions and reports shall be provided to and approved by COR and Facility Contracting Officer.
4) Provide on-site a stock of replacement spare parts and equipment, plus test equipment, as specified herein, ensuring they meet the $\mathrm{OEM's}^{\prime}$ minimum recommended spare parts stock sizing requirements for this specific system.
b. The Contractor shall provide COR or the Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide COR or the Facility Contracting Officer sample copies of these reports for review and approval at the beginning of the Acceptance Test. The following reports are the minimum required:
5) The Contractor shall provide a monthly summary for all equipment and sub-systems serviced during the guarantee period to COR or the Facility Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the service rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventative and predictive maintenance.
6) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details to the nature and causes and the emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
c. COR or the Facility Contracting Officer shall convey to the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
7) COR or the Facility Contracting Officer shall ensure a copy of these reports is entered into the System's official acquisition documents.
8) The Facility Chief Engineer shall ensure a copy of these reports is entered into the system's official technical asinstalled documents.
3. Government Furnished Equipment (GFE). GFE that was accepted by the Contractor and interfaced and installed in this System shall become part of this System and included in the guarantee requirements. - - E N D - -

## SECTION 280500

## COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

## PART 1 - GENERAL

### 1.1 DESCRIPTION

A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
B. Furnish and install fully functional electronic safety cabling system, equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
D. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24 -hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.

### 1.2 RELATED WORK

A. Section 010000 - GENERAL REQUIREMENTS. For General Requirements.
B. Section 078400 - FIRESTOPPING. Requirements for firestopping application and use.
C. Section 280513 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
D. Section 280526 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
E. Section 280528.33 - CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

### 1.3 DEFINITIONS

A. EMT: Electric Metallic Tubing.
B. NEMA: National Electrical Manufacturers Association
C. NFPA: National Fire Protection Association
D. NTSC: National Television System Committee.
E. NRTL: Nationally Recognized Testing Laboratory.

### 1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
B. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

### 1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper
installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

### 1.6 SUBMITTALS

A. Submit in accordance with Section 013323 , SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.

1. Mark the submittals, "SUBMITTED UNDER SECTION ".
D. The submittals shall include the following:
2. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
3. The Contractor shall schedule submittals in order to maintain the project schedule.
4. The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
5. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
6. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Contracting Officer's Representative (COR) and Contractor review stamps.
7. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
F. Approvals will be based on complete submission of manuals together with shop drawings.
G. After approval and prior to installation, furnish the COR with one sample of each of the following:
8. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
9. Each type of conduit and pathway coupling, bushing and termination fitting.
10. Conduit hangers, clamps and supports.
11. Duct sealing compound.
H. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

### 1.7 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American National Standards Institute (ANSI)/ International Code Council (ICC) :

A117.1.................Standard on Accessible and Usable Buildings and Facilities
C. American National Standards Institute (ANSI):

```
 ANSI S3.2-99...........Method for measuring the Intelligibility of
 Speech over Communications Systems
D. American Society for Testing and Materials (ASTM)
 B1-07.................Standard Specification for Hard-Drawn Copper
 Wire
 B3-07.................Standard Specification for Soft or Annealed
 Copper Wire
 B8-04.................Standard Specification for Concentric-Lay-
 Stranded Copper Conductors, Hard, Medium-Hard,
 or Soft
 C1238-97 (R03).........Standard Guide for Installation of Walk-Through
 Metal Detectors
 D2301-04..............Standard Specification for Vinyl Chloride
 Plastic Pressure Sensitive Electrical Insulating
 Tape
E. Architectural Barriers Act (ABA), 1968
F. Department of Justice: American Disability Act (ADA)
 28......................................CFR Part 36-2010 ADA Standards for Accessible
 Design
G. Department of Veterans Affairs:
 VHA National CAD Standard Application Guide, 2006
 VA BIM Guide, V1.0 10
H. Federal Communications Commission (FCC):
 (47 CFR 15) Part 15 Limitations on the Use of Wireless
 Equipment/Systems
I. Federal Specifications (Fed. Spec.):
 A-A-59544-08...........Cable and Wire, Electrical (Power, Fixed
 Installation)
J. Institute of Electrical and Electronics Engineers (IEEE):
 81-1983................IEEE Guide for Measuring Earth Resistivity,
 Ground Impedance, and Earth Surface Potentials
 of a Ground System
 802.3af-08.............Power over Ethernet Standard
 802.3at-09Power over Ethernet (PoE) Plus Standard
 C2-07.................National Electrical Safety Code
 C62.41-02...............IEEE Recommended Practice on Surge Voltages in
 Low-Voltage AC Power Circuits
K. National Electrical Manufactures Association (NEMA):
 250-08................Enclosures for Electrical Equipment (1000 Volts
 Maximum)

```

636-01................Standard for Holdup Alarm Units and Systems
639-97................Standard for Intrusion-Detection Units
651-05................Schedule 40 and 80 Rigid PVC Conduit
651A-07...............Type EB and A Rigid PVC Conduit and HDPE Conduit
752-05................Standard for Bullet-Resisting Equipment
797-07................Electrical Metallic Tubing
827-08.................Central Station Alarm Services
1037-09.................Standard for Anti-theft Alarms and Devices
1635-10................Digital Alarm Communicator System Units
1076-95...............Standards for Proprietary Burglar Alarm Units
and Systems
1242-06.................Intermediate Metal Conduit
1479-03...............Fire Tests of Through-Penetration Fire Stops
1981-03...............Central Station Automation System
2058-05...............High Security Electronic Locks
60950.................Safety of Information Technology Equipment
60950-1...............Information Technology Equipment - Safety - Part
1: General Requirements

```
0. Uniform Federal Accessibility Standards (UFAS) 1984

\subsection*{1.8 COORDINATION}
A. Coordinate location of access panels and doors for electronic safety items that are behind finished surfaces or otherwise concealed.

\subsection*{1.9 MINIMUM REQUIREMENTS}
A. References to industry and trade association standards and codes are minimum installation requirement standards.
B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

\subsection*{1.10 DELIVERY, STORAGE, \& HANDLING}
A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
2. Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

\subsection*{1.11 EQUIPMENT AND MATERIALS}
A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
C. Equipment Assemblies and Components:
1. Components of an assembled unit need not be products of the same manufacturer.
2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
3. Components shall be compatible with each other and with the total assembly for the intended service.
4. Constituent parts which are similar shall be the product of a single manufacturer.
D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.

\subsection*{1.12 SUBSTITUTE MATERIALS \& EQUIPMENT}
A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
B. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any
question about which supporting equipment, materials, or hardware is intended to be included.

\subsection*{1.13 WARRANTY}
A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 EQUIPMENT AND MATERIALS}
A. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
B. All equipment and materials for the system will be compatible to ensure correct operation.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION}
A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
D. Right of Way: Give to piping systems installed at a required slope.

\subsection*{3.2 FIRESTOPPING}
A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 078400 "Firestopping."

\subsection*{3.3 WORK PERFORMANCE}
A. Job site safety and worker safety is the responsibility of the contractor.
B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 010000 , GENERAL REQUIREMENTS.
C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 010000 , GENERAL REQUIREMENTS.
D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

\subsection*{3.4 TESTING AND ACCEPTANCE}
A. Performance Requirements
1. General:
a. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the conclusion of each phase of testing and prior to COR approval of the test.
2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.
B. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the COR, until completion of the entire project. The results will be compared to the Acceptance Test results.

\section*{SECTION 280513}

\section*{CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY}

\section*{PART 1 - GENERAL}

\subsection*{1.1 DESCRIPTION}
A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

\subsection*{1.2 RELATED WORK}
A. Section 010000 - GENERAL REQUIREMENTS. For General Requirements.
B. Section 078400 - FIRESTOPPING. Requirements for firestopping application and use.
C. Section 280500 - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
D. Section 280526 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
E. Section 280528.33 - CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.

\subsection*{1.3 DEFINITIONS}
A. BICSI: Building Industry Consulting Service International.
B. EMI: Electromagnetic interference.
C. IDC: Insulation displacement connector.
D. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
E. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
F. RCDD: Registered Communications Distribution Designer.
G. UTP: Unshielded twisted pair.

\subsection*{1.4 QUALITY ASSURANCE}
A. See section 280500 , Paragraph 1.4.

\subsection*{1.5 SUBMITTALS}
A. In accordance with Section 013323, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
1. Manufacturer's Literature and Data: Showing each cable type and rating.
2. Certificates: Two weeks prior to final inspection, deliver to the Contracting Officer's Representative (COR) four copies of the
certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
3. Maintenance Data: For wire and cable to include in maintenance manuals.

\subsection*{1.6 APPLICABLE PUBLICATIONS}
A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
B. American Society of Testing Material (ASTM) :

D2301-04................Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape
C. Federal Specifications (Fed. Spec.):

A-A-59544-08............Cable and Wire, Electrical (Power, Fixed Installation)
D. National Fire Protection Association (NFPA):

70-11...................National Electrical Code (NEC)
E. Underwriters Laboratories, Inc. (UL):

44-05...................Thermoset-Insulated Wires and Cables
83-08...................Thermoplastic-Insulated Wires and Cables
467-07.................Electrical Grounding and Bonding Equipment
486A-03.................Wire Connectors and Soldering Lugs for Use with Copper Conductors
486C-04..................Splicing Wire Connectors
486D-05................Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations
486E-00.................Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
493-07.................Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable

514B-04 Fittings for Cable and Conduit

1479-03.................Fire Tests of Through-Penetration Fire Stops

\subsection*{1.7 PROJECT CONDITIONS}
A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 GENERAL}
A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.
B. Conduit and Boxes: Comply with requirements in Division 26 Section "Conduits and Backboxes for Electrical Systems."[Flexible metal conduit shall not be used.]
1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

\subsection*{2.2 FIRE ALARM WIRE AND CABLE}
A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
1. Low-Voltage Circuits: No. 16 AWG, minimum.
2. Line-Voltage Circuits: No. 12 AWG, minimum.
3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor [with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2 -hour rating.

\subsection*{2.3 IDENTIFICATION PRODUCTS}
A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

\subsection*{2.4 SOURCE QUALITY CONTROL}
A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B. 1 .
C. Factory test UTP cables according to TIA/EIA-568-B. 2.
D. Factory test multimode optical fiber cables according to TIA/EIA-526-14\(A\) and TIA/EIA-568-B. 3.
E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz . Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
F. Cable will be considered defective if it does not pass tests and inspections.
G. Prepare test and inspection reports.

\subsection*{2.5 WIRE LUBRICATING COMPOUND}
A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
B. Shall not be used on wire for isolated type electrical power systems.

\subsection*{2.6 FIREPROOFING TAPE}
A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 INSTALLATION OF CONDUCTORS AND CABLES}
A. Comply with NECA 1.
B. General Requirements for Cabling:
1. Comply with TIA/EIA-568-B.1.
2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
3. Install 110-style IDC termination hardware unless otherwise indicated.
4. Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less
than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
8. Pulling Cable:
a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
c. Use ropes made of nonmetallic material for pulling feeders.
d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
e. Pull in multiple cables together in a single conduit.
C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
1. Splices and terminations shall be mechanically and electrically secure.
2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
D. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
E. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
F. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
G. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
H. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.

\subsection*{3.2 FIRE ALARM WIRING INSTALLATION}
A. Comply with NECA 1 and NFPA 72.
B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
1. Install plenum cable in environmental air spaces, including plenum ceilings.
2. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
C. Wiring Method:
1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

\subsection*{3.3 CONTROL CIRCUIT CONDUCTORS}
A. Minimum Conductor Sizes:
1. Class 1 remote-control and signal circuits, No. 14 AWG.
2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

\subsection*{3.4 FIRESTOPPING}
A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
C. Comply with BICSI TDMM, "Firestopping Systems" Article.

\subsection*{3.5 GROUNDING}
A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

\subsection*{3.6 IDENTIFICATION}
A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
B. Install a permanent wire marker on each wire at each termination.
C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
D. Wire markers shall retain their markings after cleaning.

\subsection*{3.7 FIELD QUALITY CONTROL}
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Tests and Inspections:
D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
F. Prepare test and inspection reports.

\subsection*{3.8 EXISITNG WIRING}
A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

\section*{SECTION 280526}

\section*{GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY}

\section*{PART 1 - GENERAL}

\subsection*{1.1 DESCRIPTION}
A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

\subsection*{1.2 RELATED WORK}
A. Section 010000 - GENERAL REQUIREMENTS. For General Requirements.
B. Section 280500 - REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
C. Section 280513 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.

\subsection*{1.3 SUBMITTALS}
A. Submit in accordance with Section 280500 , COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
B. Shop Drawings:
1. Clearly present enough information to determine compliance with drawings and specifications.
2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
C. Test Reports: Provide certified test reports of ground resistance.
D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Contracting Officer's Representative:
1. Certification that the materials and installation are in accordance with the drawings and specifications.
2. Certification by the contractor that the complete installation has been properly installed and tested.

\subsection*{1.4 APPLICABLE PUBLICATIONS}
A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
B. American Society for Testing and Materials (ASTM) :

B1-07..................Standard Specification for Hard-Drawn Copper Wire

B3-07..................Standard Specification for Soft or Annealed Copper Wire

B8-04..................Standard Specification for Concentric-LayStranded Copper Conductors, Hard, Medium-Hard, or Soft
C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-1983.................IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System

C2-07...................National Electrical Safety Code
D. National Fire Protection Association (NFPA):

70-11.....................National Electrical Code (NEC)
99-2005...................Health Care Facilities
E. Underwriters Laboratories, Inc. (UL):

44-05Thermoset-Insulated Wires and Cables
83-08Thermoplastic-Insulated Wires and Cables
467-07Grounding and Bonding Equipment
486A-486B-03Wire Connectors

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 GROUNDING AND BONDING CONDUCTORS}
A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes \(6 \mathrm{~mm}^{2}(10\) AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes \(25 \mathrm{~mm}^{2}\) (4 AWG) and larger shall be permitted to be identified per NEC.
B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes \(6 \mathrm{~mm}^{2}(10 \mathrm{AWG})\) and smaller shall be ASTM B1 solid bare copper wire.

\subsection*{2.2 SPLICES AND TERMINATION COMPONENTS}
A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).
B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
C. Above Grade:
1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
2. Connection to Building Steel: Exothermic-welded type connectors.
3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
a) Pipe Connectors: Clamp type, sized for pipe.
6. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 GENERAL}
A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.

\subsection*{3.2 CORROSION INHIBITORS}
A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

\subsection*{3.3 CONDUCTIVE PIPING}
A. Bond all conductive piping systems to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

\subsection*{3.4 LABELING}
A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.

\subsection*{3.5 FIELD QUALITY CONTROL}
A. Perform tests and inspections.
B. Tests and Inspections:
1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
C. Grounding system will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.
- - - E N D - - -

\section*{SECTION 280528.33}

\section*{CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY}

\section*{PART 1 - GENERAL}

\subsection*{1.1 DESCRIPTION}
A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

\subsection*{1.2 RELATED WORK}
A. Section 010000 - GENERAL REQUIREMENTS. For General Requirements.
B. Section 078400 - FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
C. Section 099100 - PAINTING. Requirements for identification and painting of conduit and other devices.
D. Section 280500 - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
E. Section 280526 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

\subsection*{1.3 DEFINITIONS}
A. EMT: Electrical metallic tubing.
B. ENT: Electrical nonmetallic tubing.
C. EPDM: Ethylene-propylene-diene terpolymer rubber.
D. FMC: Flexible metal conduit.
E. IMC: Intermediate metal conduit.
F. LFMC: Liquidtight flexible metal conduit.
G. LFNC: Liquidtight flexible nonmetallic conduit.
H. NBR: Acrylonitrile-butadiene rubber.
I. RNC: Rigid nonmetallic conduit.

\subsection*{1.4 QUALITY ASSURANCE}
A. Refer to Paragraph 1.4 Quality Assurance, in Section 280500 , COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

\subsection*{1.5 SUBMITTALS}
A. Submit in accordance with Section 280500 , COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
B. Shop Drawings:
1. Size and location of main feeders;
2. Size and location of panels and pull boxes
3. Layout of required conduit penetrations through structural elements.
4. The specific item proposed and its area of application shall be identified on the catalog cuts.
C. Certification: Prior to final inspection, deliver to the Contracting Officer's Representative (COR) four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion.
E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
F. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
1. Structural members in the paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
G. Source quality-control test reports.

\subsection*{1.6 APPLICABLE PUBLICATIONS}
A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
B. National Electrical Manufacturers Association (NEMA):

TC-3-04..................PVC Fittings for Use with Rigid PVC Conduit and Tubing
FB1-07...................Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
C. National Fire Protection Association (NFPA):

70-11...................National Electrical Code (NEC)
D. Underwriters Laboratories, Inc. (UL):
```

1-05...................Flexible Metal Conduit
5-04..................Surface Metal Raceway and Fittings
6-07....................Rigid Metal Conduit
50-07.................Enclosures for Electrical Equipment
360-09................Liquid-Tight Flexible Steel Conduit
467-07................Grounding and Bonding Equipment
514A-04................Metallic Outlet Boxes
514B-04...............Fittings for Cable and Conduit
514C-02...............Nonmetallic Outlet Boxes, Flush-Device Boxes and
Covers
651-05................Schedule 40 and 80 Rigid PVC Conduit
651A-07...............Type EB and A Rigid PVC Conduit and HDPE Conduit
797-07................Electrical Metallic Tubing
1242-06.................Intermediate Metal Conduit

```

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 GENERAL}
A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

\subsection*{2.2 CONDUIT}
A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
B. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
C. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
D. Flexible galvanized steel conduit: Shall Conform to UL 1.
E. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

\subsection*{2.3 WIREWAYS AND RACEWAYS}
A. Surface metal raceway: Shall Conform to UL 5.

\subsection*{2.4 CONDUIT FITTINGS}
A. Rigid steel and IMC conduit fittings:
1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
2. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
3. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
4. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
B. Electrical metallic tubing fittings:
1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
2. Only steel or malleable iron materials are acceptable.
3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
4. Indent type connectors or couplings are prohibited.
5. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
C. Flexible steel conduit fittings:
1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
2. Clamp type, with insulated throat.
D. Liquid-tight flexible metal conduit fittings:
1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
2. Only steel or malleable iron materials are acceptable.
3. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
E. Surface metal raceway fittings: As recommended by the raceway manufacturer.
F. Expansion and deflection couplings:
1. Conform to UL 467 and UL 514B.
2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

\subsection*{2.5 CONDUIT SUPPORTS}
A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by \(1-1 / 2\) inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

\subsection*{2.6 OUTLET, JUNCTION, AND PULL BOXES}
A. UL-50 and UL-514A.
B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
D. Sheet metal boxes: Galvanized steel, except where otherwise shown.
E. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

\subsection*{2.7 WIREWAYS}
A. Equip with hinged covers, except where removable covers are shown.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 PENETRATIONS}
A. Cutting or Holes:
1. Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.
B. Fire Stop: Where conduits, wireways, and other electronic safety and
security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective
barrier against the spread of fire, smoke and gases as specified in Section 078400 , FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
C. Waterproofing: At floor and exterior wall penetrations, completely seal clearances around the conduit and make watertight as specified in Section 079200 , "JOINT SEALANTS".

\subsection*{3.2 INSTALLATION, GENERAL}
A. Install conduit as follows:
1. In complete runs before pulling in cables or wires.
2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
5. Mechanically continuous.
6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
9. Conduit installations under fume and vent hoods are prohibited.
10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
11. Do not use aluminum conduits in wet locations.
12. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
B. Conduit Bends:
1. Make bends with standard conduit bending machines.
2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
3. Bending of conduits with a pipe tee or vise is prohibited.
C. Layout and Homeruns:
1. Install conduit with wiring, including homeruns, as shown.
2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.
D. Fire Alarm:
1. Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 283100 , "FIRE DETECTION AND ALARM".

\subsection*{3.3 CONCEALED WORK INSTALLATION}
A. Furred or Suspended Ceilings and in Walls:
1. Conduit for conductors 600 volts and below:
a. Rigid steel, IMC, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
2. Align and run conduit parallel or perpendicular to the building lines.
3. Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
4. Tightening set screws with pliers is prohibited.

\subsection*{3.4 EXPOSED WORK INSTALLATION}
A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
B. Conduit for Conductors 600 volts and below:
1. Rigid steel, IMC, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
C. Align and run conduit parallel or perpendicular to the building lines.
D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
F. Surface metal raceways: Use only where shown.
G. Painting:
1. Paint exposed conduit as specified in Section09 9100 , "PAINTING".
2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 099100 , "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

\subsection*{3.5 CONDUIT SUPPORTS, INSTALLATION}
A. Safe working load shall not exceed \(1 / 4\) of proof test load of fastening devices.
B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and \(90 \mathrm{~kg}(200\) pounds). Attach each conduit with U-bolts or other approved fasteners.
D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
E. Fasteners and Supports in Solid Masonry and Concrete:
1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
2. Existing Construction:
a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
F. Hollow Masonry: Toggle bolts are permitted.
G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

\subsection*{3.6 BOX INSTALLATION}
A. Boxes for Concealed Conduits:
1. Flush mounted.
2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
G. On all Branch Circuit junction box covers, identify the circuits with black marker.

\title{
SECTION 283100 FIRE DETECTION AND ALARM
}

\section*{PART 1 - GENERAL}

\subsection*{1.1 DESCRIPTION}
A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Contracting Officer's Representative (COR) or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
C. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in the corridor.

\subsection*{1.2 SCOPE}
A. A fully addressable fire alarm system as an extension of an existing addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
1. Meets this specification section
2. Is UL listed or FM approved
3. Is compatible with new equipment being installed
4. Is verified as operable through contractor testing and inspection
5. Is warranted as new by the contractor.
D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
F. Basic Performance:
1. Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
2. Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
4. Initiating device circuits (IDC) shall be wired Style B - Class B in accordance with NFPA 72.
5. Signaling line circuits (SLC) within buildings shall be wired Style 4 - Class B in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
6. Notification appliance circuits (NAC) shall be wired Style Y - Class \(B\) in accordance with NFPA 72.

\subsection*{1.3 RELATED WORK}
A. Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

Requirements for procedures for submittals.
B. Section 078400 - FIRESTOPPING. Requirements for fire proofing wall penetrations.
C. Section 280513 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

\subsection*{1.4 SUBMITTALS}
A. General: Submit 5 copies in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 2605 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. Drawings:
1. Prepare drawings using AutoCAD Release 2007 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing,; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files using AutoCAD 2007 or later. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
C. Manuals:
1. Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
e. Complete listing of all digitized voice messages.
f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
g. Include information indicating who will provide emergency service and perform post contract maintenance.
h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.
a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.

\section*{D. Certifications:}
1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the
proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

\subsection*{1.5 WARRANTY}
A. All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

\subsection*{1.6 GUARANTEE PERIOD SERVICES}
A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the COR.
B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COR or his authorized representative.
G. Emergency Service:
1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COR or his authorized representative.
2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency callback hours is based on actual time spent on site and does not include travel time.
H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each
trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

\subsection*{1.7 APPLICABLE PUBLICATIONS}
A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
B. National Fire Protection Association (NFPA) :

NFPA 13Standard for the Installation of Sprinkler Systems, 2010 edition

NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2010 edition

NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition

NFPA 70.................National Electrical Code (NEC), 2010 edition
NFPA 72.................National Fire Alarm Code, 2010 edition
NFPA 90A................Standard for the Installation of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101................Life Safety Code, 2009 edition
C. Underwriters Laboratories, Inc. (UL) : Fire Protection Equipment Directory
D. Factory Mutual Research Corp (FM) : Approval Guide, 2007-2011
E. American National Standards Institute (ANSI):

S3.41..................Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
F. International Code Council, International Building Code (IBC), 2009 edition

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 EQUIPMENT AND MATERIALS, GENERAL}
A. Existing equipment may be reused only where indicated on the drawings.
B. Except as indicated in paragraph A above, All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's
requirements and that satisfactory total system operation has been achieved.

\subsection*{2.2 CONDUIT, BOXES, AND WIRE}
A. Conduit shall be in accordance with Section 2805 28.33, CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
1. All new and reused conduit shall be installed in accordance with NFPA 70.
2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
3. All new conduit shall be \(3 / 4\) inch (19 mm) minimum.
B. Wire:
1. All existing wiring shall be removed and new wiring installed in a conduit or raceway.
2. Wiring shall be in accordance with NEC article 760, Section 2805 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
3. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically accepted by the fire alarm equipment manufacturer in writing.
4. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
5. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
C. Terminal Boxes, Junction Boxes, and Cabinets:
1. Shall be galvanized steel in accordance with UL requirements.
2. All new and reused boxes shall be sized and installed in accordance with NFPA 70.
3. New and existing covers shall be repainted red in accordance with Section 099100 , PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for
cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
5. All conduit and junction boxes shall be painted red and labeled every 10 feet to the contents of the conduit. All boxes shall be labeled to its contents.

\subsection*{2.4 ALARM NOTIFICATION APPLIANCES}
A. Strobes:
1. Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ . Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72) .
2. Backplate shall be red with \(1 / 2\) inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
4. Strobes may be combined with the audible notification appliances specified herein.
B. Fire Alarm Horns:
1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
3. Mount on removable adapter plates on conduit boxes.
4. Each horn circuit shall have a minimum of 20 percent spare capacity. C. Speakers:
1. Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0 W and originally installed at the \(1 / 2\) watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the \(1 / 2\) watt tap.
2. Frequency response shall be a minimum of 400 HZ to \(4,000 \mathrm{HZ}\).
3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

\subsection*{2.5 ALARM INITIATING DEVICES}
A. Manual Fire Alarm Stations:
1. Shall be non-breakglass, address reporting type.
2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
B. Smoke Detectors:
1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
4. All spot type and duct type detectors installed shall be of the photoelectric type.
5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

\subsection*{2.6 SUPERVISORY DEVICES}
A. Duct Smoke Detectors:
1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION."
3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.

\subsection*{2.7 UTILITY LOCKS AND KEYS:}
A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
B. All keys shall be delivered to the COR.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 INSTALLATION:}
A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 2805 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 0526 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 280528.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 078400 , FIRESTOPPING.
B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
C. All new and reused exposed conduits shall be painted in accordance with Section 099100 , PAINTING to match surrounding finished areas and red in unfinished areas.
D. All existing accessible fire alarm conduit not reused shall be removed.
E. All fire detection and alarm system devices shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
F. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
G. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (\(2,000 \mathrm{~mm}\)) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
H. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (\(1,200 \mathrm{~mm}\)) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
I. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than \(1 / 5\) of the distance from its normal position.

\subsection*{3.2 TYPICAL OPERATION}
A. Activation of any manual pull station, water flow or pressure switch, heat detector, or smoke detector shall cause the following operations to occur:
1. Operate the emergency voice communication system in the building. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm.
2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in the building.
3. Release only the magnetic door holders in the smoke on the floor from which alarm was initiated after the alert signal.
4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
5. Unlock the electrically locked exit doors within the zone of alarm.
B. Smoke detectors in the primary elevator lobbies of the building shall, in addition to the above functions, return all elevators in the bank to the secondary floor.
C. Smoke detectors in the remaining elevator lobbies shall, in addition to the above functions, return all elevators in the bank to the primary floor.
D. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders in that smoke zone.
E. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
F. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
G. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

\subsection*{3.3 TESTS}
A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection. 1. Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

\subsection*{3.4 FINAL INSPECTION AND ACCEPTANCE}
A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction. B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

\subsection*{3.5 INSTRUCTION}
A. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
B. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.
- - END - -

\section*{SECTION 312000 EARTH MOVING}

\section*{PART 1 - GENERAL}

\subsection*{1.1 DESCRIPTION OF WORK:}
A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
1. Site preparation.
2. Excavation.
3. Underpinning
4. Filling and backfilling.
5. Grading.
6. Soil Disposal.
7. Clean Up.

\subsection*{1.2 DEFINITIONS:}
A. Unsuitable Materials:
1. Fills: Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM D 1557
2. Existing Subgrade (Except Footing Subgrade): Same materials as 1.2.A.1, that are not capable of direct support of slabs, pavement, and similar items with possible exception of improvement by compaction, proofrolling, or similar methods.
3. Existing Subgrade (Footings Only): Same as paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Contracting Officer's Representative's (COR) approval.
B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings including equipment pads.
C. Trench Earthwork: Trenchwork required for utility lines.
D. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above.
E. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D2922.
F. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
G. Backfill: Soil materials or controlled low strength material used to fill an excavation.
H. Unauthorized excavation: Removal of materials beyond indicated sub-grade elevations or indicated lines and dimensions without written authorization by the COR. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
I. Authorized additional excavation: Removal of additional material authorized by the COR based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.
J. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
K. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
L. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
M. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
N. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe.
O. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk.
P. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.
Q. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building
materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.
R. Contaminated soils: Soil that contains contaminates as defined and determined by the COR or the Government's testing agency.

\subsection*{1.3 RELATED WORK:}
A. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 010000 , GENERAL REQUIREMENTS.
B. Subsurface Investigation: Section 010000 , GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

\subsection*{1.4 CLASSIFICATION OF EXCAVATION:}
A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.

\subsection*{1.5 SUBMITTALS:}
A. Submit in accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Furnish to COR:
1. Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size.
2. Soil samples.
a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
b. Laboratory compaction curve in accordance with ASTM D 1557 for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
c. Test reports for compliance with ASTM D 2940 requirements for subbase material.
d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations.
e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated.

\subsection*{1.6 APPLICABLE PUBLICATIONS:}
A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
B. American Association of State Highway and Transportation Officials (AASHTO) :

T99-01(2004)............Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop
T180-01(2004)...........Moisture-Density Relations of Soils using a 4.54 kg (10 lb) Rammer and a 457 mm (18 inch) Drop
C. American Society for Testing and Materials (ASTM) :

D448-03a................Standard Classification for Sizes of Aggregate for Road and Bridge Construction

D698-00ae1..............Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort \(\left(12,400 \mathrm{ft}\right.\). \(1 \mathrm{bbf} / \mathrm{ft}^{3}\left(600 \mathrm{kN} \mathrm{m} / \mathrm{m}^{3}\right)\))
D1556-00................Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
D1557-02e1..............Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort \(\left(56,000 \mathrm{ft}-\mathrm{lbf} / \mathrm{ft}^{3}\left(2700 \mathrm{kN} \mathrm{m} / \mathrm{m}^{3}\right)\right.\))

D2167-94 (2001).........Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method
D2487-06................Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System)
D2922-05................Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

D2940-03................Standard Specifications for Graded Aggregate Material for Bases or Subbases for Highways or Airports
D. Society of Automotive Engineers (SAE):

J732-92................Specification Definitions - Loaders
J1179-02...................Hydraulic Excavator and Backhoe Digging Forces

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 MATERIALS:}
A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension,
debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of \(1760 \mathrm{~kg} / \mathrm{m} 3\) (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a \(37.5-\mathrm{mm}\) (1 1/2inch) sieve and not more than 12 percent passing a \(75-\mu \mathrm{m}\) (No. 200) sieve, per ASTM D2940;
D. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940; except with 100 percent passing a 25 mm (1 inch) sieve and not more than 8 percent passing a \(75-\mu \mathrm{m}\) (No. 200) sieve.
E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.
F. Granular Fill:
1. Under concrete slab, crushed stone or gravel graded from 25 mm (1 inch) to 4.75 mm (No. 4), per ASTM D 2940.
2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No 4), per ASTM D 2940.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 SITE PREPARATION:}
A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center
B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from areas within 4500 mm (15 feet) of new construction and 2250 mm (7.5 feet) of utility lines when removal is approved in advance by COR. Remove materials from Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in construction area. Immediately repair damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including roots, in accordance with standard industry horticultural practice for
the geographic area and plant species. Do not store building materials closer to trees and shrubs, that are to remain, than farthest extension of their limbs.
D. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by COR. Eliminate foreign materials, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials larger than 0.014 m 3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed.
E. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center
F. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 010000 , GENERAL REQUIREMENTS, shall establish lines and grades.
1. Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
2. Locations of existing elevations indicated on plans are approximate from a site survey that measured spot elevations and subsequently generated existing contours and spot elevations. Proposed spot elevations and contour lines have been developed utilizing the existing conditions survey and developed contour lines and may be approximate. Contractor is responsible to notify COR of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify COR
of any differences between existing or constructed grades, as compared to those shown on the plans.
3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans. 4. Finish grading is specified in Section 329000 , PLANTING.
G. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

\subsection*{3.2 EXCAVATION:}
A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the COR, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
1. Design of the temporary support of excavation system is the responsibility of the Contractor.
2. Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the COR.
3. Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.
4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall underpin the existing foundation, per Section 3.3or provide a concrete fill support in compliance with specifications Section 3123 23.33, FLOWABLE FILL, under disturbed foundations, as directed by COR, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by COR.
B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from COR. Approval by the COR is also required before placement of the permanent work on all subgrades.
C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water,
remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the COR.
D. Proofrolling:
1. After rough grade has been established in cut areas and prior to placement of fill in fill areas under building and pavements, proofroll exposed subgrade with a fully loaded dump truck to check for pockets of soft material.
2. Proofrolling shall consist of at least two complete passes with one pass being in a direction perpendicular to preceding one. Remove any areas that deflect, rut, or pump excessively during proofrolling, or that fail to consolidate after successive passes to suitable soils and replaced with compacted fill. Maintain subgrade until succeeding operation has been accomplished.
3. Proofrolling shall also meet the requirements of the geotechnical report.
E. Building Earthwork:
1. Excavation shall be accomplished as required by drawings and specifications.
2. Excavate foundation excavations to solid undisturbed subgrade.
3. Remove loose or soft materials to a solid bottom.
4. Fill excess cut under footings or foundations with \(25 \mathrm{MPa}(3000 \mathrm{psi})\) concrete poured separately from the footings.
5. Do not tamp earth for backfilling in footing bottoms, except as specified.
6. Slope grades to direct water away from excavations and to prevent ponding.
F. Trench Earthwork:
1. Utility trenches (except sanitary and storm sewer):
a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
b. Grade bottom of trenches with bell holes scooped out to provide a uniform bearing.
c. Support piping on undisturbed earth unless a mechanical support is shown.
d. Length of open trench in advance of piping laying shall not be greater than is authorized by COR.
2. Sanitary and storm sewer trenches:
a. Trench width below a point 150 mm (6 inches) above top of pipe shall be 600 mm (24 inches) maximum for pipe up to and including 300 mm (12 inches) diameter, and four-thirds diameter of pipe plus

200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
b. Bed bottom quadrant of pipe on undisturbed soil or granular fill.
1) Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one sixth of pipe diameter below pipe to 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand. Granular fill to be interrupted by earthen dams every 25 feet per geotechnical report.
c. Place and compact as specified remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
d. Use granular fill for bedding where rock or rocky materials are excavated. Granular fill to be interrupted by earthen dams every 25 feet per geotechnical report.
G. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. Excavation shall be accomplished as required by drawings and specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by COR as unsuitable, and replace with acceptable material per recommendations in the geotechnical report. When unsuitable material is encountered and removed, contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on volume in cut section only.
1. Site Grading:
a. Provide a smooth transition between adjacent existing grades and new grades.
b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances:
1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch).
2) Pavements: Plus or minus 13 mm (\(1 / 2\) inch).
d. Grading inside building lines including equipment pad slabs: Finish subgrade to a tolerance of 13 mm (1/2 inch) when tested with a 3000 mm (10 foot) straightedge.

\subsection*{3.3 UNDERPINNING:}
A. Design of the underpinning system is the responsibility of the Contractor and should be designed by a registered professional engineer and is subject to review and approval by the COR. Underpinning of existing building foundations, as indicated on structural drawings, or where excavation undermines existing foundations, shall be accomplished in the following manner:
1. Make general excavation for new construction, where new foundations are to be below existing foundations, to elevation of new foundations (or sized stone subbase), maintaining a 45 degree sloped berm.
2. For underpinning pits, underpin existing wall foundations by excavating 1200 mm (4 feet) wide pits to depth shown on drawings skipping 3 sections at any one time so as to maintain support for wall at all times.
3. Underpin intervening sections one at a time; no adjacent sections shall be underpinned until concrete in adjacent sections shall have reached \(20 \mathrm{MPa}(2500 \mathrm{psi})\) strength and have been dry packed with nonshrink grout to obtain positive bearing. Sheet and brace underpinning pits if soil will not stand on a vertical cut during this operation, or as required for safety of workmen. Repack any voids behind sheeting to prevent sloughing which could cause settlement of existing foundations. Contractor performing this portion of work shall have been prequalified by COR as having previously performed successfully this type of work or will demonstrate his capability for successfully performing this work. It shall be sole responsibility of the Contractor to guard against objectionable movement or settlement and to preserve integrity of existing structures.
4. The tip elevation of the underpinning pits shall be a minimum of 900 mm (3 feet) below the adjacent excavation elevation.
5. Subgrades at the tip of the underpinning pit shall be clean, dry, and free of debris and shall be observed by the COR prior to concrete placement.
6. Concrete shall not be free fall greater than 3000 mm (10 feet) into the pit.

\subsection*{3.4 FILLING AND BACKFILLING:}
A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein and in geotechnical report, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, foundation drainage, and pipes coming in contact with backfill have been installed and work inspected and approved by COR.
B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost.
C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without prior approval of COR. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below:
1. Fills, Embankments, and Backfill
a. Under proposed structures, building slabs, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material in accordance with ASTM D1557 95 percent.
b. Landscaped areas, top 400 mm (16 inches), ASTM 90 percent.
c. Landscaped areas, below 400 mm (16 inches) of finished grade, ASTM D1557 90 percent.
2. Natural Ground (Cut or Existing)
a. Under building slabs, steps and paved areas, top 150 mm (6 inches), AASHTO D1557 95 percent.

\subsection*{3.5 GRADING:}
A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet).
D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean.
E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.
G. Finish subgrade in a condition acceptable to COR at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather.
H. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

\subsection*{3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:}
A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
B. Disposal: Transport surplus satisfactory soil to designated storage areas on Medical Center property. Stockpile or spread soil as directed by COR.
1. Remove waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
C. Place excess excavated materials suitable for fill and/or backfill on site where directed.
D. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
E. Segregate all excavated contaminated soil designated by the COR from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

\subsection*{3.7 CLEAN UP:}

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center property.

\section*{SECTION 320523}

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

\section*{PART 1 - GENERAL}

\subsection*{1.1 DESCRIPTION}
A. This section shall cover site work concrete constructed upon the prepared subgrade and in conformance with the lines, grades, thickness, and cross sections shown. Construction shall include the following:
B. Pedestrian Pavement: Walks,grade slabs
C. Equipment Pads: AIR HANDLING UNIT, CONDENSOR UNITS.

\subsection*{1.2 RELATED WORK}
A. Laboratory and Field Testing Requirements: Section 0145 29, TESTING LABORATORY SERVICES.
B. Subgrade Preparation: Section 312000 , EARTH MOVING.
C. Concrete Materials, Quality, Mixing, Design and Other Requirements: Section 0330 00, CAST-IN-PLACE-CONCRETE.

\subsection*{1.3 DESIGN REQUIREMENTS}

Design all elements with the latest published version of applicable codes.

\subsection*{1.4 WEATHER LIMITATIONS}

Placement of concrete shall be as specified under Article 3.8, COLD WEATHER and Article 3.7, HOT WEATHER of Section 033000 , CAST-IN-PLACE CONCRETE.

\subsection*{1.5 SELECT SUBBASE MATERIAL JOB-MIX}

The Contractor shall retain and reimburse a testing laboratory to design a select subbase material mixture and submit a job-mix formula to the Resident Engineer, in writing, for approval. The formula shall include the source of materials, gradation, plasticity index, liquid limit, and laboratory compaction curves indicating maximum density at optimum moisture.

\subsection*{1.6 SUBMITTALS}
A. In accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
B. Manufacturers' Certificates and Data certifying that the following materials conform to the requirements specified.
1. Expansion joint filler
2. Hot poured sealing compound
3. Reinforcement
4. Curing materials
C. Data and Test Reports: Select subbase material.
1. Job-mix formula.
2. Source, gradation, liquid limit, plasticity index, percentage of wear, and other tests as specified and in referenced publications.

\subsection*{1.7 APPLICABLE PUBLICATIONS}
A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Refer to the latest edition of all referenced Standards and codes.
B. American Association of State Highway and Transportation Officials (AASHTO) :
M031MM031-07-UL..........Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement (ASTM A615/A615M-09)
M055MM055-09-UL.........Steel Welded Wire Reinforcement, Plain, for Concrete (ASTM A185)

M147-65-UL..............Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses (R 2004)

M148-05-UL..............Liquid Membrane-Forming Compounds for Curing Concrete (ASTM C309)

M171-05-UL.............. Sheet Materials for Curing Concrete (ASTM C171)
M182-05-UL...............Burlap Cloth Made from Jute or Kenaf and Cotton Mats

M213-01-UL..............Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Type) (ASTM D1751)

M233-86-UL...............Boiled Linseed Oil Mixer for Treatment of Portland Cement Concrete
T099-09-UL..............Moisture-Density Relations of Soils Using a 2.5 kg. (5.5 lb) Rammer and a 305 mm (12 in.) Drop T180-09-UL...............Moisture-Density Relations of Soils Using a 4.54 kg (10 lb.) Rammer and a 457 mm (18 in.) Drop
C. American Society for Testing and Materials (ASTM):

C94/C94M-09.............. Ready-Mixed Concrete
C143/C143M-09...........Slump of Hydraulic Cement Concrete

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 GENERAL}

Concrete shall be Type C, air-entrained as specified in Section 0330 00, CAST-IN-PLACE CONCRETE, with the following exceptions:
\begin{tabular}{|l|l|}
\hline TYPE & MAXIMUM SLUMP* \\
\hline Pedestrian Pavement & \(75 \mathrm{~mm} \mathrm{(3")}\) \\
\hline Equipment Pad & 75 to \(100 \mathrm{~mm} \mathrm{(3"} \mathrm{to} \mathrm{4")}\) \\
\hline \begin{tabular}{l}
* For concrete to be vibrated: Slump as determined by ASTM C143. \\
Tolerances as established by ASTM C94.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.2 REINFORCEMENT}
A. The type, amount, and locations of steel reinforcement shall be as shown on the drawings and in the specifications.
B. Welded wire-fabric shall conform to AASHTO M55.
C. Dowels shall be plain steel bars conforming to AASHTO M31. Tie bars shall be deformed steel bars conforming to AASHTO M31.

\subsection*{2.3 SELECT SUBBASE (WHERE REQUIRED)}
A. Subbase material shall consist of select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials conforming to AASHTO M147, Grading E or F .
B. Materials meeting other gradations than that noted will be acceptable whenever the gradations are within a tolerance of three to five percent, plus or minus, of the single gradation established by the job-mix formula.
C. Subbase material shall produce a compacted, dense-graded course, meeting the density requirement specified herein.

\subsection*{2.4 FORMS}
A. Use metal or wood forms that are straight and suitable in cross-section, depth, and strength to resist springing during depositing and consolidating the concrete, for the work involved.
B. Do not use forms if they vary from a straight line more than 3 mm (1/8 inch) in any 3000 mm (ten foot) long section, in either a horizontal or vertical direction.
C. Wood forms should be at least 50 mm (2 inches) thick (nominal). Wood forms shall also be free from warp, twist, loose knots, splits, or other defects. Use approved flexible or curved forms for forming radii.

\subsection*{2.5 CONCRETE CURING MATERIALS}
A. Concrete curing materials shall conform to one of the following:
1. Burlap conforming to AASHTO M182 having a weight of 233 grams (seven ounces) or more per square meter (yard) when dry.
2. Impervious Sheeting conforming to AASHTO M171.
3. Liquid Membrane Curing Compound conforming to AASHTO M148 (ASTM C309), Type 1 and shall be free of paraffin or petroleum.

\subsection*{2.6 EXPANSION JOINT FILLERS}

Material shall conform to AASHTO M213.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 SUBGRADE PENETRATION}
A. Prepare, construct, and finish the subgrade as specified in Section 31 20 00, EARTH MOVING.
B. Maintain the subgrade in a smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

\subsection*{3.2 SELECT SUBBASE (WHERE REQUIRED)}
A. Mixing: Proportion the select subbase by weight or by volume in quantities so that the final approved job-mixed formula gradation, liquid limit, and plasticity index requirements will be met after subbase course has been placed and compacted. Add water in approved quantities, measured by weight or volume, in such a manner to produce a uniform blend.
B. Placing:
1. Place the mixed material on the prepared subgrade in a uniform layer to the required contour and grades, and to a loose depth not to exceed 200 mm (8 inches), and that when compacted, will produce a layer of the designated thickness.
2. When the designated compacted thickness exceeds 150 mm (6 inches), place the material in layers of equal thickness. Remove unsatisfactory areas and replace with satisfactory mixture, or mix the material in the area.
3. In no case will the addition of thin layers of material be added to the top layer in order to meet grade.
4. If the elevation of the top layer is 13 mm (\(1 / 2\) inch) or more below the grade, excavate the top layer and replace with new material to a depth of at least 75 mm (3 inches) in compacted thickness.
C. Compaction:
1. Perform compaction with approved equipment (hand or mechanical) well suited to the material being compacted.
2. Moisten or aerate the material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used.
3. Compact each layer to at least 95 percent or 100 percent of maximum density as determined by AASHTO T180 or AASHTO T99 respectively.
D. Smoothness Test and Thickness Control:

Test the completed subbase for grade and cross section with a straight edge.
1. The surface of each layer shall not show any deviations in excess of \(10 \mathrm{~mm}(3 / 8\) inch).
2. The completed thickness shall be within \(13 \mathrm{~mm}(1 / 2\) inch) of the thickness as shown.

\section*{E. Protection:}
1. Maintain the finished subbase in a smooth and compacted condition until the concrete has been placed.
2. When Contractor's subsequent operations or adverse weather disturbs the approved compacted subbase, excavate, and reconstruct it with new material meeting the requirements herein specified, at no additional cost to the VA.

\subsection*{3.3 SETTING FORMS}
A. Base Support:
1. Compact the base material under the forms true to grade so that, when set, they will be uniformly supported for their entire length at the grade as shown.
2. Correct imperfections or variations in the base material grade by cutting or filling and compacting.
B. Form Setting:
1. Set forms sufficiently in advance of the placing of the concrete to permit the performance and approval of all operations required with and adjacent to the form lines.
2. Set forms to true line and grade and use stakes, clamps, spreaders, and braces to hold them rigidly in place so that the forms and joints are free from play or movement in any direction.
3. Forms shall conform to line and grade with an allowable tolerance of \(3 \mathrm{~mm}(1 / 8\) inch) when checked with a straightedge and shall not deviate from true line by more than 6 mm (1/4 inch) at any point.
4. Do not remove forms until removal will not result in damaged concrete or at such time to facilitate finishing.
5. Clean and oil forms each time they are used.
C. The Contractor's Registered Professional Land Surveyor, specified in Section 0072 00, GENERAL CONDITIONS, shall establish and control the alignment and the grade elevations of the forms or concrete slipforming machine operations.
1. Make necessary corrections to forms immediately before placing concrete.
2. When any form has been disturbed or any subgrade or subbase has become unstable, reset and recheck the form before placing concrete.

\subsection*{3.4 EQUIPMENT}
A. The Resident Engineer shall approve equipment and tools necessary for handling materials and performing all parts of the work prior to commencement of work.
B. Maintain equipment and tools in satisfactory working condition at all times.

\subsection*{3.5 PLACING REINFORCEMENT}
A. Reinforcement shall be free from dirt, oil, rust, scale or other substances that prevent the bonding of the concrete to the reinforcement.
B. Before the concrete is placed, the Resident Engineer shall approve the reinforcement, which shall be accurately and securely fastened in place with suitable supports and ties. The type, amount, and position of the reinforcement shall be as shown.

\subsection*{3.6 PLACING CONCRETE - GENERAL}
A. Obtain approval of the Resident Engineer before placing concrete.
B. Remove debris and other foreign material from between the forms before placing concrete. Obtain approval of the Resident Engineer before placing concrete.
C. Before the concrete is placed, uniformly moisten the subgrade, base, or subbase appropriately, avoiding puddles of water.
D. Convey concrete from mixer to final place of deposit by a method which will prevent segregation or loss of ingredients. Deposit concrete so that it requires as little handling as possible.
E. While being placed, spade or vibrate and compact the concrete with suitable tools to prevent the formation of voids or honeycomb pockets. Vibrate concrete well against forms and along joints. Over-vibration or manipulation causing segregation will not be permitted. Place concrete continuously between joints without bulkheads.
F. Install a construction joint whenever the placing of concrete is suspended for more than 30 minutes and at the end of each day's work.
G. Workmen or construction equipment coated with foreign material shall not be permitted to walk or operate in the concrete during placement and finishing operations.

\subsection*{3.7 CONCRETE FINISHING - GENERAL}
A. The sequence of operations, unless otherwise indicated, shall be as follows:
1. Consolidating, floating, straight-edging, troweling, texturing, and edging of joints.
2. Maintain finishing equipment and tools in a clean and approved condition.

\subsection*{3.8 CONCRETE FINISHING PEDESTRIAN PAVEMENT}
A. Walks, Grade Slabs
1. Finish the surfaces to grade and cross section with a metal float, trowled smooth and finished with a broom moistened with clear water.
2. Brooming shall be transverse to the line of traffic.
3. Finish all slab edges, including those at formed joints, carefully with an edger having a radius as shown on the Drawings.
4. Unless otherwise indicated, edge the transverse joints before brooming. The brooming shall eliminate the flat surface left by the surface face of the edger. Execute the brooming so that the corrugation, thus produced, will be uniform in appearance and not more than 2 mm (1/16 inch) in depth.
5. The completed surface shall be uniform in color and free of surface blemishes, form marks, and tool marks. The finished surface of the pavement shall not vary more than 5 mm (3/16 inch) when tested with a 3000 mm (10 foot) straightedge.
6. The thickness of the pavement shall not vary more than \(6 \mathrm{~mm}(1 / 4\) inch).
7. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints.
B. Steps: The method of finishing the steps and the sidewalls is similar to above except as herein noted.
1. Remove the riser forms one at a time, starting with the top riser.
2. After removing the riser form, rub the face of the riser with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Use an outside edger to round the
corner of the tread; use an inside edger to finish the corner at the bottom of the riser.
3. Give the risers and sidewall a final brush finish. The treads shall have a final finish with a stiff brush to provide a non-slip surface.
4. The texture of the completed steps shall present a neat and uniform appearance and shall not deviate from a straightedge test more than 5 mm (3/16 inch).

\subsection*{3.9 CONCRETE FINISHING EQUIPMENT PADS}
A. After the surface has been struck off and screeded to the proper elevation, give it a smooth dense float finish, free from depressions or irregularities.
B. Carefully finish all slab edges with an edger having a radius as shown in the Drawings.
C. After removing the forms, rub the faces of the pad with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The finish surface of the pad shall not vary more than 3 mm (1/8 inch) when tested with a 3000 mm (10 foot) straightedge.
D. Correct irregularities exceeding the above.

\subsection*{3.14 JOINTS - GENERAL}
A. Place joints, where shown, conforming to the details as shown, and perpendicular to the finished grade of the concrete surface.
B. Joints shall be straight and continuous from edge to edge of the pavement.

\subsection*{3.15 CONTRACTION JOINTS}
A. Cut joints to depth as shown with a grooving tool or jointer of a radius as shown or by sawing with a blade producing the required width and depth.
B. Plates shall remain in place until concrete has set sufficiently to hold its shape and shall then be removed.
C. Finish edges of all joints with an edging tool having the radius as shown.
D. Score pedestrian pavement with a standard grooving tool or jointer.

\subsection*{3.16 EXPANSION JOINTS}
A. Use a preformed expansion joint filler material of the thickness as shown to form expansion joints.
B. Material shall extend the full depth of concrete, cut and shaped to the cross section as shown, except that top edges of joint filler shall be below the finished concrete surface where shown to allow for sealing.
C. Anchor with approved devices to prevent displacing during placing and finishing operations.
D. Round the edges of joints with an edging tool.
E. Form expansion joints as follows:
1. Without dowels, about structures and features that project through, into, or against any site work concrete construction.
2. Using joint filler of the type, thickness, and width as shown.
3. Installed in such a manner as to form a complete, uniform separation between the structure and the site work concrete item.

\subsection*{3.17 CONSTRUCTION JOINTS}
A. Locate longitudinal construction joints between slabs of vehicular pavement as shown.
B. Place transverse construction joints of the type shown, where indicated and whenever the placing of concrete is suspended for more than 30 minutes.
C. Use a butt-type joint with dowels in if the joint occurs at the location of a planned joint.
D. Use keyed joints with tiebars if the joint occurs in the middle third of the normal gutter joint interval.

\subsection*{3.18 FORM REMOVAL}
A. Forms shall remain in place at least 12 hours after the concrete has been placed. Remove forms without injuring the concrete.
B. Do not use bars or heavy tools against the concrete in removing the forms. Promptly repair any concrete found defective after form removal.

\subsection*{3.20 CURING OF CONCRETE}
A. Cure concrete by one of the following methods appropriate to the weather conditions and local construction practices, against loss of moisture, and rapid temperature changes for at least seven days from the beginning of the curing operation. Protect unhardened concrete from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready to install before actual concrete placement begins. Provide protection as necessary to prevent cracking of the pavement due to temperature changes during the curing period. If any selected method of curing does not afford the proper curing and protection against concrete cracking, remove and replace the damaged pavement and employ another method of curing as directed by the Resident Engineer.
B. Burlap Mat: Provide a minimum of two layers kept saturated with water for the curing period. Mats shall overlap each other at least 150 mm (6 inches).
C. Impervious Sheeting: Use waterproof paper, polyethylene-coated burlap, or polyethylene sheeting. Polyethylene shall be at lease 0.1 mm (4 mils) in thickness. Wet the entire exposed concrete surface with a fine spray of water and then cover with the sheeting material. Sheets shall overlap each other at least 300 mm (12 inches). Securely anchor sheeting.
D. Liquid Membrane Curing:
1. Apply pigmented membrane-forming curing compound in two coats at right angles to each other at a rate of \(5 \mathrm{~m}^{2} / \mathrm{L}\) (200 square feet per gallon) for both coats.
2. Do not allow the concrete to dry before the application of the membrane.
3. Cure joints designated to be sealed by inserting moistened paper or fiber rope or covering with waterproof paper prior to application of the curing compound, in a manner to prevent the curing compound entering the joint.
4. Immediately re-spray any area covered with curing compound and damaged during the curing period.

\subsection*{3.21 CLEANING}
A. After completion of the curing period:
1. Remove the curing material (other than liquid membrane).
2. Sweep the concrete clean.
3. After removal of all foreign matter from the joints, seal joints as herein specified.
4. Clean the entire concrete of all debris and construction equipment as soon as curing and sealing of joints has been completed.

\subsection*{3.22 PROTECTION}

The contractor shall protect the concrete against all damage prior to final acceptance by the Government. Remove concrete containing excessive cracking, fractures, spalling, or other defects and reconstruct the entire section between regularly scheduled joints, when directed by the Resident Engineer, and at no additional cost to the Government. Exclude traffic from vehicular pavement until the concrete is at least seven days old, or for a longer period of time if so directed by the Resident Engineer.

\subsection*{3.23 FINAL CLEAN-UP}

Remove all debris, rubbish and excess material from the Station.

SECTION 323113 CHAIN LINK FENCES AND GATES

\section*{PART 1 - GENERAL}

\subsection*{1.1 DESCRIPTION}

This work consists of all labor, materials, and equipment necessary for furnishing and installing chain link fence, gates and accessories in conformance with the lines, grades, and details as shown.

\subsection*{1.2 RELATED WORK}
A. Temporary Construction Fence: Section 010000 , GENERAL REQUIREMENTS.

\subsection*{1.3 MANUFACTURER'S QUALIFICATIONS}

Fence, gates, and accessories shall be products of manufacturers' regularly engaged in manufacturing items of type specified.

\subsection*{1.4 SUBMITTALS}
A. In accordance with Section 0133 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES, furnish the following:
1. Manufacturer's Literature and Data: Chain link fencing, gates and all accessories.
2. Manufacturer's Certificates: Zinc-coating complies with complies with specifications.
B. Shop Drawings for fence enclosure.

\subsection*{1.5 APPLICABLE PUBLICATIONS}
A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society for Testing and Materials (ASTM):

A121-07.................Metallic Coated Carbon Steel Barbed Wire A392-07.................Zinc-Coated Steel Chain-Link Fence Fabric A817-07.................Metal-Coated Steel Wire for Chain-Link Fence Fabric and Marcelled Tension Wire

C94/C94M-07............. Ready-Mixed Concrete
F567-07.................Installation of Chain-Link Fence
F626-(R2003).............Fence Fittings
F900-05..................Industrial and Commercial Swing Gates
F1043-06................Strength and Protective Coatings on Metal Industrial Chain-Link Fence Framework

F1083-08................Pipe, Steel, Hot-Dipped Zinc-Coated
(Galvanized) Welded, for Fence Structures.
C. Federal Specifications (Fed. Spec.) :

FF-P-110J...............Padlock, Changeable Combination

\section*{PART 2 - PRODUCTS}

\subsection*{2.1 GENERAL}

Materials shall conform to ASTM F1083 and ASTM A392 ferrous metals, zinc-coated; and detailed specifications forming the various parts thereto; and other requirements specified herein. Zinc-coat metal members (including fabric, gates, posts, rails, hardware and other ferrous metal items) after fabrication shall be reasonably free of excessive roughness, blisters and sal-ammoniac spots.

\subsection*{2.2 CHAIN-LINK FABRIC}

ASTM A392 9 gauge wire woven in a 50 mm (2 inch) mesh. Top and bottom selvage shall have twisted and barbed finish. Zinc-coating weight shall be 340 grams \(/ \mathrm{m}^{2}\) (1.2 ounces per square foot).

\subsection*{2.3 POST, FOR GATES AND FENCING}

ASTM F1083, Grade SK-40A, round, zinc-coated steel. Dimensions and weights of posts shall conform to the tables in the ASTM Specification. Provide post braces and truss rods for each gate, corner, pull or end post. Provide truss rods with turnbuckles or other equivalent provisions for adjustment.

\subsection*{2.4 TOP RAIL AND BOTTOM RAIL}

ASTM F1083, Grade SK-40A, round, zinc-coated steel. Dimensions and weights of posts shall conform to the tables in the ASTM Specification; fitted with suitable expansion sleeves and means for securing rail to each gate, corner, and end posts.

\subsection*{2.5 TOP AND BOTTOM TENSION WIRE}

ASTM A817 and ASTM F626, zinc-coated, having minimum coating the same as the fence fabric.

\subsection*{2.6 ACCESSORIES}

Accessories as necessary caps, rail and brace ends, wire ties or clips, braces and tension bands, tension bars, truss rods, and miscellaneous accessories conforming to ASTM F626

\subsection*{2.7 BARBED WIRE SUPPORT ARMS}

ASTM F626, single arm type, steel or malleable iron.

\subsection*{2.8 BARBED WIRE}

ASTM A121, zinc-coated steel wire and barbs; standard size and construction: \(2.51 \mathrm{~mm}(0.099\) inch) diameter line wire with 2.03 cm (0.080 inch) diameter, 2-point barbs.

\subsection*{2.9 GATES}

ASTM F900, type as shown. Gate framing, bracing, latches, and other hardware zinc-coating weight shall be the same as the FABRIC. // Gate leaves more than 2400 mm (8 feet) wide shall have either intermediate members and diagonal truss rods, or shall have tubular members as necessary to provide rigid construction, free from sag or twist. // Gates less than 2400 mm (8 feet) wide shall have truss rods or intermediate braces //. Attach gate fabric to the gate frame by method standard with the manufacturer, except that welding will not be permitted. Arrange latches for padlocking so that padlock will be accessible from both sides of the gate regardless of the latching arrangement. When required, extend each end member of gate frame sufficiently above the top member or provide three strands of barbed wire in horizontal alignment with barbed wire strands on the fence.

\subsection*{2.10 GATE HARDWARE}
A. Manufacturer's standard products, installed complete. The type of hinges shall allow gates to swing through 180 degrees, from closed to open position. Hang and secure gates in such a manner that, when locked, they cannot be lifted off hinges.
B. Equip gate openings with padlock conforming to Fed Spec FF-P-110H, Type EPC, size 50 mm (2 inch). Padlocks shall have chains that are securely attached to the gate or gate post. Before padlocks are delivered to project, submit sample to Resident Engineer for approval. Approved sample may be incorporated in work. Key padlock as directed by the Resident Engineer.

\subsection*{2.11 CONCRETE}

ASTM C94/C94M, using 19 mm (3/4 inch) maximum-size aggregate, and having minimum compressive strength of \(25 \mathrm{mPa}(3000 \mathrm{psig})\) at 28 days. Non-shrinking grout shall consist of one part Portland cement to three parts clean, well-graded sand, non-shrinking grout additive and the minimum amount of water to produce a workable mix.

\section*{PART 3 - EXECUTION}

\subsection*{3.1 INSTALLATION}
A. Install fence by properly trained crew, on previously prepared surfaces, to line and grade as shown. Install fence in accordance with ASTM F567 and with the manufacturer's printed installation instructions, except as modified herein or as shown. Maintain all equipment, tools, and machinery while on the project in sufficient quantities and capacities for proper installation of posts, chain links and accessories.
B. A Registered Professional Land Surveyor or Registered Civil Engineer specified in Section 010000 , GENERAL REQUIREMENTS, shall stake out and certify the fence alignment to meet the requirements as shown.

\subsection*{3.2 EXCAVATION}

Excavation for concrete-embedded items shall be of the dimensions shown, except in bedrock. If bedrock is encountered before reaching the required depth, continue the excavation to the depth shown or 450 mm (18 inches) into the bedrock, whichever is less, and provide a minimum of 50 mm (2 inches) larger diameter than the outside diameter of the post. Clear loose material from post holes. Grade area around finished concrete footings as shown and dispose of excess earth as directed by the Resident Engineer.

\subsection*{3.3 POST SETTING}

Install posts plumb and in alignment. Set post in concrete footings of dimensions as shown, except in bedrock. Thoroughly compact concrete so as it to be free of voids and finished in a slope or dome to divert water running down the post away from the footing. // Straight runs between braced posts shall not exceed 150 m (500 feet) //. Install posts in bedrock with a minimum of 25 mm (one inch) of non-shrinking grout around each post. Thoroughly work non-shrinking grout into the hole so as to be free of voids and finished in a slope or dome. Cure concrete and grout a minimum of 72 hours before any further work is done on the posts.

\subsection*{3.4 POST SETTING IN STRUCTURES}

Install post in retaining walls, curbs, concrete slabs, or similar construction in proper size galvanized pipe sleeves set into the concrete or built into the masonry as shown. Set sleeves plumb and 13
mm (1/2 inch) above the finished structure. Fill space solidly between sleeve and post with non-shrinking grout, molten lead, or sulphur, and finish to divert water running down the post away from the post base.

\subsection*{3.5 POST CAPS}

Fit all exposed ends of post with caps. Provide caps that fit snugly and are weathertight. Where top rail is used, provide caps to accommodate the top rail. Install post caps as recommended by the manufacturer and as shown.

\subsection*{3.6 SUPPORTING ARMS}

Design supporting arms, when required, to be weathertight. Where top rail is used, provide arms to accommodate the top rail. Install supporting arms as recommended by the manufacturer and as shown.

\subsection*{3.7 TOP RAILS AND BOTTOM RAILS}

Install rails before installing chain link fabric. Provide suitable means for securing rail ends to terminal and intermediate post. // Top rails shall pass through intermediate post supporting arms or caps as shown.

\subsection*{3.8 TOP AND BOTTOM TENSION WIRE}

Install and pull taut tension wire before installing the chain-link fabric.

\subsection*{3.9 ACCESSORIES}

Supply accessories (posts braces, tension bands, tension bars, truss rods, and miscellaneous accessories), as required and recommended by the manufacturer, to accommodate the installation of a complete fence, with fabric that is taut and attached properly to posts, rails, and tension wire.

\subsection*{3.10 FABRIC}

Pull fabric taut and secured with wire ties or clips to the top rail bottom rail and tension wire close to both sides of each post and at intervals of not more than 600 mm (24 inches) on centers. Secure fabric to posts using stretcher bars and ties or clips.

\subsection*{3.11 GATES}

Install gates plumb, level, and secure for full opening without interference. Set keepers, stops and other accessories into concrete as required by the manufacturer and as shown. Adjust hardware for smooth operation and lubricate where necessary.

\subsection*{3.12 REPAIR OF GALVANIZED SURFACES}

Use galvanized repair compound, stick form, or other method, where galvanized surfaces need field or shop repair. Repair surfaces in accordance with the manufacturer's printed directions.

\subsection*{3.13 FINAL CLEAN-UP}

Remove all debris, rubbish and excess material from the station. - - - E N D - - -```

[^0]: - - - E N D - - -

[^1]: b. Specific requirements for current and surge protection shall include:

 1) Five nanosecond (ns) response time to the transient.
 2) Voltage protection threshold, line to neutral, starts at no more than 220 volts peak. The transient voltage shall not exceed 300 volts peak. Vendor shall furnish documentation on peak clamping voltage as a function of transient AMP.
 3) Peak power dissipation is 35 joules per phase (minimum), as measured for 1 millisecond at sub branch panels, 100 joules per phase at branch panels and 300 joules per phase at service entrance panels. Vendor shall furnish an explanation of how the ratings were measured or empirically derived.
 4) Surge protector must not short circuit the AC power line at any time:
 a) The primary surge protection components must be silicon semiconductors. Secondary stages, if used, may include other types of devices.
 b) Surge protectors shall incorporate a visual device which indicates whether the surge suppression component(s) is (are) functioning.
 c) Surge protection devices shall be UL listed.
 d) Voltage and current surge protectors shall be provided on all ancillary equipment provided by the Contractor, not powered from the CSU primary power supply and emergency battery, e.g., electronic telephones, service units, custom telephones, speaker phones, modems, data terminal interface, etc.
 e) Power dissipation 12,000 Watts (W) for l millisecond (l2 Joules).
 f) Voltage protection threshold starts at not more than 110 VAC.
 g) Surge protectors must not short-circuit the A/C line at any time.
 h) Surge protectors shall be wholly self contained, plug in type for 110/120 VAC, 15 AMP, duplex receptacle.
 D. Distribution or System Interface Cabinet:
 1. The cabinet shall be constructed of heavy 16 gauge cold rolled steel, have top and side panels and hinged front and rear (front
